Contribution of Different Subbands of ECG in Sleep Apnea Detection Evaluated Using Filter Bank Decomposition and a Convolutional Neural Network

A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 2; p. 510
Main Authors Yeh, Cheng-Yu, Chang, Hung-Yu, Hu, Jiy-Yao, Lin, Chun-Cheng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22020510

Cover

Abstract A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate whether the reduction of lower frequency P and T waves can increase the accuracy of the detection of apnea events. This study proposed filter bank decomposition to decompose the ECG signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN) model independently cooperating with each subband to extract and classify the features of the given subband signal. One-minute ECG signals obtained from the MIT PhysioNet Apnea-ECG database were used to train the CNN models and test the accuracy of detecting apnea events for different subbands. The results show that the use of the newly selected subject-independent datasets can avoid the overestimation of the accuracy of the apnea event detection and can test the difference in the accuracy of different subbands. The frequency band of 31.25–37.5 Hz can achieve 100% per-recording accuracy with 85.8% per-minute accuracy using the newly selected subject-independent datasets and is recommended as a promising subband of ECG signals that can cooperate with the proposed 1D CNN model for the diagnosis of OSA.
AbstractList A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate whether the reduction of lower frequency P and T waves can increase the accuracy of the detection of apnea events. This study proposed filter bank decomposition to decompose the ECG signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN) model independently cooperating with each subband to extract and classify the features of the given subband signal. One-minute ECG signals obtained from the MIT PhysioNet Apnea-ECG database were used to train the CNN models and test the accuracy of detecting apnea events for different subbands. The results show that the use of the newly selected subject-independent datasets can avoid the overestimation of the accuracy of the apnea event detection and can test the difference in the accuracy of different subbands. The frequency band of 31.25-37.5 Hz can achieve 100% per-recording accuracy with 85.8% per-minute accuracy using the newly selected subject-independent datasets and is recommended as a promising subband of ECG signals that can cooperate with the proposed 1D CNN model for the diagnosis of OSA.A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate whether the reduction of lower frequency P and T waves can increase the accuracy of the detection of apnea events. This study proposed filter bank decomposition to decompose the ECG signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN) model independently cooperating with each subband to extract and classify the features of the given subband signal. One-minute ECG signals obtained from the MIT PhysioNet Apnea-ECG database were used to train the CNN models and test the accuracy of detecting apnea events for different subbands. The results show that the use of the newly selected subject-independent datasets can avoid the overestimation of the accuracy of the apnea event detection and can test the difference in the accuracy of different subbands. The frequency band of 31.25-37.5 Hz can achieve 100% per-recording accuracy with 85.8% per-minute accuracy using the newly selected subject-independent datasets and is recommended as a promising subband of ECG signals that can cooperate with the proposed 1D CNN model for the diagnosis of OSA.
A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate whether the reduction of lower frequency P and T waves can increase the accuracy of the detection of apnea events. This study proposed filter bank decomposition to decompose the ECG signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN) model independently cooperating with each subband to extract and classify the features of the given subband signal. One-minute ECG signals obtained from the MIT PhysioNet Apnea-ECG database were used to train the CNN models and test the accuracy of detecting apnea events for different subbands. The results show that the use of the newly selected subject-independent datasets can avoid the overestimation of the accuracy of the apnea event detection and can test the difference in the accuracy of different subbands. The frequency band of 31.25–37.5 Hz can achieve 100% per-recording accuracy with 85.8% per-minute accuracy using the newly selected subject-independent datasets and is recommended as a promising subband of ECG signals that can cooperate with the proposed 1D CNN model for the diagnosis of OSA.
Audience Academic
Author Lin, Chun-Cheng
Yeh, Cheng-Yu
Hu, Jiy-Yao
Chang, Hung-Yu
AuthorAffiliation 1 Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; cy.yeh@ncut.edu.tw (C.-Y.Y.); geminipig19970530@gmail.com (J.-Y.H.)
3 Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
2 Heart Center, Cheng Hsin General Hospital, Taipei 112, Taiwan; amadeus0814@yahoo.com.tw
AuthorAffiliation_xml – name: 1 Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; cy.yeh@ncut.edu.tw (C.-Y.Y.); geminipig19970530@gmail.com (J.-Y.H.)
– name: 2 Heart Center, Cheng Hsin General Hospital, Taipei 112, Taiwan; amadeus0814@yahoo.com.tw
– name: 3 Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
Author_xml – sequence: 1
  givenname: Cheng-Yu
  surname: Yeh
  fullname: Yeh, Cheng-Yu
– sequence: 2
  givenname: Hung-Yu
  surname: Chang
  fullname: Chang, Hung-Yu
– sequence: 3
  givenname: Jiy-Yao
  surname: Hu
  fullname: Hu, Jiy-Yao
– sequence: 4
  givenname: Chun-Cheng
  orcidid: 0000-0002-5604-9845
  surname: Lin
  fullname: Lin, Chun-Cheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35062470$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gwB9AlrjAYVvHjuPkgrRsP6hUwaH0bDnOePE2ay92sohfwV9mNluWblXlMNH4mXc84_c4O_DBQ5a9zekp5zU9S4xRRkVOX2RHecGKSYWJg0f_h9lxSgtKGee8epUdckFLVkh6lP2ZBd9H1wy9C54ES86dtRDB9-R2aBrt27TJXsyuiPPktgNYkenKgybn0IMZqy7Wuht0Dy25S87PyaXreojks_b3SJmwXIXkRhLliCbYch26saPuyFcY4hj6XyHev85eWt0lePMQT7K7y4vvsy-Tm29X17PpzcQIXvYT2wrW0IJTDoU0FFqwGDnVsi5tXovSFjXLoRKFbABMjkuw3NJGtJxSyAU_ya63um3QC7WKbqnjbxW0U2MixLnSsXemA8Uk5SgCVVOLglmKoi0FbsByU2vaoNanrdZqaJbQGlweTrQnun_i3Q81D2tVSSlLwVHgw4NADD8HSL1aumSg67SHMCTFSsZYVZVSIvr-CboIQ8Q9jlSOD1sI8Z-aaxzAeRuwr9mIqqmsclbnUlRInT5D4dfC0hm0mHWY3yt493jQ3YT_7ITAxy1gYkgpgt0hOVUbq6qdVZE9e8Ia1-uNKfAWrnum4i_KUelD
CitedBy_id crossref_primary_10_1097_MCP_0000000000001113
crossref_primary_10_1007_s13246_023_01346_0
crossref_primary_10_1016_j_bspc_2023_104581
crossref_primary_10_3390_s22072782
crossref_primary_10_17780_ksujes_1205807
crossref_primary_10_3390_biology12040533
crossref_primary_10_1016_j_compbiomed_2025_109769
crossref_primary_10_3390_healthcare13020181
crossref_primary_10_1016_j_bspc_2024_106993
crossref_primary_10_3390_life12101509
crossref_primary_10_1109_TBME_2024_3378508
crossref_primary_10_2174_0118722121293262240527102646
crossref_primary_10_3390_bios14040183
Cites_doi 10.1016/j.compbiomed.2018.06.011
10.1109/JSEN.2013.2257742
10.3390/s20154157
10.1016/j.imu.2019.100170
10.1016/j.neucom.2016.12.062
10.1093/bja/aes465
10.1016/j.cmpb.2019.05.002
10.1109/JBHI.2017.2734074
10.7717/peerj.7731
10.1016/j.jacc.2016.11.069
10.1161/CIRCEP.110.958009
10.1109/TBME.2015.2498199
10.1016/j.ejim.2012.05.013
10.1109/ICCV.2015.123
10.1109/TBCAS.2018.2824659
10.1016/j.neucom.2018.03.011
10.1016/j.asoc.2019.105568
10.1093/sleep/32.2.150
10.1088/2057-1976/ab68e9
10.1007/s10439-014-1073-x
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s22020510
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2703beee8b9542f0854d0e3cef3c9a0b
PMC8777653
A781291758
35062470
10_3390_s22020510
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: MOST 109-2637-E-167-001 -
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c536t-fd52b04303e47c0edef47c30a796f1956f4921e8547beec1822f3f0b5d300e153
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:13:39 EDT 2025
Thu Aug 21 18:34:16 EDT 2025
Fri Sep 05 08:34:49 EDT 2025
Fri Jul 25 20:15:30 EDT 2025
Tue Jun 17 22:23:18 EDT 2025
Tue Jun 10 21:15:26 EDT 2025
Wed Feb 19 02:26:54 EST 2025
Thu Apr 24 23:02:45 EDT 2025
Tue Jul 01 02:41:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords obstructive sleep apnea
single-lead electrocardiogram
convolutional neural network
filter bank decomposition
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-fd52b04303e47c0edef47c30a796f1956f4921e8547beec1822f3f0b5d300e153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5604-9845
OpenAccessLink https://www.proquest.com/docview/2621350455?pq-origsite=%requestingapplication%&accountid=15518
PMID 35062470
PQID 2621350455
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2703beee8b9542f0854d0e3cef3c9a0b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8777653
proquest_miscellaneous_2622288677
proquest_journals_2621350455
gale_infotracmisc_A781291758
gale_infotracacademiconefile_A781291758
pubmed_primary_35062470
crossref_primary_10_3390_s22020510
crossref_citationtrail_10_3390_s22020510
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sharma (ref_11) 2018; 100
Goldberger (ref_19) 2003; 101
Griner (ref_23) 1981; 94
Labate (ref_5) 2013; 13
Sharma (ref_12) 2019; 16
ref_13
Nazari (ref_7) 2018; 22
Javaheri (ref_2) 2017; 69
Alcaine (ref_6) 2014; 42
Hassan (ref_9) 2017; 235
Surrel (ref_26) 2018; 12
Penzel (ref_18) 2000; 27
Sharma (ref_16) 2020; 6
Rachim (ref_10) 2014; 24
Pinho (ref_17) 2019; 83
Li (ref_25) 2018; 294
ref_22
ref_21
ref_20
Mannarino (ref_1) 2012; 23
Hayano (ref_8) 2011; 4
Wang (ref_15) 2019; 176
Wang (ref_14) 2019; 7
Song (ref_24) 2016; 63
Singh (ref_3) 2013; 110
Ruehland (ref_4) 2009; 32
References_xml – volume: 100
  start-page: 100
  year: 2018
  ident: ref_11
  article-title: Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.011
– volume: 13
  start-page: 2666
  year: 2013
  ident: ref_5
  article-title: Empirical mode decomposition vs. wavelet decomposition for the extraction of respiratory signal from single-channel ECG: A comparison
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2257742
– ident: ref_13
  doi: 10.3390/s20154157
– volume: 16
  start-page: 100170
  year: 2019
  ident: ref_12
  article-title: A new approach to identify obstructive sleep apnea using an optimal orthogonal wavelet filter bank with ECG signals
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2019.100170
– volume: 235
  start-page: 122
  year: 2017
  ident: ref_9
  article-title: An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.062
– volume: 110
  start-page: 629
  year: 2013
  ident: ref_3
  article-title: Proportion of surgical patients with undiagnosed obstructive sleep apnoea
  publication-title: Br. J. Anaesth.
  doi: 10.1093/bja/aes465
– volume: 176
  start-page: 93
  year: 2019
  ident: ref_15
  article-title: A RR interval based automated apnea detection approach using residual network
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.05.002
– volume: 22
  start-page: 1059
  year: 2018
  ident: ref_7
  article-title: Variational mode extraction: A new efficient method to derive respiratory signals from ECG
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2734074
– volume: 24
  start-page: 2875
  year: 2014
  ident: ref_10
  article-title: Sleep apnea classification using ECG-signal wavelet-PCA features
  publication-title: Biomed. Mater. Eng.
– volume: 7
  start-page: e7731
  year: 2019
  ident: ref_14
  article-title: Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network
  publication-title: PeerJ
  doi: 10.7717/peerj.7731
– volume: 69
  start-page: 841
  year: 2017
  ident: ref_2
  article-title: Sleep apnea: Types, mechanisms, and clinical cardiovascular consequences
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2016.11.069
– volume: 4
  start-page: 64
  year: 2011
  ident: ref_8
  article-title: Screening for Obstructive Sleep Apnea by Cyclic Variation of Heart Rate
  publication-title: Circ. Arrhythm. Electrophysiol.
  doi: 10.1161/CIRCEP.110.958009
– volume: 27
  start-page: 255
  year: 2000
  ident: ref_18
  article-title: The apnea-ECG database
  publication-title: Comput. Cardiol.
– volume: 63
  start-page: 1532
  year: 2016
  ident: ref_24
  article-title: An obstructive sleep apnea detection approach using a discriminative hidden markov model from ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2498199
– volume: 101
  start-page: e215
  year: 2003
  ident: ref_19
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 23
  start-page: 586
  year: 2012
  ident: ref_1
  article-title: Obstructive sleep apnea syndrome
  publication-title: Eur. J. Intern. Med.
  doi: 10.1016/j.ejim.2012.05.013
– ident: ref_21
  doi: 10.1109/ICCV.2015.123
– volume: 12
  start-page: 762
  year: 2018
  ident: ref_26
  article-title: Online obstructive sleep apnea detection on medical wearable sensors
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2018.2824659
– volume: 294
  start-page: 94
  year: 2018
  ident: ref_25
  article-title: A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.011
– volume: 83
  start-page: 105568
  year: 2019
  ident: ref_17
  article-title: Towards an accurate sleep apnea detection based on ECG signal: The quintessential of a wise feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105568
– ident: ref_22
– volume: 32
  start-page: 150
  year: 2009
  ident: ref_4
  article-title: The new AASM criteria for scoring hypopneas: Impact on the apnea hypopnea index
  publication-title: Sleep
  doi: 10.1093/sleep/32.2.150
– volume: 94
  start-page: 557
  year: 1981
  ident: ref_23
  article-title: Selection and interpretation of diagnostic tests and procedures. Principles and applications
  publication-title: Ann. Intern. Med.
– volume: 6
  start-page: 015026
  year: 2020
  ident: ref_16
  article-title: Sleep apnea detection from ECG using variational mode decomposition
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/ab68e9
– ident: ref_20
– volume: 42
  start-page: 2072
  year: 2014
  ident: ref_6
  article-title: Electrocardiogram derived respiratory rate from QRS slopes and R-wave angle
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-014-1073-x
SSID ssj0023338
Score 2.4156778
Snippet A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 510
SubjectTerms Algorithms
Body mass index
Cardiovascular disease
Classification
convolutional neural network
Datasets
Electrocardiogram
Electrocardiography
filter bank decomposition
Heart rate
Humans
Neural networks
Neural Networks, Computer
obstructive sleep apnea
Polysomnography
Respiration
Signal processing
single-lead electrocardiogram
Sleep apnea
Sleep apnea syndromes
Sleep Apnea Syndromes - diagnosis
Sleep Apnea, Obstructive - diagnosis
Support vector machines
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAQHmEFmQQElyiOmPnddy2u604cIFKvUWOMxYrquyKpv0b_GVmHG-0EUhcOEWyJ4nHMx7PJONvhPiQkY9qs8qntqu71Bhl0wpak3aZc7rEztU2ZFt8KS6vzOfr_Hqv1BfnhI3wwOPEnQCpZIuIVVvnBjx5CKZTqB16zc9p2fqqWu2CqRhqaYq8RhwhTUH9yS1QjM_qN9t9Akj_n6Z4by-a50nubTyrJ-Jx9BjlYhzpU_EA-2fi0R6O4KH4xRhTu8pVcuPleSx7MkgyDC2f5uXW5dmFXPfy6w3iVi62PVp5jkPIxerlcoT9xk6GLAK5WvN_dHlq-x9ExZnnMb1L0uOklfTK-6i2NDrG-AiXkFT-XFytlt_OLtNYaSF1uS6G1Hc5tIz-pdGUTmGHnq5a2bIuPJ8o9KaGDGnuS5KFo5gEvPaqzTutFJLRfCEO-k2Pr4QEa5SjFgByLLVpbVWjBWJVWbIuAIn4tJNA4yIMOVfDuGkoHGFhNZOwEvF-It2O2Bt_IzplMU4EDJcdGkiJmqhEzb-UKBEfWQkaXtQ0GGfj2QRiieGxmkVJfhAFtnmViOMZJS1GN-_eqVETjcFtAwVkOiffOU_Eu6mb7-QEtx43d4EGoGJwwUS8HLVuYonuLcCUxGo508cZz_Oefv09QIUz2mOR69f_Y5KOxEPgsx_h-9OxOBh-3uEb8siG9m1YfL8BIvc1uA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gIHxJuUggxCgkvUrB95HBDabXepOKwQUKm3yLEnsKJKljbt3-AvM-N1wkYgTpHsSeLRjMczycw3jL2eoo9qpnkdG1e4WKnExLmoVOym1soMnC2Mz7ZYpadn6uO5Pt9jq74WhtIqe5voDbVrLX0jPxKpmEqNDoh-v_kZU9co-rvat9AwobWCe-chxm6xfTTJOpmw_fli9enzEIJJjMi2-EISg_2jK4GxP6nl6FTy4P1_m-idM2qcP7lzIC3vsbvBk-Szrejvsz1oHrA7O_iCD9kvwp7qO1rxtuYnoR1Kx9FgVFTlS6OL4w983fAvFwAbPts0YPgJdD5Hq-GLLRw4OO6zC_hyTf_X-dw0P5CKMtJD2hfHx3HD8ZU3QZ1xdYT94S8-2fwRO1suvh6fxqEDQ2y1TLu4dlpUhAomQWU2AQc1XmVisiKtqdKwVoWYQq5VVgFYjFVELeuk0k4mCaAxfcwmTdvAU8aFUYnFESHQ4ZSqMnkBRiCriUGrI0TE3vYSKG2AJ6cuGRclhikkrHIQVsReDaSbLSbHv4jmJMaBgGC0_UB7-a0Mu7IUaO9w4ZBXhVaiRvdTuQSkhVqSklYRe0NKUNJmx8VYE2oWkCWCzSpnGfpHGPDqPGKHI0rcpHY83atRGYzEVflHpSP2cpimOynxrYH22tMIkRPoYMSebLVuYAnvTYXKkNVspI8jnsczzfq7hxAnFMhUy4P_L-sZuy2o2sN_cTpkk-7yGp6jD9ZVL8LG-g0YyzLj
  priority: 102
  providerName: ProQuest
Title Contribution of Different Subbands of ECG in Sleep Apnea Detection Evaluated Using Filter Bank Decomposition and a Convolutional Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/35062470
https://www.proquest.com/docview/2621350455
https://www.proquest.com/docview/2622288677
https://pubmed.ncbi.nlm.nih.gov/PMC8777653
https://doaj.org/article/2703beee8b9542f0854d0e3cef3c9a0b
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wIHxJssS2UQElwCqe28Dgi1u-2uOKwQUKm3yHEmS0WVdrtdBL-Cv8yM81Aj9sAlkexx4onH9kw88w3A6yHpqGaYlL4p0sLXOjB-InPtF0NrVYyFTY3ztriIzmf60zyc70GbY7P5gNe3mnacT2q2Wb77dfX7I034D2xxksn-_lqSBc_CtQ-H7piIPfh0d5gglXIJrTmmizoigxpgqN-0ty059P5_1-idTarvQLmzI03vw71GlRSjeuwfwB5WD-HuDsDgI_jD4FNtSiuxKsVpkw9lK2jFyDnMl0snJ2diUYmvS8S1GK0rNOIUt85JqxKTGg8cC-HcC8R0wQfsYmyqH0TFLumN35egxwkj6JU_G3mm3jH4h7s5b_PHMJtOvp2c-00KBt-GKtr6ZRHKnGHBFOrYBlhgSXcVmDiNSg41LHUqh5iEOs4RLRkrslRlkIeFCgKk1fQJHFSrCp-BkEYHlkqkJI1T6dwkKRpJrAaGlh0pPXjbjkBmG3xyTpOxzMhO4cHKusHy4FVHuq5BOW4jGvMwdgSMo-0KVpvLrJmWmaQFjzqOSZ6GWpakf-oiQGWxVCyluQdvWAgylj_qjDVN0AKxxLhZ2SgmBYks3jDx4LhHSbPU9qtbMcpaIc9kJIcqJKU69OBlV80t2fOtwtWNo5EyYdRBD57WUtexRG0jqWNiNe7JY4_nfk21-O4wxBkGMgrV0X-89znckRzz4f47HcPBdnODL0gT2-YD2I_nMV2T6dkADseTi89fBu6vxsDNwL93sTX-
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QE4IN4YCiwIBBer9j78OFQoaRJSWiIErdSbu95dQ0TlhDYF8Sv4R_w2ZjZrEwvErSdLu-NkV7PzWs98Q8jzGHxUFWdVqExuQiEiFWasFKGJteapNTpXLttimkyOxNtjebxBfjW1MJhW2ehEp6jNXOMd-TZLWMwlOCDy9eJriF2j8Otq00JD-dYKZsdBjPnCjn374zuEcOc7e0Pg9wvGxqPD3UnouwyEWvJkGVZGshKRr7gVqY6ssRU8eaTSPKmwmq4SOYttJkVaWqvBH2cVr6JSGh5FNsauEWACNgVeoPTI5mA0ff-hDfk4RIArPCPO82j7nDFwzySW665ZQdcs4G-TsGYTu_maawZwfINc954r7a-O2k2yYetb5NoanuFt8hOxrpoOWnRe0aFvv7KkoKBKrCrG0dHuGzqr6cdTaxe0v6itokO7dDlhNR2t4MetoS6bgY5n-D2fDlT9BagwA96nmVH4Oaoo_OU3Lz6wOsQacQ-X3H6HHF0KL-6SXj2v7X1CmRKRhhHGwMHlolRZbhWDrUYKtBxjAXnVcKDQHg4du3KcFhAWIbOKllkBedaSLlYYIP8iGiAbWwKE7XYD87NPhdcCBQP9Cgu3WZlLwSpwd4WJLNe24igUZUBe4iEoULnAYrTyNRKwJYTpKvop-GMQYMssIFsdSlAKujvdHKPCK6Xz4o8IBeRpO41vYqJdbecXjoaxDEEOA3JvderaLcG7CRMpbDXtnMfOnrsz9eyzgyxH1MlE8gf_X9YTcmVy-O6gONib7j8kVxlWmrjbri3SW55d2Efg_y3Lx17IKDm5bLn-DcFbbyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVkJwQLxJKWAQCC7RJrbzOlRot7tLS9GqAir1ljp-wKpVduluQfwK_he_ihmvEzYCcespkj1JbI3nlcx8Q8iLGHxUGec2lLrQoRCRDHNWiVDHSvHMaFVIl20xSfePxbuT5GSD_GpqYTCtstGJTlHrmcJv5D2Wspgn4IAkPevTIo6G4zfzryF2kMI_rU07DenbLOhdBzfmizwOzY_vEM4tdg-GwPuXjI1Hn_b2Q99xIFQJT5eh1QmrEAWLG5GpyGhj4cojmRWpxco6KwoWmzwRWWWMAt-cWW6jKtE8ikyMHSTAHGxlYPUhENwajCZHH9rwj0M0uMI24ryIegvGwFVLsHR3zSK6xgF_m4c1-9jN3VwzhuNb5Kb3Yml_dexukw1T3yE31rAN75KfiHvVdNOiM0uHvhXLkoKyqrDCGEdHe2_ptKYfz42Z0_68NpIOzdLlh9V0tIIiN5q6zAY6nuK_fTqQ9RlQYTa8Tzmj8DgqKbzymxclWB3ijriLS3S_R46vhBf3yWY9q81DQpkUkYIRxsDZ5aKSeWEkg61GEjQeYwF53XCgVB4aHTt0nJcQIiGzypZZAXneks5XeCD_IhogG1sChPB2A7OLz6XXCCUDXQsLN3lVJIJZcH2FjgxXxnIUkCogr_AQlKhoYDFK-noJ2BJCdpX9DHwzCLaTPCA7HUpQEKo73Ryj0iuoRflHnALyrJ3GOzHprjazS0fDWI6AhwF5sDp17Zbg3pSJDLaadc5jZ8_dmXr6xcGXIwJlmvDt_y_rKbkG8l2-P5gcPiLXGRaduA9fO2RzeXFpHoMruKyeeBmj5PSqxfo3FVxzbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contribution+of+Different+Subbands+of+ECG+in+Sleep+Apnea+Detection+Evaluated+Using+Filter+Bank+Decomposition+and+a+Convolutional+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yeh%2C+Cheng-Yu&rft.au=Chang%2C+Hung-Yu&rft.au=Hu%2C+Jiy-Yao&rft.au=Lin%2C+Chun-Cheng&rft.date=2022-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=2&rft_id=info:doi/10.3390%2Fs22020510&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon