Contribution of Different Subbands of ECG in Sleep Apnea Detection Evaluated Using Filter Bank Decomposition and a Convolutional Neural Network
A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 2; p. 510 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22020510 |
Cover
Abstract | A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate whether the reduction of lower frequency P and T waves can increase the accuracy of the detection of apnea events. This study proposed filter bank decomposition to decompose the ECG signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN) model independently cooperating with each subband to extract and classify the features of the given subband signal. One-minute ECG signals obtained from the MIT PhysioNet Apnea-ECG database were used to train the CNN models and test the accuracy of detecting apnea events for different subbands. The results show that the use of the newly selected subject-independent datasets can avoid the overestimation of the accuracy of the apnea event detection and can test the difference in the accuracy of different subbands. The frequency band of 31.25–37.5 Hz can achieve 100% per-recording accuracy with 85.8% per-minute accuracy using the newly selected subject-independent datasets and is recommended as a promising subband of ECG signals that can cooperate with the proposed 1D CNN model for the diagnosis of OSA. |
---|---|
AbstractList | A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate whether the reduction of lower frequency P and T waves can increase the accuracy of the detection of apnea events. This study proposed filter bank decomposition to decompose the ECG signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN) model independently cooperating with each subband to extract and classify the features of the given subband signal. One-minute ECG signals obtained from the MIT PhysioNet Apnea-ECG database were used to train the CNN models and test the accuracy of detecting apnea events for different subbands. The results show that the use of the newly selected subject-independent datasets can avoid the overestimation of the accuracy of the apnea event detection and can test the difference in the accuracy of different subbands. The frequency band of 31.25-37.5 Hz can achieve 100% per-recording accuracy with 85.8% per-minute accuracy using the newly selected subject-independent datasets and is recommended as a promising subband of ECG signals that can cooperate with the proposed 1D CNN model for the diagnosis of OSA.A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate whether the reduction of lower frequency P and T waves can increase the accuracy of the detection of apnea events. This study proposed filter bank decomposition to decompose the ECG signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN) model independently cooperating with each subband to extract and classify the features of the given subband signal. One-minute ECG signals obtained from the MIT PhysioNet Apnea-ECG database were used to train the CNN models and test the accuracy of detecting apnea events for different subbands. The results show that the use of the newly selected subject-independent datasets can avoid the overestimation of the accuracy of the apnea event detection and can test the difference in the accuracy of different subbands. The frequency band of 31.25-37.5 Hz can achieve 100% per-recording accuracy with 85.8% per-minute accuracy using the newly selected subject-independent datasets and is recommended as a promising subband of ECG signals that can cooperate with the proposed 1D CNN model for the diagnosis of OSA. A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate whether the reduction of lower frequency P and T waves can increase the accuracy of the detection of apnea events. This study proposed filter bank decomposition to decompose the ECG signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN) model independently cooperating with each subband to extract and classify the features of the given subband signal. One-minute ECG signals obtained from the MIT PhysioNet Apnea-ECG database were used to train the CNN models and test the accuracy of detecting apnea events for different subbands. The results show that the use of the newly selected subject-independent datasets can avoid the overestimation of the accuracy of the apnea event detection and can test the difference in the accuracy of different subbands. The frequency band of 31.25–37.5 Hz can achieve 100% per-recording accuracy with 85.8% per-minute accuracy using the newly selected subject-independent datasets and is recommended as a promising subband of ECG signals that can cooperate with the proposed 1D CNN model for the diagnosis of OSA. |
Audience | Academic |
Author | Lin, Chun-Cheng Yeh, Cheng-Yu Hu, Jiy-Yao Chang, Hung-Yu |
AuthorAffiliation | 1 Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; cy.yeh@ncut.edu.tw (C.-Y.Y.); geminipig19970530@gmail.com (J.-Y.H.) 3 Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan 2 Heart Center, Cheng Hsin General Hospital, Taipei 112, Taiwan; amadeus0814@yahoo.com.tw |
AuthorAffiliation_xml | – name: 1 Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; cy.yeh@ncut.edu.tw (C.-Y.Y.); geminipig19970530@gmail.com (J.-Y.H.) – name: 2 Heart Center, Cheng Hsin General Hospital, Taipei 112, Taiwan; amadeus0814@yahoo.com.tw – name: 3 Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan |
Author_xml | – sequence: 1 givenname: Cheng-Yu surname: Yeh fullname: Yeh, Cheng-Yu – sequence: 2 givenname: Hung-Yu surname: Chang fullname: Chang, Hung-Yu – sequence: 3 givenname: Jiy-Yao surname: Hu fullname: Hu, Jiy-Yao – sequence: 4 givenname: Chun-Cheng orcidid: 0000-0002-5604-9845 surname: Lin fullname: Lin, Chun-Cheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35062470$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhiNURD_gwB9AlrjAYVvHjuPkgrRsP6hUwaH0bDnOePE2ay92sohfwV9mNluWblXlMNH4mXc84_c4O_DBQ5a9zekp5zU9S4xRRkVOX2RHecGKSYWJg0f_h9lxSgtKGee8epUdckFLVkh6lP2ZBd9H1wy9C54ES86dtRDB9-R2aBrt27TJXsyuiPPktgNYkenKgybn0IMZqy7Wuht0Dy25S87PyaXreojks_b3SJmwXIXkRhLliCbYch26saPuyFcY4hj6XyHev85eWt0lePMQT7K7y4vvsy-Tm29X17PpzcQIXvYT2wrW0IJTDoU0FFqwGDnVsi5tXovSFjXLoRKFbABMjkuw3NJGtJxSyAU_ya63um3QC7WKbqnjbxW0U2MixLnSsXemA8Uk5SgCVVOLglmKoi0FbsByU2vaoNanrdZqaJbQGlweTrQnun_i3Q81D2tVSSlLwVHgw4NADD8HSL1aumSg67SHMCTFSsZYVZVSIvr-CboIQ8Q9jlSOD1sI8Z-aaxzAeRuwr9mIqqmsclbnUlRInT5D4dfC0hm0mHWY3yt493jQ3YT_7ITAxy1gYkgpgt0hOVUbq6qdVZE9e8Ia1-uNKfAWrnum4i_KUelD |
CitedBy_id | crossref_primary_10_1097_MCP_0000000000001113 crossref_primary_10_1007_s13246_023_01346_0 crossref_primary_10_1016_j_bspc_2023_104581 crossref_primary_10_3390_s22072782 crossref_primary_10_17780_ksujes_1205807 crossref_primary_10_3390_biology12040533 crossref_primary_10_1016_j_compbiomed_2025_109769 crossref_primary_10_3390_healthcare13020181 crossref_primary_10_1016_j_bspc_2024_106993 crossref_primary_10_3390_life12101509 crossref_primary_10_1109_TBME_2024_3378508 crossref_primary_10_2174_0118722121293262240527102646 crossref_primary_10_3390_bios14040183 |
Cites_doi | 10.1016/j.compbiomed.2018.06.011 10.1109/JSEN.2013.2257742 10.3390/s20154157 10.1016/j.imu.2019.100170 10.1016/j.neucom.2016.12.062 10.1093/bja/aes465 10.1016/j.cmpb.2019.05.002 10.1109/JBHI.2017.2734074 10.7717/peerj.7731 10.1016/j.jacc.2016.11.069 10.1161/CIRCEP.110.958009 10.1109/TBME.2015.2498199 10.1016/j.ejim.2012.05.013 10.1109/ICCV.2015.123 10.1109/TBCAS.2018.2824659 10.1016/j.neucom.2018.03.011 10.1016/j.asoc.2019.105568 10.1093/sleep/32.2.150 10.1088/2057-1976/ab68e9 10.1007/s10439-014-1073-x |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s22020510 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_2703beee8b9542f0854d0e3cef3c9a0b PMC8777653 A781291758 35062470 10_3390_s22020510 |
Genre | Journal Article |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China grantid: MOST 109-2637-E-167-001 - |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c536t-fd52b04303e47c0edef47c30a796f1956f4921e8547beec1822f3f0b5d300e153 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:13:39 EDT 2025 Thu Aug 21 18:34:16 EDT 2025 Fri Sep 05 08:34:49 EDT 2025 Fri Jul 25 20:15:30 EDT 2025 Tue Jun 17 22:23:18 EDT 2025 Tue Jun 10 21:15:26 EDT 2025 Wed Feb 19 02:26:54 EST 2025 Thu Apr 24 23:02:45 EDT 2025 Tue Jul 01 02:41:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | obstructive sleep apnea single-lead electrocardiogram convolutional neural network filter bank decomposition |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-fd52b04303e47c0edef47c30a796f1956f4921e8547beec1822f3f0b5d300e153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5604-9845 |
OpenAccessLink | https://www.proquest.com/docview/2621350455?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 35062470 |
PQID | 2621350455 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2703beee8b9542f0854d0e3cef3c9a0b pubmedcentral_primary_oai_pubmedcentral_nih_gov_8777653 proquest_miscellaneous_2622288677 proquest_journals_2621350455 gale_infotracmisc_A781291758 gale_infotracacademiconefile_A781291758 pubmed_primary_35062470 crossref_primary_10_3390_s22020510 crossref_citationtrail_10_3390_s22020510 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Sharma (ref_11) 2018; 100 Goldberger (ref_19) 2003; 101 Griner (ref_23) 1981; 94 Labate (ref_5) 2013; 13 Sharma (ref_12) 2019; 16 ref_13 Nazari (ref_7) 2018; 22 Javaheri (ref_2) 2017; 69 Alcaine (ref_6) 2014; 42 Hassan (ref_9) 2017; 235 Surrel (ref_26) 2018; 12 Penzel (ref_18) 2000; 27 Sharma (ref_16) 2020; 6 Rachim (ref_10) 2014; 24 Pinho (ref_17) 2019; 83 Li (ref_25) 2018; 294 ref_22 ref_21 ref_20 Mannarino (ref_1) 2012; 23 Hayano (ref_8) 2011; 4 Wang (ref_15) 2019; 176 Wang (ref_14) 2019; 7 Song (ref_24) 2016; 63 Singh (ref_3) 2013; 110 Ruehland (ref_4) 2009; 32 |
References_xml | – volume: 100 start-page: 100 year: 2018 ident: ref_11 article-title: Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.06.011 – volume: 13 start-page: 2666 year: 2013 ident: ref_5 article-title: Empirical mode decomposition vs. wavelet decomposition for the extraction of respiratory signal from single-channel ECG: A comparison publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2257742 – ident: ref_13 doi: 10.3390/s20154157 – volume: 16 start-page: 100170 year: 2019 ident: ref_12 article-title: A new approach to identify obstructive sleep apnea using an optimal orthogonal wavelet filter bank with ECG signals publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2019.100170 – volume: 235 start-page: 122 year: 2017 ident: ref_9 article-title: An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.062 – volume: 110 start-page: 629 year: 2013 ident: ref_3 article-title: Proportion of surgical patients with undiagnosed obstructive sleep apnoea publication-title: Br. J. Anaesth. doi: 10.1093/bja/aes465 – volume: 176 start-page: 93 year: 2019 ident: ref_15 article-title: A RR interval based automated apnea detection approach using residual network publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.05.002 – volume: 22 start-page: 1059 year: 2018 ident: ref_7 article-title: Variational mode extraction: A new efficient method to derive respiratory signals from ECG publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2734074 – volume: 24 start-page: 2875 year: 2014 ident: ref_10 article-title: Sleep apnea classification using ECG-signal wavelet-PCA features publication-title: Biomed. Mater. Eng. – volume: 7 start-page: e7731 year: 2019 ident: ref_14 article-title: Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network publication-title: PeerJ doi: 10.7717/peerj.7731 – volume: 69 start-page: 841 year: 2017 ident: ref_2 article-title: Sleep apnea: Types, mechanisms, and clinical cardiovascular consequences publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2016.11.069 – volume: 4 start-page: 64 year: 2011 ident: ref_8 article-title: Screening for Obstructive Sleep Apnea by Cyclic Variation of Heart Rate publication-title: Circ. Arrhythm. Electrophysiol. doi: 10.1161/CIRCEP.110.958009 – volume: 27 start-page: 255 year: 2000 ident: ref_18 article-title: The apnea-ECG database publication-title: Comput. Cardiol. – volume: 63 start-page: 1532 year: 2016 ident: ref_24 article-title: An obstructive sleep apnea detection approach using a discriminative hidden markov model from ECG signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2498199 – volume: 101 start-page: e215 year: 2003 ident: ref_19 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 23 start-page: 586 year: 2012 ident: ref_1 article-title: Obstructive sleep apnea syndrome publication-title: Eur. J. Intern. Med. doi: 10.1016/j.ejim.2012.05.013 – ident: ref_21 doi: 10.1109/ICCV.2015.123 – volume: 12 start-page: 762 year: 2018 ident: ref_26 article-title: Online obstructive sleep apnea detection on medical wearable sensors publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2018.2824659 – volume: 294 start-page: 94 year: 2018 ident: ref_25 article-title: A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.011 – volume: 83 start-page: 105568 year: 2019 ident: ref_17 article-title: Towards an accurate sleep apnea detection based on ECG signal: The quintessential of a wise feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105568 – ident: ref_22 – volume: 32 start-page: 150 year: 2009 ident: ref_4 article-title: The new AASM criteria for scoring hypopneas: Impact on the apnea hypopnea index publication-title: Sleep doi: 10.1093/sleep/32.2.150 – volume: 94 start-page: 557 year: 1981 ident: ref_23 article-title: Selection and interpretation of diagnostic tests and procedures. Principles and applications publication-title: Ann. Intern. Med. – volume: 6 start-page: 015026 year: 2020 ident: ref_16 article-title: Sleep apnea detection from ECG using variational mode decomposition publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/ab68e9 – ident: ref_20 – volume: 42 start-page: 2072 year: 2014 ident: ref_6 article-title: Electrocardiogram derived respiratory rate from QRS slopes and R-wave angle publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-014-1073-x |
SSID | ssj0023338 |
Score | 2.4156778 |
Snippet | A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 510 |
SubjectTerms | Algorithms Body mass index Cardiovascular disease Classification convolutional neural network Datasets Electrocardiogram Electrocardiography filter bank decomposition Heart rate Humans Neural networks Neural Networks, Computer obstructive sleep apnea Polysomnography Respiration Signal processing single-lead electrocardiogram Sleep apnea Sleep apnea syndromes Sleep Apnea Syndromes - diagnosis Sleep Apnea, Obstructive - diagnosis Support vector machines Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAQHmEFmQQElyiOmPnddy2u604cIFKvUWOMxYrquyKpv0b_GVmHG-0EUhcOEWyJ4nHMx7PJONvhPiQkY9qs8qntqu71Bhl0wpak3aZc7rEztU2ZFt8KS6vzOfr_Hqv1BfnhI3wwOPEnQCpZIuIVVvnBjx5CKZTqB16zc9p2fqqWu2CqRhqaYq8RhwhTUH9yS1QjM_qN9t9Akj_n6Z4by-a50nubTyrJ-Jx9BjlYhzpU_EA-2fi0R6O4KH4xRhTu8pVcuPleSx7MkgyDC2f5uXW5dmFXPfy6w3iVi62PVp5jkPIxerlcoT9xk6GLAK5WvN_dHlq-x9ExZnnMb1L0uOklfTK-6i2NDrG-AiXkFT-XFytlt_OLtNYaSF1uS6G1Hc5tIz-pdGUTmGHnq5a2bIuPJ8o9KaGDGnuS5KFo5gEvPaqzTutFJLRfCEO-k2Pr4QEa5SjFgByLLVpbVWjBWJVWbIuAIn4tJNA4yIMOVfDuGkoHGFhNZOwEvF-It2O2Bt_IzplMU4EDJcdGkiJmqhEzb-UKBEfWQkaXtQ0GGfj2QRiieGxmkVJfhAFtnmViOMZJS1GN-_eqVETjcFtAwVkOiffOU_Eu6mb7-QEtx43d4EGoGJwwUS8HLVuYonuLcCUxGo508cZz_Oefv09QIUz2mOR69f_Y5KOxEPgsx_h-9OxOBh-3uEb8siG9m1YfL8BIvc1uA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gIHxJuUggxCgkvUrB95HBDabXepOKwQUKm3yLEnsKJKljbt3-AvM-N1wkYgTpHsSeLRjMczycw3jL2eoo9qpnkdG1e4WKnExLmoVOym1soMnC2Mz7ZYpadn6uO5Pt9jq74WhtIqe5voDbVrLX0jPxKpmEqNDoh-v_kZU9co-rvat9AwobWCe-chxm6xfTTJOpmw_fli9enzEIJJjMi2-EISg_2jK4GxP6nl6FTy4P1_m-idM2qcP7lzIC3vsbvBk-Szrejvsz1oHrA7O_iCD9kvwp7qO1rxtuYnoR1Kx9FgVFTlS6OL4w983fAvFwAbPts0YPgJdD5Hq-GLLRw4OO6zC_hyTf_X-dw0P5CKMtJD2hfHx3HD8ZU3QZ1xdYT94S8-2fwRO1suvh6fxqEDQ2y1TLu4dlpUhAomQWU2AQc1XmVisiKtqdKwVoWYQq5VVgFYjFVELeuk0k4mCaAxfcwmTdvAU8aFUYnFESHQ4ZSqMnkBRiCriUGrI0TE3vYSKG2AJ6cuGRclhikkrHIQVsReDaSbLSbHv4jmJMaBgGC0_UB7-a0Mu7IUaO9w4ZBXhVaiRvdTuQSkhVqSklYRe0NKUNJmx8VYE2oWkCWCzSpnGfpHGPDqPGKHI0rcpHY83atRGYzEVflHpSP2cpimOynxrYH22tMIkRPoYMSebLVuYAnvTYXKkNVspI8jnsczzfq7hxAnFMhUy4P_L-sZuy2o2sN_cTpkk-7yGp6jD9ZVL8LG-g0YyzLj priority: 102 providerName: ProQuest |
Title | Contribution of Different Subbands of ECG in Sleep Apnea Detection Evaluated Using Filter Bank Decomposition and a Convolutional Neural Network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35062470 https://www.proquest.com/docview/2621350455 https://www.proquest.com/docview/2622288677 https://pubmed.ncbi.nlm.nih.gov/PMC8777653 https://doaj.org/article/2703beee8b9542f0854d0e3cef3c9a0b |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wIHxJssS2UQElwCqe28Dgi1u-2uOKwQUKm3yHEmS0WVdrtdBL-Cv8yM81Aj9sAlkexx4onH9kw88w3A6yHpqGaYlL4p0sLXOjB-InPtF0NrVYyFTY3ztriIzmf60zyc70GbY7P5gNe3mnacT2q2Wb77dfX7I034D2xxksn-_lqSBc_CtQ-H7piIPfh0d5gglXIJrTmmizoigxpgqN-0ty059P5_1-idTarvQLmzI03vw71GlRSjeuwfwB5WD-HuDsDgI_jD4FNtSiuxKsVpkw9lK2jFyDnMl0snJ2diUYmvS8S1GK0rNOIUt85JqxKTGg8cC-HcC8R0wQfsYmyqH0TFLumN35egxwkj6JU_G3mm3jH4h7s5b_PHMJtOvp2c-00KBt-GKtr6ZRHKnGHBFOrYBlhgSXcVmDiNSg41LHUqh5iEOs4RLRkrslRlkIeFCgKk1fQJHFSrCp-BkEYHlkqkJI1T6dwkKRpJrAaGlh0pPXjbjkBmG3xyTpOxzMhO4cHKusHy4FVHuq5BOW4jGvMwdgSMo-0KVpvLrJmWmaQFjzqOSZ6GWpakf-oiQGWxVCyluQdvWAgylj_qjDVN0AKxxLhZ2SgmBYks3jDx4LhHSbPU9qtbMcpaIc9kJIcqJKU69OBlV80t2fOtwtWNo5EyYdRBD57WUtexRG0jqWNiNe7JY4_nfk21-O4wxBkGMgrV0X-89znckRzz4f47HcPBdnODL0gT2-YD2I_nMV2T6dkADseTi89fBu6vxsDNwL93sTX- |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QE4IN4YCiwIBBer9j78OFQoaRJSWiIErdSbu95dQ0TlhDYF8Sv4R_w2ZjZrEwvErSdLu-NkV7PzWs98Q8jzGHxUFWdVqExuQiEiFWasFKGJteapNTpXLttimkyOxNtjebxBfjW1MJhW2ehEp6jNXOMd-TZLWMwlOCDy9eJriF2j8Otq00JD-dYKZsdBjPnCjn374zuEcOc7e0Pg9wvGxqPD3UnouwyEWvJkGVZGshKRr7gVqY6ssRU8eaTSPKmwmq4SOYttJkVaWqvBH2cVr6JSGh5FNsauEWACNgVeoPTI5mA0ff-hDfk4RIArPCPO82j7nDFwzySW665ZQdcs4G-TsGYTu_maawZwfINc954r7a-O2k2yYetb5NoanuFt8hOxrpoOWnRe0aFvv7KkoKBKrCrG0dHuGzqr6cdTaxe0v6itokO7dDlhNR2t4MetoS6bgY5n-D2fDlT9BagwA96nmVH4Oaoo_OU3Lz6wOsQacQ-X3H6HHF0KL-6SXj2v7X1CmRKRhhHGwMHlolRZbhWDrUYKtBxjAXnVcKDQHg4du3KcFhAWIbOKllkBedaSLlYYIP8iGiAbWwKE7XYD87NPhdcCBQP9Cgu3WZlLwSpwd4WJLNe24igUZUBe4iEoULnAYrTyNRKwJYTpKvop-GMQYMssIFsdSlAKujvdHKPCK6Xz4o8IBeRpO41vYqJdbecXjoaxDEEOA3JvderaLcG7CRMpbDXtnMfOnrsz9eyzgyxH1MlE8gf_X9YTcmVy-O6gONib7j8kVxlWmrjbri3SW55d2Efg_y3Lx17IKDm5bLn-DcFbbyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVkJwQLxJKWAQCC7RJrbzOlRot7tLS9GqAir1ljp-wKpVduluQfwK_he_ihmvEzYCcespkj1JbI3nlcx8Q8iLGHxUGec2lLrQoRCRDHNWiVDHSvHMaFVIl20xSfePxbuT5GSD_GpqYTCtstGJTlHrmcJv5D2Wspgn4IAkPevTIo6G4zfzryF2kMI_rU07DenbLOhdBzfmizwOzY_vEM4tdg-GwPuXjI1Hn_b2Q99xIFQJT5eh1QmrEAWLG5GpyGhj4cojmRWpxco6KwoWmzwRWWWMAt-cWW6jKtE8ikyMHSTAHGxlYPUhENwajCZHH9rwj0M0uMI24ryIegvGwFVLsHR3zSK6xgF_m4c1-9jN3VwzhuNb5Kb3Yml_dexukw1T3yE31rAN75KfiHvVdNOiM0uHvhXLkoKyqrDCGEdHe2_ptKYfz42Z0_68NpIOzdLlh9V0tIIiN5q6zAY6nuK_fTqQ9RlQYTa8Tzmj8DgqKbzymxclWB3ijriLS3S_R46vhBf3yWY9q81DQpkUkYIRxsDZ5aKSeWEkg61GEjQeYwF53XCgVB4aHTt0nJcQIiGzypZZAXneks5XeCD_IhogG1sChPB2A7OLz6XXCCUDXQsLN3lVJIJZcH2FjgxXxnIUkCogr_AQlKhoYDFK-noJ2BJCdpX9DHwzCLaTPCA7HUpQEKo73Ryj0iuoRflHnALyrJ3GOzHprjazS0fDWI6AhwF5sDp17Zbg3pSJDLaadc5jZ8_dmXr6xcGXIwJlmvDt_y_rKbkG8l2-P5gcPiLXGRaduA9fO2RzeXFpHoMruKyeeBmj5PSqxfo3FVxzbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contribution+of+Different+Subbands+of+ECG+in+Sleep+Apnea+Detection+Evaluated+Using+Filter+Bank+Decomposition+and+a+Convolutional+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yeh%2C+Cheng-Yu&rft.au=Chang%2C+Hung-Yu&rft.au=Hu%2C+Jiy-Yao&rft.au=Lin%2C+Chun-Cheng&rft.date=2022-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=2&rft_id=info:doi/10.3390%2Fs22020510&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |