A learning algorithm for predicting mental health symptoms and substance use
Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental health symptoms and substance use data to make patient-specific predictions. We developed a general Bayesian prediction algorithm that uses self-r...
Saved in:
| Published in | Journal of psychiatric research Vol. 134; pp. 22 - 29 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.02.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-3956 1879-1379 1879-1379 |
| DOI | 10.1016/j.jpsychires.2020.12.049 |
Cover
| Abstract | Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental health symptoms and substance use data to make patient-specific predictions. We developed a general Bayesian prediction algorithm that uses self-reported psychiatric symptoms and substance use within a population to predict future symptoms and substance use for individuals in that population. We validated our approach in 2444 participants from two clinical cohorts – the National Network of Depression Centers and the Johns Hopkins HIV Clinical Cohort – by predicting symptoms of depression, anxiety, and mania as well as alcohol, heroin, and cocaine use and comparing our predictions to observed symptoms and substance use. When we dichotomized mental health symptoms as moderate-severe vs. none-mild, individual predictions yielded areas under the ROC curve (AUCs) of 0.84 [95% confidence interval 0.80–0.88] and 0.85 [0.82–0.88] for symptoms of depression in the two cohorts, AUCs of 0.84 [0.79–0.88] and 0.85 [0.82–0.88] for symptoms of anxiety, and an AUC of 0.77 [0.72–0.82] for manic symptoms. Predictions of substance use yielded an AUC of 0.92 [0.88–0.97] for heroin use, 0.90 [0.82–0.97] for cocaine use, and 0.90 [0.88–092] for alcohol misuse. This rigorous, mathematically grounded approach could provide patient-specific predictions at the point of care. It can be applied to other psychiatric symptoms and substance use indicators, and is customizable to specific health systems. Such approaches can realize the potential of a learning health system to transform ever-increasing quantities of data into tangible guidance for patient care. |
|---|---|
| AbstractList | Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental health symptoms and substance use data to make patient-specific predictions. We developed a general Bayesian prediction algorithm that uses self-reported psychiatric symptoms and substance use within a population to predict future symptoms and substance use for individuals in that population. We validated our approach in 2444 participants from two clinical cohorts – the National Network of Depression Centers and the Johns Hopkins HIV Clinical Cohort – by predicting symptoms of depression, anxiety, and mania as well as alcohol, heroin, and cocaine use and comparing our predictions to observed symptoms and substance use. When we dichotomized mental health symptoms as moderate-severe vs. none-mild, individual predictions yielded areas under the ROC curve (AUCs) of 0.84 [95% confidence interval 0.80–0.88] and 0.85 [0.82–0.88] for symptoms of depression in the two cohorts, AUCs of 0.84 [0.79–0.88] and 0.85 [0.82–0.88] for symptoms of anxiety, and an AUC of 0.77 [0.72–0.82] for manic symptoms. Predictions of substance use yielded an AUC of 0.92 [0.88–0.97] for heroin use, 0.90 [0.82–0.97] for cocaine use, and 0.90 [0.88–092] for alcohol misuse. This rigorous, mathematically grounded approach could provide patient-specific predictions at the point of care. It can be applied to other psychiatric symptoms and substance use indicators, and is customizable to specific health systems. Such approaches can realize the potential of a learning health system to transform ever-increasing quantities of data into tangible guidance for patient care. Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental health symptoms and substance use data to make patient-specific predictions. We developed a general Bayesian prediction algorithm that uses self-reported psychiatric symptoms and substance use within a population to predict future symptoms and substance use for individuals in that population. We validated our approach in 2444 participants from two clinical cohorts - the National Network of Depression Centers and the Johns Hopkins HIV Clinical Cohort - by predicting symptoms of depression, anxiety, and mania as well as alcohol, heroin, and cocaine use and comparing our predictions to observed symptoms and substance use. When we dichotomized mental health symptoms as moderate-severe vs. none-mild, individual predictions yielded areas under the ROC curve (AUCs) of 0.84 [95% confidence interval 0.80-0.88] and 0.85 [0.82-0.88] for symptoms of depression in the two cohorts, AUCs of 0.84 [0.79-0.88] and 0.85 [0.82-0.88] for symptoms of anxiety, and an AUC of 0.77 [0.72-0.82] for manic symptoms. Predictions of substance use yielded an AUC of 0.92 [0.88-0.97] for heroin use, 0.90 [0.82-0.97] for cocaine use, and 0.90 [0.88-092] for alcohol misuse. This rigorous, mathematically grounded approach could provide patient-specific predictions at the point of care. It can be applied to other psychiatric symptoms and substance use indicators, and is customizable to specific health systems. Such approaches can realize the potential of a learning health system to transform ever-increasing quantities of data into tangible guidance for patient care.Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental health symptoms and substance use data to make patient-specific predictions. We developed a general Bayesian prediction algorithm that uses self-reported psychiatric symptoms and substance use within a population to predict future symptoms and substance use for individuals in that population. We validated our approach in 2444 participants from two clinical cohorts - the National Network of Depression Centers and the Johns Hopkins HIV Clinical Cohort - by predicting symptoms of depression, anxiety, and mania as well as alcohol, heroin, and cocaine use and comparing our predictions to observed symptoms and substance use. When we dichotomized mental health symptoms as moderate-severe vs. none-mild, individual predictions yielded areas under the ROC curve (AUCs) of 0.84 [95% confidence interval 0.80-0.88] and 0.85 [0.82-0.88] for symptoms of depression in the two cohorts, AUCs of 0.84 [0.79-0.88] and 0.85 [0.82-0.88] for symptoms of anxiety, and an AUC of 0.77 [0.72-0.82] for manic symptoms. Predictions of substance use yielded an AUC of 0.92 [0.88-0.97] for heroin use, 0.90 [0.82-0.97] for cocaine use, and 0.90 [0.88-092] for alcohol misuse. This rigorous, mathematically grounded approach could provide patient-specific predictions at the point of care. It can be applied to other psychiatric symptoms and substance use indicators, and is customizable to specific health systems. Such approaches can realize the potential of a learning health system to transform ever-increasing quantities of data into tangible guidance for patient care. |
| Author | Lesko, Catherine R. Chander, Geetanjali Zeger, Scott L. Zandi, Peter P. Fojo, Anthony T. Lau, Bryan Moore, Richard D. Benke, Kelly S. |
| Author_xml | – sequence: 1 givenname: Anthony T. surname: Fojo fullname: Fojo, Anthony T. email: Anthony.Fojo@jhmi.edu organization: School of Medicine, Johns Hopkins University, Baltimore, MD, USA – sequence: 2 givenname: Catherine R. surname: Lesko fullname: Lesko, Catherine R. email: clesko2@jhu.edu organization: Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, MD, USA – sequence: 3 givenname: Kelly S. surname: Benke fullname: Benke, Kelly S. email: kbenke1@jhu.edu organization: Johns Hopkins Bloomberg School of Public Health, Department of Mental Health, Baltimore, MD, USA – sequence: 4 givenname: Geetanjali surname: Chander fullname: Chander, Geetanjali email: gchande1@jhmi.edu organization: School of Medicine, Johns Hopkins University, Baltimore, MD, USA – sequence: 5 givenname: Bryan surname: Lau fullname: Lau, Bryan email: blau1@jhu.edu organization: Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, MD, USA – sequence: 6 givenname: Richard D. surname: Moore fullname: Moore, Richard D. email: rdmoore@jhmi.edu organization: School of Medicine, Johns Hopkins University, Baltimore, MD, USA – sequence: 7 givenname: Peter P. surname: Zandi fullname: Zandi, Peter P. email: pzandi1@jhu.edu organization: Johns Hopkins Bloomberg School of Public Health, Department of Mental Health, Baltimore, MD, USA – sequence: 8 givenname: Scott L. surname: Zeger fullname: Zeger, Scott L. email: sz@jhu.edu organization: Johns Hopkins Bloomberg School of Public Health, Department of Biostatistics, Baltimore, MD, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33360220$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkU2P0zAQhi20iO0W_gLykUuLP1InviCWFV9SJS5wtlxn0rg4drCdRfn3uOpCYU_lNJLH7_POvHODrnzwgBCmZE0JFa8P68OYZtPbCGnNCCvPbE0q-QQtaFPLFeW1vEILQhhbcbkR1-gmpQMhpGa0eoauOeei9MgCbW-xAx299Xus3T5Em_sBdyHiMUJrTT42BvBZO9yDdrnHaR7GHIaEtW9xmnYpa28ATwmeo6eddglePNQl-vbh_de7T6vtl4-f7263K7PhIq86U4tO0kbuQDIJbddJqLlguml2NRNcUkpEY4SoxUbwatMKTlrKpRaV4KwhfInkiTv5Uc8_tXNqjHbQcVaUqGNC6qDOCaljQooyVRIq2jcn7TjtBmhNWS3qsz5oq_7teNurfbhXDWe8qpsCePUAiOHHBCmrwSYDzmkPYSpmVc0ryppSlujl315_TH7Hfx7GxJBShE4Zm3W24Wht3SXbNI8A_xHEu5MUyqXuLUSVjIVyybZ8NVm1wV4CefsIYpz11mj3HebLEL8AJYLiPQ |
| CitedBy_id | crossref_primary_10_1016_j_bionps_2024_100105 crossref_primary_10_1002_wics_70008 |
| Cites_doi | 10.1097/00042560-199801001-00011 10.1093/alcalc/ags112 10.1176/appi.ajp.2012.12010112 10.1016/S0006-3223(96)00548-3 10.1016/j.invent.2018.03.002 10.1186/1471-2105-12-77 10.1016/S2215-0366(18)30337-7 10.1002/da.20862 10.1046/j.1525-1497.2001.016009606.x 10.31887/DCNS.2014.16.4/fmcmahon 10.1097/EDE.0b013e31823029dd 10.2307/2531595 10.1136/amiajnl-2014-002977 10.1001/archinte.166.10.1092 10.1002/mpr.1575 10.1111/j.1530-0277.2006.00295.x 10.18637/jss.v076.i01 10.1093/alcalc/agq060 10.1093/aje/kwy092 10.1002/mpr.1359 10.1186/s12888-016-1114-0 10.1177/0962280210379079 10.1007/s10597-016-0046-y 10.1016/j.jpsychires.2017.08.008 10.1176/appi.ps.201400141 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.jpsychires.2020.12.049 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-1379 |
| EndPage | 29 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:8323478 PMC8323478 33360220 10_1016_j_jpsychires_2020_12_049 S0022395620311572 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: K01 AA028193 – fundername: NIMHD NIH HHS grantid: R01 MD018539 – fundername: NIMH NIH HHS grantid: K08 MH118094 – fundername: NIDA NIH HHS grantid: U01 DA036935 – fundername: NIAID NIH HHS grantid: P30 AI094189 – fundername: NCATS NIH HHS grantid: UL1 TR000433 – fundername: NIAAA NIH HHS grantid: K24 AA027483 |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABIVO ABJNI ABLJU ABMAC ABMZM ABOYX ABPPZ ABWVN ABXDB ACDAQ ACGFS ACHQT ACIEU ACIUM ACLOT ACNCT ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO ADXHL AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEG HF~ HMK HMO HMQ HMW HVGLF HZ~ IHE J1W K-O KOM L7B M29 M2V M39 M3V M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OKEIE OU- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SPS SSB SSH SSN SSY SSZ T5K WUQ YQT Z5R ZGI ~G- ~HD AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AFYLN AJBFU AJOXV AMFUW LCYCR RIG ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c536t-fc76f9189be929edff9e7362a88b7263911068c667656345d630d139a64632803 |
| IEDL.DBID | UNPAY |
| ISSN | 0022-3956 1879-1379 |
| IngestDate | Sun Oct 26 04:11:51 EDT 2025 Tue Sep 30 16:59:46 EDT 2025 Sat Sep 27 23:13:10 EDT 2025 Wed Feb 19 02:17:25 EST 2025 Wed Oct 01 05:18:27 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Fri Feb 23 02:45:18 EST 2024 Tue Oct 14 19:35:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Substance use Learning health system Patient reported outcomes Mental health |
| Language | English |
| License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c536t-fc76f9189be929edff9e7362a88b7263911068c667656345d630d139a64632803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8323478 |
| PMID | 33360220 |
| PQID | 2473412847 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jpsychires_2020_12_049 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8323478 proquest_miscellaneous_2473412847 pubmed_primary_33360220 crossref_citationtrail_10_1016_j_jpsychires_2020_12_049 crossref_primary_10_1016_j_jpsychires_2020_12_049 elsevier_sciencedirect_doi_10_1016_j_jpsychires_2020_12_049 elsevier_clinicalkey_doi_10_1016_j_jpsychires_2020_12_049 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of psychiatric research |
| PublicationTitleAlternate | J Psychiatr Res |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Farren, Snee, Daly, McElroy (bib10) 2013; 48 Lesko, Keil, Moore, Chander, Fojo, Lau (bib21) 2018; 187 Reinert, Allen (bib26) 2007; 31 Kroenke, Spitzer, Williams (bib20) 2001; 16 van Orden, Leone, Haffmans, Spinhoven, Hoencamp (bib30) 2016; 53 Arostegui, Nunez-Anton, Quintana (bib3) 2012; 21 Pettinati, O'Brien, Dundon (bib25) 2013; 170 Alcohol Drug Use (bib1) 2018; 5 Kessler, Hwang, Hoffmire, McCarthy, Petukhova, Rosellini, Sampson, Schneider, Bradley, Katz, Thompson, Bossarte (bib18) 2017; 26 Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, Riddell (bib5) 2017; 76 Diggle (bib7) 2013 Friedman, Rubin, Brown, Buntin, Corn, Etheredge, Gunter, Musen, Platt, Stead, Sullivan, Van Houweling (bib12) 2015; 22 Donisi, Tedeschi, Wahlbeck, Haaramo, Amaddeo (bib8) 2016; 16 Fojo, Musliner, Zandi, Zeger (bib11) 2017; 95 Becker, van Breda, Funk, Hoogendoorn, Ruwaard, Riper (bib4) 2018; 12 Sun, Demic, Cheng (bib29) 2014; 9 Altman, Hedeker, Peterson, Davis (bib2) 1997; 42 McMahon (bib22) 2014; 16 Spitzer, Kroenke, Williams, Löwe (bib28) 2006; 166 DeLong, DeLong, Clarke-Pearson (bib6) 1988; 44 Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, Müller (bib27) 2011; 12 Moore (bib23) 1998; 17 (bib16) 2013 Kessler, Petukhova, Sampson, Zaslavsky, Wittchen (bib17) 2012; 21 Farren, McElroy (bib9) 2010; 45 (bib24) 2010 Greden (bib13) 2011; 28 Howe, Cole, Westreich, Greenland, Napravnik, Eron (bib15) 2011; 22 Krägeloh, Czuba, Billington, Kersten, Siegert (bib19) 2015; 66 Becker (10.1016/j.jpsychires.2020.12.049_bib4) 2018; 12 Friedman (10.1016/j.jpsychires.2020.12.049_bib12) 2015; 22 Fojo (10.1016/j.jpsychires.2020.12.049_bib11) 2017; 95 (10.1016/j.jpsychires.2020.12.049_bib16) 2013 McMahon (10.1016/j.jpsychires.2020.12.049_bib22) 2014; 16 Moore (10.1016/j.jpsychires.2020.12.049_bib23) 1998; 17 Spitzer (10.1016/j.jpsychires.2020.12.049_bib28) 2006; 166 Robin (10.1016/j.jpsychires.2020.12.049_bib27) 2011; 12 Kroenke (10.1016/j.jpsychires.2020.12.049_bib20) 2001; 16 van Orden (10.1016/j.jpsychires.2020.12.049_bib30) 2016; 53 DeLong (10.1016/j.jpsychires.2020.12.049_bib6) 1988; 44 Alcohol Drug Use (10.1016/j.jpsychires.2020.12.049_bib1) 2018; 5 Altman (10.1016/j.jpsychires.2020.12.049_bib2) 1997; 42 Lesko (10.1016/j.jpsychires.2020.12.049_bib21) 2018; 187 Krägeloh (10.1016/j.jpsychires.2020.12.049_bib19) 2015; 66 Carpenter (10.1016/j.jpsychires.2020.12.049_bib5) 2017; 76 Farren (10.1016/j.jpsychires.2020.12.049_bib10) 2013; 48 Howe (10.1016/j.jpsychires.2020.12.049_bib15) 2011; 22 Kessler (10.1016/j.jpsychires.2020.12.049_bib17) 2012; 21 Arostegui (10.1016/j.jpsychires.2020.12.049_bib3) 2012; 21 Greden (10.1016/j.jpsychires.2020.12.049_bib13) 2011; 28 Reinert (10.1016/j.jpsychires.2020.12.049_bib26) 2007; 31 Farren (10.1016/j.jpsychires.2020.12.049_bib9) 2010; 45 Diggle (10.1016/j.jpsychires.2020.12.049_bib7) 2013 Pettinati (10.1016/j.jpsychires.2020.12.049_bib25) 2013; 170 Donisi (10.1016/j.jpsychires.2020.12.049_bib8) 2016; 16 Kessler (10.1016/j.jpsychires.2020.12.049_bib18) 2017; 26 Sun (10.1016/j.jpsychires.2020.12.049_bib29) 2014; 9 |
| References_xml | – volume: 26 year: 2017 ident: bib18 article-title: Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration publication-title: Int. J. Methods Psychiatr. Res. – year: 2010 ident: bib24 article-title: Clinician's screening tool for drug use in general medical settings – volume: 53 start-page: 316 year: 2016 end-page: 323 ident: bib30 article-title: Prediction of mental health services use one year after regular referral to specialized care versus referral to stepped collaborative care publication-title: Community Ment. Health J. – volume: 76 year: 2017 ident: bib5 article-title: Stan: a probabilistic programming language publication-title: J. Stat. Software – volume: 16 year: 2016 ident: bib8 article-title: Pre-discharge factors predicting readmissions of psychiatric patients: a systematic review of the literature publication-title: BMC Psychiatr. – volume: 187 start-page: 1970 year: 2018 end-page: 1979 ident: bib21 article-title: Measurement of current substance use in a cohort of HIV-infected persons in continuity HIV care, 2007-2015 publication-title: Am. J. Epidemiol. – volume: 22 start-page: 874 year: 2011 end-page: 875 ident: bib15 article-title: Splines for trend analysis and continuous confounder control publication-title: Epidemiology – volume: 45 start-page: 527 year: 2010 end-page: 533 ident: bib9 article-title: Predictive factors for relapse after an integrated inpatient treatment programme for unipolar depressed and bipolar alcoholics publication-title: Alcohol Alcohol – year: 2013 ident: bib7 article-title: Analysis of Longitudinal Data – volume: 16 start-page: 455 year: 2014 end-page: 464 ident: bib22 article-title: Prediction of treatment outcomes in psychiatry--where do we stand? publication-title: Dialogues Clin. Neurosci. – volume: 170 start-page: 23 year: 2013 end-page: 30 ident: bib25 article-title: Current status of co-occurring mood and substance use disorders: a new therapeutic target publication-title: Am. J. Psychiatr. – volume: 9 year: 2014 ident: bib29 article-title: Modeling the dynamics of disease States in depression publication-title: PloS One – volume: 66 start-page: 224 year: 2015 end-page: 241 ident: bib19 article-title: Using feedback from patient-reported outcome measures in mental health services: a scoping study and typology publication-title: Psychiatr. Serv. – volume: 166 start-page: 1092 year: 2006 ident: bib28 article-title: A brief measure for assessing generalized anxiety disorder publication-title: Arch. Intern. Med. – volume: 5 start-page: 987 year: 2018 end-page: 1012 ident: bib1 article-title: The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 publication-title: Lancet Psychiatry – volume: 12 year: 2011 ident: bib27 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinf. – volume: 28 start-page: 615 year: 2011 end-page: 621 ident: bib13 article-title: The national Network of depression centers: progress through partnership publication-title: Depress. Anxiety – volume: 42 start-page: 948 year: 1997 end-page: 955 ident: bib2 article-title: The altman self-rating mania scale publication-title: Biol. Psychiatr. – volume: 48 start-page: 93 year: 2013 end-page: 98 ident: bib10 article-title: Prognostic factors of 2-year outcomes of patients with comorbid bipolar disorder or depression with alcohol dependence: importance of early abstinence publication-title: Alcohol Alcohol – volume: 31 start-page: 185 year: 2007 end-page: 199 ident: bib26 article-title: The alcohol use disorders identification test: an update of research findings publication-title: Alcohol Clin. Exp. Res. – volume: 22 start-page: 43 year: 2015 end-page: 50 ident: bib12 article-title: Toward a science of learning systems: a research agenda for the high-functioning Learning Health System publication-title: J. Am. Med. Inf. Assoc. – volume: 21 start-page: 189 year: 2012 end-page: 214 ident: bib3 article-title: Statistical approaches to analyse patient-reported outcomes as response variables: an application to health-related quality of life publication-title: Stat. Methods Med. Res. – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: bib6 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – year: 2013 ident: bib16 article-title: Best Care at Lower Cost: the Path to Continuously Learning Health Care in America – volume: 95 start-page: 147 year: 2017 end-page: 155 ident: bib11 article-title: A precision medicine approach for psychiatric disease based on repeated symptom scores publication-title: J. Psychiatr. Res. – volume: 16 start-page: 606 year: 2001 end-page: 613 ident: bib20 article-title: The PHQ-9: validity of a brief depression severity measure publication-title: J. Gen. Intern. Med. – volume: 12 start-page: 57 year: 2018 end-page: 67 ident: bib4 article-title: Predictive modeling in e-mental health: a common language framework publication-title: Internet Interventions – volume: 21 start-page: 169 year: 2012 end-page: 184 ident: bib17 article-title: Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States publication-title: Int. J. Methods Psychiatr. Res. – volume: 17 start-page: S38 year: 1998 end-page: S41 ident: bib23 article-title: Understanding the clinical and economic outcomes of HIV therapy: the Johns Hopkins HIV clinical practice cohort publication-title: J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. – volume: 17 start-page: S38 issue: Suppl. 1 year: 1998 ident: 10.1016/j.jpsychires.2020.12.049_bib23 article-title: Understanding the clinical and economic outcomes of HIV therapy: the Johns Hopkins HIV clinical practice cohort publication-title: J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. doi: 10.1097/00042560-199801001-00011 – volume: 48 start-page: 93 issue: 1 year: 2013 ident: 10.1016/j.jpsychires.2020.12.049_bib10 article-title: Prognostic factors of 2-year outcomes of patients with comorbid bipolar disorder or depression with alcohol dependence: importance of early abstinence publication-title: Alcohol Alcohol doi: 10.1093/alcalc/ags112 – year: 2013 ident: 10.1016/j.jpsychires.2020.12.049_bib7 – volume: 170 start-page: 23 issue: 1 year: 2013 ident: 10.1016/j.jpsychires.2020.12.049_bib25 article-title: Current status of co-occurring mood and substance use disorders: a new therapeutic target publication-title: Am. J. Psychiatr. doi: 10.1176/appi.ajp.2012.12010112 – volume: 42 start-page: 948 issue: 10 year: 1997 ident: 10.1016/j.jpsychires.2020.12.049_bib2 article-title: The altman self-rating mania scale publication-title: Biol. Psychiatr. doi: 10.1016/S0006-3223(96)00548-3 – volume: 12 start-page: 57 year: 2018 ident: 10.1016/j.jpsychires.2020.12.049_bib4 article-title: Predictive modeling in e-mental health: a common language framework publication-title: Internet Interventions doi: 10.1016/j.invent.2018.03.002 – volume: 12 issue: 1 year: 2011 ident: 10.1016/j.jpsychires.2020.12.049_bib27 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinf. doi: 10.1186/1471-2105-12-77 – volume: 5 start-page: 987 issue: 12 year: 2018 ident: 10.1016/j.jpsychires.2020.12.049_bib1 article-title: The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(18)30337-7 – volume: 28 start-page: 615 issue: 8 year: 2011 ident: 10.1016/j.jpsychires.2020.12.049_bib13 article-title: The national Network of depression centers: progress through partnership publication-title: Depress. Anxiety doi: 10.1002/da.20862 – volume: 16 start-page: 606 issue: 9 year: 2001 ident: 10.1016/j.jpsychires.2020.12.049_bib20 article-title: The PHQ-9: validity of a brief depression severity measure publication-title: J. Gen. Intern. Med. doi: 10.1046/j.1525-1497.2001.016009606.x – volume: 16 start-page: 455 issue: 4 year: 2014 ident: 10.1016/j.jpsychires.2020.12.049_bib22 article-title: Prediction of treatment outcomes in psychiatry--where do we stand? publication-title: Dialogues Clin. Neurosci. doi: 10.31887/DCNS.2014.16.4/fmcmahon – volume: 22 start-page: 874 issue: 6 year: 2011 ident: 10.1016/j.jpsychires.2020.12.049_bib15 article-title: Splines for trend analysis and continuous confounder control publication-title: Epidemiology doi: 10.1097/EDE.0b013e31823029dd – volume: 44 start-page: 837 issue: 3 year: 1988 ident: 10.1016/j.jpsychires.2020.12.049_bib6 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 22 start-page: 43 issue: 1 year: 2015 ident: 10.1016/j.jpsychires.2020.12.049_bib12 article-title: Toward a science of learning systems: a research agenda for the high-functioning Learning Health System publication-title: J. Am. Med. Inf. Assoc. doi: 10.1136/amiajnl-2014-002977 – volume: 166 start-page: 1092 issue: 10 year: 2006 ident: 10.1016/j.jpsychires.2020.12.049_bib28 article-title: A brief measure for assessing generalized anxiety disorder publication-title: Arch. Intern. Med. doi: 10.1001/archinte.166.10.1092 – volume: 26 issue: 3 year: 2017 ident: 10.1016/j.jpsychires.2020.12.049_bib18 article-title: Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration publication-title: Int. J. Methods Psychiatr. Res. doi: 10.1002/mpr.1575 – volume: 31 start-page: 185 issue: 2 year: 2007 ident: 10.1016/j.jpsychires.2020.12.049_bib26 article-title: The alcohol use disorders identification test: an update of research findings publication-title: Alcohol Clin. Exp. Res. doi: 10.1111/j.1530-0277.2006.00295.x – volume: 76 issue: 1 year: 2017 ident: 10.1016/j.jpsychires.2020.12.049_bib5 article-title: Stan: a probabilistic programming language publication-title: J. Stat. Software doi: 10.18637/jss.v076.i01 – volume: 45 start-page: 527 issue: 6 year: 2010 ident: 10.1016/j.jpsychires.2020.12.049_bib9 article-title: Predictive factors for relapse after an integrated inpatient treatment programme for unipolar depressed and bipolar alcoholics publication-title: Alcohol Alcohol doi: 10.1093/alcalc/agq060 – volume: 187 start-page: 1970 issue: 9 year: 2018 ident: 10.1016/j.jpsychires.2020.12.049_bib21 article-title: Measurement of current substance use in a cohort of HIV-infected persons in continuity HIV care, 2007-2015 publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwy092 – volume: 9 issue: 10 year: 2014 ident: 10.1016/j.jpsychires.2020.12.049_bib29 article-title: Modeling the dynamics of disease States in depression publication-title: PloS One – volume: 21 start-page: 169 issue: 3 year: 2012 ident: 10.1016/j.jpsychires.2020.12.049_bib17 article-title: Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States publication-title: Int. J. Methods Psychiatr. Res. doi: 10.1002/mpr.1359 – volume: 16 issue: 1 year: 2016 ident: 10.1016/j.jpsychires.2020.12.049_bib8 article-title: Pre-discharge factors predicting readmissions of psychiatric patients: a systematic review of the literature publication-title: BMC Psychiatr. doi: 10.1186/s12888-016-1114-0 – volume: 21 start-page: 189 issue: 2 year: 2012 ident: 10.1016/j.jpsychires.2020.12.049_bib3 article-title: Statistical approaches to analyse patient-reported outcomes as response variables: an application to health-related quality of life publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280210379079 – year: 2013 ident: 10.1016/j.jpsychires.2020.12.049_bib16 – volume: 53 start-page: 316 issue: 3 year: 2016 ident: 10.1016/j.jpsychires.2020.12.049_bib30 article-title: Prediction of mental health services use one year after regular referral to specialized care versus referral to stepped collaborative care publication-title: Community Ment. Health J. doi: 10.1007/s10597-016-0046-y – volume: 95 start-page: 147 year: 2017 ident: 10.1016/j.jpsychires.2020.12.049_bib11 article-title: A precision medicine approach for psychiatric disease based on repeated symptom scores publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2017.08.008 – volume: 66 start-page: 224 issue: 3 year: 2015 ident: 10.1016/j.jpsychires.2020.12.049_bib19 article-title: Using feedback from patient-reported outcome measures in mental health services: a scoping study and typology publication-title: Psychiatr. Serv. doi: 10.1176/appi.ps.201400141 |
| SSID | ssj0007214 |
| Score | 2.345936 |
| Snippet | Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 22 |
| SubjectTerms | Algorithms Anxiety Disorders Bayes Theorem Humans Learning health system Mental Health Patient reported outcomes Substance use Substance-Related Disorders - epidemiology |
| SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQA7AgvilfMhJrII0dOxETqqgQAiaQ2CzHcaCoTaM2FWLht3OXOIEKhkqsqW_w5Xz33Lx7R8iZMX7CAeZ7QZIJj9tUelpaDgcvC2OTJdavtPTuH8TNE799Dp-XSK_phUFapcv9dU6vsrV7cuG8eVEMBtjjC6UN4H3gV4oxmIc5lzjF4Pzzm-YBNxzeKobDasfmqTlebzWlGC62cFMM_OqPQVTV_LtE_Yagv5mUq7O80B_vejj8Uab6G2Td4Ut6VW9hkyzZfIus3Lsv6Nvk7oq6QREvVA9fxpNB-TqigFxpMcFFyIKmteA_rXsk6fRjVJTj0ZTqPKVTSDQlRgqdTe0OeepfP_ZuPDdRwTMhE6WXGSmyuBvFiQVYZNMsi62EEqajKJEBgBUAAyIyyHsNBeNhKpifAkbUgguGc6x2yXI-zu0-ocaYzLd-yqQfcdPVSWzClIeRsMwiquoQ2ThRGSc3jlMvhqrhlb2pb_crdL_qBgrc3yHd1rKoJTcWsImb96SallJIggrqwgK2l63tXOgtaH3ahIWCk4mfW3RuxzNYxCVABCz_HbJXh0m7H8aYwB5n8NJcALULUPV7_pd88Fqpf0MKZlxGHRK0obawmw7-tdVDshYgo6firB-R5XIys8cAycrkpDpzX0_TN9Q priority: 102 providerName: Elsevier |
| Title | A learning algorithm for predicting mental health symptoms and substance use |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0022395620311572 https://dx.doi.org/10.1016/j.jpsychires.2020.12.049 https://www.ncbi.nlm.nih.gov/pubmed/33360220 https://www.proquest.com/docview/2473412847 https://pubmed.ncbi.nlm.nih.gov/PMC8323478 https://www.ncbi.nlm.nih.gov/pmc/articles/8323478 |
| UnpaywallVersion | submittedVersion |
| Volume | 134 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1379 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007214 issn: 1879-1379 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1879-1379 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007214 issn: 1879-1379 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-1379 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007214 issn: 1879-1379 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1379 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007214 issn: 1879-1379 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1379 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007214 issn: 1879-1379 databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61uxJwKc_C8lgZiWvSJHbsRJxWiGp5dIUQK5VTlDhOuyXJRruJqnLgtzOOk0Aph4VzPAd7xp7P8TffALyS0kkYwnzLSzJuMZUKKxaK4cbL_FBmiXJaLb2TBZ8v2ftT_3QP3L4WpiXty2Rll3lhl6vzlltZFfKo54kdYQhSJoJ9GHMf4fcIxsvFp9nXQRU8bDu26ibalktF2LF3DKfrwlCI8SKLN0PPaX8EahXNv6ekm5DzJnPydlNW8dVlnOe_paXju_C5n5Bho3yzmzqx5fc_tB7_acb34KADqWRmPt2HPVU-gFsn3TP8Q_g4I123iTMS52frzao-LwjCX1Jt9CBNpSamawAxhZZke1VU9brYkrhMyRZPq1qHG2m26hEsj99-eTO3urYMlvQpr61MCp6FbhAmCrGVSrMsVALzYBwEifAQ8SCi4IHU5FmfU-annDopAs2YM051M6xDGJXrUj0BIqXMHOWkVDgBk26chNJPmR9wRZWGZhMQvWci2WmW69YZedST0y6iXz6NtE8j14vQpxNwB8vK6HbsYBP2zo_6ulQ8SSNMLjvYvh5sO-xiMMmO1i_7WItwe-s3m7hU6wYHMYE4Q2OICTw2sTfMh1LKdaE0rtK1qBwGaOnw618wvloJ8S6kJuAN8bvzMj39H6NncMfTbKCW7_4cRvWmUS8QztXJFPbtH-4UxrN3H-aLabedfwJuDk-_ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swED0ECdB0KdJvN_1gga5qZJEiJWQKggZua2dKgGwERVGJA1sWbBlFlvz23EmUUiMdDHSVeANPx7tH8d0jwDdrw0wgzA-irJCBcLkKjHICF14Rp7bIXNho6U3O5ehS_LqKr3bgtOuFIVqlz_1tTm-ytX9y5L15VE2n1OOLpQ3hfRQ2ijGYh_dEHCnagX2_f-R54BZH9JLhONzTeVqS123LKcadLW4Vo7D5M0iymv-uUU8x6FMq5f66rMzdHzOb_VWnzg7ghQeY7KSdw0vYceUreDbxR-ivYXzC_E0R18zMrhfLaX0zZwhdWbWkQUSDZq3iP2ubJNnqbl7Vi_mKmTJnK8w0NYUKW6_cG7g8-3FxOgr8lQqBjbmsg8IqWaTDJM0c4iKXF0XqFNYwkySZihCtIBqQiSXiayy5iHPJwxxBopFCcrrI6i3slovSvQdmrS1CF-ZchYmwQ5OlNs5FnEjHHcGqAajOidp6vXG69mKmO2LZrX50vyb362Gk0f0DGPaWVau5sYVN2n0n3fWUYhbUWBi2sD3ubTdib0vrr11YaFyadN5iSrdY4yChECNQ_R_AuzZM-vlwziU1OaOXNgKoH0Cy35tvyulNI_-NOZgLlQwg6kNtazd9-K-pfoH90cVkrMc_z38fwvOI6D0Ngf0j7NbLtfuE-KzOPjfr7wH8fzr3 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQRcKN8sBWQkrtkmsWMn4rRCrSpEK4RYqZyi2HHaLUk22k2Eyq9nHDuhpRwWzvEc7Bl7nuM3bwDeKeVLhjDfC2XBPaZz4WVCM9x4RZSoQmq_19I7OeXHC_bxLDrbgWCohelJ-0ouZ3VZzerlRc-tbCp1MPDEDjAEKRPxHdjlEcLvCewuTj_Pv42q4EnfsdU00fYCKhLH3rGcrktLIcaLLN4MQ7__EWhUNP-ekm5DztvMyXtd3WRXP7KyvJaWjvbgyzAhy0b5PutaOVM__9B6_KcZP4QHDqSSuf30CHZ0_Rjunrhn-CfwaU5ct4lzkpXnq_WyvagIwl_SrM0gQ6UmtmsAsYWWZHNVNe2q2pCszskGT6vWhBvpNvopLI4Ov3449lxbBk9FlLdeoQQvkiBOpEZspfOiSLTAPJjFsRQhIh5EFDxWhjwbccqinFM_R6CZccapaYb1DCb1qtYvgCilCl_7ORV-zFSQyURFOYtirqk20GwKYvBMqpxmuWmdUaYDOe0y_e3T1Pg0DcIUfTqFYLRsrG7HFjbJ4Px0qEvFkzTF5LKF7fvR1mEXi0m2tH47xFqK29u82WS1XnU4iAnEGQZDTOG5jb1xPpRSbgqlcZVuROU4wEiH3_yC8dVLiLuQmkI4xu_Wy_Tyf4z24X5o2EA93_0VTNp1p18jnGvlG7eBfwEoq00z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Learning+Algorithm+for+Predicting+Mental+Health+Symptoms+and+Substance+Use&rft.jtitle=Journal+of+psychiatric+research&rft.au=Fojo%2C+Anthony+T.&rft.au=Lesko%2C+Catherine+R.&rft.au=Benke%2C+Kelly+S.&rft.au=Chander%2C+Geetanjali&rft.date=2021-02-01&rft.issn=0022-3956&rft.eissn=1879-1379&rft.volume=134&rft.spage=22&rft.epage=29&rft_id=info:doi/10.1016%2Fj.jpsychires.2020.12.049&rft_id=info%3Apmid%2F33360220&rft.externalDocID=PMC8323478 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3956&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3956&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3956&client=summon |