A learning algorithm for predicting mental health symptoms and substance use

Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental health symptoms and substance use data to make patient-specific predictions. We developed a general Bayesian prediction algorithm that uses self-r...

Full description

Saved in:
Bibliographic Details
Published inJournal of psychiatric research Vol. 134; pp. 22 - 29
Main Authors Fojo, Anthony T., Lesko, Catherine R., Benke, Kelly S., Chander, Geetanjali, Lau, Bryan, Moore, Richard D., Zandi, Peter P., Zeger, Scott L.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2021
Subjects
Online AccessGet full text
ISSN0022-3956
1879-1379
1879-1379
DOI10.1016/j.jpsychires.2020.12.049

Cover

Abstract Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental health symptoms and substance use data to make patient-specific predictions. We developed a general Bayesian prediction algorithm that uses self-reported psychiatric symptoms and substance use within a population to predict future symptoms and substance use for individuals in that population. We validated our approach in 2444 participants from two clinical cohorts – the National Network of Depression Centers and the Johns Hopkins HIV Clinical Cohort – by predicting symptoms of depression, anxiety, and mania as well as alcohol, heroin, and cocaine use and comparing our predictions to observed symptoms and substance use. When we dichotomized mental health symptoms as moderate-severe vs. none-mild, individual predictions yielded areas under the ROC curve (AUCs) of 0.84 [95% confidence interval 0.80–0.88] and 0.85 [0.82–0.88] for symptoms of depression in the two cohorts, AUCs of 0.84 [0.79–0.88] and 0.85 [0.82–0.88] for symptoms of anxiety, and an AUC of 0.77 [0.72–0.82] for manic symptoms. Predictions of substance use yielded an AUC of 0.92 [0.88–0.97] for heroin use, 0.90 [0.82–0.97] for cocaine use, and 0.90 [0.88–092] for alcohol misuse. This rigorous, mathematically grounded approach could provide patient-specific predictions at the point of care. It can be applied to other psychiatric symptoms and substance use indicators, and is customizable to specific health systems. Such approaches can realize the potential of a learning health system to transform ever-increasing quantities of data into tangible guidance for patient care.
AbstractList Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental health symptoms and substance use data to make patient-specific predictions. We developed a general Bayesian prediction algorithm that uses self-reported psychiatric symptoms and substance use within a population to predict future symptoms and substance use for individuals in that population. We validated our approach in 2444 participants from two clinical cohorts – the National Network of Depression Centers and the Johns Hopkins HIV Clinical Cohort – by predicting symptoms of depression, anxiety, and mania as well as alcohol, heroin, and cocaine use and comparing our predictions to observed symptoms and substance use. When we dichotomized mental health symptoms as moderate-severe vs. none-mild, individual predictions yielded areas under the ROC curve (AUCs) of 0.84 [95% confidence interval 0.80–0.88] and 0.85 [0.82–0.88] for symptoms of depression in the two cohorts, AUCs of 0.84 [0.79–0.88] and 0.85 [0.82–0.88] for symptoms of anxiety, and an AUC of 0.77 [0.72–0.82] for manic symptoms. Predictions of substance use yielded an AUC of 0.92 [0.88–0.97] for heroin use, 0.90 [0.82–0.97] for cocaine use, and 0.90 [0.88–092] for alcohol misuse. This rigorous, mathematically grounded approach could provide patient-specific predictions at the point of care. It can be applied to other psychiatric symptoms and substance use indicators, and is customizable to specific health systems. Such approaches can realize the potential of a learning health system to transform ever-increasing quantities of data into tangible guidance for patient care.
Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental health symptoms and substance use data to make patient-specific predictions. We developed a general Bayesian prediction algorithm that uses self-reported psychiatric symptoms and substance use within a population to predict future symptoms and substance use for individuals in that population. We validated our approach in 2444 participants from two clinical cohorts - the National Network of Depression Centers and the Johns Hopkins HIV Clinical Cohort - by predicting symptoms of depression, anxiety, and mania as well as alcohol, heroin, and cocaine use and comparing our predictions to observed symptoms and substance use. When we dichotomized mental health symptoms as moderate-severe vs. none-mild, individual predictions yielded areas under the ROC curve (AUCs) of 0.84 [95% confidence interval 0.80-0.88] and 0.85 [0.82-0.88] for symptoms of depression in the two cohorts, AUCs of 0.84 [0.79-0.88] and 0.85 [0.82-0.88] for symptoms of anxiety, and an AUC of 0.77 [0.72-0.82] for manic symptoms. Predictions of substance use yielded an AUC of 0.92 [0.88-0.97] for heroin use, 0.90 [0.82-0.97] for cocaine use, and 0.90 [0.88-092] for alcohol misuse. This rigorous, mathematically grounded approach could provide patient-specific predictions at the point of care. It can be applied to other psychiatric symptoms and substance use indicators, and is customizable to specific health systems. Such approaches can realize the potential of a learning health system to transform ever-increasing quantities of data into tangible guidance for patient care.Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental health symptoms and substance use data to make patient-specific predictions. We developed a general Bayesian prediction algorithm that uses self-reported psychiatric symptoms and substance use within a population to predict future symptoms and substance use for individuals in that population. We validated our approach in 2444 participants from two clinical cohorts - the National Network of Depression Centers and the Johns Hopkins HIV Clinical Cohort - by predicting symptoms of depression, anxiety, and mania as well as alcohol, heroin, and cocaine use and comparing our predictions to observed symptoms and substance use. When we dichotomized mental health symptoms as moderate-severe vs. none-mild, individual predictions yielded areas under the ROC curve (AUCs) of 0.84 [95% confidence interval 0.80-0.88] and 0.85 [0.82-0.88] for symptoms of depression in the two cohorts, AUCs of 0.84 [0.79-0.88] and 0.85 [0.82-0.88] for symptoms of anxiety, and an AUC of 0.77 [0.72-0.82] for manic symptoms. Predictions of substance use yielded an AUC of 0.92 [0.88-0.97] for heroin use, 0.90 [0.82-0.97] for cocaine use, and 0.90 [0.88-092] for alcohol misuse. This rigorous, mathematically grounded approach could provide patient-specific predictions at the point of care. It can be applied to other psychiatric symptoms and substance use indicators, and is customizable to specific health systems. Such approaches can realize the potential of a learning health system to transform ever-increasing quantities of data into tangible guidance for patient care.
Author Lesko, Catherine R.
Chander, Geetanjali
Zeger, Scott L.
Zandi, Peter P.
Fojo, Anthony T.
Lau, Bryan
Moore, Richard D.
Benke, Kelly S.
Author_xml – sequence: 1
  givenname: Anthony T.
  surname: Fojo
  fullname: Fojo, Anthony T.
  email: Anthony.Fojo@jhmi.edu
  organization: School of Medicine, Johns Hopkins University, Baltimore, MD, USA
– sequence: 2
  givenname: Catherine R.
  surname: Lesko
  fullname: Lesko, Catherine R.
  email: clesko2@jhu.edu
  organization: Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, MD, USA
– sequence: 3
  givenname: Kelly S.
  surname: Benke
  fullname: Benke, Kelly S.
  email: kbenke1@jhu.edu
  organization: Johns Hopkins Bloomberg School of Public Health, Department of Mental Health, Baltimore, MD, USA
– sequence: 4
  givenname: Geetanjali
  surname: Chander
  fullname: Chander, Geetanjali
  email: gchande1@jhmi.edu
  organization: School of Medicine, Johns Hopkins University, Baltimore, MD, USA
– sequence: 5
  givenname: Bryan
  surname: Lau
  fullname: Lau, Bryan
  email: blau1@jhu.edu
  organization: Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, MD, USA
– sequence: 6
  givenname: Richard D.
  surname: Moore
  fullname: Moore, Richard D.
  email: rdmoore@jhmi.edu
  organization: School of Medicine, Johns Hopkins University, Baltimore, MD, USA
– sequence: 7
  givenname: Peter P.
  surname: Zandi
  fullname: Zandi, Peter P.
  email: pzandi1@jhu.edu
  organization: Johns Hopkins Bloomberg School of Public Health, Department of Mental Health, Baltimore, MD, USA
– sequence: 8
  givenname: Scott L.
  surname: Zeger
  fullname: Zeger, Scott L.
  email: sz@jhu.edu
  organization: Johns Hopkins Bloomberg School of Public Health, Department of Biostatistics, Baltimore, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33360220$$D View this record in MEDLINE/PubMed
BookMark eNqVkU2P0zAQhi20iO0W_gLykUuLP1InviCWFV9SJS5wtlxn0rg4drCdRfn3uOpCYU_lNJLH7_POvHODrnzwgBCmZE0JFa8P68OYZtPbCGnNCCvPbE0q-QQtaFPLFeW1vEILQhhbcbkR1-gmpQMhpGa0eoauOeei9MgCbW-xAx299Xus3T5Em_sBdyHiMUJrTT42BvBZO9yDdrnHaR7GHIaEtW9xmnYpa28ATwmeo6eddglePNQl-vbh_de7T6vtl4-f7263K7PhIq86U4tO0kbuQDIJbddJqLlguml2NRNcUkpEY4SoxUbwatMKTlrKpRaV4KwhfInkiTv5Uc8_tXNqjHbQcVaUqGNC6qDOCaljQooyVRIq2jcn7TjtBmhNWS3qsz5oq_7teNurfbhXDWe8qpsCePUAiOHHBCmrwSYDzmkPYSpmVc0ryppSlujl315_TH7Hfx7GxJBShE4Zm3W24Wht3SXbNI8A_xHEu5MUyqXuLUSVjIVyybZ8NVm1wV4CefsIYpz11mj3HebLEL8AJYLiPQ
CitedBy_id crossref_primary_10_1016_j_bionps_2024_100105
crossref_primary_10_1002_wics_70008
Cites_doi 10.1097/00042560-199801001-00011
10.1093/alcalc/ags112
10.1176/appi.ajp.2012.12010112
10.1016/S0006-3223(96)00548-3
10.1016/j.invent.2018.03.002
10.1186/1471-2105-12-77
10.1016/S2215-0366(18)30337-7
10.1002/da.20862
10.1046/j.1525-1497.2001.016009606.x
10.31887/DCNS.2014.16.4/fmcmahon
10.1097/EDE.0b013e31823029dd
10.2307/2531595
10.1136/amiajnl-2014-002977
10.1001/archinte.166.10.1092
10.1002/mpr.1575
10.1111/j.1530-0277.2006.00295.x
10.18637/jss.v076.i01
10.1093/alcalc/agq060
10.1093/aje/kwy092
10.1002/mpr.1359
10.1186/s12888-016-1114-0
10.1177/0962280210379079
10.1007/s10597-016-0046-y
10.1016/j.jpsychires.2017.08.008
10.1176/appi.ps.201400141
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.jpsychires.2020.12.049
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-1379
EndPage 29
ExternalDocumentID oai:pubmedcentral.nih.gov:8323478
PMC8323478
33360220
10_1016_j_jpsychires_2020_12_049
S0022395620311572
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: K01 AA028193
– fundername: NIMHD NIH HHS
  grantid: R01 MD018539
– fundername: NIMH NIH HHS
  grantid: K08 MH118094
– fundername: NIDA NIH HHS
  grantid: U01 DA036935
– fundername: NIAID NIH HHS
  grantid: P30 AI094189
– fundername: NCATS NIH HHS
  grantid: UL1 TR000433
– fundername: NIAAA NIH HHS
  grantid: K24 AA027483
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABOYX
ABPPZ
ABWVN
ABXDB
ACDAQ
ACGFS
ACHQT
ACIEU
ACIUM
ACLOT
ACNCT
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEG
HF~
HMK
HMO
HMQ
HMW
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M29
M2V
M39
M3V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OH0
OKEIE
OU-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SPS
SSB
SSH
SSN
SSY
SSZ
T5K
WUQ
YQT
Z5R
ZGI
~G-
~HD
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AFYLN
AJBFU
AJOXV
AMFUW
LCYCR
RIG
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c536t-fc76f9189be929edff9e7362a88b7263911068c667656345d630d139a64632803
IEDL.DBID UNPAY
ISSN 0022-3956
1879-1379
IngestDate Sun Oct 26 04:11:51 EDT 2025
Tue Sep 30 16:59:46 EDT 2025
Sat Sep 27 23:13:10 EDT 2025
Wed Feb 19 02:17:25 EST 2025
Wed Oct 01 05:18:27 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Fri Feb 23 02:45:18 EST 2024
Tue Oct 14 19:35:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Substance use
Learning health system
Patient reported outcomes
Mental health
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-fc76f9189be929edff9e7362a88b7263911068c667656345d630d139a64632803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8323478
PMID 33360220
PQID 2473412847
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_jpsychires_2020_12_049
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8323478
proquest_miscellaneous_2473412847
pubmed_primary_33360220
crossref_citationtrail_10_1016_j_jpsychires_2020_12_049
crossref_primary_10_1016_j_jpsychires_2020_12_049
elsevier_sciencedirect_doi_10_1016_j_jpsychires_2020_12_049
elsevier_clinicalkey_doi_10_1016_j_jpsychires_2020_12_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of psychiatric research
PublicationTitleAlternate J Psychiatr Res
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Farren, Snee, Daly, McElroy (bib10) 2013; 48
Lesko, Keil, Moore, Chander, Fojo, Lau (bib21) 2018; 187
Reinert, Allen (bib26) 2007; 31
Kroenke, Spitzer, Williams (bib20) 2001; 16
van Orden, Leone, Haffmans, Spinhoven, Hoencamp (bib30) 2016; 53
Arostegui, Nunez-Anton, Quintana (bib3) 2012; 21
Pettinati, O'Brien, Dundon (bib25) 2013; 170
Alcohol Drug Use (bib1) 2018; 5
Kessler, Hwang, Hoffmire, McCarthy, Petukhova, Rosellini, Sampson, Schneider, Bradley, Katz, Thompson, Bossarte (bib18) 2017; 26
Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, Riddell (bib5) 2017; 76
Diggle (bib7) 2013
Friedman, Rubin, Brown, Buntin, Corn, Etheredge, Gunter, Musen, Platt, Stead, Sullivan, Van Houweling (bib12) 2015; 22
Donisi, Tedeschi, Wahlbeck, Haaramo, Amaddeo (bib8) 2016; 16
Fojo, Musliner, Zandi, Zeger (bib11) 2017; 95
Becker, van Breda, Funk, Hoogendoorn, Ruwaard, Riper (bib4) 2018; 12
Sun, Demic, Cheng (bib29) 2014; 9
Altman, Hedeker, Peterson, Davis (bib2) 1997; 42
McMahon (bib22) 2014; 16
Spitzer, Kroenke, Williams, Löwe (bib28) 2006; 166
DeLong, DeLong, Clarke-Pearson (bib6) 1988; 44
Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, Müller (bib27) 2011; 12
Moore (bib23) 1998; 17
(bib16) 2013
Kessler, Petukhova, Sampson, Zaslavsky, Wittchen (bib17) 2012; 21
Farren, McElroy (bib9) 2010; 45
(bib24) 2010
Greden (bib13) 2011; 28
Howe, Cole, Westreich, Greenland, Napravnik, Eron (bib15) 2011; 22
Krägeloh, Czuba, Billington, Kersten, Siegert (bib19) 2015; 66
Becker (10.1016/j.jpsychires.2020.12.049_bib4) 2018; 12
Friedman (10.1016/j.jpsychires.2020.12.049_bib12) 2015; 22
Fojo (10.1016/j.jpsychires.2020.12.049_bib11) 2017; 95
(10.1016/j.jpsychires.2020.12.049_bib16) 2013
McMahon (10.1016/j.jpsychires.2020.12.049_bib22) 2014; 16
Moore (10.1016/j.jpsychires.2020.12.049_bib23) 1998; 17
Spitzer (10.1016/j.jpsychires.2020.12.049_bib28) 2006; 166
Robin (10.1016/j.jpsychires.2020.12.049_bib27) 2011; 12
Kroenke (10.1016/j.jpsychires.2020.12.049_bib20) 2001; 16
van Orden (10.1016/j.jpsychires.2020.12.049_bib30) 2016; 53
DeLong (10.1016/j.jpsychires.2020.12.049_bib6) 1988; 44
Alcohol Drug Use (10.1016/j.jpsychires.2020.12.049_bib1) 2018; 5
Altman (10.1016/j.jpsychires.2020.12.049_bib2) 1997; 42
Lesko (10.1016/j.jpsychires.2020.12.049_bib21) 2018; 187
Krägeloh (10.1016/j.jpsychires.2020.12.049_bib19) 2015; 66
Carpenter (10.1016/j.jpsychires.2020.12.049_bib5) 2017; 76
Farren (10.1016/j.jpsychires.2020.12.049_bib10) 2013; 48
Howe (10.1016/j.jpsychires.2020.12.049_bib15) 2011; 22
Kessler (10.1016/j.jpsychires.2020.12.049_bib17) 2012; 21
Arostegui (10.1016/j.jpsychires.2020.12.049_bib3) 2012; 21
Greden (10.1016/j.jpsychires.2020.12.049_bib13) 2011; 28
Reinert (10.1016/j.jpsychires.2020.12.049_bib26) 2007; 31
Farren (10.1016/j.jpsychires.2020.12.049_bib9) 2010; 45
Diggle (10.1016/j.jpsychires.2020.12.049_bib7) 2013
Pettinati (10.1016/j.jpsychires.2020.12.049_bib25) 2013; 170
Donisi (10.1016/j.jpsychires.2020.12.049_bib8) 2016; 16
Kessler (10.1016/j.jpsychires.2020.12.049_bib18) 2017; 26
Sun (10.1016/j.jpsychires.2020.12.049_bib29) 2014; 9
References_xml – volume: 26
  year: 2017
  ident: bib18
  article-title: Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration
  publication-title: Int. J. Methods Psychiatr. Res.
– year: 2010
  ident: bib24
  article-title: Clinician's screening tool for drug use in general medical settings
– volume: 53
  start-page: 316
  year: 2016
  end-page: 323
  ident: bib30
  article-title: Prediction of mental health services use one year after regular referral to specialized care versus referral to stepped collaborative care
  publication-title: Community Ment. Health J.
– volume: 76
  year: 2017
  ident: bib5
  article-title: Stan: a probabilistic programming language
  publication-title: J. Stat. Software
– volume: 16
  year: 2016
  ident: bib8
  article-title: Pre-discharge factors predicting readmissions of psychiatric patients: a systematic review of the literature
  publication-title: BMC Psychiatr.
– volume: 187
  start-page: 1970
  year: 2018
  end-page: 1979
  ident: bib21
  article-title: Measurement of current substance use in a cohort of HIV-infected persons in continuity HIV care, 2007-2015
  publication-title: Am. J. Epidemiol.
– volume: 22
  start-page: 874
  year: 2011
  end-page: 875
  ident: bib15
  article-title: Splines for trend analysis and continuous confounder control
  publication-title: Epidemiology
– volume: 45
  start-page: 527
  year: 2010
  end-page: 533
  ident: bib9
  article-title: Predictive factors for relapse after an integrated inpatient treatment programme for unipolar depressed and bipolar alcoholics
  publication-title: Alcohol Alcohol
– year: 2013
  ident: bib7
  article-title: Analysis of Longitudinal Data
– volume: 16
  start-page: 455
  year: 2014
  end-page: 464
  ident: bib22
  article-title: Prediction of treatment outcomes in psychiatry--where do we stand?
  publication-title: Dialogues Clin. Neurosci.
– volume: 170
  start-page: 23
  year: 2013
  end-page: 30
  ident: bib25
  article-title: Current status of co-occurring mood and substance use disorders: a new therapeutic target
  publication-title: Am. J. Psychiatr.
– volume: 9
  year: 2014
  ident: bib29
  article-title: Modeling the dynamics of disease States in depression
  publication-title: PloS One
– volume: 66
  start-page: 224
  year: 2015
  end-page: 241
  ident: bib19
  article-title: Using feedback from patient-reported outcome measures in mental health services: a scoping study and typology
  publication-title: Psychiatr. Serv.
– volume: 166
  start-page: 1092
  year: 2006
  ident: bib28
  article-title: A brief measure for assessing generalized anxiety disorder
  publication-title: Arch. Intern. Med.
– volume: 5
  start-page: 987
  year: 2018
  end-page: 1012
  ident: bib1
  article-title: The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016
  publication-title: Lancet Psychiatry
– volume: 12
  year: 2011
  ident: bib27
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinf.
– volume: 28
  start-page: 615
  year: 2011
  end-page: 621
  ident: bib13
  article-title: The national Network of depression centers: progress through partnership
  publication-title: Depress. Anxiety
– volume: 42
  start-page: 948
  year: 1997
  end-page: 955
  ident: bib2
  article-title: The altman self-rating mania scale
  publication-title: Biol. Psychiatr.
– volume: 48
  start-page: 93
  year: 2013
  end-page: 98
  ident: bib10
  article-title: Prognostic factors of 2-year outcomes of patients with comorbid bipolar disorder or depression with alcohol dependence: importance of early abstinence
  publication-title: Alcohol Alcohol
– volume: 31
  start-page: 185
  year: 2007
  end-page: 199
  ident: bib26
  article-title: The alcohol use disorders identification test: an update of research findings
  publication-title: Alcohol Clin. Exp. Res.
– volume: 22
  start-page: 43
  year: 2015
  end-page: 50
  ident: bib12
  article-title: Toward a science of learning systems: a research agenda for the high-functioning Learning Health System
  publication-title: J. Am. Med. Inf. Assoc.
– volume: 21
  start-page: 189
  year: 2012
  end-page: 214
  ident: bib3
  article-title: Statistical approaches to analyse patient-reported outcomes as response variables: an application to health-related quality of life
  publication-title: Stat. Methods Med. Res.
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: bib6
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– year: 2013
  ident: bib16
  article-title: Best Care at Lower Cost: the Path to Continuously Learning Health Care in America
– volume: 95
  start-page: 147
  year: 2017
  end-page: 155
  ident: bib11
  article-title: A precision medicine approach for psychiatric disease based on repeated symptom scores
  publication-title: J. Psychiatr. Res.
– volume: 16
  start-page: 606
  year: 2001
  end-page: 613
  ident: bib20
  article-title: The PHQ-9: validity of a brief depression severity measure
  publication-title: J. Gen. Intern. Med.
– volume: 12
  start-page: 57
  year: 2018
  end-page: 67
  ident: bib4
  article-title: Predictive modeling in e-mental health: a common language framework
  publication-title: Internet Interventions
– volume: 21
  start-page: 169
  year: 2012
  end-page: 184
  ident: bib17
  article-title: Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States
  publication-title: Int. J. Methods Psychiatr. Res.
– volume: 17
  start-page: S38
  year: 1998
  end-page: S41
  ident: bib23
  article-title: Understanding the clinical and economic outcomes of HIV therapy: the Johns Hopkins HIV clinical practice cohort
  publication-title: J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.
– volume: 17
  start-page: S38
  issue: Suppl. 1
  year: 1998
  ident: 10.1016/j.jpsychires.2020.12.049_bib23
  article-title: Understanding the clinical and economic outcomes of HIV therapy: the Johns Hopkins HIV clinical practice cohort
  publication-title: J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.
  doi: 10.1097/00042560-199801001-00011
– volume: 48
  start-page: 93
  issue: 1
  year: 2013
  ident: 10.1016/j.jpsychires.2020.12.049_bib10
  article-title: Prognostic factors of 2-year outcomes of patients with comorbid bipolar disorder or depression with alcohol dependence: importance of early abstinence
  publication-title: Alcohol Alcohol
  doi: 10.1093/alcalc/ags112
– year: 2013
  ident: 10.1016/j.jpsychires.2020.12.049_bib7
– volume: 170
  start-page: 23
  issue: 1
  year: 2013
  ident: 10.1016/j.jpsychires.2020.12.049_bib25
  article-title: Current status of co-occurring mood and substance use disorders: a new therapeutic target
  publication-title: Am. J. Psychiatr.
  doi: 10.1176/appi.ajp.2012.12010112
– volume: 42
  start-page: 948
  issue: 10
  year: 1997
  ident: 10.1016/j.jpsychires.2020.12.049_bib2
  article-title: The altman self-rating mania scale
  publication-title: Biol. Psychiatr.
  doi: 10.1016/S0006-3223(96)00548-3
– volume: 12
  start-page: 57
  year: 2018
  ident: 10.1016/j.jpsychires.2020.12.049_bib4
  article-title: Predictive modeling in e-mental health: a common language framework
  publication-title: Internet Interventions
  doi: 10.1016/j.invent.2018.03.002
– volume: 12
  issue: 1
  year: 2011
  ident: 10.1016/j.jpsychires.2020.12.049_bib27
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-12-77
– volume: 5
  start-page: 987
  issue: 12
  year: 2018
  ident: 10.1016/j.jpsychires.2020.12.049_bib1
  article-title: The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(18)30337-7
– volume: 28
  start-page: 615
  issue: 8
  year: 2011
  ident: 10.1016/j.jpsychires.2020.12.049_bib13
  article-title: The national Network of depression centers: progress through partnership
  publication-title: Depress. Anxiety
  doi: 10.1002/da.20862
– volume: 16
  start-page: 606
  issue: 9
  year: 2001
  ident: 10.1016/j.jpsychires.2020.12.049_bib20
  article-title: The PHQ-9: validity of a brief depression severity measure
  publication-title: J. Gen. Intern. Med.
  doi: 10.1046/j.1525-1497.2001.016009606.x
– volume: 16
  start-page: 455
  issue: 4
  year: 2014
  ident: 10.1016/j.jpsychires.2020.12.049_bib22
  article-title: Prediction of treatment outcomes in psychiatry--where do we stand?
  publication-title: Dialogues Clin. Neurosci.
  doi: 10.31887/DCNS.2014.16.4/fmcmahon
– volume: 22
  start-page: 874
  issue: 6
  year: 2011
  ident: 10.1016/j.jpsychires.2020.12.049_bib15
  article-title: Splines for trend analysis and continuous confounder control
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e31823029dd
– volume: 44
  start-page: 837
  issue: 3
  year: 1988
  ident: 10.1016/j.jpsychires.2020.12.049_bib6
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 22
  start-page: 43
  issue: 1
  year: 2015
  ident: 10.1016/j.jpsychires.2020.12.049_bib12
  article-title: Toward a science of learning systems: a research agenda for the high-functioning Learning Health System
  publication-title: J. Am. Med. Inf. Assoc.
  doi: 10.1136/amiajnl-2014-002977
– volume: 166
  start-page: 1092
  issue: 10
  year: 2006
  ident: 10.1016/j.jpsychires.2020.12.049_bib28
  article-title: A brief measure for assessing generalized anxiety disorder
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinte.166.10.1092
– volume: 26
  issue: 3
  year: 2017
  ident: 10.1016/j.jpsychires.2020.12.049_bib18
  article-title: Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration
  publication-title: Int. J. Methods Psychiatr. Res.
  doi: 10.1002/mpr.1575
– volume: 31
  start-page: 185
  issue: 2
  year: 2007
  ident: 10.1016/j.jpsychires.2020.12.049_bib26
  article-title: The alcohol use disorders identification test: an update of research findings
  publication-title: Alcohol Clin. Exp. Res.
  doi: 10.1111/j.1530-0277.2006.00295.x
– volume: 76
  issue: 1
  year: 2017
  ident: 10.1016/j.jpsychires.2020.12.049_bib5
  article-title: Stan: a probabilistic programming language
  publication-title: J. Stat. Software
  doi: 10.18637/jss.v076.i01
– volume: 45
  start-page: 527
  issue: 6
  year: 2010
  ident: 10.1016/j.jpsychires.2020.12.049_bib9
  article-title: Predictive factors for relapse after an integrated inpatient treatment programme for unipolar depressed and bipolar alcoholics
  publication-title: Alcohol Alcohol
  doi: 10.1093/alcalc/agq060
– volume: 187
  start-page: 1970
  issue: 9
  year: 2018
  ident: 10.1016/j.jpsychires.2020.12.049_bib21
  article-title: Measurement of current substance use in a cohort of HIV-infected persons in continuity HIV care, 2007-2015
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwy092
– volume: 9
  issue: 10
  year: 2014
  ident: 10.1016/j.jpsychires.2020.12.049_bib29
  article-title: Modeling the dynamics of disease States in depression
  publication-title: PloS One
– volume: 21
  start-page: 169
  issue: 3
  year: 2012
  ident: 10.1016/j.jpsychires.2020.12.049_bib17
  article-title: Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States
  publication-title: Int. J. Methods Psychiatr. Res.
  doi: 10.1002/mpr.1359
– volume: 16
  issue: 1
  year: 2016
  ident: 10.1016/j.jpsychires.2020.12.049_bib8
  article-title: Pre-discharge factors predicting readmissions of psychiatric patients: a systematic review of the literature
  publication-title: BMC Psychiatr.
  doi: 10.1186/s12888-016-1114-0
– volume: 21
  start-page: 189
  issue: 2
  year: 2012
  ident: 10.1016/j.jpsychires.2020.12.049_bib3
  article-title: Statistical approaches to analyse patient-reported outcomes as response variables: an application to health-related quality of life
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280210379079
– year: 2013
  ident: 10.1016/j.jpsychires.2020.12.049_bib16
– volume: 53
  start-page: 316
  issue: 3
  year: 2016
  ident: 10.1016/j.jpsychires.2020.12.049_bib30
  article-title: Prediction of mental health services use one year after regular referral to specialized care versus referral to stepped collaborative care
  publication-title: Community Ment. Health J.
  doi: 10.1007/s10597-016-0046-y
– volume: 95
  start-page: 147
  year: 2017
  ident: 10.1016/j.jpsychires.2020.12.049_bib11
  article-title: A precision medicine approach for psychiatric disease based on repeated symptom scores
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2017.08.008
– volume: 66
  start-page: 224
  issue: 3
  year: 2015
  ident: 10.1016/j.jpsychires.2020.12.049_bib19
  article-title: Using feedback from patient-reported outcome measures in mental health services: a scoping study and typology
  publication-title: Psychiatr. Serv.
  doi: 10.1176/appi.ps.201400141
SSID ssj0007214
Score 2.345936
Snippet Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22
SubjectTerms Algorithms
Anxiety Disorders
Bayes Theorem
Humans
Learning health system
Mental Health
Patient reported outcomes
Substance use
Substance-Related Disorders - epidemiology
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQA7AgvilfMhJrII0dOxETqqgQAiaQ2CzHcaCoTaM2FWLht3OXOIEKhkqsqW_w5Xz33Lx7R8iZMX7CAeZ7QZIJj9tUelpaDgcvC2OTJdavtPTuH8TNE799Dp-XSK_phUFapcv9dU6vsrV7cuG8eVEMBtjjC6UN4H3gV4oxmIc5lzjF4Pzzm-YBNxzeKobDasfmqTlebzWlGC62cFMM_OqPQVTV_LtE_Yagv5mUq7O80B_vejj8Uab6G2Td4Ut6VW9hkyzZfIus3Lsv6Nvk7oq6QREvVA9fxpNB-TqigFxpMcFFyIKmteA_rXsk6fRjVJTj0ZTqPKVTSDQlRgqdTe0OeepfP_ZuPDdRwTMhE6WXGSmyuBvFiQVYZNMsi62EEqajKJEBgBUAAyIyyHsNBeNhKpifAkbUgguGc6x2yXI-zu0-ocaYzLd-yqQfcdPVSWzClIeRsMwiquoQ2ThRGSc3jlMvhqrhlb2pb_crdL_qBgrc3yHd1rKoJTcWsImb96SallJIggrqwgK2l63tXOgtaH3ahIWCk4mfW3RuxzNYxCVABCz_HbJXh0m7H8aYwB5n8NJcALULUPV7_pd88Fqpf0MKZlxGHRK0obawmw7-tdVDshYgo6firB-R5XIys8cAycrkpDpzX0_TN9Q
  priority: 102
  providerName: Elsevier
Title A learning algorithm for predicting mental health symptoms and substance use
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0022395620311572
https://dx.doi.org/10.1016/j.jpsychires.2020.12.049
https://www.ncbi.nlm.nih.gov/pubmed/33360220
https://www.proquest.com/docview/2473412847
https://pubmed.ncbi.nlm.nih.gov/PMC8323478
https://www.ncbi.nlm.nih.gov/pmc/articles/8323478
UnpaywallVersion submittedVersion
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1379
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007214
  issn: 1879-1379
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-1379
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007214
  issn: 1879-1379
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1379
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007214
  issn: 1879-1379
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1379
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007214
  issn: 1879-1379
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1379
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007214
  issn: 1879-1379
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61uxJwKc_C8lgZiWvSJHbsRJxWiGp5dIUQK5VTlDhOuyXJRruJqnLgtzOOk0Aph4VzPAd7xp7P8TffALyS0kkYwnzLSzJuMZUKKxaK4cbL_FBmiXJaLb2TBZ8v2ftT_3QP3L4WpiXty2Rll3lhl6vzlltZFfKo54kdYQhSJoJ9GHMf4fcIxsvFp9nXQRU8bDu26ibalktF2LF3DKfrwlCI8SKLN0PPaX8EahXNv6ekm5DzJnPydlNW8dVlnOe_paXju_C5n5Bho3yzmzqx5fc_tB7_acb34KADqWRmPt2HPVU-gFsn3TP8Q_g4I123iTMS52frzao-LwjCX1Jt9CBNpSamawAxhZZke1VU9brYkrhMyRZPq1qHG2m26hEsj99-eTO3urYMlvQpr61MCp6FbhAmCrGVSrMsVALzYBwEifAQ8SCi4IHU5FmfU-annDopAs2YM051M6xDGJXrUj0BIqXMHOWkVDgBk26chNJPmR9wRZWGZhMQvWci2WmW69YZedST0y6iXz6NtE8j14vQpxNwB8vK6HbsYBP2zo_6ulQ8SSNMLjvYvh5sO-xiMMmO1i_7WItwe-s3m7hU6wYHMYE4Q2OICTw2sTfMh1LKdaE0rtK1qBwGaOnw618wvloJ8S6kJuAN8bvzMj39H6NncMfTbKCW7_4cRvWmUS8QztXJFPbtH-4UxrN3H-aLabedfwJuDk-_
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swED0ECdB0KdJvN_1gga5qZJEiJWQKggZua2dKgGwERVGJA1sWbBlFlvz23EmUUiMdDHSVeANPx7tH8d0jwDdrw0wgzA-irJCBcLkKjHICF14Rp7bIXNho6U3O5ehS_LqKr3bgtOuFIVqlz_1tTm-ytX9y5L15VE2n1OOLpQ3hfRQ2ijGYh_dEHCnagX2_f-R54BZH9JLhONzTeVqS123LKcadLW4Vo7D5M0iymv-uUU8x6FMq5f66rMzdHzOb_VWnzg7ghQeY7KSdw0vYceUreDbxR-ivYXzC_E0R18zMrhfLaX0zZwhdWbWkQUSDZq3iP2ubJNnqbl7Vi_mKmTJnK8w0NYUKW6_cG7g8-3FxOgr8lQqBjbmsg8IqWaTDJM0c4iKXF0XqFNYwkySZihCtIBqQiSXiayy5iHPJwxxBopFCcrrI6i3slovSvQdmrS1CF-ZchYmwQ5OlNs5FnEjHHcGqAajOidp6vXG69mKmO2LZrX50vyb362Gk0f0DGPaWVau5sYVN2n0n3fWUYhbUWBi2sD3ubTdib0vrr11YaFyadN5iSrdY4yChECNQ_R_AuzZM-vlwziU1OaOXNgKoH0Cy35tvyulNI_-NOZgLlQwg6kNtazd9-K-pfoH90cVkrMc_z38fwvOI6D0Ngf0j7NbLtfuE-KzOPjfr7wH8fzr3
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQRcKN8sBWQkrtkmsWMn4rRCrSpEK4RYqZyi2HHaLUk22k2Eyq9nHDuhpRwWzvEc7Bl7nuM3bwDeKeVLhjDfC2XBPaZz4WVCM9x4RZSoQmq_19I7OeXHC_bxLDrbgWCohelJ-0ouZ3VZzerlRc-tbCp1MPDEDjAEKRPxHdjlEcLvCewuTj_Pv42q4EnfsdU00fYCKhLH3rGcrktLIcaLLN4MQ7__EWhUNP-ekm5DztvMyXtd3WRXP7KyvJaWjvbgyzAhy0b5PutaOVM__9B6_KcZP4QHDqSSuf30CHZ0_Rjunrhn-CfwaU5ct4lzkpXnq_WyvagIwl_SrM0gQ6UmtmsAsYWWZHNVNe2q2pCszskGT6vWhBvpNvopLI4Ov3449lxbBk9FlLdeoQQvkiBOpEZspfOiSLTAPJjFsRQhIh5EFDxWhjwbccqinFM_R6CZccapaYb1DCb1qtYvgCilCl_7ORV-zFSQyURFOYtirqk20GwKYvBMqpxmuWmdUaYDOe0y_e3T1Pg0DcIUfTqFYLRsrG7HFjbJ4Px0qEvFkzTF5LKF7fvR1mEXi0m2tH47xFqK29u82WS1XnU4iAnEGQZDTOG5jb1xPpRSbgqlcZVuROU4wEiH3_yC8dVLiLuQmkI4xu_Wy_Tyf4z24X5o2EA93_0VTNp1p18jnGvlG7eBfwEoq00z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Learning+Algorithm+for+Predicting+Mental+Health+Symptoms+and+Substance+Use&rft.jtitle=Journal+of+psychiatric+research&rft.au=Fojo%2C+Anthony+T.&rft.au=Lesko%2C+Catherine+R.&rft.au=Benke%2C+Kelly+S.&rft.au=Chander%2C+Geetanjali&rft.date=2021-02-01&rft.issn=0022-3956&rft.eissn=1879-1379&rft.volume=134&rft.spage=22&rft.epage=29&rft_id=info:doi/10.1016%2Fj.jpsychires.2020.12.049&rft_id=info%3Apmid%2F33360220&rft.externalDocID=PMC8323478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3956&client=summon