Causal models for estimating the effects of weight gain on mortality

Suppose, in contrast to the fact, in 1950, we had put the cohort of 18-year-old non-smoking American men on a stringent mandatory diet that guaranteed that no one would ever weigh more than their baseline weight established at the age of 18 years. How would the counterfactual mortality of these 18 y...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Obesity Vol. 32; no. Suppl 3; pp. S15 - S41
Main Author Robins, J.M
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2008
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0307-0565
1476-5497
1476-5497
DOI10.1038/ijo.2008.83

Cover

Abstract Suppose, in contrast to the fact, in 1950, we had put the cohort of 18-year-old non-smoking American men on a stringent mandatory diet that guaranteed that no one would ever weigh more than their baseline weight established at the age of 18 years. How would the counterfactual mortality of these 18 year olds have compared to their actual observed mortality through 2007? We describe in detail how this counterfactual contrast could be estimated from longitudinal epidemiologic data similar to that stored in the electronic medical records of a large health maintenance organization (HMO) by applying g-estimation to a novel of structural nested model (SNM). Our analytic approach differs from any alternative approach in that, in the absence of model misspecification, it can successfully adjust for (i) measured time-varying confounders such as exercise, hypertension and diabetes that are simultaneously intermediate variables on the causal pathway from weight gain to death and determinants of future weight gain, (ii) unmeasured confounding by undiagnosed preclinical disease (that is, reverse causation) that can cause both poor weight gain and premature mortality (provided an upper bound can be specified for the maximum length of time a subject may suffer from a subclinical illness severe enough to affect his weight without the illness becomes clinically manifest) and (iii) the presence of particular identifiable subgroups, such as those suffering from serious renal, liver, pulmonary and/or cardiac disease, in whom confounding by unmeasured prognostic factors is so severe as to render useless any attempt at direct analytic adjustment. However, (ii) and (iii) limit the ability to empirically test whether the SNM is misspecified. The other two g-methods--the parametric g-computation algorithm and inverse probability of treatment weighted estimation of marginal structural models--can adjust for potential bias due to (i) but not due to (ii) or (iii).
AbstractList Suppose, in contrast to the fact, in 1950, we had put the cohort of 18-year-old non-smoking American men on a stringent mandatory diet that guaranteed that no one would ever weigh more than their baseline weight established at the age of 18 years. How would the counterfactual mortality of these 18 year olds have compared to their actual observed mortality through 2007? We describe in detail how this counterfactual contrast could be estimated from longitudinal epidemiologic data similar to that stored in the electronic medical records of a large health maintenance organization (HMO) by applying g-estimation to a novel of structural nested model (SNM). Our analytic approach differs from any alternative approach in that, in the absence of model misspecification, it can successfully adjust for (i) measured time-varying confounders such as exercise, hypertension and diabetes that are simultaneously intermediate variables on the causal pathway from weight gain to death and determinants of future weight gain, (ii) unmeasured confounding by undiagnosed preclinical disease (that is, reverse causation) that can cause both poor weight gain and premature mortality (provided an upper bound can be specified for the maximum length of time a subject may suffer from a subclinical illness severe enough to affect his weight without the illness becomes clinically manifest) and (iii) the presence of particular identifiable subgroups, such as those suffering from serious renal, liver, pulmonary and/or cardiac disease, in whom confounding by unmeasured prognostic factors is so severe as to render useless any attempt at direct analytic adjustment. However, (ii) and (iii) limit the ability to empirically test whether the SNM is misspecified. The other two g-methods—the parametric g-computation algorithm and inverse probability of treatment weighted estimation of marginal structural models—can adjust for potential bias due to (i) but not due to (ii) or (iii).
Suppose, in contrast to the fact, in 1950, we had put the cohort of 18-year-old non-smoking American men on a stringent mandatory diet that guaranteed that no one would ever weigh more than their baseline weight established at the age of 18 years. How would the counterfactual mortality of these 18 year olds have compared to their actual observed mortality through 2007? We describe in detail how this counterfactual contrast could be estimated from longitudinal epidemiologic data similar to that stored in the electronic medical records of a large health maintenance organization (HMO) by applying g-estimation to a novel of structural nested model (SNM). Our analytic approach differs from any alternative approach in that, in the absence of model misspecification, it can successfully adjust for (i) measured time-varying confounders such as exercise, hypertension and diabetes that are simultaneously intermediate variables on the causal pathway from weight gain to death and determinants of future weight gain, (ii) unmeasured confounding by undiagnosed preclinical disease (that is, reverse causation) that can cause both poor weight gain and premature mortality (provided an upper bound can be specified for the maximum length of time a subject may suffer from a subclinical illness severe enough to affect his weight without the illness becomes clinically manifest) and (iii) the presence of particular identifiable subgroups, such as those suffering from serious renal, liver, pulmonary and/or cardiac disease, in whom confounding by unmeasured prognostic factors is so severe as to render useless any attempt at direct analytic adjustment. However, (ii) and (iii) limit the ability to empirically test whether the SNM is misspecified. The other two g-methods--the parametric g-computation algorithm and inverse probability of treatment weighted estimation of marginal structural models--can adjust for potential bias due to (i) but not due to (ii) or (iii).International Journal of Obesity (2008) 32, S15-S41; doi:10.1038/ijo.2008.83
Suppose, in contrast to the fact, in 1950, we had put the cohort of 18-year-old non-smoking American men on a stringent mandatory diet that guaranteed that no one would ever weigh more than their baseline weight established at the age of 18 years. How would the counterfactual mortality of these 18 year olds have compared to their actual observed mortality through 2007? We describe in detail how this counterfactual contrast could be estimated from longitudinal epidemiologic data similar to that stored in the electronic medical records of a large health maintenance organization (HMO) by applying g-estimation to a novel of structural nested model (SNM). Our analytic approach differs from any alternative approach in that, in the absence of model misspecification, it can successfully adjust for (i) measured time-varying confounders such as exercise, hypertension and diabetes that are simultaneously intermediate variables on the causal pathway from weight gain to death and determinants of future weight gain, (ii) unmeasured confounding by undiagnosed preclinical disease (that is, reverse causation) that can cause both poor weight gain and premature mortality (provided an upper bound can be specified for the maximum length of time a subject may suffer from a subclinical illness severe enough to affect his weight without the illness becomes clinically manifest) and (iii) the presence of particular identifiable subgroups, such as those suffering from serious renal, liver, pulmonary and/or cardiac disease, in whom confounding by unmeasured prognostic factors is so severe as to render useless any attempt at direct analytic adjustment. However, (ii) and (iii) limit the ability to empirically test whether the SNM is misspecified. The other two g-methods--the parametric g-computation algorithm and inverse probability of treatment weighted estimation of marginal structural models--can adjust for potential bias due to (i) but not due to (ii) or (iii).Suppose, in contrast to the fact, in 1950, we had put the cohort of 18-year-old non-smoking American men on a stringent mandatory diet that guaranteed that no one would ever weigh more than their baseline weight established at the age of 18 years. How would the counterfactual mortality of these 18 year olds have compared to their actual observed mortality through 2007? We describe in detail how this counterfactual contrast could be estimated from longitudinal epidemiologic data similar to that stored in the electronic medical records of a large health maintenance organization (HMO) by applying g-estimation to a novel of structural nested model (SNM). Our analytic approach differs from any alternative approach in that, in the absence of model misspecification, it can successfully adjust for (i) measured time-varying confounders such as exercise, hypertension and diabetes that are simultaneously intermediate variables on the causal pathway from weight gain to death and determinants of future weight gain, (ii) unmeasured confounding by undiagnosed preclinical disease (that is, reverse causation) that can cause both poor weight gain and premature mortality (provided an upper bound can be specified for the maximum length of time a subject may suffer from a subclinical illness severe enough to affect his weight without the illness becomes clinically manifest) and (iii) the presence of particular identifiable subgroups, such as those suffering from serious renal, liver, pulmonary and/or cardiac disease, in whom confounding by unmeasured prognostic factors is so severe as to render useless any attempt at direct analytic adjustment. However, (ii) and (iii) limit the ability to empirically test whether the SNM is misspecified. The other two g-methods--the parametric g-computation algorithm and inverse probability of treatment weighted estimation of marginal structural models--can adjust for potential bias due to (i) but not due to (ii) or (iii).
Audience Academic
Author Robins, J.M
Author_xml – sequence: 1
  fullname: Robins, J.M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18695650$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKcDK_YQgVQWkOHaTmJ7WQ1PqRIL6NryJHbGo8QutiPUf4-jlEerEcgLS1ffOTr3cYZOnHcaoacYNhgof2sPfkMA-IbTB2iFK9aUdSXYCVoBBVZC3dSn6CzGAwDUNZBH6BTzRuQyrNC7rZqiGorRd3qIhfGh0DHZUSXr-iLtdaGN0W2KhTfFD237fSp6ZV3hXdaEpAabbh6jh0YNUT-5_dfo6sP7b9tP5eWXj5-3F5dlW9MmlQZXLeVcVUR0VGOOoauUEKZipOV1U1HOoMaK0o7ryjQ7MNRQ2LXAyI4CB7pGrxbf6-C_TzmnHG1s9TAop_0UJasFxaSpRCbP_0k2osJ5Fs1_QQIiO-Zsa_TiHnjwU3C5XUmwIJwxNgd8uUC9GrS0zvgUVDs7ygssANeYMJapzREqv06Pts3LNTbX7wjO_xLstRrSPvphSta7eBd8dhty2o26k9chbzLcyF_7zgBegDb4GIM2srVJzT45gh0kBjnflMw3Jeebkpxmzet7mt-2R-k3Cx0z5Xod_szpOP58wY3yUvXBRnn1lQCmAIIIQoD-BANw3yU
CitedBy_id crossref_primary_10_1002_da_20594
crossref_primary_10_1002_hec_1741
crossref_primary_10_1093_aje_kwy019
crossref_primary_10_1097_EDE_0000000000000428
crossref_primary_10_1214_10_AOS830
crossref_primary_10_2147_CLEP_S328342
crossref_primary_10_1161_JAHA_119_012214
crossref_primary_10_4054_DemRes_2011_25_1
crossref_primary_10_1186_s12959_021_00310_w
crossref_primary_10_1513_AnnalsATS_201606_507OC
crossref_primary_10_1093_ije_dyp192
crossref_primary_10_1080_01621459_2022_2071276
crossref_primary_10_1111_j_1467_985X_2011_01001_x
crossref_primary_10_1080_10550887_2010_509275
crossref_primary_10_1093_aje_kwz160
crossref_primary_10_1136_oemed_2024_109532
crossref_primary_10_1093_geront_gns164
crossref_primary_10_1515_ijb_2012_0013
crossref_primary_10_1038_ijo_2008_80
crossref_primary_10_1097_EDE_0000000000000131
crossref_primary_10_1136_bmjopen_2016_011306
crossref_primary_10_1186_s13012_014_0132_x
crossref_primary_10_1097_EDE_0b013e318245f798
crossref_primary_10_1214_14_STS505
crossref_primary_10_1214_10_AOAS424
crossref_primary_10_1002_pds_4564
crossref_primary_10_4178_epih_e2016025
crossref_primary_10_1097_EE9_0000000000000192
crossref_primary_10_1098_rsif_2019_0675
crossref_primary_10_1007_s40121_022_00726_5
crossref_primary_10_1177_0962280211403603
crossref_primary_10_1186_s12911_022_02086_z
Cites_doi 10.1007/978-1-4612-1842-5_4
10.1093/biomet/79.2.321
10.1016/S0304-4076(02)00151-3
10.1002/(SICI)1097-0258(19980530)17:10<1073::AID-SIM789>3.0.CO;2-P
10.1080/03610929408831393
10.1111/1467-9868.00389
10.1023/A:1005285815569
10.1056/NEJM199908053410607
10.1111/j.1467-9574.2004.00123.x
10.1097/01.ede.0000135174.63482.43
ContentType Journal Article
Copyright Macmillan Publishers Limited 2008
COPYRIGHT 2008 Nature Publishing Group
Copyright Nature Publishing Group Aug 2008
Copyright_xml – notice: Macmillan Publishers Limited 2008
– notice: COPYRIGHT 2008 Nature Publishing Group
– notice: Copyright Nature Publishing Group Aug 2008
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T2
7TK
7TS
7X2
7X7
7XB
88E
88G
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7U1
7X8
DOI 10.1038/ijo.2008.83
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health and Safety Science Abstracts (Full archive)
Neurosciences Abstracts
Physical Education Index
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Risk Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
Health & Safety Science Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Risk Abstracts
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database
MEDLINE

Risk Abstracts
Health & Safety Science Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Diet & Clinical Nutrition
Recreation & Sports
Public Health
EISSN 1476-5497
EndPage S41
ExternalDocumentID 1530299381
A190151277
18695650
10_1038_ijo_2008_83
US201300929220
Genre Journal Article
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GroupedDBID .55
.GJ
1GH
29J
36B
39C
5RE
7X2
7X7
8R4
8R5
A8Z
ABDBF
ABOCM
ABUWG
ADBBV
AFFNX
AI.
ALMA_UNASSIGNED_HOLDINGS
AQVPL
ATCPS
AZQEC
B0M
BAWUL
BENPR
BHPHI
BPHCQ
DIK
DWQXO
EAD
EAP
EBC
EBD
EBS
EMB
EMK
EMOBN
EPL
ESTFP
ESX
F5P
FBQ
FYUFA
GNUQQ
HCIFZ
IAO
IHR
ITC
J5H
M0K
M1P
M2M
MVM
NAO
OK1
Q2X
RNT
RNTTT
SV3
TUS
VH1
WH7
X7M
ZA5
ZGI
ZXP
~8M
ACUHS
AAYXX
CITATION
---
-Q-
..I
.L3
.XZ
0R~
1CY
2FS
2WC
4.4
406
53G
5GY
70F
88E
8AO
8C1
8FE
8FH
8FI
8FJ
AACDK
AAHBH
AANZL
AASML
AATNV
AAWTL
AAYZH
ABAKF
ABAWZ
ABBRH
ABCQX
ABDBE
ABFSG
ABIVO
ABJNI
ABLJU
ABRTQ
ABZZP
ACAOD
ACGFS
ACKTT
ACPRK
ACRQY
ACSTC
ACZOJ
ADHUB
ADXHL
AEFQL
AEJRE
AEMSY
AENEX
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AHWEU
AIGIU
AILAN
AIXLP
AJRNO
ALFFA
ALIPV
AMYLF
APEBS
ATHPR
AXYYD
AYFIA
BBNVY
BKKNO
BVXVI
CCPQU
CGR
CS3
CUY
CVF
DNIVK
DPUIP
DU5
E3Z
EBLON
ECM
EE.
EIF
EIOEI
EJD
FDQFY
FERAY
FIGPU
FIZPM
FSGXE
HMCUK
HZ~
IHW
INH
INR
IPY
IWAJR
JSO
JZLTJ
KQ8
L7B
M7P
NPM
NQJWS
O9-
OVD
P2P
P6G
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
RNS
ROL
SNX
SNYQT
SOHCF
SOJ
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TEORI
TR2
TSG
UKHRP
~KM
3V.
7T2
7TK
7TS
7XB
8FK
C1K
K9.
LK8
PKEHL
PQEST
PQUKI
PRINS
Q9U
7U1
7X8
PUEGO
ID FETCH-LOGICAL-c536t-f14c388a429d3e1810d4a99f472c8564387051a33d8e4f6b0f3f30bc072b30803
IEDL.DBID 7X7
ISSN 0307-0565
1476-5497
IngestDate Mon Sep 08 07:13:06 EDT 2025
Sun Sep 28 02:45:18 EDT 2025
Mon Sep 08 04:40:47 EDT 2025
Wed Jul 16 15:14:54 EDT 2025
Tue Jun 17 22:22:29 EDT 2025
Tue Jun 10 21:21:01 EDT 2025
Thu May 22 21:13:59 EDT 2025
Mon Jul 21 06:00:48 EDT 2025
Wed Oct 01 03:42:57 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Fri Feb 21 02:39:41 EST 2025
Wed Apr 10 06:44:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue Suppl 3
Keywords g-estimation
reverse causation
confounders
structural nested failure time model
BMI
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-f14c388a429d3e1810d4a99f472c8564387051a33d8e4f6b0f3f30bc072b30803
Notes http://www.nature.com/ijo/
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 18695650
PQID 219287770
PQPubID 23462
ParticipantIDs proquest_miscellaneous_759312649
proquest_miscellaneous_69415506
proquest_miscellaneous_20912664
proquest_journals_219287770
gale_infotracmisc_A190151277
gale_infotracacademiconefile_A190151277
gale_healthsolutions_A190151277
pubmed_primary_18695650
crossref_citationtrail_10_1038_ijo_2008_83
crossref_primary_10_1038_ijo_2008_83
springer_journals_10_1038_ijo_2008_83
fao_agris_US201300929220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-08-01
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-01
  day: 01
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle International Journal of Obesity
PublicationTitleAbbrev Int J Obes
PublicationTitleAlternate Int J Obes (Lond)
PublicationYear 2008
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Robins (CR14) 1999
Robins (CR4) 1999; 121
Robins (CR7) 1994; 23
Joffe, Hoover, Jacobson, Kingsley, Chmiel, Fischer (CR16) 1998; 17
Hernán, Hernandez Diaz, Robins (CR6) 2004; 15
Robins, Hernan, Siebert (CR5) 2004
Robins (CR2) 1992; 79
CR15
Robins, Wasserman (CR3) 1997
Robins (CR9) 1997
Robins (CR8) 2004
Lok, Gill, van der Vaart, Robins (CR12) 2001; 58
Murphy (CR10) 2003; 65
Robins, Scharfstein, Rotnitzky (CR11) 1999
Robins (CR13) 2003; 112
Willett, Dietz, Colditz (CR1) 1999; 341
JM Robins (BFijo200883_CR8) 2004
SA Murphy (BFijo200883_CR10) 2003; 65
JJ Lok (BFijo200883_CR12) 2001; 58
WC Willett (BFijo200883_CR1) 1999; 341
JM Robins (BFijo200883_CR2) 1992; 79
JM Robins (BFijo200883_CR4) 1999; 121
JM Robins (BFijo200883_CR9) 1997
JM Robins (BFijo200883_CR14) 1999
MM Joffe (BFijo200883_CR16) 1998; 17
JM Robins (BFijo200883_CR5) 2004
BFijo200883_CR15
JM Robins (BFijo200883_CR7) 1994; 23
JM Robins (BFijo200883_CR3) 1997
JM Robins (BFijo200883_CR11) 1999
JM Robins (BFijo200883_CR13) 2003; 112
MA Hernán (BFijo200883_CR6) 2004; 15
References_xml – start-page: 69
  year: 1997
  end-page: 117
  ident: CR9
  article-title: Causal inference from complex longitudinal data
  publication-title: Latent Variable Modeling and Applications to Causality. Lecture Notes in Statistics (120)
  doi: 10.1007/978-1-4612-1842-5_4
– start-page: 1
  year: 1999
  end-page: 94
  ident: CR11
  article-title: Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models
  publication-title: Statistical Models in Epidemiology: the Environment and Clinical Trials
– start-page: 409
  year: 1997
  end-page: 420
  ident: CR3
  article-title: Estimation of effects of sequential treatments by reparameterizing directed acyclic graphs
  publication-title: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence
– start-page: 2191
  year: 2004
  end-page: 2230
  ident: CR5
  article-title: Effects of multiple interventions
  publication-title: Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors
– ident: CR15
– volume: 79
  start-page: 321
  year: 1992
  end-page: 334
  ident: CR2
  article-title: Estimation of the time-dependent accelerated failure time model in the presence of confounding factors
  publication-title: Biometrika
  doi: 10.1093/biomet/79.2.321
– volume: 112
  start-page: 89
  year: 2003
  end-page: 106
  ident: CR13
  article-title: General methodological considerations
  publication-title: J Econom
  doi: 10.1016/S0304-4076(02)00151-3
– volume: 17
  start-page: 1073
  year: 1998
  end-page: 1102
  ident: CR16
  article-title: Estimating the effect of Ziduvodine on Kaposi's sarcoma from observational data using a rank preserving failure time model
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19980530)17:10<1073::AID-SIM789>3.0.CO;2-P
– volume: 23
  start-page: 2379
  year: 1994
  end-page: 2412
  ident: CR7
  article-title: Correcting for non-compliance in randomized trials using structural nested mean models
  publication-title: Commun Stat
  doi: 10.1080/03610929408831393
– start-page: 349
  year: 1999
  end-page: 405
  ident: CR14
  article-title: Testing and estimation of direct effects by reparameterizing directed acyclic graphs with structural nested models
  publication-title: Computation, Causation, and Discovery
– year: 2004
  ident: CR8
  article-title: Optimal structural nested models for optimal sequential decisions
  publication-title: Proceedings of the Second Seattle Symposium on Biostatistics
– volume: 65
  start-page: 331
  year: 2003
  end-page: 366
  ident: CR10
  article-title: Optimal dynamic treatment regimes
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/1467-9868.00389
– volume: 121
  start-page: 151
  year: 1999
  end-page: 179
  ident: CR4
  article-title: Association, causation, and marginal structural models
  publication-title: Synthese
  doi: 10.1023/A:1005285815569
– volume: 341
  start-page: 427
  year: 1999
  end-page: 434
  ident: CR1
  article-title: Guidelines for healthy weight
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199908053410607
– volume: 58
  start-page: 271
  year: 2001
  end-page: 295
  ident: CR12
  article-title: Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models
  publication-title: Stat Neerl
  doi: 10.1111/j.1467-9574.2004.00123.x
– volume: 15
  start-page: 615
  year: 2004
  end-page: 625
  ident: CR6
  article-title: A structural approach to selection bias
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000135174.63482.43
– start-page: 2191
  volume-title: Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors
  year: 2004
  ident: BFijo200883_CR5
– volume: 121
  start-page: 151
  year: 1999
  ident: BFijo200883_CR4
  publication-title: Synthese
  doi: 10.1023/A:1005285815569
– volume: 15
  start-page: 615
  year: 2004
  ident: BFijo200883_CR6
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000135174.63482.43
– start-page: 69
  volume-title: Latent Variable Modeling and Applications to Causality. Lecture Notes in Statistics (120)
  year: 1997
  ident: BFijo200883_CR9
  doi: 10.1007/978-1-4612-1842-5_4
– volume-title: Proceedings of the Second Seattle Symposium on Biostatistics
  year: 2004
  ident: BFijo200883_CR8
– volume: 79
  start-page: 321
  year: 1992
  ident: BFijo200883_CR2
  publication-title: Biometrika
  doi: 10.1093/biomet/79.2.321
– start-page: 1
  volume-title: Statistical Models in Epidemiology: the Environment and Clinical Trials
  year: 1999
  ident: BFijo200883_CR11
– start-page: 349
  volume-title: Computation, Causation, and Discovery
  year: 1999
  ident: BFijo200883_CR14
– start-page: 409
  volume-title: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence
  year: 1997
  ident: BFijo200883_CR3
– volume: 112
  start-page: 89
  year: 2003
  ident: BFijo200883_CR13
  publication-title: J Econom
  doi: 10.1016/S0304-4076(02)00151-3
– volume: 23
  start-page: 2379
  year: 1994
  ident: BFijo200883_CR7
  publication-title: Commun Stat
  doi: 10.1080/03610929408831393
– volume: 17
  start-page: 1073
  year: 1998
  ident: BFijo200883_CR16
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19980530)17:10<1073::AID-SIM789>3.0.CO;2-P
– volume: 65
  start-page: 331
  year: 2003
  ident: BFijo200883_CR10
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/1467-9868.00389
– ident: BFijo200883_CR15
– volume: 341
  start-page: 427
  year: 1999
  ident: BFijo200883_CR1
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199908053410607
– volume: 58
  start-page: 271
  year: 2001
  ident: BFijo200883_CR12
  publication-title: Stat Neerl
  doi: 10.1111/j.1467-9574.2004.00123.x
SSID ssj0005502
ssj0033214
Score 2.1202366
Snippet Suppose, in contrast to the fact, in 1950, we had put the cohort of 18-year-old non-smoking American men on a stringent mandatory diet that guaranteed that no...
SourceID proquest
gale
pubmed
crossref
springer
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S15
SubjectTerms Adolescent
adolescents
Age
Algorithms
Bias
Body Mass Index
body weight
Causality
Chronic illnesses
data analysis
Diabetes
diet-related diseases
Disease
Epidemiology
Evaluation
exercise
Health aspects
health insurance
health maintenance organization (HMO)
Health maintenance organizations
Health Promotion and Disease Prevention
HMOs
Humans
Hypertension
Influence
Internal Medicine
Intervention
literature reviews
Longitudinal Studies
Male
mathematical models
medical history
Medicine
Medicine & Public Health
men
Metabolic Diseases
Models, Statistical
Mortality
Obesity
original-article
Patient outcomes
prognosis
Public Health
statistical analysis
Structural models
Weight Gain
Title Causal models for estimating the effects of weight gain on mortality
URI https://link.springer.com/article/10.1038/ijo.2008.83
https://www.ncbi.nlm.nih.gov/pubmed/18695650
https://www.proquest.com/docview/219287770
https://www.proquest.com/docview/20912664
https://www.proquest.com/docview/69415506
https://www.proquest.com/docview/759312649
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1476-5497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005502
  issn: 0307-0565
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1476-5497
  dateEnd: 20151130
  omitProxy: true
  ssIdentifier: ssj0005502
  issn: 0307-0565
  databaseCode: ABDBF
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1476-5497
  dateEnd: 20201005
  omitProxy: true
  ssIdentifier: ssj0005502
  issn: 0307-0565
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1476-5497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005502
  issn: 0307-0565
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-5497
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0005502
  issn: 0307-0565
  databaseCode: 7X7
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1476-5497
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0005502
  issn: 0307-0565
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-5497
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0005502
  issn: 0307-0565
  databaseCode: 8C1
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9QwHP_iNhBBRKtu3ebMw1QQytImadMnmbeNIewQ9eDeSpqmx8ls5-4O_32_SdOep5svfcm3IU2-Pz7N9xfAMWLwvIqReRHKqojzuoxUZVhUZllaCXvz4aIqr8bp5YR_moqpj81Z-LDKXic6RV212t6Rn6BkJbZ2Hf1w8zOyTaOsc9V30NiCnRiHLVNn02wd4SHoUEqK2YY8fVFENPrC5-pRJk_m39suqFKyDeu0Vav2X039h6n6y3fqTNLFU3jisSQ57Q7_GTwwTQDh2dwsyVviC35ek3Ffbz-Ah1fekx7A4-6-jnRpSAEEa_yIL7ve54vncDZSqwXO4frlLAgCXGKrcliU28wIYkfi40FIW5Nf7paVzNS8ITjLDwfsEeS_gMnF-bfRZeT7LkRasHQZ1THXTEqFpqpiBiEArbjK85pniZYCIQzKuIgVY5U0vE5LWrOa0VLTLCkZIlD2ErabtjF7QCplmK7KPKFGcPy5KgVDgFIaY7gWialCeN_vd6F9UXLbG-O6cM5xJgs8nK5VpmQhHA_EN10tjrvJ9vDgCjVDLVlMvibWN0uRO5KEhvDanmbR5ZgOwl2cOlgUJ1kWwjtHYcUbF6KVz1LAz7GFsjYoDzcoUSz1xvBBzzGFVwuLYmBiXMgwal-0kW6NaVdIgvuDoInfT2FTj5G10xDIPRSZyBlOwvMQdjteXe-XTPGPWOAC3vTMu17eHZu5_9_POIBHXfyMDYg8hO3l7cq8QpC2LI-cKOJTjuIj2Pl4Pv785TeINDVH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RQIkhCBQGlqoDy1ISFG9fuRxQKjqUm1pdy90pb0FJ3FWW7VJIbuq-FH8R8bOY1loufWciWV7xjOfPS-APcTgUdZD4UUoqzwh8sRTmeZeEgR-Js3Lh42qHI78wVh8mcjJGvxqc2FMWGWrE62izsrUvJEf4MlipnYd_XT93TNNo4xzte2gUUvFqf55gze26uNJH9m7z9jx5_Ojgdc0FfBSyf25l_dEysNQoR7OuEb7RjOhoigXAUtDifYZBVj2FOdZqEXuJzTnOadJSgOWcIRXHMddhweCU2FK9QeTYBlRImlXuoqbBkBtEUYEGbLJDaQ8PJhdlHUQZ8hXrOF6rsp_LcMfpvEvX601gcfP4GmDXclhLWzPYU0XDrj9mZ6Td6QpMHpJRm19fwceDhvPvQNP6vdBUqc9OeAs8Sr-bHutVy-gf6QWFY5h-_NUBAE1MVVADKoupgSxKmniT0iZkxv7qkumalYQHOXKXiTwUvESxvfCkk3YKMpCbwHJlOZplkSMainwMpdIjoAo0VqLVDKdufCh3e84bYqgm14cl7F1xvMwRubUrTlD7sJeR3xd1_64nWwLGRerKWrlePyVGV8wRdTJGHVh13AzrnNaO2USH1oY1mNB4MJ7S2HUCU4kVU1WBC7HFOZaodxZoUQ1kK583m4lJm7UUBV3hwYn0n01P5rIukKXCyTB_UGQJu6mMKnOKNq-C-QOikBGHAcRkQuvalld7lfo4w1c4gT2W-FdTu-WzXz932XswqPB-fAsPjsZnW7D4zp2xwRj7sDG_MdCv0GAOE_e2mNJ4Nt964HfGsxtmA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tQ5qQEILysbDB_LCBhBQ19UecPCA0rVQbYxUSVOqbcRKnKhrJIK0m_jT-O87ORylsvO05F8v2ne9-9n0BHCAGj7MBCi9CWe1znie-zgzzEynDTNiXDxdVeT4OTyb8_VRMN-BXmwtjwypbnegUdVam9o28jyeL2tp1QT9voiI-DkdvL7_7toGUdbS23TRqCTkzP6_w9la9OR0iqw8pHb37fHziNw0G_FSwcOHnA56yKNKokzNm0NYFGddxnHNJ00igrUZhFgPNWBYZnodJkLOcBUkaSJowhFoMx92EO5IhJR4lOZWr6BIRdGWsmG0G1BZkRMAhmjzBgEX9-deyDuiM2Jpl3Mx1-a-V-MNM_uW3deZw9ADuNziWHNWC9xA2TNEDbzg3C_KSNMVGL8i4rfXfg-3zxovfg3v1WyGpU6B60FthV_zZ9V2vHsHwWC8rHMP16qkIgmtiK4JYhF3MCOJW0sSikDInV-6Fl8z0vCA4yjd3qcALxmOY3ApLnsBWURZmB0imDUuzJKaBERwvdolgCI4SYwxPBTWZB6_b_VZpUxDd9uW4UM4xzyKFzKnbdEbMg4OO-LKuA3I92Q4yTukZamg1-UStXzhABEpp4MG-5aaq81s7xaKOHCQbUCk9eOUorGrBiaS6yZDA5dgiXWuUe2uUqBLStc-7rcSoRiVVqjtAOJHuq_3RRtkVplwiCe4PAjZ-M4VNe0bRDj0gN1BIETMchMcePK1ldbVfUYi3cYETOGyFdzW9azbz2X-XsQ_bqAHUh9Px2S7crcN4bFzmHmwtfizNc8SKi-SFO5UEvty2GvgN1Fxx0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causal+models+for+estimating+the+effects+of+weight+gain+on+mortality&rft.jtitle=International+journal+of+obesity+%282005%29&rft.au=Robins%2C+J+M&rft.date=2008-08-01&rft.eissn=1476-5497&rft.volume=32+Suppl+3&rft.spage=S15&rft_id=info:doi/10.1038%2Fijo.2008.83&rft_id=info%3Apmid%2F18695650&rft.externalDocID=18695650
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-0565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-0565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-0565&client=summon