Investigation of EEG-Based Biometric Identification Using State-of-the-Art Neural Architectures on a Real-Time Raspberry Pi-Based System
Despite the growing interest in the use of electroencephalogram (EEG) signals as a potential biometric for subject identification and the recent advances in the use of deep learning (DL) models to study neurological signals, such as electrocardiogram (ECG), electroencephalogram (EEG), electroretinog...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 22; no. 23; p. 9547 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
01.12.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s22239547 |
Cover
| Abstract | Despite the growing interest in the use of electroencephalogram (EEG) signals as a potential biometric for subject identification and the recent advances in the use of deep learning (DL) models to study neurological signals, such as electrocardiogram (ECG), electroencephalogram (EEG), electroretinogram (ERG), and electromyogram (EMG), there has been a lack of exploration in the use of state-of-the-art DL models for EEG-based subject identification tasks owing to the high variability in EEG features across sessions for an individual subject. In this paper, we explore the use of state-of-the-art DL models such as ResNet, Inception, and EEGNet to realize EEG-based biometrics on the BED dataset, which contains EEG recordings from 21 individuals. We obtain promising results with an accuracy of 63.21%, 70.18%, and 86.74% for Resnet, Inception, and EEGNet, respectively, while the previous best effort reported accuracy of 83.51%. We also demonstrate the capabilities of these models to perform EEG biometric tasks in real-time by developing a portable, low-cost, real-time Raspberry Pi-based system that integrates all the necessary steps of subject identification from the acquisition of the EEG signals to the prediction of identity while other existing systems incorporate only parts of the whole system. |
|---|---|
| AbstractList | Despite the growing interest in the use of electroencephalogram (EEG) signals as a potential biometric for subject identification and the recent advances in the use of deep learning (DL) models to study neurological signals, such as electrocardiogram (ECG), electroencephalogram (EEG), electroretinogram (ERG), and electromyogram (EMG), there has been a lack of exploration in the use of state-of-the-art DL models for EEG-based subject identification tasks owing to the high variability in EEG features across sessions for an individual subject. In this paper, we explore the use of state-of-the-art DL models such as ResNet, Inception, and EEGNet to realize EEG-based biometrics on the BED dataset, which contains EEG recordings from 21 individuals. We obtain promising results with an accuracy of 63.21%, 70.18%, and 86.74% for Resnet, Inception, and EEGNet, respectively, while the previous best effort reported accuracy of 83.51%. We also demonstrate the capabilities of these models to perform EEG biometric tasks in real-time by developing a portable, low-cost, real-time Raspberry Pi-based system that integrates all the necessary steps of subject identification from the acquisition of the EEG signals to the prediction of identity while other existing systems incorporate only parts of the whole system. Despite the growing interest in the use of electroencephalogram (EEG) signals as a potential biometric for subject identification and the recent advances in the use of deep learning (DL) models to study neurological signals, such as electrocardiogram (ECG), electroencephalogram (EEG), electroretinogram (ERG), and electromyogram (EMG), there has been a lack of exploration in the use of state-of-the-art DL models for EEG-based subject identification tasks owing to the high variability in EEG features across sessions for an individual subject. In this paper, we explore the use of state-of-the-art DL models such as ResNet, Inception, and EEGNet to realize EEG-based biometrics on the BED dataset, which contains EEG recordings from 21 individuals. We obtain promising results with an accuracy of 63.21%, 70.18%, and 86.74% for Resnet, Inception, and EEGNet, respectively, while the previous best effort reported accuracy of 83.51%. We also demonstrate the capabilities of these models to perform EEG biometric tasks in real-time by developing a portable, low-cost, real-time Raspberry Pi-based system that integrates all the necessary steps of subject identification from the acquisition of the EEG signals to the prediction of identity while other existing systems incorporate only parts of the whole system.Despite the growing interest in the use of electroencephalogram (EEG) signals as a potential biometric for subject identification and the recent advances in the use of deep learning (DL) models to study neurological signals, such as electrocardiogram (ECG), electroencephalogram (EEG), electroretinogram (ERG), and electromyogram (EMG), there has been a lack of exploration in the use of state-of-the-art DL models for EEG-based subject identification tasks owing to the high variability in EEG features across sessions for an individual subject. In this paper, we explore the use of state-of-the-art DL models such as ResNet, Inception, and EEGNet to realize EEG-based biometrics on the BED dataset, which contains EEG recordings from 21 individuals. We obtain promising results with an accuracy of 63.21%, 70.18%, and 86.74% for Resnet, Inception, and EEGNet, respectively, while the previous best effort reported accuracy of 83.51%. We also demonstrate the capabilities of these models to perform EEG biometric tasks in real-time by developing a portable, low-cost, real-time Raspberry Pi-based system that integrates all the necessary steps of subject identification from the acquisition of the EEG signals to the prediction of identity while other existing systems incorporate only parts of the whole system. |
| Audience | Academic |
| Author | Benomar, Mohamed Vo, Khuong Cao, Hung Cao, Steven Vishwanath, Manoj |
| AuthorAffiliation | 2 Northwood High School, Irvine, CA 92620, USA 1 Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA 4 Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA 3 Department of Computer Science, University of California, Irvine, CA 92697, USA |
| AuthorAffiliation_xml | – name: 1 Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA – name: 3 Department of Computer Science, University of California, Irvine, CA 92697, USA – name: 2 Northwood High School, Irvine, CA 92620, USA – name: 4 Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA |
| Author_xml | – sequence: 1 givenname: Mohamed orcidid: 0000-0002-3103-5551 surname: Benomar fullname: Benomar, Mohamed – sequence: 2 givenname: Steven orcidid: 0000-0002-8369-1382 surname: Cao fullname: Cao, Steven – sequence: 3 givenname: Manoj surname: Vishwanath fullname: Vishwanath, Manoj – sequence: 4 givenname: Khuong surname: Vo fullname: Vo, Khuong – sequence: 5 givenname: Hung orcidid: 0000-0003-4197-7208 surname: Cao fullname: Cao, Hung |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36502248$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kttuEzEQhleoiB7gghdAK3EDSNv6uIcbpLQKJVIFqIdry-sdbxztroPtLcob8Ng4TQhNVeQLW_bnf2b-mePkYLADJMlbjE4prdCZJ4TQirPiRXKEGWFZSQg6eHQ-TI69XyBEKKXlq-SQ5hwRwsqj5PdsuAcfTCuDsUNqdTqdXmbn0kOTnhvbQ3BGpbMGhmC0URvqzpuhTW-CDJBZnYU5ZBMX0m8wOtmlE6fmJoAKowOfRlym1yC77Nb0kF5Lv6zBuVX6w2zD3Kx8gP518lLLzsOb7X6S3H2Z3l58za6-X84uJleZ4jQPGcgK5zRvSq50gWqMJUcVsKYgJdGaY7z2QeKaKSpzlUuqJVCmdV5o0FDV9CSZbXQbKxdi6Uwv3UpYacTDhXWtkC4Y1YGAKsYkqi41p6xRuESAuK5qJGtGq5pHrU8brXFYytUv2XU7QYzEujVi15oIf97Ay7HuoVHR0ejWXgb7L4OZi9bei6qgvCxwFPiwFXD25xibJnrjFXSdHMCOXpAiZluRvFwn9v4JurCjG6KvkWIlzxHj-B_VylitGbSNcdVaVEwKlnPKEaoidfoMFVcDvVFxELWJ93sf3j0udFfh36GLwNkGUM5670ALZcLDZEVl0z3r3ccnP_7v8x8OZvS1 |
| CitedBy_id | crossref_primary_10_3390_app14020534 crossref_primary_10_1080_10255842_2024_2355490 crossref_primary_10_1109_TIM_2024_3406836 crossref_primary_10_1002_spy2_345 crossref_primary_10_3390_s24248127 crossref_primary_10_3390_app13179770 |
| Cites_doi | 10.1109/CCUBE.2017.8394155 10.1109/RAICS.2018.8635050 10.3390/s21082779 10.1109/ACCESS.2021.3062282 10.1088/1741-2552/aace8c 10.1109/TBCAS.2020.2998172 10.1109/TIFS.2006.873653 10.1016/j.neucom.2015.07.005 10.1002/hbm.23730 10.1109/JIOT.2021.3061727 10.1109/ISWTA52208.2021.9587444 10.1109/ICOEI51242.2021.9452957 10.1007/978-3-031-01984-5_10 10.1016/j.eswa.2014.05.013 10.1109/JBHI.2018.2860780 10.1109/BHI50953.2021.9508581 10.3389/fninf.2018.00066 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s22239547 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_e9c532cb8f534dc180e05f9b0ab439b5 oai:escholarship.org:ark:/13030/qt97j2g023 PMC9735871 A746535009 36502248 10_3390_s22239547 |
| Genre | Journal Article |
| GeographicLocations | United States California |
| GeographicLocations_xml | – name: California – name: United States |
| GrantInformation_xml | – fundername: NSF NCS grantid: #1926818 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c536t-ea91636d85cf70b11a509e4d7282ff5113954a1b4c3a6c6a3fae34ff67fefe9b3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:08:56 EDT 2025 Sun Oct 26 03:26:33 EDT 2025 Tue Sep 30 17:17:51 EDT 2025 Fri Sep 05 09:02:08 EDT 2025 Tue Oct 07 07:15:36 EDT 2025 Mon Oct 20 22:42:03 EDT 2025 Mon Oct 20 16:52:49 EDT 2025 Wed Feb 19 02:26:21 EST 2025 Thu Oct 16 04:37:39 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | biometrics deep learning Raspberry Pi EEG |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c536t-ea91636d85cf70b11a509e4d7282ff5113954a1b4c3a6c6a3fae34ff67fefe9b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0002-8369-1382 0000-0002-3103-5551 0000-0003-4197-7208 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22239547 |
| PMID | 36502248 |
| PQID | 2748560451 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e9c532cb8f534dc180e05f9b0ab439b5 unpaywall_primary_10_3390_s22239547 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9735871 proquest_miscellaneous_2753292685 proquest_journals_2748560451 gale_infotracmisc_A746535009 gale_infotracacademiconefile_A746535009 pubmed_primary_36502248 crossref_citationtrail_10_3390_s22239547 crossref_primary_10_3390_s22239547 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_12 Jain (ref_3) 2006; 1 Moolla (ref_4) 2021; 9 ref_11 ref_10 Mullen (ref_15) 2015; 9 ref_19 ref_17 Katsigiannis (ref_14) 2021; 8 ref_25 ref_24 ref_23 Alonso (ref_1) 2014; 41 ref_22 ref_21 ref_20 Park (ref_13) 2020; 14 Chan (ref_5) 2018; 12 Sun (ref_2) 2019; 23 ref_27 ref_26 ref_9 Kodituwakku (ref_8) 2015; 2 Lawhern (ref_18) 2018; 15 Schirrmeister (ref_16) 2017; 38 ref_7 Maiorana (ref_6) 2016; 171 |
| References_xml | – ident: ref_7 – ident: ref_10 doi: 10.1109/CCUBE.2017.8394155 – ident: ref_11 doi: 10.1109/RAICS.2018.8635050 – ident: ref_20 doi: 10.3390/s21082779 – volume: 2 start-page: 113 year: 2015 ident: ref_8 article-title: Biometric authentication: A review publication-title: Int. J. Trend Res. Dev. – ident: ref_24 – volume: 9 start-page: 38269 year: 2021 ident: ref_4 article-title: Biometric Recognition of Infants using Fingerprint, Iris, and Ear Biometrics publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062282 – volume: 15 start-page: 056013 year: 2018 ident: ref_18 article-title: EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 14 start-page: 825 year: 2020 ident: ref_13 article-title: A Real-Time Depth of Anesthesia Monitoring System Based on Deep Neural Network With Large EDO Tolerant EEG Analog Front-End publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2020.2998172 – volume: 9 start-page: 16 year: 2015 ident: ref_15 article-title: The PREP pipeline: Standardized preprocessing for large-scale EEG analysis publication-title: Front. Neuroinform. – volume: 1 start-page: 125 year: 2006 ident: ref_3 article-title: Biometrics: A Tool for Information Security publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2006.873653 – volume: 171 start-page: 638 year: 2016 ident: ref_6 article-title: Eigenbrains and Eigentensorbrains: Parsimonious bases for EEG biometrics publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.005 – volume: 38 start-page: 5391 year: 2017 ident: ref_16 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – ident: ref_23 – ident: ref_21 – volume: 8 start-page: 12219 year: 2021 ident: ref_14 article-title: BED: A New Data Set for EEG-Based Biometrics publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3061727 – ident: ref_9 doi: 10.1109/ISWTA52208.2021.9587444 – ident: ref_12 doi: 10.1109/ICOEI51242.2021.9452957 – ident: ref_26 doi: 10.1007/978-3-031-01984-5_10 – ident: ref_25 – volume: 41 start-page: 6537 year: 2014 ident: ref_1 article-title: Electroencephalogram subject identification: A review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.05.013 – volume: 23 start-page: 987 year: 2019 ident: ref_2 article-title: An Artificial Neural Network Framework for Gait-Based Biometrics publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2860780 – ident: ref_17 – ident: ref_19 – ident: ref_27 doi: 10.1109/BHI50953.2021.9508581 – ident: ref_22 – volume: 12 start-page: 66 year: 2018 ident: ref_5 article-title: Challenges and Future Perspectives on Electroencephalogram-Based Biometrics in Person Recognition publication-title: Front. Neuroinform. doi: 10.3389/fninf.2018.00066 |
| SSID | ssj0023338 |
| Score | 2.4601426 |
| Snippet | Despite the growing interest in the use of electroencephalogram (EEG) signals as a potential biometric for subject identification and the recent advances in... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 9547 |
| SubjectTerms | Biometric identification Biometric Identification - methods Biometrics Biometry Datasets Deep learning EEG Electrocardiogram Electrocardiography Electroencephalography Electroencephalography - methods Electromyography Humans Internet of Things Investigations Neural networks Physiology Raspberry Pi Software Time series |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll7aH0qYvp2lQH9BeRGzL1uOYLZuEQksJDeRmJFuigcVe9kHJP-jP7oysde0-yKXX1SySRiPNN7sz3xDy1lshnOobmhhWgBNhKsNmZmA-XOa5aQKl0KfP4vyy-HhVXo1afWFOWE8P3Cvu2Om65HltlS950dSZSl1aem1TY8GX2sBemiq9C6ZiqMUh8up5hDgE9cdr9IK6xB4qI-8TSPr_fIpHvuj3PMm723Zpbr6bxWLkhE4fkgcRPdKTftWPyB3X7pP7I07Bx-THiDmja2nn6Xx-xmbgrBo6w1p7pOSnfX2ujz_Y0ZA4QAPwZJ1nAAoZzEGRuSNM9-vPhjUFcUMvAF8yLB-hF2a9tG61uqFfruM0PQv6E3J5Ov_64ZzFdgsMNCw2zBmAilw0qqy9TG2WGQATrmgkRGXeAzBDDZrMFjU3ohaGe-N44b2Q3nmnLX9K9tqudc8JRZa4VEuI7awppGmUFtblSuDzYnLXJOT97hiqOnKRY0uMRQUxCZ5YNZxYQl4PosuegONvQjM8y0EAObPDB2BJVbSk6jZLSsg7tIQKbzYspjaxQAG2hBxZ1YlELroSQGlCDieScCPr6fDOlqr4IqwriP4VoMuizBLyahjGb2KWW-u6LcrAAnUuFKzlWW96w5Y4QGmAWyohcmKUkz1PR9rrb4EvXEteQlyckDeD-f5blQf_Q5UvyL0cy0RC2s8h2dustu4lgLeNPQr39CeXZ0GD priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IN4ECjIPCS5Wkzh2kgNCXbSlQmJVrajUW2Qndqm0SpZ9CPUf8LOZyasJr-t6Vrbj8cw3ycw3AG-cUcomTUMTzSN0IjwJqJkZqo-Iw1AXNaXQl7k6OYs-n8vzPZh3tTCUVtnZxNpQF1VO78gPMXpK0DtHMviw-s6paxR9Xe1aaOi2tULxvqYYuwH7ITFjTWB_OpufLvoQTGBE1vALCQz2DzfkHVNJvVUGXqkm7__TRA981O_5kzd35Upf_dDL5cA5Hd-FOy2qZEeNGtyDPVveh9sDrsEH8HPAqFGVrHJsNvvEp-jECjalGnyi6mdN3a5rX-SxOqGA1YCUV44jWOQ4ByNGj3q6648QG4bimi0Qd3IqK2ELvVkZu15fsdPLdpqGHf0hnB3Pvn484W0bBp5LobbcaoSQQhWJzF3smyDQCDJsVMQYrTmHgI2eoA5MlAutcqWF01ZEzqnYWWdTIx7BpKxK-wQYscf5aYwxn9FRrIskVcaGiSKzo0NbePCuO4YsbznKqVXGMsNYhU4s60_Mg1e96Koh5vib0JTOshcgLu36h2p9kbVXM7Mp7jPMTeKkiIo8SHzrS5caXxtEa0Z68JY0IaMbj4vJdVu4gFsi7qzsKCaOOolg1YODkSTe1Hw83OlS1lqKTXat1x687Ifpn5T9VtpqRzK4wDRUCa7lcaN6_ZYEQmyEYYkH8UgpR3sej5SX32oe8TQWEuNlD1736vvvR_n0_4t_BrdCKgypE30OYLJd7-xzhGtb86K9g78ACAY_Eg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZge4AeeD8CBZmHBBe3SRzbyXEXbamQqKqKlcopshObLl1lV_sQKr-An82Mkw1JAanXeCLbO2PPN5uZbwh564yUNq0bmmiWgBNhaYTNzMB8uIpjXXpKoc_H8miSfDoTZw1ZNNbC2G1Mdz5d-A_5m7on2UGmvsffwMHcJDtSAOwekJ3J8cnwq68eihMGji6smYM4hPEHK_R7mcCuKR1_42n5_758O97nambkrU210Jc_9GzWcTuHd-uErZVnK8Rsk4v9zdrsFz-vcDlea0f3yJ0GfNJhbS33yQ1bPSC7HUrCh-RXh3hjXtG5o-PxRzYCX1fSEZbqI6M_rct7XfN_H_V5B9TjVjZ3DDAlgzkoEn_46f58q1hRENf0FOApw-oTeqpXC2OXy0t6Mm2mqUnUH5HJ4fjLhyPWdGtgheByzawGpMllmYrCqdBEkQYsYpNSQVDnHOA6VIeOTFJwLQupudOWJ85J5ayzmeGPyaCaV_YpoUgyF2YKQkOjE6XLNJPGxqnE20nHtgzI-61O86KhMseOGrMcQhpUf96qPyCvW9FFzd_xL6ERGkYrgJTb_gGoK29OcG4z2GdcmNQJnpRFlIY2FC4zoTYA6owIyDs0qxwvBlhMoZv6BtgSUmzlQ4VUdgIwbUD2epJwoIv-8NYw8-ZCWeWxSlIAp4mIAvKqHcY3MUmusvMNysACs1imsJYntR23W-KAxAGtpQFRPQvv7bk_Uk3PPd14priAsDogb9qz8P-f8tm1pJ6T2zGWkfi0oD0yWC839gWAu7V52Rzr35uSTjY priority: 102 providerName: Unpaywall |
| Title | Investigation of EEG-Based Biometric Identification Using State-of-the-Art Neural Architectures on a Real-Time Raspberry Pi-Based System |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36502248 https://www.proquest.com/docview/2748560451 https://www.proquest.com/docview/2753292685 https://pubmed.ncbi.nlm.nih.gov/PMC9735871 https://escholarship.org/uc/item/97j2g023 https://doaj.org/article/e9c532cb8f534dc180e05f9b0ab439b5 |
| UnpaywallVersion | submittedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access(OpenAccess) customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lj9MwEB7tQ4LlgHgTWCrzkOCSpYmdODkg1KJ2V0hbVRWVyimyExtWqpLSh6D_gJ_NTJKGBnYvOcQT-fU5801ifwPwxuowNFGV0ES5Ap2IG3mUzAzhw6Xvq6yUFLochRdT8XkWzA5gl2OzHsDVtaEd5ZOaLudnv35sP-KC_0ARJ4bs71fk4-JAyEM4RgcVUwaHS9H8TPA5hmGVqFDb_ARucSQo6MSillcqxfv_f0Xv-ah_90_e3uQLtf2p5vM95zS8B3drVsl6FQzuw4HJH8CdPa3Bh_B7T1GjyFlh2WBw7vbRiWWsT2fwSaqfVed2bf0hj5UbClhJSN3CukgWXayDkaJHWd3fnxArhuaKTZB3unSshE3UaqHNcrll46u6mkod_RFMh4Mvny7cOg2DmwY8XLtGIYXkYRYFqZVd7XkKSYYRmcRozVokbDSYytMi5SpMQ8WtMlxYG0prrIk1fwxHeZGbp8BIPa4bS4z5tBJSZVEcauNHIb12lG8yB97tpiFJa41ySpUxTzBWoclLmslz4FVjuqiEOa4z6tNcNgakpV3eKJbfknppJibGfvqpjmzARZZ6Udd0AxvrrtLI1nTgwFtCQkIYxMakqj64gF0i7aykJ0mjLkCy6sBpyxJXatou3mEp2QE98aWIkHWKwHPgZVNMT9Lut9wUG7LBBsZ-GGFbnlTQa7q0Q7ADsgXKVp_bJfnV91JHPJY8wHjZgdcNfG8eymc31vwcTnw6E1Lu8TmFo_VyY14gU1vrDhzKmcRrNDzvwHF_MBpPOuVXj065QvHedDTuff0D6UU_0w |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEG8CBcxLcLGaxEmcHBDqwpYtfQhVrbS3YCc2VFolyz5U7T_g1_AbmUmy2Q2vW6_r2cTOjGe-STzfALy0OopMXDc0UTzAIMJjj5qZofkI6fsqryiFjo6jwVnwaRgON-DnshaGjlUufWLlqPMyo3fkO5g9xRidg9B7N_7OqWsUfV1dttCozeLALC4wZZu-3f-A-n3l-3v90_cD3nQV4Fkoohk3ChGRiPI4zKx0tecpjJkmyCUmH9Yi_hBJGChPB5lQURYpYZURgbWRtMaaRAu87hW4Ggj0Jbh_5HCV4AnM92r2IiESd2dKsRcvJjsxr2oN8GcAWIuAv5_O3JoXY7W4UKPRWujbuwk3GszKdmsjuwUbprgN19eYDO_AjzW-jrJgpWX9_kfewxCZsx5V-FMjAFZXBdvmNSGrjiuwCu7y0nKEohzvwYgvpLrd6hPHlKG4YieIajkVrbATNR1rM5ks2Ofz5jY19_pdOLsUddyDzaIszANgxE3nJhIzSq0CqfI4ibTx44icmvJN7sCbpRrSrGFAp0YcoxQzIdJY2mrMgeet6Lim_fibUI902QoQU3f1Qzn5mjYbPzUJrtPPdGxDEeSZF7vGDW2iXaURC-rQgddkCSn5E5xMppqyCFwSMXOlu5IY8EKEwg5sdyTRD2Td4aUtpY0fmqarXePAs3aY_kln6wpTzkkGJ5j4UYxzuV-bXrskgQAeQV7sgOwYZWfN3ZHi_FvFUp5IEWI27sCL1nz__Sgf_n_yT2FrcHp0mB7uHx88gms-laBUR4q2YXM2mZvHCAxn-km1Gxl8uezt_wsXoHZV |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VInE8IG4CBcwleIk2iRM7eUCoS7e0FKqqaqV9C3ZiQ6VVsuyhav8Bv4lfx0ySzW643voaT2I7M54jmfkG4KXVQpi4bmii3BCNiBv71MwMxYfLIFB5BSn0-VDsnYYfh9FwA34ua2EorXKpEytFnZcZfSPvYfQUo3UOI79nm7SIo53dd-PvLnWQoj-ty3YatYgcmMU5hm_Tt_s7yOtXQbA7OHm_5zYdBtws4mLmGoXeERd5HGVWetr3FdpPE-YSAxFr0RfhSRQqX4cZVyITiltleGitkNZYk2iOz70ElyVHOjxLcrgK9jjGfjWSEQ56vSnZYXyY7Ni_qk3An8ZgzRr-nql5dV6M1eJcjUZrZnD3Jtxo_Fe2XQvcLdgwxW24voZqeAd-rGF3lAUrLRsMPrh9NJc561O1PzUFYHWFsG0-GbIqdYFVrq9bWhfdUhfnYIQdUk23-t0xZUiu2DF6uC4VsLBjNR1rM5ks2NFZM02Nw34XTi-EHfdgsygL8wAY4dR5icToUqtQqjxOhDZBLEjBqcDkDrxZsiHNGjR0asoxSjEqIo6lLccceN6SjmsIkL8R9YmXLQGhdlcXysnXtFECqUlwn0GmYxvxMM_82DNeZBPtKY1-oY4ceE2SkJJuwcVkqimRwC0RSle6LQkNL0K32IGtDiXqhKw7vJSltNFJ03R1ghx41g7TnZRnV5hyTjS4wCQQMa7lfi167ZY4OvPo8MUOyI5QdvbcHSnOvlWI5YnkEUbmDrxoxfffr_Lh_xf_FK7gwU8_7R8ePIJrAVWjVNlFW7A5m8zNY_QRZ_pJdRgZfLno0_8Luz96mA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZge4AeeD8CBZmHBBe3SRzbyXEXbamQqKqKlcopshObLl1lV_sQKr-An82Mkw1JAanXeCLbO2PPN5uZbwh564yUNq0bmmiWgBNhaYTNzMB8uIpjXXpKoc_H8miSfDoTZw1ZNNbC2G1Mdz5d-A_5m7on2UGmvsffwMHcJDtSAOwekJ3J8cnwq68eihMGji6smYM4hPEHK_R7mcCuKR1_42n5_758O97nambkrU210Jc_9GzWcTuHd-uErZVnK8Rsk4v9zdrsFz-vcDlea0f3yJ0GfNJhbS33yQ1bPSC7HUrCh-RXh3hjXtG5o-PxRzYCX1fSEZbqI6M_rct7XfN_H_V5B9TjVjZ3DDAlgzkoEn_46f58q1hRENf0FOApw-oTeqpXC2OXy0t6Mm2mqUnUH5HJ4fjLhyPWdGtgheByzawGpMllmYrCqdBEkQYsYpNSQVDnHOA6VIeOTFJwLQupudOWJ85J5ayzmeGPyaCaV_YpoUgyF2YKQkOjE6XLNJPGxqnE20nHtgzI-61O86KhMseOGrMcQhpUf96qPyCvW9FFzd_xL6ERGkYrgJTb_gGoK29OcG4z2GdcmNQJnpRFlIY2FC4zoTYA6owIyDs0qxwvBlhMoZv6BtgSUmzlQ4VUdgIwbUD2epJwoIv-8NYw8-ZCWeWxSlIAp4mIAvKqHcY3MUmusvMNysACs1imsJYntR23W-KAxAGtpQFRPQvv7bk_Uk3PPd14priAsDogb9qz8P-f8tm1pJ6T2zGWkfi0oD0yWC839gWAu7V52Rzr35uSTjY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+EEG-Based+Biometric+Identification+Using+State-of-the-Art+Neural+Architectures+on+a+Real-Time+Raspberry+Pi-Based+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Benomar%2C+Mohamed&rft.au=Cao%2C+Steven&rft.au=Vishwanath%2C+Manoj&rft.au=Vo%2C+Khuong&rft.date=2022-12-01&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft_id=info:doi/10.3390%2Fs22239547&rft_id=info%3Apmid%2F36502248&rft.externalDocID=36502248 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |