Machine learning for diagnostic ultrasound of triple-negative breast cancer

Purpose Early diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and limited options for therapy. The goal of this study is to evaluate the potential of machine learning with quantitative ultrasound image features fo...

Full description

Saved in:
Bibliographic Details
Published inBreast cancer research and treatment Vol. 173; no. 2; pp. 365 - 373
Main Authors Wu, Tong, Sultan, Laith R., Tian, Jiawei, Cary, Theodore W., Sehgal, Chandra M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0167-6806
1573-7217
1573-7217
DOI10.1007/s10549-018-4984-7

Cover

Abstract Purpose Early diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and limited options for therapy. The goal of this study is to evaluate the potential of machine learning with quantitative ultrasound image features for the diagnosis of TN breast cancer. Methods Ultrasonic and clinical data of 140 surgically confirmed breast cancer cases were analyzed retrospectively for the diagnosis of TN and non-TN (NTN) subtypes. The subtypes were classified based on the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Ultrasound image features were measured from the grayscale and color Doppler images and used with logistic regression for classification by machine learning. Leave-one-out cross validation was used to train and test the differentiation. Diagnostic performance was measured by the area under receiver operating characteristic (ROC) curve, and sensitivity and specificity determined at the Youdons index. Results Of the twelve grayscale and Doppler features measured, eight were found to be statistically different for the TN and NTN subtypes ( p  < 0.05). The area under the ROC curve (AUC) of the statistically significant grayscale (GS) and color Doppler (CD) features was 0.85 and 0.65, respectively. The AUC increased to 0.88 when the GS and CD features were used together, with sensitivity of 86.96% and specificity of 82.91%. Consideration of patient age in the analysis did not improve discrimination of TN and NTN. Conclusions The analysis of breast ultrasound images by machine learning achieves high level of differentiation between the TN and NTN subtypes, exceeding the diagnostic performance by standard visual assessments of the images.
AbstractList Early diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and limited options for therapy. The goal of this study is to evaluate the potential of machine learning with quantitative ultrasound image features for the diagnosis of TN breast cancer.PURPOSEEarly diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and limited options for therapy. The goal of this study is to evaluate the potential of machine learning with quantitative ultrasound image features for the diagnosis of TN breast cancer.Ultrasonic and clinical data of 140 surgically confirmed breast cancer cases were analyzed retrospectively for the diagnosis of TN and non-TN (NTN) subtypes. The subtypes were classified based on the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Ultrasound image features were measured from the grayscale and color Doppler images and used with logistic regression for classification by machine learning. Leave-one-out cross validation was used to train and test the differentiation. Diagnostic performance was measured by the area under receiver operating characteristic (ROC) curve, and sensitivity and specificity determined at the Youdons index.METHODSUltrasonic and clinical data of 140 surgically confirmed breast cancer cases were analyzed retrospectively for the diagnosis of TN and non-TN (NTN) subtypes. The subtypes were classified based on the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Ultrasound image features were measured from the grayscale and color Doppler images and used with logistic regression for classification by machine learning. Leave-one-out cross validation was used to train and test the differentiation. Diagnostic performance was measured by the area under receiver operating characteristic (ROC) curve, and sensitivity and specificity determined at the Youdons index.Of the twelve grayscale and Doppler features measured, eight were found to be statistically different for the TN and NTN subtypes (p < 0.05). The area under the ROC curve (AUC) of the statistically significant grayscale (GS) and color Doppler (CD) features was 0.85 and 0.65, respectively. The AUC increased to 0.88 when the GS and CD features were used together, with sensitivity of 86.96% and specificity of 82.91%. Consideration of patient age in the analysis did not improve discrimination of TN and NTN.RESULTSOf the twelve grayscale and Doppler features measured, eight were found to be statistically different for the TN and NTN subtypes (p < 0.05). The area under the ROC curve (AUC) of the statistically significant grayscale (GS) and color Doppler (CD) features was 0.85 and 0.65, respectively. The AUC increased to 0.88 when the GS and CD features were used together, with sensitivity of 86.96% and specificity of 82.91%. Consideration of patient age in the analysis did not improve discrimination of TN and NTN.The analysis of breast ultrasound images by machine learning achieves high level of differentiation between the TN and NTN subtypes, exceeding the diagnostic performance by standard visual assessments of the images.CONCLUSIONSThe analysis of breast ultrasound images by machine learning achieves high level of differentiation between the TN and NTN subtypes, exceeding the diagnostic performance by standard visual assessments of the images.
Early diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and limited options for therapy. The goal of this study is to evaluate the potential of machine learning with quantitative ultrasound image features for the diagnosis of TN breast cancer. Ultrasonic and clinical data of 140 surgically confirmed breast cancer cases were analyzed retrospectively for the diagnosis of TN and non-TN (NTN) subtypes. The subtypes were classified based on the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Ultrasound image features were measured from the grayscale and color Doppler images and used with logistic regression for classification by machine learning. Leave-one-out cross validation was used to train and test the differentiation. Diagnostic performance was measured by the area under receiver operating characteristic (ROC) curve, and sensitivity and specificity determined at the Youdons index. Of the twelve grayscale and Doppler features measured, eight were found to be statistically different for the TN and NTN subtypes (p < 0.05). The area under the ROC curve (AUC) of the statistically significant grayscale (GS) and color Doppler (CD) features was 0.85 and 0.65, respectively. The AUC increased to 0.88 when the GS and CD features were used together, with sensitivity of 86.96% and specificity of 82.91%. Consideration of patient age in the analysis did not improve discrimination of TN and NTN. The analysis of breast ultrasound images by machine learning achieves high level of differentiation between the TN and NTN subtypes, exceeding the diagnostic performance by standard visual assessments of the images.
PurposeEarly diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and limited options for therapy. The goal of this study is to evaluate the potential of machine learning with quantitative ultrasound image features for the diagnosis of TN breast cancer.MethodsUltrasonic and clinical data of 140 surgically confirmed breast cancer cases were analyzed retrospectively for the diagnosis of TN and non-TN (NTN) subtypes. The subtypes were classified based on the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Ultrasound image features were measured from the grayscale and color Doppler images and used with logistic regression for classification by machine learning. Leave-one-out cross validation was used to train and test the differentiation. Diagnostic performance was measured by the area under receiver operating characteristic (ROC) curve, and sensitivity and specificity determined at the Youdons index.ResultsOf the twelve grayscale and Doppler features measured, eight were found to be statistically different for the TN and NTN subtypes (p < 0.05). The area under the ROC curve (AUC) of the statistically significant grayscale (GS) and color Doppler (CD) features was 0.85 and 0.65, respectively. The AUC increased to 0.88 when the GS and CD features were used together, with sensitivity of 86.96% and specificity of 82.91%. Consideration of patient age in the analysis did not improve discrimination of TN and NTN.ConclusionsThe analysis of breast ultrasound images by machine learning achieves high level of differentiation between the TN and NTN subtypes, exceeding the diagnostic performance by standard visual assessments of the images.
Purpose Early diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and limited options for therapy. The goal of this study is to evaluate the potential of machine learning with quantitative ultrasound image features for the diagnosis of TN breast cancer. Methods Ultrasonic and clinical data of 140 surgically confirmed breast cancer cases were analyzed retrospectively for the diagnosis of TN and non-TN (NTN) subtypes. The subtypes were classified based on the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Ultrasound image features were measured from the grayscale and color Doppler images and used with logistic regression for classification by machine learning. Leave-one-out cross validation was used to train and test the differentiation. Diagnostic performance was measured by the area under receiver operating characteristic (ROC) curve, and sensitivity and specificity determined at the Youdons index. Results Of the twelve grayscale and Doppler features measured, eight were found to be statistically different for the TN and NTN subtypes (p < 0.05). The area under the ROC curve (AUC) of the statistically significant grayscale (GS) and color Doppler (CD) features was 0.85 and 0.65, respectively. The AUC increased to 0.88 when the GS and CD features were used together, with sensitivity of 86.96% and specificity of 82.91%. Consideration of patient age in the analysis did not improve discrimination of TN and NTN. Conclusions The analysis of breast ultrasound images by machine learning achieves high level of differentiation between the TN and NTN subtypes, exceeding the diagnostic performance by standard visual assessments of the images.
Purpose Early diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and limited options for therapy. The goal of this study is to evaluate the potential of machine learning with quantitative ultrasound image features for the diagnosis of TN breast cancer. Methods Ultrasonic and clinical data of 140 surgically confirmed breast cancer cases were analyzed retrospectively for the diagnosis of TN and non-TN (NTN) subtypes. The subtypes were classified based on the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Ultrasound image features were measured from the grayscale and color Doppler images and used with logistic regression for classification by machine learning. Leave-one-out cross validation was used to train and test the differentiation. Diagnostic performance was measured by the area under receiver operating characteristic (ROC) curve, and sensitivity and specificity determined at the Youdons index. Results Of the twelve grayscale and Doppler features measured, eight were found to be statistically different for the TN and NTN subtypes ( p  < 0.05). The area under the ROC curve (AUC) of the statistically significant grayscale (GS) and color Doppler (CD) features was 0.85 and 0.65, respectively. The AUC increased to 0.88 when the GS and CD features were used together, with sensitivity of 86.96% and specificity of 82.91%. Consideration of patient age in the analysis did not improve discrimination of TN and NTN. Conclusions The analysis of breast ultrasound images by machine learning achieves high level of differentiation between the TN and NTN subtypes, exceeding the diagnostic performance by standard visual assessments of the images.
Early diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and limited options for therapy. The goal of this study is to evaluate the potential of machine learning with quantitative ultrasound image features for the diagnosis of TN breast cancer. Ultrasonic and clinical data of 140 surgically confirmed breast cancer cases were analyzed retrospectively for the diagnosis of TN and non-TN (NTN) subtypes. The subtypes were classified based on the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Ultrasound image features were measured from the grayscale and color Doppler images and used with logistic regression for classification by machine learning. Leave-one-out cross validation was used to train and test the differentiation. Diagnostic performance was measured by the area under receiver operating characteristic (ROC) curve, and sensitivity and specificity determined at the Youdons index. Of the twelve grayscale and Doppler features measured, eight were found to be statistically different for the TN and NTN subtypes (p < 0.05). The area under the ROC curve (AUC) of the statistically significant grayscale (GS) and color Doppler (CD) features was 0.85 and 0.65, respectively. The AUC increased to 0.88 when the GS and CD features were used together, with sensitivity of 86.96% and specificity of 82.91%. Consideration of patient age in the analysis did not improve discrimination of TN and NTN. The analysis of breast ultrasound images by machine learning achieves high level of differentiation between the TN and NTN subtypes, exceeding the diagnostic performance by standard visual assessments of the images.
Audience Academic
Author Wu, Tong
Cary, Theodore W.
Tian, Jiawei
Sultan, Laith R.
Sehgal, Chandra M.
Author_xml – sequence: 1
  givenname: Tong
  surname: Wu
  fullname: Wu, Tong
  organization: Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Ultrasound Research Lab, Department of Radiology, University of Pennsylvania
– sequence: 2
  givenname: Laith R.
  surname: Sultan
  fullname: Sultan, Laith R.
  organization: Ultrasound Research Lab, Department of Radiology, University of Pennsylvania
– sequence: 3
  givenname: Jiawei
  surname: Tian
  fullname: Tian, Jiawei
  email: jwtian2004@163.com
  organization: Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University
– sequence: 4
  givenname: Theodore W.
  surname: Cary
  fullname: Cary, Theodore W.
  organization: Ultrasound Research Lab, Department of Radiology, University of Pennsylvania
– sequence: 5
  givenname: Chandra M.
  surname: Sehgal
  fullname: Sehgal, Chandra M.
  email: chandra.sehgal@uphs.upenn.edu
  organization: Ultrasound Research Lab, Department of Radiology, University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30343454$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFrFTEUhYNU7Gv1B7iRAUHcTE1mkslkWYqtYsWNrsOdzM28lLzkmcwU_PdmeC21RSWLQPjO4dzcc0KOQgxIyGtGzxil8kNmVHBVU9bXXPW8ls_IhgnZ1rJh8ohsKOtk3fW0OyYnOd9QSpWk6gU5bmnLWy74hnz5CmbrAlYeIQUXpsrGVI0OphDz7Ey1-DlBjksYq2irObm9xzrgBLO7xWpICHmuDASD6SV5bsFnfHV3n5Iflx-_X3yqr79dfb44v66NaLu5HnvFBwlKDn3XyH6wAC0dZcOtYGilYBbUCLzrgaJSgyigHEzXAfbSmBbbU_L-4LtP8eeCedY7lw16DwHjknUZXjVNzxQt6Nsn6E1cUijpCtW0jRSUdg_UBB61CzaWmc1qqs-FFIor2azU2V-ockbcOVM2Y115fyR494dgi-DnbY5-mV0M-TH45i7lMuxw1PvkdpB-6fs1FUAeAJNizgmtNm6G1adEcF4zqtdC6EMhdCmEXguhZVGyJ8p78_9pmoMmFzZMmB4-7d-i37FtxLk
CitedBy_id crossref_primary_10_3390_healthcare11091268
crossref_primary_10_3390_jpm11020061
crossref_primary_10_1186_s12885_020_07413_z
crossref_primary_10_1088_1361_6560_abc5c7
crossref_primary_10_1007_s10278_025_01388_8
crossref_primary_10_3389_fonc_2022_829041
crossref_primary_10_54287_gujsa_1529857
crossref_primary_10_1109_ACCESS_2024_3506334
crossref_primary_10_1177_20552076241297002
crossref_primary_10_1055_s_0042_1751043
crossref_primary_10_1177_20552076231207203
crossref_primary_10_1002_jum_15873
crossref_primary_10_3389_fonc_2020_604051
crossref_primary_10_1016_j_heliyon_2023_e19253
crossref_primary_10_1016_j_retram_2020_01_002
crossref_primary_10_1166_jmihi_2021_3682
crossref_primary_10_1134_S1022795423130021
crossref_primary_10_1016_j_clbc_2025_03_006
crossref_primary_10_1007_s40846_024_00900_9
crossref_primary_10_3390_diagnostics10090631
crossref_primary_10_1093_jbi_wbad080
crossref_primary_10_1007_s12149_021_01688_3
crossref_primary_10_1021_acsomega_2c06750
crossref_primary_10_1177_03000605241237867
crossref_primary_10_3390_electronics11111800
crossref_primary_10_1097_RLI_0000000000000543
crossref_primary_10_1186_s12880_024_01543_7
crossref_primary_10_1016_j_acra_2019_12_023
crossref_primary_10_1016_j_engappai_2023_105894
crossref_primary_10_1016_j_cclet_2023_108141
crossref_primary_10_2147_CMAR_S281605
crossref_primary_10_1093_gigascience_giaa095
crossref_primary_10_3389_fonc_2020_01192
crossref_primary_10_1111_cas_15511
crossref_primary_10_1148_radiol_232554
crossref_primary_10_1186_s12880_024_01383_5
crossref_primary_10_1016_j_irbm_2021_10_002
crossref_primary_10_1038_s41598_021_00018_x
crossref_primary_10_1007_s11042_023_17281_x
crossref_primary_10_1016_j_lfs_2023_122110
crossref_primary_10_4103_jcrt_jcrt_1796_23
crossref_primary_10_3390_cancers14225589
crossref_primary_10_1038_s41416_023_02215_z
crossref_primary_10_1016_j_compbiomed_2023_107914
crossref_primary_10_1093_bjrai_ubae016
crossref_primary_10_1016_j_medengphy_2022_103895
crossref_primary_10_1007_s10549_024_07429_0
crossref_primary_10_2147_BCTT_S408997
crossref_primary_10_1007_s00432_024_05903_2
crossref_primary_10_3389_fonc_2022_848790
crossref_primary_10_1155_2022_9336185
crossref_primary_10_3233_BD_220018
crossref_primary_10_3390_diagnostics13010058
Cites_doi 10.1007/s12282-009-0153-5
10.1038/s41598-018-27222-6
10.1007/s10549-007-9810-6
10.1109/TITB.2008.2009441
10.1177/1742271X17690425
10.1002/cncr.22618
10.7863/jum.2004.23.9.1201
10.1093/annonc/mdt303
10.1038/srep11085
10.1016/j.cmpb.2017.12.012
10.1016/j.ultrasmedbio.2015.01.001
10.2214/AJR.09.2355
10.2214/AJR.10.6096
10.1259/bjr/92960562
10.1002/jcu.22312
10.1093/annonc/mds191
10.1007/s12282-010-0223-8
10.1007/BF01806130
10.1002/path.1473
10.1158/1078-0432.CCR-06-1109
10.1016/j.molonc.2010.11.003
10.3322/caac.21442
10.1634/theoncologist.2013-0380
10.1016/S0093-7754(01)90279-9
10.1016/j.cmpb.2017.10.021
10.1148/radiology.196.1.7784555
10.3322/caac.21262
10.1148/radiol.2461062173
10.7863/jum.2012.31.10.1531
10.7863/ultra.33.4.641
10.1007/s10911-006-9018-0
10.1172/JCI43757
10.1002/cncr.27581
10.1016/j.ejrad.2012.03.005
10.1038/modpathol.3800961
10.1007/s00330-009-1656-3
10.1002/jum.14564
10.7314/APJCP.2015.16.8.3229
10.14366/usg.17036
10.1109/ULTSYM.2012.0423
10.7863/jum.2000.19.7.427
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
COPYRIGHT 2019 Springer
Breast Cancer Research and Treatment is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: COPYRIGHT 2019 Springer
– notice: Breast Cancer Research and Treatment is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TO
7X7
7XB
88E
8AO
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
H94
K9-
K9.
M0R
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1007/s10549-018-4984-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Consumer Health Database (NC LIVE)
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Central Basic
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Research Library Prep




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1573-7217
EndPage 373
ExternalDocumentID A575949726
30343454
10_1007_s10549_018_4984_7
Genre Evaluation Studies
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81630048
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 81630048
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7X7
88E
8AO
8C1
8FI
8FJ
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFJLC
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BKNYI
BPHCQ
BSONS
BVXVI
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
ICW
IHE
IHR
IHW
IJ-
IKXTQ
IMOTQ
INH
INR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K9-
KDC
KOV
KPH
LAK
LLZTM
M0R
M1P
M2O
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
ROL
RPX
RRX
RSV
S16
S27
S37
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7W
Z81
Z82
Z83
Z87
Z8O
Z8Q
Z8U
Z8V
Z8W
Z91
ZMTXR
ZOVNA
~EX
~KM
-XW
-Y2
.GJ
1SB
2.D
28-
2P1
2VQ
3O-
53G
5QI
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ACUDM
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDYV
AFDZB
AFEXP
AFFNX
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
EN4
GRRUI
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
SDE
T16
TEORI
UDS
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TO
7XB
8FK
H94
K9.
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c536t-d894b7a97b86278bfaa30d724f51ef751fa9da468a0e99b597b7bc66ae87cc3e3
IEDL.DBID U2A
ISSN 0167-6806
1573-7217
IngestDate Thu Sep 04 17:10:56 EDT 2025
Mon Oct 06 17:26:17 EDT 2025
Mon Oct 20 22:00:02 EDT 2025
Mon Oct 20 16:35:25 EDT 2025
Thu May 22 21:22:14 EDT 2025
Thu Apr 03 07:05:11 EDT 2025
Wed Oct 01 04:17:35 EDT 2025
Thu Apr 24 22:59:56 EDT 2025
Fri Feb 21 02:31:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Quantitative breast ultrasound
Breast cancer
Triple negative breast cancer
Computer-aided diagnosis
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-d894b7a97b86278bfaa30d724f51ef751fa9da468a0e99b597b7bc66ae87cc3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 30343454
PQID 2123275006
PQPubID 36266
PageCount 9
ParticipantIDs proquest_miscellaneous_2179228190
proquest_journals_2123275006
gale_infotracmisc_A575949726
gale_infotracacademiconefile_A575949726
gale_healthsolutions_A575949726
pubmed_primary_30343454
crossref_citationtrail_10_1007_s10549_018_4984_7
crossref_primary_10_1007_s10549_018_4984_7
springer_journals_10_1007_s10549_018_4984_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Netherlands
– name: Dordrecht
PublicationTitle Breast cancer research and treatment
PublicationTitleAbbrev Breast Cancer Res Treat
PublicationTitleAlternate Breast Cancer Res Treat
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Xiong, Sultan, Cary (CR24) 2017; 25
Kumar, Yarmand-Bagheri (CR36) 2001; 28
Dromain, Boyer, Ferré (CR23) 2013; 82
Goldhirsch, Winer, Coates (CR15) 2013; 24
Carey, Dees, Sawyer (CR20) 2007; 13
Verheul, Voest, Schlingemann (CR33) 2004; 202
CR16
Shin, Kim, Huh (CR26) 2011; 84
CR14
Krizmanich-Conniff, Paramagul, Patterson (CR8) 2012; 199
Tang, Rangayyan, Xu (CR22) 2009; 13
CR34
Yeo, Kim, Lee, Moon (CR40) 2018
Siegel, Miller, Jemal (CR2) 2016; 68
Yassin, Omran, El Houby, Allam (CR10) 2018; 156
Bouzghar, Levenback, Sultan (CR13) 2014; 33
Elkabets, Gifford, Scheel (CR28) 2011; 121
Torre, Bray, Siegel (CR1) 2015; 65
Yang, Liu, Liu, Song (CR41) 2015; 16
Boisserie-Lacroix, Macgrogan, Debled (CR9) 2013; 18
Ko, Lee, Kim (CR7) 2010; 20
Li, Zhang, Shi (CR29) 2018; 8
Kojima, Tsunoda (CR38) 2011; 18
Yang, Dryden, Broglio (CR27) 2008; 111
Zhang, Li, Xiao (CR35) 2015; 5
Dogan, Turnbull (CR25) 2012; 23
Costantini, Belli, Bufi (CR31) 2016; 44
Sehgal, Weinstein, Arger, Conant (CR6) 2006; 11
Du, Lin, Huang (CR42) 2015; 8
Sasaki, Tsuda (CR4) 2009; 16
Prat, Perou (CR18) 2011; 5
Yoon, Cha, Kim (CR30) 2018; 37
Stavros, Thickman, Rapp (CR5) 1995; 196
Sehgal, Cary, Kangas (CR11) 2004; 23
Schrading, Kuhl (CR32) 2008; 246
Huang, Takada, Konno (CR12) 2018; 153
Lerma, Peiro, Ramón (CR39) 2007; 20
Dogan, Gonzalez-Angulo, Gilcrease (CR37) 2010; 194
Bauer, Brown, Cress (CR43) 2007; 109
Sultan, Xiong, Zafar (CR17) 2015; 41
Lin, Vanderplas, Hughes (CR3) 2012; 118
Dairkee, Ljung, Smith, Hackett (CR19) 1987; 10
Wojcinski, Soliman, Schmidt (CR21) 2012; 31
GY Yoon (4984_CR30) 2018; 37
KR Bauer (4984_CR43) 2007; 109
M Costantini (4984_CR31) 2016; 44
S Wojcinski (4984_CR21) 2012; 31
M Elkabets (4984_CR28) 2011; 121
H-Y Du (4984_CR42) 2015; 8
LA Torre (4984_CR1) 2015; 65
NIR Yassin (4984_CR10) 2018; 156
J Tang (4984_CR22) 2009; 13
KM Krizmanich-Conniff (4984_CR8) 2012; 199
Y-S Huang (4984_CR12) 2018; 153
A Goldhirsch (4984_CR15) 2013; 24
HMW Verheul (4984_CR33) 2004; 202
RL Siegel (4984_CR2) 2016; 68
G Bouzghar (4984_CR13) 2014; 33
AT Stavros (4984_CR5) 1995; 196
J-W Li (4984_CR29) 2018; 8
SH Dairkee (4984_CR19) 1987; 10
S Schrading (4984_CR32) 2008; 246
BE Dogan (4984_CR37) 2010; 194
HJ Shin (4984_CR26) 2011; 84
M Boisserie-Lacroix (4984_CR9) 2013; 18
SH Yeo (4984_CR40) 2018
W-T Yang (4984_CR27) 2008; 111
ES Ko (4984_CR7) 2010; 20
LA Carey (4984_CR20) 2007; 13
C Dromain (4984_CR23) 2013; 82
NU Lin (4984_CR3) 2012; 118
A Prat (4984_CR18) 2011; 5
E Lerma (4984_CR39) 2007; 20
4984_CR14
BE Dogan (4984_CR25) 2012; 23
4984_CR16
CM Sehgal (4984_CR6) 2006; 11
4984_CR34
Y Sasaki (4984_CR4) 2009; 16
Q Yang (4984_CR41) 2015; 16
LR Sultan (4984_CR17) 2015; 41
H Xiong (4984_CR24) 2017; 25
Y Kojima (4984_CR38) 2011; 18
R Kumar (4984_CR36) 2001; 28
CM Sehgal (4984_CR11) 2004; 23
L Zhang (4984_CR35) 2015; 5
References_xml – volume: 16
  start-page: 254
  year: 2009
  end-page: 259
  ident: CR4
  article-title: Clinicopathological characteristics of triple-negative breast cancers
  publication-title: Breast Cancer
  doi: 10.1007/s12282-009-0153-5
– volume: 8
  start-page: 9040
  year: 2018
  ident: CR29
  article-title: Triple-negative invasive breast carcinoma: the association between the sonographic appearances with clinicopathological feature
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-27222-6
– volume: 111
  start-page: 405
  year: 2008
  end-page: 410
  ident: CR27
  article-title: Mammographic features of triple receptor-negative primary breast cancers in young premenopausal women
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-007-9810-6
– volume: 13
  start-page: 236
  year: 2009
  end-page: 251
  ident: CR22
  article-title: Computer-aided detection and diagnosis of breast cancer with mammography: recent advances
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2008.2009441
– volume: 25
  start-page: 98
  year: 2017
  end-page: 106
  ident: CR24
  article-title: The diagnostic performance of leak-plugging automated segmentation versus manual tracing of breast lesions on ultrasound images
  publication-title: Ultrasound
  doi: 10.1177/1742271X17690425
– volume: 109
  start-page: 1721
  year: 2007
  end-page: 1728
  ident: CR43
  article-title: Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype
  publication-title: Cancer
  doi: 10.1002/cncr.22618
– volume: 23
  start-page: 1201
  year: 2004
  end-page: 1209
  ident: CR11
  article-title: Computer-based margin analysis of breast sonography for differentiating malignant and benign masses
  publication-title: J Ultrasound Med
  doi: 10.7863/jum.2004.23.9.1201
– volume: 24
  start-page: 2206
  year: 2013
  end-page: 2223
  ident: CR15
  article-title: Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdt303
– volume: 5
  start-page: 11085
  year: 2015
  ident: CR35
  article-title: Identifying ultrasound and clinical features of breast cancer molecular subtypes by ensemble decision
  publication-title: Sci Rep
  doi: 10.1038/srep11085
– volume: 156
  start-page: 25
  year: 2018
  end-page: 45
  ident: CR10
  article-title: Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.12.012
– ident: CR14
– volume: 8
  start-page: 10040
  year: 2015
  end-page: 10043
  ident: CR42
  article-title: Ultrasonographic findings of triple-negative breast cancer
  publication-title: Int J Clin Exp Med
– ident: CR16
– volume: 41
  start-page: 1287
  year: 2015
  end-page: 1293
  ident: CR17
  article-title: Vascularity assessment of thyroid nodules by quantitative color Doppler ultrasound
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.01.001
– volume: 194
  start-page: 1160
  year: 2010
  end-page: 1166
  ident: CR37
  article-title: Multimodality imaging of triple receptor-negative tumors with mammography, ultrasound, and MRI
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.09.2355
– volume: 199
  start-page: 458
  year: 2012
  end-page: 464
  ident: CR8
  article-title: Triple receptor–negative breast cancer: imaging and clinical characteristics
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.10.6096
– volume: 84
  start-page: 19
  year: 2011
  end-page: 30
  ident: CR26
  article-title: Correlation between mammographic and sonographic findings and prognostic factors in patients with node-negative invasive breast cancer
  publication-title: Br J Radiol
  doi: 10.1259/bjr/92960562
– volume: 44
  start-page: 26
  year: 2016
  end-page: 33
  ident: CR31
  article-title: Association between sonographic appearances of breast cancers and their histopathologic features and biomarkers
  publication-title: J Clin Ultrasound
  doi: 10.1002/jcu.22312
– volume: 23
  start-page: vi23
  issue: Suppl 6
  year: 2012
  end-page: 29
  ident: CR25
  article-title: Imaging of triple-negative breast cancer
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mds191
– volume: 18
  start-page: 146
  year: 2011
  end-page: 151
  ident: CR38
  article-title: Mammography and ultrasound features of triple-negative breast cancer
  publication-title: Breast Cancer
  doi: 10.1007/s12282-010-0223-8
– volume: 10
  start-page: 11
  year: 1987
  end-page: 20
  ident: CR19
  article-title: Immunolocalization of a human basal epithelium specific keratin in benign and malignant breast disease
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/BF01806130
– volume: 202
  start-page: 5
  year: 2004
  end-page: 13
  ident: CR33
  article-title: Are tumours angiogenesis-dependent?
  publication-title: J Pathol
  doi: 10.1002/path.1473
– volume: 13
  start-page: 2329
  year: 2007
  end-page: 2334
  ident: CR20
  article-title: The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-06-1109
– volume: 5
  start-page: 5
  year: 2011
  end-page: 23
  ident: CR18
  article-title: Deconstructing the molecular portraits of breast cancer
  publication-title: Mol Oncol
  doi: 10.1016/j.molonc.2010.11.003
– volume: 68
  start-page: 7
  year: 2016
  end-page: 30
  ident: CR2
  article-title: Cancer statistics, 2016
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21442
– volume: 18
  start-page: 802
  year: 2013
  end-page: 811
  ident: CR9
  article-title: Triple-negative breast cancers: associations between imaging and pathological findings for triple-negative tumors compared with hormone receptor-positive/human epidermal growth factor receptor-2-negative breast cancers
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2013-0380
– volume: 28
  start-page: 27
  year: 2001
  end-page: 32
  ident: CR36
  article-title: The role of HER2 in angiogenesis
  publication-title: Semin Oncol
  doi: 10.1016/S0093-7754(01)90279-9
– volume: 153
  start-page: 201
  year: 2018
  end-page: 209
  ident: CR12
  article-title: Computer-Aided tumor diagnosis in 3-D breast elastography
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2017.10.021
– volume: 196
  start-page: 123
  year: 1995
  end-page: 134
  ident: CR5
  article-title: Solid breast nodules: use of sonography to distinguish between benign and malignant lesions
  publication-title: Radiology
  doi: 10.1148/radiology.196.1.7784555
– volume: 65
  start-page: 87
  year: 2015
  end-page: 108
  ident: CR1
  article-title: Global cancer statistics, 2012
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21262
– volume: 246
  start-page: 58
  year: 2008
  end-page: 70
  ident: CR32
  article-title: Mammographic, US, and MR imaging phenotypes of familial breast cancer
  publication-title: Radiology
  doi: 10.1148/radiol.2461062173
– volume: 31
  start-page: 1531
  issue: 10
  year: 2012
  end-page: 1541
  ident: CR21
  article-title: Sonographic features of triple-negative and non-triple-negative breast cancer
  publication-title: J Ultrasound Med
  doi: 10.7863/jum.2012.31.10.1531
– volume: 33
  start-page: 641
  year: 2014
  end-page: 648
  ident: CR13
  article-title: Bayesian probability of malignancy with BI-RADS sonographic features
  publication-title: J Ultrasound Med
  doi: 10.7863/ultra.33.4.641
– volume: 11
  start-page: 113
  year: 2006
  end-page: 123
  ident: CR6
  article-title: A Review of Breast Ultrasound
  publication-title: J Mammary Gland Biol Neoplasia
  doi: 10.1007/s10911-006-9018-0
– ident: CR34
– volume: 121
  start-page: 784
  year: 2011
  end-page: 799
  ident: CR28
  article-title: Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice
  publication-title: J Clin Invest
  doi: 10.1172/JCI43757
– volume: 118
  start-page: 5463
  year: 2012
  end-page: 5472
  ident: CR3
  article-title: Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network
  publication-title: Cancer
  doi: 10.1002/cncr.27581
– volume: 82
  start-page: 417
  year: 2013
  end-page: 423
  ident: CR23
  article-title: Computed-aided diagnosis (CAD) in the detection of breast cancer
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2012.03.005
– volume: 20
  start-page: 1200
  year: 2007
  end-page: 1207
  ident: CR39
  article-title: Immunohistochemical heterogeneity of breast carcinomas negative for estrogen receptors, progesterone receptors and Her2/neu (basal-like breast carcinomas)
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.3800961
– volume: 20
  start-page: 1111
  year: 2010
  end-page: 1117
  ident: CR7
  article-title: Triple-negative breast cancer: correlation between imaging and pathological findings
  publication-title: Eur Radiol
  doi: 10.1007/s00330-009-1656-3
– year: 2018
  ident: CR40
  article-title: Comparison of ultrasound elastography and color Doppler ultrasonography for distinguishing small triple-negative breast cancer from fibroadenoma
  publication-title: J Ultrasound Med
  doi: 10.1002/jum.14564
– volume: 16
  start-page: 3229
  year: 2015
  end-page: 3232
  ident: CR41
  article-title: Ultrasonographic features of triple-negative breast cancer: a comparison with other breast cancer subtypes
  publication-title: Asian Pac J Cancer Prev
  doi: 10.7314/APJCP.2015.16.8.3229
– volume: 37
  start-page: 149
  year: 2018
  end-page: 156
  ident: CR30
  article-title: Sonographic features that can be used to differentiate between small triple-negative breast cancer and fibroadenoma
  publication-title: Ultrasonography
  doi: 10.14366/usg.17036
– volume: 20
  start-page: 1111
  year: 2010
  ident: 4984_CR7
  publication-title: Eur Radiol
  doi: 10.1007/s00330-009-1656-3
– volume: 8
  start-page: 10040
  year: 2015
  ident: 4984_CR42
  publication-title: Int J Clin Exp Med
– year: 2018
  ident: 4984_CR40
  publication-title: J Ultrasound Med
  doi: 10.1002/jum.14564
– volume: 23
  start-page: vi23
  issue: Suppl 6
  year: 2012
  ident: 4984_CR25
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mds191
– volume: 65
  start-page: 87
  year: 2015
  ident: 4984_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21262
– volume: 10
  start-page: 11
  year: 1987
  ident: 4984_CR19
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/BF01806130
– volume: 246
  start-page: 58
  year: 2008
  ident: 4984_CR32
  publication-title: Radiology
  doi: 10.1148/radiol.2461062173
– volume: 25
  start-page: 98
  year: 2017
  ident: 4984_CR24
  publication-title: Ultrasound
  doi: 10.1177/1742271X17690425
– volume: 8
  start-page: 9040
  year: 2018
  ident: 4984_CR29
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-27222-6
– ident: 4984_CR16
  doi: 10.1109/ULTSYM.2012.0423
– volume: 37
  start-page: 149
  year: 2018
  ident: 4984_CR30
  publication-title: Ultrasonography
  doi: 10.14366/usg.17036
– volume: 118
  start-page: 5463
  year: 2012
  ident: 4984_CR3
  publication-title: Cancer
  doi: 10.1002/cncr.27581
– volume: 24
  start-page: 2206
  year: 2013
  ident: 4984_CR15
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdt303
– volume: 5
  start-page: 5
  year: 2011
  ident: 4984_CR18
  publication-title: Mol Oncol
  doi: 10.1016/j.molonc.2010.11.003
– volume: 18
  start-page: 802
  year: 2013
  ident: 4984_CR9
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2013-0380
– volume: 13
  start-page: 2329
  year: 2007
  ident: 4984_CR20
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-06-1109
– volume: 111
  start-page: 405
  year: 2008
  ident: 4984_CR27
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-007-9810-6
– volume: 84
  start-page: 19
  year: 2011
  ident: 4984_CR26
  publication-title: Br J Radiol
  doi: 10.1259/bjr/92960562
– volume: 28
  start-page: 27
  year: 2001
  ident: 4984_CR36
  publication-title: Semin Oncol
  doi: 10.1016/S0093-7754(01)90279-9
– volume: 121
  start-page: 784
  year: 2011
  ident: 4984_CR28
  publication-title: J Clin Invest
  doi: 10.1172/JCI43757
– volume: 16
  start-page: 3229
  year: 2015
  ident: 4984_CR41
  publication-title: Asian Pac J Cancer Prev
  doi: 10.7314/APJCP.2015.16.8.3229
– volume: 153
  start-page: 201
  year: 2018
  ident: 4984_CR12
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2017.10.021
– volume: 33
  start-page: 641
  year: 2014
  ident: 4984_CR13
  publication-title: J Ultrasound Med
  doi: 10.7863/ultra.33.4.641
– volume: 41
  start-page: 1287
  year: 2015
  ident: 4984_CR17
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.01.001
– volume: 202
  start-page: 5
  year: 2004
  ident: 4984_CR33
  publication-title: J Pathol
  doi: 10.1002/path.1473
– volume: 109
  start-page: 1721
  year: 2007
  ident: 4984_CR43
  publication-title: Cancer
  doi: 10.1002/cncr.22618
– ident: 4984_CR14
– volume: 16
  start-page: 254
  year: 2009
  ident: 4984_CR4
  publication-title: Breast Cancer
  doi: 10.1007/s12282-009-0153-5
– volume: 31
  start-page: 1531
  issue: 10
  year: 2012
  ident: 4984_CR21
  publication-title: J Ultrasound Med
  doi: 10.7863/jum.2012.31.10.1531
– volume: 156
  start-page: 25
  year: 2018
  ident: 4984_CR10
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.12.012
– volume: 23
  start-page: 1201
  year: 2004
  ident: 4984_CR11
  publication-title: J Ultrasound Med
  doi: 10.7863/jum.2004.23.9.1201
– volume: 196
  start-page: 123
  year: 1995
  ident: 4984_CR5
  publication-title: Radiology
  doi: 10.1148/radiology.196.1.7784555
– volume: 194
  start-page: 1160
  year: 2010
  ident: 4984_CR37
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.09.2355
– ident: 4984_CR34
  doi: 10.7863/jum.2000.19.7.427
– volume: 82
  start-page: 417
  year: 2013
  ident: 4984_CR23
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2012.03.005
– volume: 5
  start-page: 11085
  year: 2015
  ident: 4984_CR35
  publication-title: Sci Rep
  doi: 10.1038/srep11085
– volume: 68
  start-page: 7
  year: 2016
  ident: 4984_CR2
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21442
– volume: 199
  start-page: 458
  year: 2012
  ident: 4984_CR8
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.10.6096
– volume: 13
  start-page: 236
  year: 2009
  ident: 4984_CR22
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2008.2009441
– volume: 44
  start-page: 26
  year: 2016
  ident: 4984_CR31
  publication-title: J Clin Ultrasound
  doi: 10.1002/jcu.22312
– volume: 18
  start-page: 146
  year: 2011
  ident: 4984_CR38
  publication-title: Breast Cancer
  doi: 10.1007/s12282-010-0223-8
– volume: 20
  start-page: 1200
  year: 2007
  ident: 4984_CR39
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.3800961
– volume: 11
  start-page: 113
  year: 2006
  ident: 4984_CR6
  publication-title: J Mammary Gland Biol Neoplasia
  doi: 10.1007/s10911-006-9018-0
SSID ssj0009709
Score 2.5036492
Snippet Purpose Early diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and...
Early diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and limited...
Purpose Early diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and...
PurposeEarly diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and limited...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 365
SubjectTerms Adult
Artificial intelligence
Breast - diagnostic imaging
Breast - pathology
Breast cancer
Cancer research
Clinical Trial
Diagnosis
Discrimination
Early Detection of Cancer - methods
Epidermal growth factor
Epidermal growth factors
ErbB-2 protein
Estrogen receptors
Estrogens
Female
Humans
Image processing
Image Processing, Computer-Assisted - methods
Learning algorithms
Machine Learning
Medicine
Medicine & Public Health
Middle Aged
Oncology
Phenols (Class of compounds)
Progesterone
Retrospective Studies
ROC Curve
Sex hormones
Statistical analysis
Triple Negative Breast Neoplasms - diagnostic imaging
Triple Negative Breast Neoplasms - pathology
Ultrasonic imaging
Ultrasonography, Doppler, Color - methods
Ultrasonography, Mammary - methods
Ultrasound
Visual discrimination
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBfdFcpexr6XtVs9GAw6wtLE8cfDGF1pKRt3jNFC34y_0peS6665_79S4tz1Cuuz5cSWZVuypJ8APjcEKa4DCW-jct4IneuIVoq3ytaaELg8JThPZ-Lsgv-6rC-3YDbmwlBY5Xgm9gd1mHt6I_9GRyxhkRfix82_nKpGkXd1LKFhU2mF8L2HGHsC2yUhY01g--fJ7M_fNQyvHII-CO1bqEKMfs4hmQ5tJTStccha8Vxu3FQPz-t7F9YDD2p_MZ0-h2dJo2RHgwi8gK3YvoSdafKZv4Lf0z5eMrJUIOKKoZ7KwhBih33Y8rpb2Fsqr8TmDesW9PSet_GqhwRnjqLWO-ZJOhav4eL05Pz4LE8lFHJfV6LLg9LcSaulQ8tFKtdYWxVBlrypD2Mj68PG6mC5ULaIWju0Lpx0XggblfS-itUbmLTzNr4D5h1XLpSuxDZeydpFzYNw5FLGK97KDIqRXcYnfHEqc3Ft1sjIxGGDHDbEYYNdDlZdbgZwjceI92kNzJAfutqY5ohKjHItS5HBl56Ctib-2duUYYDjJ5CrDcq9DUrcUn6zeVxnk7b0rVkLYAafVs3Uk8LU2jhfEo3UJbkmiwzeDvKxmhjqCrziNc_g6ygw64__d9bvHx_KLjxFDU4Pb0J7MOkWy_gBtaTOfUyifwfJKwsG
  priority: 102
  providerName: ProQuest
Title Machine learning for diagnostic ultrasound of triple-negative breast cancer
URI https://link.springer.com/article/10.1007/s10549-018-4984-7
https://www.ncbi.nlm.nih.gov/pubmed/30343454
https://www.proquest.com/docview/2123275006
https://www.proquest.com/docview/2179228190
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7217
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009709
  issn: 0167-6806
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1573-7217
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0009709
  issn: 0167-6806
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7217
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0009709
  issn: 0167-6806
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7217
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009709
  issn: 0167-6806
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7217
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009709
  issn: 0167-6806
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WFspexrZ2W9o0U2FQ2DA4tqyPx6ykKyspYyyQPQlJlvNSnJE4___u_JGP0g724jzoJMfSne_Od_c7gE8FQYrrnJi3UBEvhI50QC_FW2UzTQhcngqcJ_fidsq_z7JZW8e96rLdu5Bk_abeKXZDXwZdX1xSKx7JAzjKCM0LmXiajLZIu7LJ6yBAb6Fi0YUyn1piTxk9fiXv6KRHQdJa99y8hlet0chGzSm_gRehfAvHkzYsfgJ3kzolMrC2B8ScoSnK8iaLDuew9UO1tCvqoMQWBauW9HU9KsO8Rv1mjhLTK-aJAZanML0Z_7q-jdouCZHPUlFFudLcSaulQ-dEKldYm8a5THiRDUMhs2FhdW65UDYOWjt0IJx0XggblPQ-Dek7OCwXZfgAzDuuXJ64BMd4KjMXNM-Fo6gxanErexB322V8CyFOnSwezBb8mHbY4A4b2mGDUz5vpvxp8DP-RfyRzsA0JaAb2TMj6iLKtUxED65qCpI-vLO3bREB_n_Csdqj7O9RotT4_eHunE0rtStDapzw7mMcvtwM00zKRCvDYk00UicUfYx78L7hj82DoTnAU57xHnzpGGa7-LNPffZf1OfwEm023XwF6sNhtVyHC7SLKjeAAzmTeFXXwwEcjb79vhvj79fx_Y-fg1pG_gINxQYk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKBFwQbwKFGgmEBIpIE8ePA0JVodqy3Z5aqTdjO04vVbbdzarip_hGZuJkl61Ebz177DjjednzAnhfU0lxXRHx1irltdCpDnhL8VbZUlMFLk8JzpMjMTrhP0_L0w34M-TCUFjlIBM7QV1NPb2RfyERS7XIM_Ht4jKlrlHkXR1aaESyGIffV3hlm389-I7n-yHP938c743SvqtA6stCtGmlNHfSaunQmJfK1dYWWSVzXpc7oZblTm11ZblQNgtaOzS4nXReCBuU9L4IBa57B-5y3A0JArW3CinRMoaUUC1xoTIxeFFjqh7exPDijgjRiqdyTQ9e1wb_qMNr_tlO7e0_goe9vcp2I4E9ho3QPIF7k94j_xTGky4aM7C-_cQZQyuYVTGAD-ewxXk7s3Nq3sSmNWtn9LCfNuGsKzjOHMXEt8wT7c2ewcmtoPI5bDbTJrwE5h1XrspdjmO8kKULmlfCkcMaDQgrE8gGdBnfVy-nJhrnZlV3mTBsEMOGMGxwyqfllItYuuMm4G06AxOzT5dsb3apgSnXMhcJfOwgiPHxy972-Qu4fyqhtQa5tQaJDOvXh4dzNr3AmJsVeSfwbjlMMykIrgnTBcFInZPjM0vgRaSP5Y-hJcILXvIEPg8Es1r8v3_96uatbMP90fHk0BweHI1fwwO0FXV8fdqCzXa2CG_QHmvd244JGPy6ba77C_0aQls
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8ChRoJhASKmiaOHweEKsqqZdmKA5X2ZmzH6aXKlt2sEH-NX8dMnOyyleitZ48dZzwejz0z3wC8rglSXFckvLVKeS10qgPeUrxVttSEwOUpwXlyKo7P-JdpOd2CP0MuDIVVDjqxU9TVzNMb-T6pWMIiz8R-3YdFfDsafbz8mVIFKfK0DuU0ooiMw-9feH1bfDg5wrV-k-ejz98_Had9hYHUl4Vo00pp7qTV0qFhL5WrrS2ySua8Lg9CLcuD2urKcqFsFrR2aHw76bwQNijpfREKHPcW3JZFoSmcUE7lGvBXxvASwhUXKhODRzWm7eGtDC_xyByteCo3zsSrJ8M_R-MVX213BI7uwd3edmWHUdjuw1ZoHsDOpPfOP4TxpIvMDKwvRXHO0CJmVQzmwz5sedHO7YIKObFZzdo5PfKnTTjvwMeZo_j4lnmSw_kjOLsRVj6G7WbWhKfAvOPKVbnLsY0XsnRB80o4cl6jMWFlAtnALuN7JHMqqHFh1hjMxGGDHDbEYYNd3q26XEYYj-uI92gNTMxEXakAc0jFTLmWuUjgbUdBSgC_7G2fy4DzJzitDcrdDUrcvH6zeVhn0yuPhVmLegKvVs3UkwLimjBbEo3UOTlBswSeRPlY_RhaJbzgJU_g_SAw68H_-9fPrp_KHuzgfjNfT07Hz-EOmo06PkTtwnY7X4YXaJq17mW3Bxj8uOlN9xesoUbK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+diagnostic+ultrasound+of+triple-negative+breast+cancer&rft.jtitle=Breast+cancer+research+and+treatment&rft.au=Wu%2C+Tong&rft.au=Sultan%2C+Laith+R.&rft.au=Tian%2C+Jiawei&rft.au=Cary%2C+Theodore+W.&rft.date=2019-01-01&rft.pub=Springer+US&rft.issn=0167-6806&rft.eissn=1573-7217&rft.volume=173&rft.issue=2&rft.spage=365&rft.epage=373&rft_id=info:doi/10.1007%2Fs10549-018-4984-7&rft.externalDocID=10_1007_s10549_018_4984_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6806&client=summon