Impact of Image Enhancement Module for Analysis of Mammogram Images for Diagnostics of Breast Cancer

Breast cancer is widespread around the world and can be cured if diagnosed at an early stage. Digital mammograms are used as the most effective imaging modalities for the diagnosis of breast cancer. However, mammography images suffer from low contrast, background noise as well as contrast as non-coh...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 5; p. 1868
Main Authors Almalki, Yassir Edrees, Soomro, Toufique Ahmed, Irfan, Muhammad, Alduraibi, Sharifa Khalid, Ali, Ahmed
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.02.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22051868

Cover

Abstract Breast cancer is widespread around the world and can be cured if diagnosed at an early stage. Digital mammograms are used as the most effective imaging modalities for the diagnosis of breast cancer. However, mammography images suffer from low contrast, background noise as well as contrast as non-coherency among the regions, and these factors makes breast cancer diagnosis challenging. These problems can be overcome by using a new image enhancement technique. The objective of this research work is to enhance mammography images to improve the overall process of segmentation and classification of breast cancer diagnosis. We proposed the image enhancement for mammogram images, as well as the ablation of the pectoral muscle. The image enhancement technique involves several steps. In the first step, we process the mammography images in three channels (red, green and blue), the second step is based on the uniformity of the background on morphological operations, and the third step is to obtain a well-contrasted image using principal component analysis (PCA). The fourth step is based on the removal of the pectoral muscle using a seed-based region growth technique, and the last step contains the coherence of the different regions of the image using a second order Gaussian Laplacian (LoG) and an oriented diffusion filter to obtain a much-improved contrast image. The proposed image enhancement technique is tested with our data collected from different hospitals in Qassim health cluster Qassim province Saudi Arabia, and it contains the five Breast Imaging and Reporting System (BI-RADS) categories and this database contained 11,194 images (the images contain carnio-caudal (CC) view and mediolateral oblique(MLO) view of mammography images), and we used approximately 700 images to validate our database. We have achieved improved performance in terms of peak signal-to-noise ratio, contrast, and effective measurement of enhancement (EME) as well as our proposed image enhancement technique outperforms existing image enhancement methods. This performance of our proposed method demonstrates the ability to improve the diagnostic performance of the computerized breast cancer detection method.
AbstractList Breast cancer is widespread around the world and can be cured if diagnosed at an early stage. Digital mammograms are used as the most effective imaging modalities for the diagnosis of breast cancer. However, mammography images suffer from low contrast, background noise as well as contrast as non-coherency among the regions, and these factors makes breast cancer diagnosis challenging. These problems can be overcome by using a new image enhancement technique. The objective of this research work is to enhance mammography images to improve the overall process of segmentation and classification of breast cancer diagnosis. We proposed the image enhancement for mammogram images, as well as the ablation of the pectoral muscle. The image enhancement technique involves several steps. In the first step, we process the mammography images in three channels (red, green and blue), the second step is based on the uniformity of the background on morphological operations, and the third step is to obtain a well-contrasted image using principal component analysis (PCA). The fourth step is based on the removal of the pectoral muscle using a seed-based region growth technique, and the last step contains the coherence of the different regions of the image using a second order Gaussian Laplacian (LoG) and an oriented diffusion filter to obtain a much-improved contrast image. The proposed image enhancement technique is tested with our data collected from different hospitals in Qassim health cluster Qassim province Saudi Arabia, and it contains the five Breast Imaging and Reporting System (BI-RADS) categories and this database contained 11,194 images (the images contain carnio-caudal (CC) view and mediolateral oblique(MLO) view of mammography images), and we used approximately 700 images to validate our database. We have achieved improved performance in terms of peak signal-to-noise ratio, contrast, and effective measurement of enhancement (EME) as well as our proposed image enhancement technique outperforms existing image enhancement methods. This performance of our proposed method demonstrates the ability to improve the diagnostic performance of the computerized breast cancer detection method.Breast cancer is widespread around the world and can be cured if diagnosed at an early stage. Digital mammograms are used as the most effective imaging modalities for the diagnosis of breast cancer. However, mammography images suffer from low contrast, background noise as well as contrast as non-coherency among the regions, and these factors makes breast cancer diagnosis challenging. These problems can be overcome by using a new image enhancement technique. The objective of this research work is to enhance mammography images to improve the overall process of segmentation and classification of breast cancer diagnosis. We proposed the image enhancement for mammogram images, as well as the ablation of the pectoral muscle. The image enhancement technique involves several steps. In the first step, we process the mammography images in three channels (red, green and blue), the second step is based on the uniformity of the background on morphological operations, and the third step is to obtain a well-contrasted image using principal component analysis (PCA). The fourth step is based on the removal of the pectoral muscle using a seed-based region growth technique, and the last step contains the coherence of the different regions of the image using a second order Gaussian Laplacian (LoG) and an oriented diffusion filter to obtain a much-improved contrast image. The proposed image enhancement technique is tested with our data collected from different hospitals in Qassim health cluster Qassim province Saudi Arabia, and it contains the five Breast Imaging and Reporting System (BI-RADS) categories and this database contained 11,194 images (the images contain carnio-caudal (CC) view and mediolateral oblique(MLO) view of mammography images), and we used approximately 700 images to validate our database. We have achieved improved performance in terms of peak signal-to-noise ratio, contrast, and effective measurement of enhancement (EME) as well as our proposed image enhancement technique outperforms existing image enhancement methods. This performance of our proposed method demonstrates the ability to improve the diagnostic performance of the computerized breast cancer detection method.
Breast cancer is widespread around the world and can be cured if diagnosed at an early stage. Digital mammograms are used as the most effective imaging modalities for the diagnosis of breast cancer. However, mammography images suffer from low contrast, background noise as well as contrast as non-coherency among the regions, and these factors makes breast cancer diagnosis challenging. These problems can be overcome by using a new image enhancement technique. The objective of this research work is to enhance mammography images to improve the overall process of segmentation and classification of breast cancer diagnosis. We proposed the image enhancement for mammogram images, as well as the ablation of the pectoral muscle. The image enhancement technique involves several steps. In the first step, we process the mammography images in three channels (red, green and blue), the second step is based on the uniformity of the background on morphological operations, and the third step is to obtain a well-contrasted image using principal component analysis (PCA). The fourth step is based on the removal of the pectoral muscle using a seed-based region growth technique, and the last step contains the coherence of the different regions of the image using a second order Gaussian Laplacian (LoG) and an oriented diffusion filter to obtain a much-improved contrast image. The proposed image enhancement technique is tested with our data collected from different hospitals in Qassim health cluster Qassim province Saudi Arabia, and it contains the five Breast Imaging and Reporting System (BI-RADS) categories and this database contained 11,194 images (the images contain carnio-caudal (CC) view and mediolateral oblique(MLO) view of mammography images), and we used approximately 700 images to validate our database. We have achieved improved performance in terms of peak signal-to-noise ratio, contrast, and effective measurement of enhancement (EME) as well as our proposed image enhancement technique outperforms existing image enhancement methods. This performance of our proposed method demonstrates the ability to improve the diagnostic performance of the computerized breast cancer detection method.
Audience Academic
Author Ali, Ahmed
Irfan, Muhammad
Almalki, Yassir Edrees
Alduraibi, Sharifa Khalid
Soomro, Toufique Ahmed
AuthorAffiliation 2 Department of Electronic Engineering, Larkana Campus, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah 67450, Pakistan; etoufique@yahoo.com
5 Eletrical Engineering Department, Sukkur IBA University, Sukkur 65200, Pakistan; ahmedali.shah@iba-suk.edu.pk
4 Department of Radiology, College of Medicine, Qassim University, Buraidah 52571, Saudi Arabia; salduraibi@qu.edu.sa
1 Department of Medicine, Division of Radiology, Medical College, Najran University, Najran 61441, Saudi Arabia
3 Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia; miditta@nu.edu.sa
AuthorAffiliation_xml – name: 5 Eletrical Engineering Department, Sukkur IBA University, Sukkur 65200, Pakistan; ahmedali.shah@iba-suk.edu.pk
– name: 3 Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia; miditta@nu.edu.sa
– name: 4 Department of Radiology, College of Medicine, Qassim University, Buraidah 52571, Saudi Arabia; salduraibi@qu.edu.sa
– name: 1 Department of Medicine, Division of Radiology, Medical College, Najran University, Najran 61441, Saudi Arabia
– name: 2 Department of Electronic Engineering, Larkana Campus, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah 67450, Pakistan; etoufique@yahoo.com
Author_xml – sequence: 1
  givenname: Yassir Edrees
  orcidid: 0000-0001-7046-5311
  surname: Almalki
  fullname: Almalki, Yassir Edrees
– sequence: 2
  givenname: Toufique Ahmed
  orcidid: 0000-0002-8560-0026
  surname: Soomro
  fullname: Soomro, Toufique Ahmed
– sequence: 3
  givenname: Muhammad
  orcidid: 0000-0003-4161-6875
  surname: Irfan
  fullname: Irfan, Muhammad
– sequence: 4
  givenname: Sharifa Khalid
  orcidid: 0000-0003-0810-9337
  surname: Alduraibi
  fullname: Alduraibi, Sharifa Khalid
– sequence: 5
  givenname: Ahmed
  orcidid: 0000-0002-2645-7258
  surname: Ali
  fullname: Ali, Ahmed
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35271015$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URNuFA38AReICSNv6M3YulZalwEqtuMDZmjhO6lUSL3YC2n-Ps1uWblUhH2yNn3nteWfO0Unve4vQa4IvGCvwZaQUC6Jy9QydEU75XKXAyYPzKTqPcY0xZYypF-iUCSoJJuIMVatuA2bIfJ2tOmhsdt3fQW9sZ_shu_XV2Nqs9iFb9NBuo4sTeAtd55sA3T4l7oBPDprex8GZHfMxWIhDtpy0wkv0vIY22lf3-wz9-Hz9ffl1fvPty2q5uJkbwfJhXomaM6Cm4DlXdUFFzQivDFhJbaEqpnjBwOYcGJcVl6qWkGrg1BADJasLNkOrvW7lYa03wXUQttqD07uAD42GkH7YWl2WuRXCEi5IyUGKkskCC2ZonuNy8mmGPuy1xn4D29_QtgdBgvVkuz7YnuCrPbwZy85WJpkXoD36wfFN7-50439pVRCBxSTw7l4g-J-jjYPuXDS2baG3foya5kxJQgqFE_r2Ebr2Y0jt2VFSKqmo-Ec1kKp1fe3Tu2YS1QupSD51f3r24gkqrcp2zqQhq12KHyW8eVjoocK_A5WA93vABB9jsPV_Xbt8xBo3wOD85JFrn8j4Ay2h5gs
CitedBy_id crossref_primary_10_1002_cpe_7444
crossref_primary_10_1016_j_bspc_2024_107397
crossref_primary_10_1109_ACCESS_2024_3349477
crossref_primary_10_3390_app12168243
crossref_primary_10_1016_j_measurement_2024_116258
crossref_primary_10_1007_s11547_022_01521_5
crossref_primary_10_1007_s41870_023_01308_5
crossref_primary_10_1097_HP_0000000000001669
crossref_primary_10_3390_cancers14143442
crossref_primary_10_3390_app142210315
crossref_primary_10_1007_s00521_024_09721_y
crossref_primary_10_1007_s11042_023_18029_3
crossref_primary_10_29407_gj_v8i1_21601
Cites_doi 10.3322/caac.21412
10.1016/j.acra.2016.09.010
10.1109/PACRIM.2007.4313303
10.1016/0169-2607(96)01724-5
10.1109/TMI.2010.2064333
10.1109/TMI.2004.830529
10.1118/1.2188080
10.1002/9780470590416
10.1109/EURCON.2009.5167827
10.1007/s10278-009-9240-6
10.1631/jzus.C0910025
10.1016/j.compbiomed.2018.03.011
10.1007/s10278-007-9035-6
10.1016/j.imu.2019.01.001
10.1117/12.503210
10.1109/BMEI.2012.6513144
10.1016/j.gyobfe.2005.04.006
10.1007/978-94-011-5318-8_16
10.1016/j.compmedimag.2004.06.005
10.1007/s10552-011-9804-x
10.1007/s11042-018-6089-z
10.1016/S0031-3203(03)00192-4
10.9756/BIJAIP.8352
10.1002/ijc.29210
10.1016/S1470-2045(13)70567-9
10.1109/TIM.2010.2051060
10.1016/j.ijleo.2011.05.017
10.1016/j.eswa.2009.10.016
10.3322/canjclin.56.3.168
10.1007/11492542_58
10.1007/s10851-013-0446-3
10.1007/s10278-011-9421-y
10.1016/j.jfranklin.2006.09.003
10.1109/ANZIIS.2001.974051
10.1186/s13640-016-0105-x
10.1007/BF02344632
10.1016/j.cmpb.2011.05.007
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s22051868
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef

MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_bb6e55e1451b4a75b379053c2660b023
10.3390/s22051868
PMC8915058
A781610158
35271015
10_3390_s22051868
Genre Journal Article
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GrantInformation_xml – fundername: Najran University
  grantid: NU/IFC/ENT/01/009
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c536t-d5f43a2c94648f925f314dcae72e98d38493ae64a347d478f7a01542c1cab3f93
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:42:20 EDT 2025
Sun Oct 26 03:59:08 EDT 2025
Tue Sep 30 16:48:32 EDT 2025
Fri Sep 05 08:42:30 EDT 2025
Tue Oct 07 07:26:32 EDT 2025
Mon Oct 20 23:15:43 EDT 2025
Mon Oct 20 17:11:31 EDT 2025
Mon Jul 21 06:04:13 EDT 2025
Thu Oct 16 04:36:31 EDT 2025
Thu Apr 24 23:09:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords mammograph images
image enhancement
seed-based region growth
image segmentation
principal component analysis (PCA)
breast cancer
morphological operations
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-d5f43a2c94648f925f314dcae72e98d38493ae64a347d478f7a01542c1cab3f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4161-6875
0000-0003-0810-9337
0000-0002-2645-7258
0000-0002-8560-0026
0000-0001-7046-5311
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22051868
PMID 35271015
PQID 2637787825
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_bb6e55e1451b4a75b379053c2660b023
unpaywall_primary_10_3390_s22051868
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8915058
proquest_miscellaneous_2638711980
proquest_journals_2637787825
gale_infotracmisc_A781610158
gale_infotracacademiconefile_A781610158
pubmed_primary_35271015
crossref_primary_10_3390_s22051868
crossref_citationtrail_10_3390_s22051868
PublicationCentury 2000
PublicationDate 20220226
PublicationDateYYYYMMDD 2022-02-26
PublicationDate_xml – month: 2
  year: 2022
  text: 20220226
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Smigal (ref_10) 2006; 56
Kaitouni (ref_37) 2018; 77
Blakely (ref_8) 2011; 22
ref_14
Lee (ref_9) 2017; 24
Ponraj (ref_12) 2011; 2
Hu (ref_31) 2011; 60
Prabhpreet (ref_43) 2019; 16
ref_11
ref_33
Shi (ref_35) 2018; 96
Kwok (ref_24) 2004; 23
Suissa (ref_7) 2005; 33
Meenakshi (ref_36) 2018; 8
Maitra (ref_34) 2012; 107
ref_19
Podgornova (ref_38) 2019; 2391
ref_18
Chakraborty (ref_32) 2011; 25
ref_17
Fehrenbach (ref_46) 2014; 49
DeSantis (ref_4) 2014; 67
ref_15
Kinoshita (ref_29) 2008; 21
Rangayyan (ref_13) 2007; 344
Jianmin (ref_42) 2005; 29
Raba (ref_26) 2005; 3523
Ming (ref_41) 2012; 123
Gupta (ref_5) 2006; 33
Ferlay (ref_1) 2015; 136
Ferrari (ref_25) 2004; 42
ref_23
ref_45
ref_22
ref_21
Wang (ref_30) 2010; 11
ref_40
Marin (ref_44) 2011; 30
Verma (ref_6) 2010; 37
Cheng (ref_39) 2003; 36
ref_2
Fan (ref_3) 2014; 15
ref_28
ref_27
Mendez (ref_16) 1996; 49
Camilus (ref_20) 1998; 23
Khan (ref_47) 2016; 2016
References_xml – ident: ref_28
– volume: 67
  start-page: 439
  year: 2014
  ident: ref_4
  article-title: Breast cancer statistics, 2017, Racial disparity in mortality by state
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21412
– volume: 24
  start-page: 60
  year: 2017
  ident: ref_9
  article-title: Inter-reader variability in the use of BI-RADS descriptors for suspicious findings on diagnostic mammography: A multi-institution study of 10 academic radiologists
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2016.09.010
– ident: ref_27
  doi: 10.1109/PACRIM.2007.4313303
– volume: 49
  start-page: 253
  year: 1996
  ident: ref_16
  article-title: Automatic detection of breast border and nipple in digital mammograms
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/0169-2607(96)01724-5
– volume: 30
  start-page: 146
  year: 2011
  ident: ref_44
  article-title: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2064333
– volume: 23
  start-page: 1129
  year: 2004
  ident: ref_24
  article-title: Automatic pectoral muscle segmentation on mediolateral oblique view mammograms
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.830529
– volume: 33
  start-page: 1810
  year: 2006
  ident: ref_5
  article-title: Breast cancer CADx based on BI-RADS™ descriptors from two mammographic views
  publication-title: Med. Phys.
  doi: 10.1118/1.2188080
– ident: ref_11
– ident: ref_14
  doi: 10.1002/9780470590416
– ident: ref_18
  doi: 10.1109/EURCON.2009.5167827
– volume: 23
  start-page: 562
  year: 1998
  ident: ref_20
  article-title: Computer-aided identification of the pectoral muscle in digitized mammograms
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-009-9240-6
– volume: 11
  start-page: 111
  year: 2010
  ident: ref_30
  article-title: Automatic pectoral muscle boundary detection in mammograms based on markov chain and active contour model
  publication-title: J. Zhejiang Univ. Sci. C
  doi: 10.1631/jzus.C0910025
– volume: 96
  start-page: 178
  year: 2018
  ident: ref_35
  article-title: A hierarchical pipeline for breast boundary segmentation and calcification detection in mammograms
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.011
– volume: 21
  start-page: 37
  year: 2008
  ident: ref_29
  article-title: Radon-domain detection of the nipple and the pectoral muscle in mammograms
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-007-9035-6
– ident: ref_40
– volume: 16
  start-page: 100151
  year: 2019
  ident: ref_43
  article-title: Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2019.01.001
– ident: ref_23
  doi: 10.1117/12.503210
– ident: ref_33
  doi: 10.1109/BMEI.2012.6513144
– volume: 33
  start-page: 338
  year: 2005
  ident: ref_7
  article-title: Presentation of the French translation of the Breast Imaging Reporting System and Data System (BI-RADS)
  publication-title: Gynecol. Obstet. Fertil.
  doi: 10.1016/j.gyobfe.2005.04.006
– ident: ref_19
  doi: 10.1007/978-94-011-5318-8_16
– volume: 29
  start-page: 83
  year: 2005
  ident: ref_42
  article-title: Integration of fuzzy logic and structure tensor towards mammogram contrast enhancement histogram modification framework
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2004.06.005
– volume: 22
  start-page: 1307
  year: 2011
  ident: ref_8
  article-title: Social inequalities or inequities in cancer incidence? Repeated census-cancer cohort studies. New Zealand 1981–1986 to 2001–2004
  publication-title: Cancer Causes Control
  doi: 10.1007/s10552-011-9804-x
– volume: 77
  start-page: 31347
  year: 2018
  ident: ref_37
  article-title: A breast tumors segmentation and elimination of pectoral muscle based on hidden Markov and region growing
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6089-z
– ident: ref_21
– volume: 36
  start-page: 2967
  year: 2003
  ident: ref_39
  article-title: Computer-aided detection and classification of microcalcifications in mammograms: A survey
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(03)00192-4
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_36
  article-title: Mammogram image segmentation by watershed algorithm and classification through k-NN classifier
  publication-title: Bonfring Int. J. Adv. Image Process.
  doi: 10.9756/BIJAIP.8352
– volume: 136
  start-page: E359
  year: 2015
  ident: ref_1
  article-title: Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.29210
– volume: 15
  start-page: e279
  year: 2014
  ident: ref_3
  article-title: Breast cancer in China
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(13)70567-9
– volume: 60
  start-page: 462
  year: 2011
  ident: ref_31
  article-title: Detection of suspicious lesions by adaptive thresholding based on multiresolution analysis in mammograms
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2010.2051060
– volume: 2391
  start-page: 121
  year: 2019
  ident: ref_38
  article-title: Comparative analysis of segmentation algorithms for the allocation of microcalcifications on mammograms
  publication-title: Inf. Technol. Nanotechnol.
– volume: 123
  start-page: 511
  year: 2012
  ident: ref_41
  article-title: Improving histogram-based image contrast enhancement using gray-level information histogram with application to X-ray images
  publication-title: Optik
  doi: 10.1016/j.ijleo.2011.05.017
– ident: ref_2
– volume: 2
  start-page: 656
  year: 2011
  ident: ref_12
  article-title: A survey on the preprocessing techniques of mammogram for the detection of breast cancer
  publication-title: J. Emerg. Trends Comput. Inf. Sci.
– volume: 37
  start-page: 3344
  year: 2010
  ident: ref_6
  article-title: Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.10.016
– volume: 56
  start-page: 168
  year: 2006
  ident: ref_10
  article-title: Trends in breast cancer by race and ethnicity: Update
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/canjclin.56.3.168
– volume: 3523
  start-page: 471
  year: 2005
  ident: ref_26
  article-title: Breast segmentation with pectoral muscle suppression on digital mammograms
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/11492542_58
– ident: ref_15
– volume: 49
  start-page: 123
  year: 2014
  ident: ref_46
  article-title: Sparse non-negative stencils for anisotropic diffusion
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-013-0446-3
– volume: 25
  start-page: 387
  year: 2011
  ident: ref_32
  article-title: Automatic detection of pectoral muscle using average gradient and shape based feature
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-011-9421-y
– ident: ref_17
– ident: ref_45
– volume: 344
  start-page: 312
  year: 2007
  ident: ref_13
  article-title: A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2006.09.003
– ident: ref_22
  doi: 10.1109/ANZIIS.2001.974051
– volume: 2016
  start-page: 6
  year: 2016
  ident: ref_47
  article-title: Stopping criterion for linear anisotropic image diffusion: A fingerprint image enhancement case
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/s13640-016-0105-x
– volume: 42
  start-page: 201
  year: 2004
  ident: ref_25
  article-title: Identification of the breast boundary in mammograms using active contour models
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02344632
– volume: 107
  start-page: 175
  year: 2012
  ident: ref_34
  article-title: Technique for preprocessing of digital mammogram
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2011.05.007
SSID ssj0023338
Score 2.497012
Snippet Breast cancer is widespread around the world and can be cured if diagnosed at an early stage. Digital mammograms are used as the most effective imaging...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1868
SubjectTerms Algorithms
Breast cancer
Breast Neoplasms - diagnostic imaging
Cancer
Diagnosis
Female
Humans
Image Enhancement
image segmentation
mammograph images
Mammography
Mammography - methods
Medical imaging equipment
Medical screening
Methods
morphological operations
Noise
Pectoralis Muscles - diagnostic imaging
principal component analysis (PCA)
Womens health
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SZQkHlIcImajd_HtrRqkZYTlXqzxo6tIi3ZqrsrxL9nJslGGx7iwjWeOLZnxjMTzXzD2LuQcmOirMtUaVdKyK6EqFyZrUkgTLKyq-Kff9ZnF_LTpbrcafVFOWE9PHB_cAch6KRUooayQYJRQRCklIhoWKqABodu38q6bTA1hFoCI68eR0hgUH-wonJSAoafWJ8OpP_3q3jHFv2aJ3l7017Dj--wWOwYodP77N7gPfLDftUP2K3UPmR3dzAFH7HmvKt75MvMz7_hZcFP2iviLP0F5PNls1kkjo4q36KREOEcUBopTat_ZdURfOyT8AjGmWiOKHt9zY9prpvH7OL05MvxWTm0UiijEnpdNipLAXV0UkubXa2ymMkmQjJ1crYRyBIBSUsQ0jTS2GyAnKs6ziIEkZ14wvbaZZueMd4IoJTVSiXCzqsNBA0BJ0XHQWowsmAftkfs44AzTu0uFh7jDeKGH7lRsDcj6XUPrvEnoiPi00hAeNjdA5QSP0iJ_5eUFOw9cdmT1uJiIgzFB7glwr_yh8ai64tbxs_tTyhR2-J0eCsnftD2la-1MHjxYbBdsNfjML1JGWxtWm46GoxNZ85WBXvai9W4JXSCDc1eMDMRuMmepyPt16sOC9w69OhpWW9H0fz7UT7_H0f5gt2pqQSEyvr1Pttb32zSS3TM1uFVp4M_Ac__Mt8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9RADLbK9gF4QOUqgYLCIcFL1N3MZCZ5qKpu2apF2hVCVOpbNCdFWpJlDyH-PXaubrheM85kHHs8dmJ_BnijnbfS8DhyQ5FFXPksUibJIp9Kp5h0Ka-q-KczcX7JP1wlVzswa2thKK2ytYmVobaloW_kh7FgEpULA5rjxfeIukbR39W2hYZqWivYowpi7BbsxoSMNYDd8WT28VMXgjGMyGp8IYbB_uGKykwJML53KlXg_X-a6K0z6vf8ydubYqF-_lDz-dbhdLYH9xqvMjyp1eA-7LjiAdzdwhp8CPaiqocMSx9efEMjEk6Ka5I4fR0Mp6XdzF2IDmzYopQQ4VQh25S-Vd-yqgje18l5BO9MNGPKal-HpzTX8hFcnk0-n55HTYuFyCRMrCObeM5UbDIueOqzOPFsxK1RTsYuSy1DUTHlBFeMS8tl6qUipys2I6M08xl7DIOiLNwTCC1TlMo6TBxh6sVSaaE0TooOBRdK8gDeta84Nw3-OLXBmOcYh5A08k4aAbzqSBc16MbfiMYkp46AcLKrC-XyS95su1xr4ZLEUTtizZVMNCNAMmbQLRlqVIcA3pKUc9rNuBijmqIEZIlwsfITmaJLjCzj4w56lLgLTX-41ZO8sQKr_EZnA3jZDdOdlNlWuHJT0WDMOsrSYQD7tVp1LKFzLGn2AGRP4Xo890eKr9cVRniaoadPy3rdqea_X-XT_y_-GdyJqeiDCvnFAQzWy417jq7YWr9o9tcvBu0yJA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvEsDBYWHBJc02fiVnNC2tGqRtuLASuUUbMehFdtktZuA4Nczk3ijTQEJiev6szcTj-cRzXwm5JW2RS4NiwMbiTRgqkgDZXgaFIm0ikqbsLaLf3oqjmfs_Rk_c_ecrlxZJaTiF62Rxi6sADxYFMZxyENkdg8XefH2m_uUhNxY4K-ShF8nW4JDMD4iW7PTD5NPbU-Rm9zxCVFI7sMVtpXiMgMv1JL1_26SN3zS1XrJG025UD--q_l8wxkd3SGf12J0NShf95pa75mfVxge_0POu-S2C1T9SadZ98g1W94ntzboCx-Q_KRtsfSrwj-5BLvkH5bnqET4wdGfVnkztz7ExP6a-ASBUwWKjxVh3ZRVC3jX1fshYzRi9rFQvvYPcK3lQzI7Ovx4cBy4WxsCw6mog5wXjKrYpEywpEhjXtAxy42yMrZpklPYfaqsYIoymTOZFFJhHBebsVGaFindJqOyKu0O8XOqsDo24hZp-mKptFAaFoV3wYSSzCNv1ruYGUdpjjdrzDNIbXDDs37DPfKihy46Ho8_gfZRFXoAUm-3P1TLL5k7yZnWwnJu8YZjzZTkmiLHGTUQ6UQaIiCPvEZFytBAwMMY5focQCSk2somMoEoG0SGv9sdIOFgm-HwWhUzZ1hWWSyoBBsLeb1HnvfDOBOL5UpbNS0G0uBxmkQeedRpbi8SxNsSV_eIHOj0QObhSHlx3tKOJykkD_hYL3vt__urfPxPqCfkZoztJEgRIHbJqF429ikEebV-5g7yL-NmSVg
  priority: 102
  providerName: Unpaywall
Title Impact of Image Enhancement Module for Analysis of Mammogram Images for Diagnostics of Breast Cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/35271015
https://www.proquest.com/docview/2637787825
https://www.proquest.com/docview/2638711980
https://pubmed.ncbi.nlm.nih.gov/PMC8915058
https://www.mdpi.com/1424-8220/22/5/1868/pdf?version=1646129885
https://doaj.org/article/bb6e55e1451b4a75b379053c2660b023
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7t4wAcEG8CSxUeAi6BNnbs-IBQu7TsIrVaISqVU-Q4DosUkm4fgv33zOSlBhYuOcQTx-MZ2zPJzDcAL2KbJtJw37N9oTyuU-VpEygvDaXVTNqQl1n805k4mfNPi2CxB01Ycz2B6ytdO6onNV9lb35dXL7HBf-OPE502d-uKVmUYN9fLi88qidF_13r4hr7cIhnlqKiDlPe_l_wGXpmFc5Qt4fO6VSC-P-9Ve-cVX_GUV7b5kt9-VNn2c4hNbkFN2vr0h1W6nAb9mx-B27sYA7eheS0zIt0i9Q9_YGbiTvOz0ny9JXQnRbJNrMuGrJug1ZChFONTFIYV_XIuiT4UAXpEcwz0Ywoun3jHlNfq3swn4y_HJ94dakFzwRMbLwkSDnTvlFc8DBVfpCyAU-MttK3KkwYioxpK7hmXCZchqnUZHz5ZmB0zFLF7sNBXuT2IbgJ0xTS2g8sYev5UsdCx9gpGhZcaMkdeN1McWRqHHIqh5FF6I-QNKJWGg48a0mXFfjGVUQjklNLQHjZ5Y1i9S2ql18Ux8IGgaWyxDHXMogZAZMxg-ZJP0Z1cOAVSTkiPcPBGF0nJyBLhI8VDWWIpjGyjK876lDiajTd5kZPokaZI18wiRsjOuMOPG2b6UmKcMttsS1p0HcdqLDvwINKrVqW0EiW1LsDsqNwHZ67Lfn38xIrPFRo8dOwnreq-e-pfPT_wT-G6z4lf1BCvziCg81qa5-gSbaJe7AvFxKv4eRjDw5H49nZ5175eaNXrju8N5-dDb_-Bi1XOpA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWC9JD2UHSP0rRlN7QXITZJkdKhKLLCbuKcEsA3lqSopoArOV4Q5Kf6jZ3RFqvbLVdzRJOchTPSzBtC3lmfpcoJFvqeTEJhsiQ0LkrCLFbecOVjUVbxj07l4Fx8GUfjNfKzqYXBtMrGJpaGOi0cviPfYZIrEC4IaD5PL0PsGoVfV5sWGpVYHPvrKwjZ5p-GB8Df94wdHZ7tD8K6q0DoIi4XYRplghvmEiFFnCUsynhfpM54xXwSpxxWx42XwnChUqHiTBn0M5jrO2N5huBLYPLvCA62BPRHjW8CPA7xXoVexHnS25ljESvC0XfuvLI1wJ8XwMoN-Ht25sYyn5rrKzOZrFx9Rw_I_dpnpbuVkD0kaz5_RO6tIBk-JumwrLakRUaHP8BE0cP8AuUJ3z3SUZEuJ56Ce0wbDBQkHBk4VEwOqx6ZlwQHVeofgkcjzR7mzC_oPs41e0LOb-Won5L1vMj9JqEpN5go24s8IvYxZaw0FiYFd0VIo0RAPjZHrF2Nbo5NNiYaohzkhm65EZA3Lem0gvT4G9Ee8qklQBTu8odi9k3XSq2tlT6KPDY7tsKoyHKEO-MOnJ6eBXEIyAfkskZbAYtxpi55gC0h6pbeVTE43LBl-LvtDiXouOsON3Kiaxsz1zcaEZDX7TA-iXlzuS-WJQ1ExP0k7gXkWSVW7ZbA9VY4e0BUR-A6e-6O5N8vSgTyOIE4Apf1thXNfx_l1v8X_4psDM5GJ_pkeHr8nNxlWF6CkAFym6wvZkv_Apy-hX1ZaholX29btX8Br9dn_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqInE8IG4CBcIleIl213bs5AGhtttVl7IVD1TaN2M7NkVakmUPVf1r_DpmcnXD9dbX9cRrew7PJDPfEPLKOJ9Jy2nk-iKNuPZppG2cRj6RTjPpEl5W8U-OxeEJ_zCNp1vkZ1MLg2mVjU0sDXVWWHxH3qOCSRAuCGh6vk6L-DQcvZ__iLCDFH5pbdppVCJy5M7PIHxbvhsPgdevKR0dfN4_jOoOA5GNmVhFWew509SmXPDEpzT2bMAzq52kLk0yBitl2gmuGZcZl4mXGn0OagdWG-YRiAnM_xXJWIrphHJ6EewxiP0qJCMY7PeWWNCK0PSd-69sE_DnZbBxG_6eqXltnc_1-ZmezTauwdEtcrP2X8PdSuBuky2X3yE3NlAN75JsXFZehoUPx9_BXIUH-SnKFr6HDCdFtp65EFzlsMFDQcKJhkPFRLHqkWVJMKzSABFIGmn2MH9-Fe7jXIt75ORSjvo-2c6L3D0kYcY0Js32Y4fofVRqI7SBScF14UJLHpC3zRErWyOdY8ONmYKIB7mhWm4E5EVLOq_gPf5GtId8agkQkbv8oVh8VbWCK2OEi2OHjY8N1zI2DKHPmAUHqG9AHALyBrms0G7AYqyuyx9gS4jApXZlAs43bBn-bqdDCfpuu8ONnKja3izVhXYE5Hk7jE9iDl3uinVJA9HxIE36AXlQiVW7JXDDJc4eENkRuM6euyP5t9MSjTxJIabAZb1sRfPfR_no_4t_Rq6CUquP4-Ojx-Q6xUoTRA8QO2R7tVi7J-D_rczTUtFC8uWyNfsXzipsQg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvEsDBYWHBJc02fiVnNC2tGqRtuLASuUUbMehFdtktZuA4Nczk3ijTQEJiev6szcTj-cRzXwm5JW2RS4NiwMbiTRgqkgDZXgaFIm0ikqbsLaLf3oqjmfs_Rk_c_ecrlxZJaTiF62Rxi6sADxYFMZxyENkdg8XefH2m_uUhNxY4K-ShF8nW4JDMD4iW7PTD5NPbU-Rm9zxCVFI7sMVtpXiMgMv1JL1_26SN3zS1XrJG025UD--q_l8wxkd3SGf12J0NShf95pa75mfVxge_0POu-S2C1T9SadZ98g1W94ntzboCx-Q_KRtsfSrwj-5BLvkH5bnqET4wdGfVnkztz7ExP6a-ASBUwWKjxVh3ZRVC3jX1fshYzRi9rFQvvYPcK3lQzI7Ovx4cBy4WxsCw6mog5wXjKrYpEywpEhjXtAxy42yMrZpklPYfaqsYIoymTOZFFJhHBebsVGaFindJqOyKu0O8XOqsDo24hZp-mKptFAaFoV3wYSSzCNv1ruYGUdpjjdrzDNIbXDDs37DPfKihy46Ho8_gfZRFXoAUm-3P1TLL5k7yZnWwnJu8YZjzZTkmiLHGTUQ6UQaIiCPvEZFytBAwMMY5focQCSk2somMoEoG0SGv9sdIOFgm-HwWhUzZ1hWWSyoBBsLeb1HnvfDOBOL5UpbNS0G0uBxmkQeedRpbi8SxNsSV_eIHOj0QObhSHlx3tKOJykkD_hYL3vt__urfPxPqCfkZoztJEgRIHbJqF429ikEebV-5g7yL-NmSVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Image+Enhancement+Module+for+Analysis+of+Mammogram+Images+for+Diagnostics+of+Breast+Cancer&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yassir+Edrees+Almalki&rft.au=Toufique+Ahmed+Soomro&rft.au=Muhammad+Irfan&rft.au=Sharifa+Khalid+Alduraibi&rft.date=2022-02-26&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=5&rft.spage=1868&rft_id=info:doi/10.3390%2Fs22051868&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon