Impact of Image Enhancement Module for Analysis of Mammogram Images for Diagnostics of Breast Cancer
Breast cancer is widespread around the world and can be cured if diagnosed at an early stage. Digital mammograms are used as the most effective imaging modalities for the diagnosis of breast cancer. However, mammography images suffer from low contrast, background noise as well as contrast as non-coh...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 22; no. 5; p. 1868 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
26.02.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s22051868 |
Cover
| Abstract | Breast cancer is widespread around the world and can be cured if diagnosed at an early stage. Digital mammograms are used as the most effective imaging modalities for the diagnosis of breast cancer. However, mammography images suffer from low contrast, background noise as well as contrast as non-coherency among the regions, and these factors makes breast cancer diagnosis challenging. These problems can be overcome by using a new image enhancement technique. The objective of this research work is to enhance mammography images to improve the overall process of segmentation and classification of breast cancer diagnosis. We proposed the image enhancement for mammogram images, as well as the ablation of the pectoral muscle. The image enhancement technique involves several steps. In the first step, we process the mammography images in three channels (red, green and blue), the second step is based on the uniformity of the background on morphological operations, and the third step is to obtain a well-contrasted image using principal component analysis (PCA). The fourth step is based on the removal of the pectoral muscle using a seed-based region growth technique, and the last step contains the coherence of the different regions of the image using a second order Gaussian Laplacian (LoG) and an oriented diffusion filter to obtain a much-improved contrast image. The proposed image enhancement technique is tested with our data collected from different hospitals in Qassim health cluster Qassim province Saudi Arabia, and it contains the five Breast Imaging and Reporting System (BI-RADS) categories and this database contained 11,194 images (the images contain carnio-caudal (CC) view and mediolateral oblique(MLO) view of mammography images), and we used approximately 700 images to validate our database. We have achieved improved performance in terms of peak signal-to-noise ratio, contrast, and effective measurement of enhancement (EME) as well as our proposed image enhancement technique outperforms existing image enhancement methods. This performance of our proposed method demonstrates the ability to improve the diagnostic performance of the computerized breast cancer detection method. |
|---|---|
| AbstractList | Breast cancer is widespread around the world and can be cured if diagnosed at an early stage. Digital mammograms are used as the most effective imaging modalities for the diagnosis of breast cancer. However, mammography images suffer from low contrast, background noise as well as contrast as non-coherency among the regions, and these factors makes breast cancer diagnosis challenging. These problems can be overcome by using a new image enhancement technique. The objective of this research work is to enhance mammography images to improve the overall process of segmentation and classification of breast cancer diagnosis. We proposed the image enhancement for mammogram images, as well as the ablation of the pectoral muscle. The image enhancement technique involves several steps. In the first step, we process the mammography images in three channels (red, green and blue), the second step is based on the uniformity of the background on morphological operations, and the third step is to obtain a well-contrasted image using principal component analysis (PCA). The fourth step is based on the removal of the pectoral muscle using a seed-based region growth technique, and the last step contains the coherence of the different regions of the image using a second order Gaussian Laplacian (LoG) and an oriented diffusion filter to obtain a much-improved contrast image. The proposed image enhancement technique is tested with our data collected from different hospitals in Qassim health cluster Qassim province Saudi Arabia, and it contains the five Breast Imaging and Reporting System (BI-RADS) categories and this database contained 11,194 images (the images contain carnio-caudal (CC) view and mediolateral oblique(MLO) view of mammography images), and we used approximately 700 images to validate our database. We have achieved improved performance in terms of peak signal-to-noise ratio, contrast, and effective measurement of enhancement (EME) as well as our proposed image enhancement technique outperforms existing image enhancement methods. This performance of our proposed method demonstrates the ability to improve the diagnostic performance of the computerized breast cancer detection method.Breast cancer is widespread around the world and can be cured if diagnosed at an early stage. Digital mammograms are used as the most effective imaging modalities for the diagnosis of breast cancer. However, mammography images suffer from low contrast, background noise as well as contrast as non-coherency among the regions, and these factors makes breast cancer diagnosis challenging. These problems can be overcome by using a new image enhancement technique. The objective of this research work is to enhance mammography images to improve the overall process of segmentation and classification of breast cancer diagnosis. We proposed the image enhancement for mammogram images, as well as the ablation of the pectoral muscle. The image enhancement technique involves several steps. In the first step, we process the mammography images in three channels (red, green and blue), the second step is based on the uniformity of the background on morphological operations, and the third step is to obtain a well-contrasted image using principal component analysis (PCA). The fourth step is based on the removal of the pectoral muscle using a seed-based region growth technique, and the last step contains the coherence of the different regions of the image using a second order Gaussian Laplacian (LoG) and an oriented diffusion filter to obtain a much-improved contrast image. The proposed image enhancement technique is tested with our data collected from different hospitals in Qassim health cluster Qassim province Saudi Arabia, and it contains the five Breast Imaging and Reporting System (BI-RADS) categories and this database contained 11,194 images (the images contain carnio-caudal (CC) view and mediolateral oblique(MLO) view of mammography images), and we used approximately 700 images to validate our database. We have achieved improved performance in terms of peak signal-to-noise ratio, contrast, and effective measurement of enhancement (EME) as well as our proposed image enhancement technique outperforms existing image enhancement methods. This performance of our proposed method demonstrates the ability to improve the diagnostic performance of the computerized breast cancer detection method. Breast cancer is widespread around the world and can be cured if diagnosed at an early stage. Digital mammograms are used as the most effective imaging modalities for the diagnosis of breast cancer. However, mammography images suffer from low contrast, background noise as well as contrast as non-coherency among the regions, and these factors makes breast cancer diagnosis challenging. These problems can be overcome by using a new image enhancement technique. The objective of this research work is to enhance mammography images to improve the overall process of segmentation and classification of breast cancer diagnosis. We proposed the image enhancement for mammogram images, as well as the ablation of the pectoral muscle. The image enhancement technique involves several steps. In the first step, we process the mammography images in three channels (red, green and blue), the second step is based on the uniformity of the background on morphological operations, and the third step is to obtain a well-contrasted image using principal component analysis (PCA). The fourth step is based on the removal of the pectoral muscle using a seed-based region growth technique, and the last step contains the coherence of the different regions of the image using a second order Gaussian Laplacian (LoG) and an oriented diffusion filter to obtain a much-improved contrast image. The proposed image enhancement technique is tested with our data collected from different hospitals in Qassim health cluster Qassim province Saudi Arabia, and it contains the five Breast Imaging and Reporting System (BI-RADS) categories and this database contained 11,194 images (the images contain carnio-caudal (CC) view and mediolateral oblique(MLO) view of mammography images), and we used approximately 700 images to validate our database. We have achieved improved performance in terms of peak signal-to-noise ratio, contrast, and effective measurement of enhancement (EME) as well as our proposed image enhancement technique outperforms existing image enhancement methods. This performance of our proposed method demonstrates the ability to improve the diagnostic performance of the computerized breast cancer detection method. |
| Audience | Academic |
| Author | Ali, Ahmed Irfan, Muhammad Almalki, Yassir Edrees Alduraibi, Sharifa Khalid Soomro, Toufique Ahmed |
| AuthorAffiliation | 2 Department of Electronic Engineering, Larkana Campus, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah 67450, Pakistan; etoufique@yahoo.com 5 Eletrical Engineering Department, Sukkur IBA University, Sukkur 65200, Pakistan; ahmedali.shah@iba-suk.edu.pk 4 Department of Radiology, College of Medicine, Qassim University, Buraidah 52571, Saudi Arabia; salduraibi@qu.edu.sa 1 Department of Medicine, Division of Radiology, Medical College, Najran University, Najran 61441, Saudi Arabia 3 Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia; miditta@nu.edu.sa |
| AuthorAffiliation_xml | – name: 5 Eletrical Engineering Department, Sukkur IBA University, Sukkur 65200, Pakistan; ahmedali.shah@iba-suk.edu.pk – name: 3 Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia; miditta@nu.edu.sa – name: 4 Department of Radiology, College of Medicine, Qassim University, Buraidah 52571, Saudi Arabia; salduraibi@qu.edu.sa – name: 1 Department of Medicine, Division of Radiology, Medical College, Najran University, Najran 61441, Saudi Arabia – name: 2 Department of Electronic Engineering, Larkana Campus, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah 67450, Pakistan; etoufique@yahoo.com |
| Author_xml | – sequence: 1 givenname: Yassir Edrees orcidid: 0000-0001-7046-5311 surname: Almalki fullname: Almalki, Yassir Edrees – sequence: 2 givenname: Toufique Ahmed orcidid: 0000-0002-8560-0026 surname: Soomro fullname: Soomro, Toufique Ahmed – sequence: 3 givenname: Muhammad orcidid: 0000-0003-4161-6875 surname: Irfan fullname: Irfan, Muhammad – sequence: 4 givenname: Sharifa Khalid orcidid: 0000-0003-0810-9337 surname: Alduraibi fullname: Alduraibi, Sharifa Khalid – sequence: 5 givenname: Ahmed orcidid: 0000-0002-2645-7258 surname: Ali fullname: Ali, Ahmed |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35271015$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhi1URNuFA38AReICSNv6M3YulZalwEqtuMDZmjhO6lUSL3YC2n-Ps1uWblUhH2yNn3nteWfO0Unve4vQa4IvGCvwZaQUC6Jy9QydEU75XKXAyYPzKTqPcY0xZYypF-iUCSoJJuIMVatuA2bIfJ2tOmhsdt3fQW9sZ_shu_XV2Nqs9iFb9NBuo4sTeAtd55sA3T4l7oBPDprex8GZHfMxWIhDtpy0wkv0vIY22lf3-wz9-Hz9ffl1fvPty2q5uJkbwfJhXomaM6Cm4DlXdUFFzQivDFhJbaEqpnjBwOYcGJcVl6qWkGrg1BADJasLNkOrvW7lYa03wXUQttqD07uAD42GkH7YWl2WuRXCEi5IyUGKkskCC2ZonuNy8mmGPuy1xn4D29_QtgdBgvVkuz7YnuCrPbwZy85WJpkXoD36wfFN7-50439pVRCBxSTw7l4g-J-jjYPuXDS2baG3foya5kxJQgqFE_r2Ebr2Y0jt2VFSKqmo-Ec1kKp1fe3Tu2YS1QupSD51f3r24gkqrcp2zqQhq12KHyW8eVjoocK_A5WA93vABB9jsPV_Xbt8xBo3wOD85JFrn8j4Ay2h5gs |
| CitedBy_id | crossref_primary_10_1002_cpe_7444 crossref_primary_10_1016_j_bspc_2024_107397 crossref_primary_10_1109_ACCESS_2024_3349477 crossref_primary_10_3390_app12168243 crossref_primary_10_1016_j_measurement_2024_116258 crossref_primary_10_1007_s11547_022_01521_5 crossref_primary_10_1007_s41870_023_01308_5 crossref_primary_10_1097_HP_0000000000001669 crossref_primary_10_3390_cancers14143442 crossref_primary_10_3390_app142210315 crossref_primary_10_1007_s00521_024_09721_y crossref_primary_10_1007_s11042_023_18029_3 crossref_primary_10_29407_gj_v8i1_21601 |
| Cites_doi | 10.3322/caac.21412 10.1016/j.acra.2016.09.010 10.1109/PACRIM.2007.4313303 10.1016/0169-2607(96)01724-5 10.1109/TMI.2010.2064333 10.1109/TMI.2004.830529 10.1118/1.2188080 10.1002/9780470590416 10.1109/EURCON.2009.5167827 10.1007/s10278-009-9240-6 10.1631/jzus.C0910025 10.1016/j.compbiomed.2018.03.011 10.1007/s10278-007-9035-6 10.1016/j.imu.2019.01.001 10.1117/12.503210 10.1109/BMEI.2012.6513144 10.1016/j.gyobfe.2005.04.006 10.1007/978-94-011-5318-8_16 10.1016/j.compmedimag.2004.06.005 10.1007/s10552-011-9804-x 10.1007/s11042-018-6089-z 10.1016/S0031-3203(03)00192-4 10.9756/BIJAIP.8352 10.1002/ijc.29210 10.1016/S1470-2045(13)70567-9 10.1109/TIM.2010.2051060 10.1016/j.ijleo.2011.05.017 10.1016/j.eswa.2009.10.016 10.3322/canjclin.56.3.168 10.1007/11492542_58 10.1007/s10851-013-0446-3 10.1007/s10278-011-9421-y 10.1016/j.jfranklin.2006.09.003 10.1109/ANZIIS.2001.974051 10.1186/s13640-016-0105-x 10.1007/BF02344632 10.1016/j.cmpb.2011.05.007 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s22051868 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) ProQuest Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_bb6e55e1451b4a75b379053c2660b023 10.3390/s22051868 PMC8915058 A781610158 35271015 10_3390_s22051868 |
| Genre | Journal Article |
| GeographicLocations | Saudi Arabia |
| GeographicLocations_xml | – name: Saudi Arabia |
| GrantInformation_xml | – fundername: Najran University grantid: NU/IFC/ENT/01/009 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c536t-d5f43a2c94648f925f314dcae72e98d38493ae64a347d478f7a01542c1cab3f93 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:42:20 EDT 2025 Sun Oct 26 03:59:08 EDT 2025 Tue Sep 30 16:48:32 EDT 2025 Fri Sep 05 08:42:30 EDT 2025 Tue Oct 07 07:26:32 EDT 2025 Mon Oct 20 23:15:43 EDT 2025 Mon Oct 20 17:11:31 EDT 2025 Mon Jul 21 06:04:13 EDT 2025 Thu Oct 16 04:36:31 EDT 2025 Thu Apr 24 23:09:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | mammograph images image enhancement seed-based region growth image segmentation principal component analysis (PCA) breast cancer morphological operations |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c536t-d5f43a2c94648f925f314dcae72e98d38493ae64a347d478f7a01542c1cab3f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4161-6875 0000-0003-0810-9337 0000-0002-2645-7258 0000-0002-8560-0026 0000-0001-7046-5311 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22051868 |
| PMID | 35271015 |
| PQID | 2637787825 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bb6e55e1451b4a75b379053c2660b023 unpaywall_primary_10_3390_s22051868 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8915058 proquest_miscellaneous_2638711980 proquest_journals_2637787825 gale_infotracmisc_A781610158 gale_infotracacademiconefile_A781610158 pubmed_primary_35271015 crossref_primary_10_3390_s22051868 crossref_citationtrail_10_3390_s22051868 |
| PublicationCentury | 2000 |
| PublicationDate | 20220226 |
| PublicationDateYYYYMMDD | 2022-02-26 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220226 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Smigal (ref_10) 2006; 56 Kaitouni (ref_37) 2018; 77 Blakely (ref_8) 2011; 22 ref_14 Lee (ref_9) 2017; 24 Ponraj (ref_12) 2011; 2 Hu (ref_31) 2011; 60 Prabhpreet (ref_43) 2019; 16 ref_11 ref_33 Shi (ref_35) 2018; 96 Kwok (ref_24) 2004; 23 Suissa (ref_7) 2005; 33 Meenakshi (ref_36) 2018; 8 Maitra (ref_34) 2012; 107 ref_19 Podgornova (ref_38) 2019; 2391 ref_18 Chakraborty (ref_32) 2011; 25 ref_17 Fehrenbach (ref_46) 2014; 49 DeSantis (ref_4) 2014; 67 ref_15 Kinoshita (ref_29) 2008; 21 Rangayyan (ref_13) 2007; 344 Jianmin (ref_42) 2005; 29 Raba (ref_26) 2005; 3523 Ming (ref_41) 2012; 123 Gupta (ref_5) 2006; 33 Ferlay (ref_1) 2015; 136 Ferrari (ref_25) 2004; 42 ref_23 ref_45 ref_22 ref_21 Wang (ref_30) 2010; 11 ref_40 Marin (ref_44) 2011; 30 Verma (ref_6) 2010; 37 Cheng (ref_39) 2003; 36 ref_2 Fan (ref_3) 2014; 15 ref_28 ref_27 Mendez (ref_16) 1996; 49 Camilus (ref_20) 1998; 23 Khan (ref_47) 2016; 2016 |
| References_xml | – ident: ref_28 – volume: 67 start-page: 439 year: 2014 ident: ref_4 article-title: Breast cancer statistics, 2017, Racial disparity in mortality by state publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21412 – volume: 24 start-page: 60 year: 2017 ident: ref_9 article-title: Inter-reader variability in the use of BI-RADS descriptors for suspicious findings on diagnostic mammography: A multi-institution study of 10 academic radiologists publication-title: Acad. Radiol. doi: 10.1016/j.acra.2016.09.010 – ident: ref_27 doi: 10.1109/PACRIM.2007.4313303 – volume: 49 start-page: 253 year: 1996 ident: ref_16 article-title: Automatic detection of breast border and nipple in digital mammograms publication-title: Comput. Methods Programs Biomed. doi: 10.1016/0169-2607(96)01724-5 – volume: 30 start-page: 146 year: 2011 ident: ref_44 article-title: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2064333 – volume: 23 start-page: 1129 year: 2004 ident: ref_24 article-title: Automatic pectoral muscle segmentation on mediolateral oblique view mammograms publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.830529 – volume: 33 start-page: 1810 year: 2006 ident: ref_5 article-title: Breast cancer CADx based on BI-RADS™ descriptors from two mammographic views publication-title: Med. Phys. doi: 10.1118/1.2188080 – ident: ref_11 – ident: ref_14 doi: 10.1002/9780470590416 – ident: ref_18 doi: 10.1109/EURCON.2009.5167827 – volume: 23 start-page: 562 year: 1998 ident: ref_20 article-title: Computer-aided identification of the pectoral muscle in digitized mammograms publication-title: J. Digit. Imaging doi: 10.1007/s10278-009-9240-6 – volume: 11 start-page: 111 year: 2010 ident: ref_30 article-title: Automatic pectoral muscle boundary detection in mammograms based on markov chain and active contour model publication-title: J. Zhejiang Univ. Sci. C doi: 10.1631/jzus.C0910025 – volume: 96 start-page: 178 year: 2018 ident: ref_35 article-title: A hierarchical pipeline for breast boundary segmentation and calcification detection in mammograms publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.03.011 – volume: 21 start-page: 37 year: 2008 ident: ref_29 article-title: Radon-domain detection of the nipple and the pectoral muscle in mammograms publication-title: J. Digit. Imaging doi: 10.1007/s10278-007-9035-6 – ident: ref_40 – volume: 16 start-page: 100151 year: 2019 ident: ref_43 article-title: Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2019.01.001 – ident: ref_23 doi: 10.1117/12.503210 – ident: ref_33 doi: 10.1109/BMEI.2012.6513144 – volume: 33 start-page: 338 year: 2005 ident: ref_7 article-title: Presentation of the French translation of the Breast Imaging Reporting System and Data System (BI-RADS) publication-title: Gynecol. Obstet. Fertil. doi: 10.1016/j.gyobfe.2005.04.006 – ident: ref_19 doi: 10.1007/978-94-011-5318-8_16 – volume: 29 start-page: 83 year: 2005 ident: ref_42 article-title: Integration of fuzzy logic and structure tensor towards mammogram contrast enhancement histogram modification framework publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2004.06.005 – volume: 22 start-page: 1307 year: 2011 ident: ref_8 article-title: Social inequalities or inequities in cancer incidence? Repeated census-cancer cohort studies. New Zealand 1981–1986 to 2001–2004 publication-title: Cancer Causes Control doi: 10.1007/s10552-011-9804-x – volume: 77 start-page: 31347 year: 2018 ident: ref_37 article-title: A breast tumors segmentation and elimination of pectoral muscle based on hidden Markov and region growing publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6089-z – ident: ref_21 – volume: 36 start-page: 2967 year: 2003 ident: ref_39 article-title: Computer-aided detection and classification of microcalcifications in mammograms: A survey publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(03)00192-4 – volume: 8 start-page: 1 year: 2018 ident: ref_36 article-title: Mammogram image segmentation by watershed algorithm and classification through k-NN classifier publication-title: Bonfring Int. J. Adv. Image Process. doi: 10.9756/BIJAIP.8352 – volume: 136 start-page: E359 year: 2015 ident: ref_1 article-title: Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012 publication-title: Int. J. Cancer doi: 10.1002/ijc.29210 – volume: 15 start-page: e279 year: 2014 ident: ref_3 article-title: Breast cancer in China publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(13)70567-9 – volume: 60 start-page: 462 year: 2011 ident: ref_31 article-title: Detection of suspicious lesions by adaptive thresholding based on multiresolution analysis in mammograms publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2010.2051060 – volume: 2391 start-page: 121 year: 2019 ident: ref_38 article-title: Comparative analysis of segmentation algorithms for the allocation of microcalcifications on mammograms publication-title: Inf. Technol. Nanotechnol. – volume: 123 start-page: 511 year: 2012 ident: ref_41 article-title: Improving histogram-based image contrast enhancement using gray-level information histogram with application to X-ray images publication-title: Optik doi: 10.1016/j.ijleo.2011.05.017 – ident: ref_2 – volume: 2 start-page: 656 year: 2011 ident: ref_12 article-title: A survey on the preprocessing techniques of mammogram for the detection of breast cancer publication-title: J. Emerg. Trends Comput. Inf. Sci. – volume: 37 start-page: 3344 year: 2010 ident: ref_6 article-title: Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.10.016 – volume: 56 start-page: 168 year: 2006 ident: ref_10 article-title: Trends in breast cancer by race and ethnicity: Update publication-title: CA Cancer J. Clin. doi: 10.3322/canjclin.56.3.168 – volume: 3523 start-page: 471 year: 2005 ident: ref_26 article-title: Breast segmentation with pectoral muscle suppression on digital mammograms publication-title: Lect. Notes Comput. Sci. doi: 10.1007/11492542_58 – ident: ref_15 – volume: 49 start-page: 123 year: 2014 ident: ref_46 article-title: Sparse non-negative stencils for anisotropic diffusion publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-013-0446-3 – volume: 25 start-page: 387 year: 2011 ident: ref_32 article-title: Automatic detection of pectoral muscle using average gradient and shape based feature publication-title: J. Digit. Imaging doi: 10.1007/s10278-011-9421-y – ident: ref_17 – ident: ref_45 – volume: 344 start-page: 312 year: 2007 ident: ref_13 article-title: A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2006.09.003 – ident: ref_22 doi: 10.1109/ANZIIS.2001.974051 – volume: 2016 start-page: 6 year: 2016 ident: ref_47 article-title: Stopping criterion for linear anisotropic image diffusion: A fingerprint image enhancement case publication-title: EURASIP J. Image Video Process. doi: 10.1186/s13640-016-0105-x – volume: 42 start-page: 201 year: 2004 ident: ref_25 article-title: Identification of the breast boundary in mammograms using active contour models publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02344632 – volume: 107 start-page: 175 year: 2012 ident: ref_34 article-title: Technique for preprocessing of digital mammogram publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2011.05.007 |
| SSID | ssj0023338 |
| Score | 2.497012 |
| Snippet | Breast cancer is widespread around the world and can be cured if diagnosed at an early stage. Digital mammograms are used as the most effective imaging... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1868 |
| SubjectTerms | Algorithms Breast cancer Breast Neoplasms - diagnostic imaging Cancer Diagnosis Female Humans Image Enhancement image segmentation mammograph images Mammography Mammography - methods Medical imaging equipment Medical screening Methods morphological operations Noise Pectoralis Muscles - diagnostic imaging principal component analysis (PCA) Womens health |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SZQkHlIcImajd_HtrRqkZYTlXqzxo6tIi3ZqrsrxL9nJslGGx7iwjWeOLZnxjMTzXzD2LuQcmOirMtUaVdKyK6EqFyZrUkgTLKyq-Kff9ZnF_LTpbrcafVFOWE9PHB_cAch6KRUooayQYJRQRCklIhoWKqABodu38q6bTA1hFoCI68eR0hgUH-wonJSAoafWJ8OpP_3q3jHFv2aJ3l7017Dj--wWOwYodP77N7gPfLDftUP2K3UPmR3dzAFH7HmvKt75MvMz7_hZcFP2iviLP0F5PNls1kkjo4q36KREOEcUBopTat_ZdURfOyT8AjGmWiOKHt9zY9prpvH7OL05MvxWTm0UiijEnpdNipLAXV0UkubXa2ymMkmQjJ1crYRyBIBSUsQ0jTS2GyAnKs6ziIEkZ14wvbaZZueMd4IoJTVSiXCzqsNBA0BJ0XHQWowsmAftkfs44AzTu0uFh7jDeKGH7lRsDcj6XUPrvEnoiPi00hAeNjdA5QSP0iJ_5eUFOw9cdmT1uJiIgzFB7glwr_yh8ai64tbxs_tTyhR2-J0eCsnftD2la-1MHjxYbBdsNfjML1JGWxtWm46GoxNZ85WBXvai9W4JXSCDc1eMDMRuMmepyPt16sOC9w69OhpWW9H0fz7UT7_H0f5gt2pqQSEyvr1Pttb32zSS3TM1uFVp4M_Ac__Mt8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9RADLbK9gF4QOUqgYLCIcFL1N3MZCZ5qKpu2apF2hVCVOpbNCdFWpJlDyH-PXaubrheM85kHHs8dmJ_BnijnbfS8DhyQ5FFXPksUibJIp9Kp5h0Ka-q-KczcX7JP1wlVzswa2thKK2ytYmVobaloW_kh7FgEpULA5rjxfeIukbR39W2hYZqWivYowpi7BbsxoSMNYDd8WT28VMXgjGMyGp8IYbB_uGKykwJML53KlXg_X-a6K0z6vf8ydubYqF-_lDz-dbhdLYH9xqvMjyp1eA-7LjiAdzdwhp8CPaiqocMSx9efEMjEk6Ka5I4fR0Mp6XdzF2IDmzYopQQ4VQh25S-Vd-yqgje18l5BO9MNGPKal-HpzTX8hFcnk0-n55HTYuFyCRMrCObeM5UbDIueOqzOPFsxK1RTsYuSy1DUTHlBFeMS8tl6qUipys2I6M08xl7DIOiLNwTCC1TlMo6TBxh6sVSaaE0TooOBRdK8gDeta84Nw3-OLXBmOcYh5A08k4aAbzqSBc16MbfiMYkp46AcLKrC-XyS95su1xr4ZLEUTtizZVMNCNAMmbQLRlqVIcA3pKUc9rNuBijmqIEZIlwsfITmaJLjCzj4w56lLgLTX-41ZO8sQKr_EZnA3jZDdOdlNlWuHJT0WDMOsrSYQD7tVp1LKFzLGn2AGRP4Xo890eKr9cVRniaoadPy3rdqea_X-XT_y_-GdyJqeiDCvnFAQzWy417jq7YWr9o9tcvBu0yJA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvEsDBYWHBJc02fiVnNC2tGqRtuLASuUUbMehFdtktZuA4Nczk3ijTQEJiev6szcTj-cRzXwm5JW2RS4NiwMbiTRgqkgDZXgaFIm0ikqbsLaLf3oqjmfs_Rk_c_ecrlxZJaTiF62Rxi6sADxYFMZxyENkdg8XefH2m_uUhNxY4K-ShF8nW4JDMD4iW7PTD5NPbU-Rm9zxCVFI7sMVtpXiMgMv1JL1_26SN3zS1XrJG025UD--q_l8wxkd3SGf12J0NShf95pa75mfVxge_0POu-S2C1T9SadZ98g1W94ntzboCx-Q_KRtsfSrwj-5BLvkH5bnqET4wdGfVnkztz7ExP6a-ASBUwWKjxVh3ZRVC3jX1fshYzRi9rFQvvYPcK3lQzI7Ovx4cBy4WxsCw6mog5wXjKrYpEywpEhjXtAxy42yMrZpklPYfaqsYIoymTOZFFJhHBebsVGaFindJqOyKu0O8XOqsDo24hZp-mKptFAaFoV3wYSSzCNv1ruYGUdpjjdrzDNIbXDDs37DPfKihy46Ho8_gfZRFXoAUm-3P1TLL5k7yZnWwnJu8YZjzZTkmiLHGTUQ6UQaIiCPvEZFytBAwMMY5focQCSk2somMoEoG0SGv9sdIOFgm-HwWhUzZ1hWWSyoBBsLeb1HnvfDOBOL5UpbNS0G0uBxmkQeedRpbi8SxNsSV_eIHOj0QObhSHlx3tKOJykkD_hYL3vt__urfPxPqCfkZoztJEgRIHbJqF429ikEebV-5g7yL-NmSVg priority: 102 providerName: Unpaywall |
| Title | Impact of Image Enhancement Module for Analysis of Mammogram Images for Diagnostics of Breast Cancer |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35271015 https://www.proquest.com/docview/2637787825 https://www.proquest.com/docview/2638711980 https://pubmed.ncbi.nlm.nih.gov/PMC8915058 https://www.mdpi.com/1424-8220/22/5/1868/pdf?version=1646129885 https://doaj.org/article/bb6e55e1451b4a75b379053c2660b023 |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7t4wAcEG8CSxUeAi6BNnbs-IBQu7TsIrVaISqVU-Q4DosUkm4fgv33zOSlBhYuOcQTx-MZ2zPJzDcAL2KbJtJw37N9oTyuU-VpEygvDaXVTNqQl1n805k4mfNPi2CxB01Ycz2B6ytdO6onNV9lb35dXL7HBf-OPE502d-uKVmUYN9fLi88qidF_13r4hr7cIhnlqKiDlPe_l_wGXpmFc5Qt4fO6VSC-P-9Ve-cVX_GUV7b5kt9-VNn2c4hNbkFN2vr0h1W6nAb9mx-B27sYA7eheS0zIt0i9Q9_YGbiTvOz0ny9JXQnRbJNrMuGrJug1ZChFONTFIYV_XIuiT4UAXpEcwz0Ywoun3jHlNfq3swn4y_HJ94dakFzwRMbLwkSDnTvlFc8DBVfpCyAU-MttK3KkwYioxpK7hmXCZchqnUZHz5ZmB0zFLF7sNBXuT2IbgJ0xTS2g8sYev5UsdCx9gpGhZcaMkdeN1McWRqHHIqh5FF6I-QNKJWGg48a0mXFfjGVUQjklNLQHjZ5Y1i9S2ql18Ux8IGgaWyxDHXMogZAZMxg-ZJP0Z1cOAVSTkiPcPBGF0nJyBLhI8VDWWIpjGyjK876lDiajTd5kZPokaZI18wiRsjOuMOPG2b6UmKcMttsS1p0HcdqLDvwINKrVqW0EiW1LsDsqNwHZ67Lfn38xIrPFRo8dOwnreq-e-pfPT_wT-G6z4lf1BCvziCg81qa5-gSbaJe7AvFxKv4eRjDw5H49nZ5175eaNXrju8N5-dDb_-Bi1XOpA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWC9JD2UHSP0rRlN7QXITZJkdKhKLLCbuKcEsA3lqSopoArOV4Q5Kf6jZ3RFqvbLVdzRJOchTPSzBtC3lmfpcoJFvqeTEJhsiQ0LkrCLFbecOVjUVbxj07l4Fx8GUfjNfKzqYXBtMrGJpaGOi0cviPfYZIrEC4IaD5PL0PsGoVfV5sWGpVYHPvrKwjZ5p-GB8Df94wdHZ7tD8K6q0DoIi4XYRplghvmEiFFnCUsynhfpM54xXwSpxxWx42XwnChUqHiTBn0M5jrO2N5huBLYPLvCA62BPRHjW8CPA7xXoVexHnS25ljESvC0XfuvLI1wJ8XwMoN-Ht25sYyn5rrKzOZrFx9Rw_I_dpnpbuVkD0kaz5_RO6tIBk-JumwrLakRUaHP8BE0cP8AuUJ3z3SUZEuJ56Ce0wbDBQkHBk4VEwOqx6ZlwQHVeofgkcjzR7mzC_oPs41e0LOb-Won5L1vMj9JqEpN5go24s8IvYxZaw0FiYFd0VIo0RAPjZHrF2Nbo5NNiYaohzkhm65EZA3Lem0gvT4G9Ee8qklQBTu8odi9k3XSq2tlT6KPDY7tsKoyHKEO-MOnJ6eBXEIyAfkskZbAYtxpi55gC0h6pbeVTE43LBl-LvtDiXouOsON3Kiaxsz1zcaEZDX7TA-iXlzuS-WJQ1ExP0k7gXkWSVW7ZbA9VY4e0BUR-A6e-6O5N8vSgTyOIE4Apf1thXNfx_l1v8X_4psDM5GJ_pkeHr8nNxlWF6CkAFym6wvZkv_Apy-hX1ZaholX29btX8Br9dn_w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqInE8IG4CBcIleIl213bs5AGhtttVl7IVD1TaN2M7NkVakmUPVf1r_DpmcnXD9dbX9cRrew7PJDPfEPLKOJ9Jy2nk-iKNuPZppG2cRj6RTjPpEl5W8U-OxeEJ_zCNp1vkZ1MLg2mVjU0sDXVWWHxH3qOCSRAuCGh6vk6L-DQcvZ__iLCDFH5pbdppVCJy5M7PIHxbvhsPgdevKR0dfN4_jOoOA5GNmVhFWew509SmXPDEpzT2bMAzq52kLk0yBitl2gmuGZcZl4mXGn0OagdWG-YRiAnM_xXJWIrphHJ6EewxiP0qJCMY7PeWWNCK0PSd-69sE_DnZbBxG_6eqXltnc_1-ZmezTauwdEtcrP2X8PdSuBuky2X3yE3NlAN75JsXFZehoUPx9_BXIUH-SnKFr6HDCdFtp65EFzlsMFDQcKJhkPFRLHqkWVJMKzSABFIGmn2MH9-Fe7jXIt75ORSjvo-2c6L3D0kYcY0Js32Y4fofVRqI7SBScF14UJLHpC3zRErWyOdY8ONmYKIB7mhWm4E5EVLOq_gPf5GtId8agkQkbv8oVh8VbWCK2OEi2OHjY8N1zI2DKHPmAUHqG9AHALyBrms0G7AYqyuyx9gS4jApXZlAs43bBn-bqdDCfpuu8ONnKja3izVhXYE5Hk7jE9iDl3uinVJA9HxIE36AXlQiVW7JXDDJc4eENkRuM6euyP5t9MSjTxJIabAZb1sRfPfR_no_4t_Rq6CUquP4-Ojx-Q6xUoTRA8QO2R7tVi7J-D_rczTUtFC8uWyNfsXzipsQg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvEsDBYWHBJc02fiVnNC2tGqRtuLASuUUbMehFdtktZuA4Nczk3ijTQEJiev6szcTj-cRzXwm5JW2RS4NiwMbiTRgqkgDZXgaFIm0ikqbsLaLf3oqjmfs_Rk_c_ecrlxZJaTiF62Rxi6sADxYFMZxyENkdg8XefH2m_uUhNxY4K-ShF8nW4JDMD4iW7PTD5NPbU-Rm9zxCVFI7sMVtpXiMgMv1JL1_26SN3zS1XrJG025UD--q_l8wxkd3SGf12J0NShf95pa75mfVxge_0POu-S2C1T9SadZ98g1W94ntzboCx-Q_KRtsfSrwj-5BLvkH5bnqET4wdGfVnkztz7ExP6a-ASBUwWKjxVh3ZRVC3jX1fshYzRi9rFQvvYPcK3lQzI7Ovx4cBy4WxsCw6mog5wXjKrYpEywpEhjXtAxy42yMrZpklPYfaqsYIoymTOZFFJhHBebsVGaFindJqOyKu0O8XOqsDo24hZp-mKptFAaFoV3wYSSzCNv1ruYGUdpjjdrzDNIbXDDs37DPfKihy46Ho8_gfZRFXoAUm-3P1TLL5k7yZnWwnJu8YZjzZTkmiLHGTUQ6UQaIiCPvEZFytBAwMMY5focQCSk2somMoEoG0SGv9sdIOFgm-HwWhUzZ1hWWSyoBBsLeb1HnvfDOBOL5UpbNS0G0uBxmkQeedRpbi8SxNsSV_eIHOj0QObhSHlx3tKOJykkD_hYL3vt__urfPxPqCfkZoztJEgRIHbJqF429ikEebV-5g7yL-NmSVg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Image+Enhancement+Module+for+Analysis+of+Mammogram+Images+for+Diagnostics+of+Breast+Cancer&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yassir+Edrees+Almalki&rft.au=Toufique+Ahmed+Soomro&rft.au=Muhammad+Irfan&rft.au=Sharifa+Khalid+Alduraibi&rft.date=2022-02-26&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=5&rft.spage=1868&rft_id=info:doi/10.3390%2Fs22051868&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |