Structural studies of viperin, an antiviral radical SAM enzyme

Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45–362) complexed with S-adenosylhomocysteine (SAH) or 5′-deoxyadenosine (5′-dAdo) and L-methionine...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 26; pp. 6806 - 6811
Main Authors Fenwick, Michael K., Li, Yue, Cresswell, Peter, Modis, Yorgo, Ealick, Steven E.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 27.06.2017
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1705402114

Cover

Abstract Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45–362) complexed with S-adenosylhomocysteine (SAH) or 5′-deoxyadenosine (5′-dAdo) and L-methionine (L-Met). Viperin contains a partial (βα)₆-barrel fold with a disordered N-terminal extension (residues 45–74) and a partially ordered C-terminal extension (residues 285–362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5′-dAdo and L-Met (SAM cleavage products) is consistent with the canonical mechanism of 5′-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.
AbstractList Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45–362) complexed with S-adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα)6-barrel fold with a disordered N-terminal extension (residues 45–74) and a partially ordered C-terminal extension (residues 285–362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. As a result, the viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.
We report structures of viperin, an antiviral radical S -adenosylmethionine (SAM) enzyme. The overall structure shows a canonical radical SAM enzyme fold that harbors a [4Fe-4S] cluster. Structures with a bound SAM analog or SAM cleavage products are consistent with a conventional mechanism of radical formation. Sequence alignments guided by the putative active site residues of viperin reveal viperin-like enzymes in species from all kingdoms of life. Structural alignments show similarity between viperin and the molybdenum cofactor biosynthetic enzyme MoaA and show that the active site architecture of viperin is consistent with a nucleoside triphosphate substrate. Viperin is an IFN-inducible radical S -adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45–362) complexed with S -adenosylhomocysteine (SAH) or 5′-deoxyadenosine (5′-dAdo) and l -methionine ( l -Met). Viperin contains a partial (βα) 6 -barrel fold with a disordered N-terminal extension (residues 45–74) and a partially ordered C-terminal extension (residues 285–362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5′-dAdo and l -Met (SAM cleavage products) is consistent with the canonical mechanism of 5′-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.
Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45–362) complexed with S-adenosylhomocysteine (SAH) or 5′-deoxyadenosine (5′-dAdo) and L-methionine (L-Met). Viperin contains a partial (βα)₆-barrel fold with a disordered N-terminal extension (residues 45–74) and a partially ordered C-terminal extension (residues 285–362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5′-dAdo and L-Met (SAM cleavage products) is consistent with the canonical mechanism of 5′-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.
Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45-362) complexed with S-adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα)6-barrel fold with a disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension (residues 285-362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.
Viperin is an IFN-inducible radical -adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45-362) complexed with -adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα) -barrel fold with a disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension (residues 285-362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.
Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45-362) complexed with S-adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα)6-barrel fold with a disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension (residues 285-362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45-362) complexed with S-adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα)6-barrel fold with a disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension (residues 285-362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.
Author Cresswell, Peter
Li, Yue
Ealick, Steven E.
Fenwick, Michael K.
Modis, Yorgo
Author_xml – sequence: 1
  givenname: Michael K.
  surname: Fenwick
  fullname: Fenwick, Michael K.
  organization: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
– sequence: 2
  givenname: Yue
  surname: Li
  fullname: Li, Yue
  organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
– sequence: 3
  givenname: Peter
  surname: Cresswell
  fullname: Cresswell, Peter
  organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
– sequence: 4
  givenname: Yorgo
  surname: Modis
  fullname: Modis, Yorgo
  organization: Department of Medicine, University of Cambridge, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
– sequence: 5
  givenname: Steven E.
  surname: Ealick
  fullname: Ealick, Steven E.
  organization: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28607080$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1374624$$D View this record in Osti.gov
BookMark eNp1kc9vFCEcxYmpsdvq2ZNmUi8enPbLAANcmjSNv5IaD9UzYdjvWDazsAKzSf3rZbOt1SYmBA583uPxfUfkIMSAhLykcEpBsrNNsPmUShAcOkr5E7KgoGnbcw0HZAHQyVbxjh-So5xXAKCFgmfksFM9SFCwIOfXJc2uzMlOTS7z0mNu4ths_QaTD-8aG-oqfut3QLJL7-p5ffGlwfDrdo3PydPRThlf3J3H5PuH998uP7VXXz9-vry4ap1gfWkVSuZ6pRilqAfFNYcRKQg5SKakZVQxxUBSzZGNQnR6kMo5Lh3jg9M4sGNyvvfdzMMalw5DqYHMJvm1TbcmWm_-vQn-xvyIWyO4Fp2EanCyN4i5eJOdL-huXAwBXTGUSd53vEJv715J8eeMuZi1zw6nyQaMczZUg-4Y9ExX9M0jdBXnFOoMKsV7XjeglXr9d-w_ee_nXwGxB1yKOSccTU1mi4-7X_jJUDC7ns2uZ_PQc9WdPdLdW_9f8WqvWOUS00OSntc6NLDfdgWx7w
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109396
crossref_primary_10_1016_j_dci_2021_104166
crossref_primary_10_1093_sumbio_qvae028
crossref_primary_10_1002_cben_201800003
crossref_primary_10_1016_j_jbc_2023_104791
crossref_primary_10_1021_acs_biochem_9b00741
crossref_primary_10_1126_science_aao6595
crossref_primary_10_3389_fmolb_2022_1032220
crossref_primary_10_1016_j_fsi_2018_12_012
crossref_primary_10_3389_fimmu_2019_00311
crossref_primary_10_1002_jmv_25595
crossref_primary_10_1021_acs_biochem_7b00608
crossref_primary_10_1007_s00705_020_04747_8
crossref_primary_10_1074_jbc_RA119_007719
crossref_primary_10_1134_S0006297921030081
crossref_primary_10_1002_1873_3468_12769
crossref_primary_10_1016_j_cbpb_2021_110699
crossref_primary_10_1007_s10753_024_02076_5
crossref_primary_10_3389_fimmu_2021_702971
crossref_primary_10_1016_j_fsi_2018_12_006
crossref_primary_10_1021_acs_biochem_0c00958
crossref_primary_10_1021_jacs_8b01493
crossref_primary_10_1146_annurev_virology_011720_095930
crossref_primary_10_1016_j_antiviral_2022_105487
crossref_primary_10_1074_jbc_REV120_012784
crossref_primary_10_1021_acs_biochem_9b01090
crossref_primary_10_1038_s41586_018_0238_4
crossref_primary_10_12688_f1000research_12450_1
crossref_primary_10_1128_jvi_01874_22
crossref_primary_10_1038_s41577_022_00705_4
crossref_primary_10_1038_s41557_021_00882_0
crossref_primary_10_1039_C8CC03565B
crossref_primary_10_1080_07391102_2024_2436556
crossref_primary_10_3389_fmicb_2020_02069
crossref_primary_10_3390_v10070340
crossref_primary_10_1016_j_molcel_2022_02_031
crossref_primary_10_1016_j_chom_2018_07_014
crossref_primary_10_1016_j_micpath_2024_106919
crossref_primary_10_1039_C7MT00341B
crossref_primary_10_1038_s41559_024_02463_z
crossref_primary_10_1021_acs_biochem_4c00518
crossref_primary_10_1016_j_fsi_2023_109098
crossref_primary_10_1021_jacs_1c03956
crossref_primary_10_3390_v13061060
crossref_primary_10_1039_D3CC00638G
crossref_primary_10_1074_jbc_RA118_003998
crossref_primary_10_1016_j_fsi_2019_06_015
crossref_primary_10_1371_journal_pbio_3002436
crossref_primary_10_1016_j_ygeno_2021_10_016
crossref_primary_10_1038_s41586_020_2762_2
crossref_primary_10_1186_s12864_024_10566_x
crossref_primary_10_1038_s41467_024_50195_2
crossref_primary_10_1038_s41598_022_16233_z
crossref_primary_10_31857_S0320972521030076
crossref_primary_10_1016_j_virol_2017_10_012
crossref_primary_10_1021_jacs_1c01045
crossref_primary_10_3390_v11010013
crossref_primary_10_1016_j_jbc_2021_100824
crossref_primary_10_1016_j_jhazmat_2023_131944
crossref_primary_10_1002_1873_3468_12941
crossref_primary_10_1016_j_cyto_2019_04_007
crossref_primary_10_1038_s41598_018_26516_z
crossref_primary_10_3389_fpls_2024_1385169
Cites_doi 10.1107/S0907444910007493
10.1099/0022-1317-81-11-2675
10.1073/pnas.1312228110
10.1371/journal.pntd.0002178
10.1021/ja027078v
10.1038/nchembio.121
10.1126/science.1200877
10.1021/jacs.5b03576
10.1128/JVI.05519-11
10.1073/pnas.0911679106
10.1021/cr4004709
10.1128/CMR.14.4.778-809.2001
10.1074/jbc.M604516200
10.1093/nar/gkq366
10.1073/pnas.1602486113
10.1016/j.ymeth.2011.07.005
10.1038/ncomms7480
10.1016/S0076-6879(97)76066-X
10.1073/pnas.181342398
10.1093/bioinformatics/bti541
10.1107/S0907444909012098
10.1073/pnas.011593298
10.1021/bi00159a019
10.1016/j.cub.2010.01.044
10.1126/science.1205358
10.1093/emboj/cdg598
10.1074/jbc.M807261200
10.1161/01.ATV.0000170130.85334.38
10.1021/cr9002616
10.1038/nature09138
10.1073/pnas.0510711103
10.1261/rna.814408
10.1146/annurev.biochem.67.1.227
10.1016/j.jmb.2007.05.022
10.1080/10409230701829169
10.1073/pnas.0505726102
10.1021/ja910850y
10.1073/pnas.1302417110
10.1016/j.bbapap.2015.04.008
10.1098/rspb.1957.0048
10.1093/nar/gkh381
10.1016/S0022-2836(05)80360-2
10.1002/jcc.20084
10.1111/cmi.12241
10.1073/pnas.0904385106
10.1073/pnas.1417252112
10.1073/pnas.94.25.13985
10.1016/j.febslet.2010.02.041
10.1073/pnas.1500697112
10.1128/JVI.02113-07
10.1002/hep.24542
10.1089/jir.2010.0127
10.1021/ja036120z
10.1189/jlb.69.6.912
10.1073/pnas.0806640105
10.1074/jbc.M313398200
10.1128/JVI.73.3.1846-1852.1999
10.1093/nar/gkh728
10.1107/S0907444902011678
10.1016/j.cell.2010.01.022
10.1021/bi101509u
10.1073/pnas.95.26.15623
10.1093/nar/29.5.1097
10.1126/science.1088493
10.1107/S0907444906005270
10.1016/j.chom.2007.06.009
10.1182/blood-2012-01-407395
10.1126/science.aad5367
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jun 27, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jun 27, 2017
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1073/pnas.1705402114
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList


Virology and AIDS Abstracts
MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Crystal structure of viperin
EISSN 1091-6490
EndPage 6811
ExternalDocumentID PMC5495270
1374624
28607080
10_1073_pnas_1705402114
26484990
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Howard Hughes Medical Institute
– fundername: Wellcome Trust
  grantid: 101908/Z/13/Z
– fundername: NIGMS NIH HHS
  grantid: R01 GM102869
– fundername: NIGMS NIH HHS
  grantid: P41 GM103403
– fundername: NIDDK NIH HHS
  grantid: R01 DK067081
– fundername: NIGMS NIH HHS
  grantid: R01 GM103869
– fundername: Howard Hughes Medical Institute (HHMI)
  grantid: No number
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM103869
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM103403
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: DK067081
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
79B
AAPBV
ABPTK
ADZLD
ASUFR
DNJUQ
DWIUU
OIOZB
OTOTI
PQEST
TAF
ZA5
5PM
ID FETCH-LOGICAL-c536t-8e73c688311e9b84940fe1057b7387a31838307194e3f5529b78cc47c34bc9eb3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:42:41 EDT 2025
Mon Jul 03 03:57:35 EDT 2023
Fri Sep 05 06:02:07 EDT 2025
Mon Jun 30 10:13:00 EDT 2025
Wed Feb 19 02:14:25 EST 2025
Tue Jul 01 03:19:36 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Fri May 30 11:46:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords antiviral cellular factor
S-adenosyl methionine
free radical
radical SAM
IFN-stimulated gene
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c536t-8e73c688311e9b84940fe1057b7387a31838307194e3f5529b78cc47c34bc9eb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
National Institutes of Health (NIH)
AC02-06CH11357; DK067081; GM102869
Reviewers: S.C.A., Albert Einstein College of Medicine; J.C.F.-C., Institut de Biologie Structurale; and H.H., University of Wisconsin.
Contributed by Peter Cresswell, May 16, 2017 (sent for review March 31, 2017; reviewed by Steven C. Almo, Juan C. Fontecilla-Camps, and Hazel Holden)
Author contributions: M.K.F., Y.L., P.C., Y.M., and S.E.E. designed research; M.K.F., Y.L., and Y.M. performed research; M.K.F., Y.L., Y.M., and S.E.E. analyzed data; and M.K.F., Y.L., P.C., Y.M., and S.E.E. wrote the paper.
1M.K.F. and Y.L. contributed equally to this work.
ORCID 0000-0002-6084-0429
0000000260840429
OpenAccessLink https://www.osti.gov/servlets/purl/1374624
PMID 28607080
PQID 1946419401
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5495270
osti_scitechconnect_1374624
proquest_miscellaneous_1909230639
proquest_journals_1946419401
pubmed_primary_28607080
crossref_citationtrail_10_1073_pnas_1705402114
crossref_primary_10_1073_pnas_1705402114
jstor_primary_26484990
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-27
PublicationDateYYYYMMDD 2017-06-27
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Vey JL (e_1_3_4_37_2) 2011; 111
Painter J (e_1_3_4_65_2) 2006; 62
Takeuchi O (e_1_3_4_2_2) 2010; 140
Broderick JB (e_1_3_4_24_2) 2014; 114
Boudinot P (e_1_3_4_10_2) 2000; 81
Helbig KJ (e_1_3_4_17_2) 2013; 7
Holm L (e_1_3_4_48_2) 2010; 38
Otwinoski Z (e_1_3_4_61_2) 1997; 276
Dosztányi Z (e_1_3_4_35_2) 2005; 21
O’Neill LA (e_1_3_4_1_2) 2010; 20
Baker NA (e_1_3_4_70_2) 2001; 98
Goldman PJ (e_1_3_4_41_2) 2013; 110
Zhu H (e_1_3_4_9_2) 1997; 94
Szretter KJ (e_1_3_4_14_2) 2011; 85
Vey JL (e_1_3_4_50_2) 2008; 105
Grove TL (e_1_3_4_55_2) 2011; 332
Sofia HJ (e_1_3_4_21_2) 2001; 29
Krissinel E (e_1_3_4_46_2) 2007; 372
Boudinot P (e_1_3_4_47_2) 1999; 73
Berkovitch F (e_1_3_4_23_2) 2004; 303
Fenwick MK (e_1_3_4_26_2) 2015; 6
Walsby CJ (e_1_3_4_36_2) 2002; 124
DeLano WL (e_1_3_4_68_2) 2002
Hänzelmann P (e_1_3_4_60_2) 2004; 279
Chin KC (e_1_3_4_8_2) 2001; 98
McLaughlin MI (e_1_3_4_42_2) 2016; 113
Upadhyay AS (e_1_3_4_19_2) 2014; 16
Chen D (e_1_3_4_44_2) 2003; 125
Isaacs A (e_1_3_4_3_2) 1957; 147
Petrovich RM (e_1_3_4_30_2) 1992; 31
Nicolet Y (e_1_3_4_43_2) 2009; 106
Hinson ER (e_1_3_4_33_2) 2009; 106
Nasr N (e_1_3_4_13_2) 2012; 120
Nicolet Y (e_1_3_4_22_2) 2004; 32
Duschene KS (e_1_3_4_32_2) 2010; 584
Mehta AP (e_1_3_4_54_2) 2015; 1854
Dolinsky TJ (e_1_3_4_69_2) 2004; 32
Jiang D (e_1_3_4_16_2) 2008; 82
Adams PD (e_1_3_4_64_2) 2011; 55
Olofsson PS (e_1_3_4_11_2) 2005; 25
Wang X (e_1_3_4_18_2) 2007; 2
Zhang Y (e_1_3_4_31_2) 2010; 465
de Veer MJ (e_1_3_4_4_2) 2001; 69
Emsley P (e_1_3_4_66_2) 2010; 66
Helbig KJ (e_1_3_4_15_2) 2011; 54
Pettersen EF (e_1_3_4_67_2) 2004; 25
Schwalm EL (e_1_3_4_51_2) 2016; 352
Terwilliger TC (e_1_3_4_63_2) 2009; 65
Severa M (e_1_3_4_12_2) 2006; 281
Kampmeier JA (e_1_3_4_45_2) 2010; 49
Hover BM (e_1_3_4_53_2) 2015; 112
Yan F (e_1_3_4_57_2) 2010; 132
Fitzgerald KA (e_1_3_4_20_2) 2011; 31
Layer G (e_1_3_4_28_2) 2003; 22
Goldman PJ (e_1_3_4_40_2) 2013; 110
Boal AK (e_1_3_4_38_2) 2011; 332
Copley RR (e_1_3_4_58_2) 1994; 242
Samuel CE (e_1_3_4_6_2) 2001; 14
Altschul SF (e_1_3_4_52_2) 1990; 215
Hinson ER (e_1_3_4_34_2) 2009; 284
Dinis P (e_1_3_4_39_2) 2015; 112
Hänzelmann P (e_1_3_4_49_2) 2006; 103
Stark GR (e_1_3_4_7_2) 1998; 67
Frey PA (e_1_3_4_27_2) 2008; 43
Lepore BW (e_1_3_4_29_2) 2005; 102
Toh SM (e_1_3_4_56_2) 2008; 14
Chatterjee A (e_1_3_4_25_2) 2008; 4
Schneider TR (e_1_3_4_62_2) 2002; 58
Der SD (e_1_3_4_5_2) 1998; 95
Mehta AP (e_1_3_4_59_2) 2015; 137
References_xml – volume: 66
  start-page: 486
  year: 2010
  ident: e_1_3_4_66_2
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444910007493
– volume: 81
  start-page: 2675
  year: 2000
  ident: e_1_3_4_10_2
  article-title: Vesicular stomatitis virus and pseudorabies virus induce a vig1/cig5 homologue in mouse dendritic cells via different pathways
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-81-11-2675
– volume: 110
  start-page: 15949
  year: 2013
  ident: e_1_3_4_40_2
  article-title: X-ray analysis of butirosin biosynthetic enzyme BtrN redefines structural motifs for AdoMet radical chemistry
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1312228110
– volume: 7
  start-page: e2178
  year: 2013
  ident: e_1_3_4_17_2
  article-title: Viperin is induced following Dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0002178
– volume: 124
  start-page: 11270
  year: 2002
  ident: e_1_3_4_36_2
  article-title: An anchoring role for FeS clusters: Chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme
  publication-title: J Am Chem Soc
  doi: 10.1021/ja027078v
– volume: 4
  start-page: 758
  year: 2008
  ident: e_1_3_4_25_2
  article-title: Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.121
– volume: 332
  start-page: 604
  year: 2011
  ident: e_1_3_4_55_2
  article-title: A radically different mechanism for S-adenosylmethionine-dependent methyltransferases
  publication-title: Science
  doi: 10.1126/science.1200877
– volume: 137
  start-page: 10444
  year: 2015
  ident: e_1_3_4_59_2
  article-title: Anaerobic 5-hydroxybenzimidazole formation from aminoimidazole ribotide: An unanticipated intersection of thiamin and vitamin B12 biosynthesis
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b03576
– volume: 85
  start-page: 11557
  year: 2011
  ident: e_1_3_4_14_2
  article-title: The interferon-inducible gene viperin restricts West Nile virus pathogenesis
  publication-title: J Virol
  doi: 10.1128/JVI.05519-11
– volume: 106
  start-page: 20452
  year: 2009
  ident: e_1_3_4_33_2
  article-title: The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic alpha-helix
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0911679106
– volume: 114
  start-page: 4229
  year: 2014
  ident: e_1_3_4_24_2
  article-title: Radical S-adenosylmethionine enzymes
  publication-title: Chem Rev
  doi: 10.1021/cr4004709
– volume: 14
  start-page: 778
  year: 2001
  ident: e_1_3_4_6_2
  article-title: Antiviral actions of interferons
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.14.4.778-809.2001
– volume: 281
  start-page: 26188
  year: 2006
  ident: e_1_3_4_12_2
  article-title: Toll-like receptor-dependent and -independent viperin gene expression and counter-regulation by PRDI-binding factor-1/BLIMP1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M604516200
– volume: 38
  start-page: W545
  year: 2010
  ident: e_1_3_4_48_2
  article-title: Dali server: Conservation mapping in 3D
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq366
– volume: 113
  start-page: 9446
  year: 2016
  ident: e_1_3_4_42_2
  article-title: Crystallographic snapshots of sulfur insertion by lipoyl synthase
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1602486113
– volume: 55
  start-page: 94
  year: 2011
  ident: e_1_3_4_64_2
  article-title: The Phenix software for automated determination of macromolecular structures
  publication-title: Methods
  doi: 10.1016/j.ymeth.2011.07.005
– volume: 6
  start-page: 6480
  year: 2015
  ident: e_1_3_4_26_2
  article-title: Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase
  publication-title: Nat Commun
  doi: 10.1038/ncomms7480
– volume: 276
  start-page: 307
  year: 1997
  ident: e_1_3_4_61_2
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 98
  start-page: 10037
  year: 2001
  ident: e_1_3_4_70_2
  article-title: Electrostatics of nanosystems: Application to microtubules and the ribosome
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.181342398
– volume: 21
  start-page: 3433
  year: 2005
  ident: e_1_3_4_35_2
  article-title: IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti541
– volume: 65
  start-page: 582
  year: 2009
  ident: e_1_3_4_63_2
  article-title: Decision-making in structure solution using Bayesian estimates of map quality: The PHENIX AutoSol wizard
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909012098
– volume: 98
  start-page: 15125
  year: 2001
  ident: e_1_3_4_8_2
  article-title: Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.011593298
– volume: 31
  start-page: 10774
  year: 1992
  ident: e_1_3_4_30_2
  article-title: Characterization of iron-sulfur clusters in lysine 2,3-aminomutase by electron paramagnetic resonance spectroscopy
  publication-title: Biochemistry
  doi: 10.1021/bi00159a019
– volume: 20
  start-page: R328
  year: 2010
  ident: e_1_3_4_1_2
  article-title: Sensing and signaling in antiviral innate immunity
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2010.01.044
– volume: 332
  start-page: 1089
  year: 2011
  ident: e_1_3_4_38_2
  article-title: Structural basis for methyl transfer by a radical SAM enzyme
  publication-title: Science
  doi: 10.1126/science.1205358
– volume: 22
  start-page: 6214
  year: 2003
  ident: e_1_3_4_28_2
  article-title: Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of radical SAM enzymes
  publication-title: EMBO J
  doi: 10.1093/emboj/cdg598
– volume: 284
  start-page: 4705
  year: 2009
  ident: e_1_3_4_34_2
  article-title: The N-terminal amphipathic alpha-helix of viperin mediates localization to the cytosolic face of the endoplasmic reticulum and inhibits protein secretion
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M807261200
– volume: 25
  start-page: e113
  year: 2005
  ident: e_1_3_4_11_2
  article-title: The antiviral cytomegalovirus inducible gene 5/viperin is expressed in atherosclerosis and regulated by proinflammatory agents
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000170130.85334.38
– volume: 111
  start-page: 2487
  year: 2011
  ident: e_1_3_4_37_2
  article-title: Structural insights into radical generation by the radical SAM superfamily
  publication-title: Chem Rev
  doi: 10.1021/cr9002616
– volume: 465
  start-page: 891
  year: 2010
  ident: e_1_3_4_31_2
  article-title: Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme
  publication-title: Nature
  doi: 10.1038/nature09138
– volume: 103
  start-page: 6829
  year: 2006
  ident: e_1_3_4_49_2
  article-title: Binding of 5′-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0510711103
– volume: 14
  start-page: 98
  year: 2008
  ident: e_1_3_4_56_2
  article-title: The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA
  publication-title: RNA
  doi: 10.1261/rna.814408
– volume: 67
  start-page: 227
  year: 1998
  ident: e_1_3_4_7_2
  article-title: How cells respond to interferons
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.67.1.227
– volume: 372
  start-page: 774
  year: 2007
  ident: e_1_3_4_46_2
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.05.022
– volume: 43
  start-page: 63
  year: 2008
  ident: e_1_3_4_27_2
  article-title: The radical SAM superfamily
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.1080/10409230701829169
– volume: 102
  start-page: 13819
  year: 2005
  ident: e_1_3_4_29_2
  article-title: The x-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0505726102
– volume: 132
  start-page: 3953
  year: 2010
  ident: e_1_3_4_57_2
  article-title: RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA
  publication-title: J Am Chem Soc
  doi: 10.1021/ja910850y
– volume: 110
  start-page: 8519
  year: 2013
  ident: e_1_3_4_41_2
  article-title: X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1302417110
– volume: 1854
  start-page: 1073
  year: 2015
  ident: e_1_3_4_54_2
  article-title: Molybdopterin biosynthesis-mechanistic studies on a novel MoaA catalyzed insertion of a purine carbon into the ribose of GTP
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbapap.2015.04.008
– volume: 147
  start-page: 258
  year: 1957
  ident: e_1_3_4_3_2
  article-title: Virus interference. I. The interferon
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.1957.0048
– volume: 32
  start-page: W665
  year: 2004
  ident: e_1_3_4_69_2
  article-title: PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh381
– volume: 215
  start-page: 403
  year: 1990
  ident: e_1_3_4_52_2
  article-title: Basic local alignment search tool
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 25
  start-page: 1605
  year: 2004
  ident: e_1_3_4_67_2
  article-title: UCSF Chimera–A visualization system for exploratory research and analysis
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20084
– volume: 16
  start-page: 834
  year: 2014
  ident: e_1_3_4_19_2
  article-title: Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity
  publication-title: Cell Microbiol
  doi: 10.1111/cmi.12241
– volume: 106
  start-page: 14867
  year: 2009
  ident: e_1_3_4_43_2
  article-title: Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0904385106
– volume: 112
  start-page: 1362
  year: 2015
  ident: e_1_3_4_39_2
  article-title: X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1417252112
– volume-title: The PyMOL Molecular Graphics System
  year: 2002
  ident: e_1_3_4_68_2
– volume: 94
  start-page: 13985
  year: 1997
  ident: e_1_3_4_9_2
  article-title: Use of differential display analysis to assess the effect of human cytomegalovirus infection on the accumulation of cellular RNAs: Induction of interferon-responsive RNAs
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.25.13985
– volume: 584
  start-page: 1263
  year: 2010
  ident: e_1_3_4_32_2
  article-title: The antiviral protein viperin is a radical SAM enzyme
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2010.02.041
– volume: 112
  start-page: 6347
  year: 2015
  ident: e_1_3_4_53_2
  article-title: Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1500697112
– volume: 82
  start-page: 1665
  year: 2008
  ident: e_1_3_4_16_2
  article-title: Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus
  publication-title: J Virol
  doi: 10.1128/JVI.02113-07
– volume: 54
  start-page: 1506
  year: 2011
  ident: e_1_3_4_15_2
  article-title: The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A
  publication-title: Hepatology
  doi: 10.1002/hep.24542
– volume: 31
  start-page: 131
  year: 2011
  ident: e_1_3_4_20_2
  article-title: The interferon inducible gene: Viperin
  publication-title: J Interferon Cytokine Res
  doi: 10.1089/jir.2010.0127
– volume: 125
  start-page: 11788
  year: 2003
  ident: e_1_3_4_44_2
  article-title: Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe-4S] center in lysine 2,3-aminomutase
  publication-title: J Am Chem Soc
  doi: 10.1021/ja036120z
– volume: 69
  start-page: 912
  year: 2001
  ident: e_1_3_4_4_2
  article-title: Functional classification of interferon-stimulated genes identified using microarrays
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.69.6.912
– volume: 105
  start-page: 16137
  year: 2008
  ident: e_1_3_4_50_2
  article-title: Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0806640105
– volume: 279
  start-page: 34721
  year: 2004
  ident: e_1_3_4_60_2
  article-title: Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M313398200
– volume: 73
  start-page: 1846
  year: 1999
  ident: e_1_3_4_47_2
  article-title: vig-1, a new fish gene induced by the rhabdovirus glycoprotein, has a virus-induced homologue in humans and shares conserved motifs with the MoaA family
  publication-title: J Virol
  doi: 10.1128/JVI.73.3.1846-1852.1999
– volume: 32
  start-page: 4015
  year: 2004
  ident: e_1_3_4_22_2
  article-title: AdoMet radical proteins–From structure to evolution–Alignment of divergent protein sequences reveals strong secondary structure element conservation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh728
– volume: 58
  start-page: 1772
  year: 2002
  ident: e_1_3_4_62_2
  article-title: Substructure solution with SHELXD
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444902011678
– volume: 140
  start-page: 805
  year: 2010
  ident: e_1_3_4_2_2
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 49
  start-page: 10770
  year: 2010
  ident: e_1_3_4_45_2
  article-title: Regioselectivity in the homolytic cleavage of S-adenosylmethionine
  publication-title: Biochemistry
  doi: 10.1021/bi101509u
– volume: 95
  start-page: 15623
  year: 1998
  ident: e_1_3_4_5_2
  article-title: Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.26.15623
– volume: 29
  start-page: 1097
  year: 2001
  ident: e_1_3_4_21_2
  article-title: Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.5.1097
– volume: 303
  start-page: 76
  year: 2004
  ident: e_1_3_4_23_2
  article-title: Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme
  publication-title: Science
  doi: 10.1126/science.1088493
– volume: 62
  start-page: 439
  year: 2006
  ident: e_1_3_4_65_2
  article-title: Optimal description of a protein structure in terms of multiple groups undergoing TLS motion
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444906005270
– volume: 2
  start-page: 96
  year: 2007
  ident: e_1_3_4_18_2
  article-title: The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2007.06.009
– volume: 242
  start-page: 321
  year: 1994
  ident: e_1_3_4_58_2
  article-title: A structural analysis of phosphate and sulphate binding sites in proteins. Estimation of propensities for binding and conservation of phosphate binding sites
  publication-title: J Mol Biol
– volume: 120
  start-page: 778
  year: 2012
  ident: e_1_3_4_13_2
  article-title: HIV-1 infection of human macrophages directly induces viperin which inhibits viral production
  publication-title: Blood
  doi: 10.1182/blood-2012-01-407395
– volume: 352
  start-page: 309
  year: 2016
  ident: e_1_3_4_51_2
  article-title: Crystallographic capture of a radical S-adenosylmethionine enzyme in the act of modifying tRNA
  publication-title: Science
  doi: 10.1126/science.aad5367
SSID ssj0009580
Score 2.4811828
Snippet Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically...
We report structures of viperin, an antiviral radical S -adenosylmethionine (SAM) enzyme. The overall structure shows a canonical radical SAM enzyme fold that...
Viperin is an IFN-inducible radical -adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6806
SubjectTerms Adenosylmethionine
Animals
antiviral cellular factor
Archaea
Bacteria
BASIC BIOLOGICAL SCIENCES
Binding sites
Biological Sciences
Conserved sequence
Crystal structure
Deoxyadenosine
Enzymes
free radical
Fungi
Guanosine triphosphate
IFN-stimulated gene
Interferon
Methionine
Mice
Molybdenum
Nucleotides
Physical Sciences
Protein Domains
Protein Folding
Proteins - chemistry
Proteins - metabolism
radical SAM
Residues
Ribonucleic acid
RNA
Rodents
rRNA
S-adenosyl methionine
S-Adenosylmethionine
Structural Homology, Protein
Structure-Activity Relationship
tRNA
Title Structural studies of viperin, an antiviral radical SAM enzyme
URI https://www.jstor.org/stable/26484990
https://www.ncbi.nlm.nih.gov/pubmed/28607080
https://www.proquest.com/docview/1946419401
https://www.proquest.com/docview/1909230639
https://www.osti.gov/servlets/purl/1374624
https://pubmed.ncbi.nlm.nih.gov/PMC5495270
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA86X3wRp07rpkTwYXLttU3SfLwIl6EMcZfBNtieStOmc6Dt2L0T3F_vyUc_7nUDFS7h0qQp5Hd6cpL-8jsIvZWCsLrgPOaaqZiZrI6l1DxOtVS6EISKyhFk53z_hH05zU4H2pg7XbLU0_Lm1nMl_4MqXANc7SnZf0C27xQuwH_AF0pAGMq_wvjIib864YyF5wPa2O_nhVUvbjwvE342P4RtclX4bzJHs4OJaW5-rcoUHPYz2aLjDcy7jcLZcOwk-ILFJJ4czmejSLLpcrIHIv6wf_rVEQbOrnsT2nNpo7rsyWOC8EFbec2Ds_bqvB3vSKSOPucP-E-N96IQhMSc-TygvZv1h0WDPZGx1-TSqQ786c7B_9gcxE2xmFrZH1jrhl5G4F7-cOgSycF7-axQawraXdV99IAIiLC6PZ1emlkmneiToB_WnmbVosP9K6GLZ6_CRN6CK75tebLOsh2FLceP0aOw3sAzbzyb6J5pnqDNDkW8G2TH3z1FHwdrwsGacFvjYE3vcdHg3pZwsCUMtoS9LT1DJ58_He_txyG7RlxmlC9jaQQtuZQ0TY3SkimW1MZmfdaCSlFYXy9hAkgVM7TOMqK0kGXJREmZLpXRdAttNG1jXiAsUqjIkqJKuGGkqnVRSUqFqkRF6lSKCE27gcvLID1vM6B8zx0FQtDcDno-DHqEdvsbLr3qyt1NtxwSfTtL2YRlfBKhbQtNDpGklUMuLW-sXOYpFYwTuG2nQywPbzT0qhhnUCRphN701eBv7Ue0ojHttW2TKLtspypCzz3Aw6ODoURIrEDfN7Ba7qs1zcU3p-meMZURkby8s89t9HB413bQBpiEeQXx8FK_dub8G8_JsjE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+studies+of+viperin%2C+an+antiviral+radical+SAM+enzyme&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fenwick%2C+Michael+K&rft.au=Li%2C+Yue&rft.au=Cresswell%2C+Peter&rft.au=Modis%2C+Yorgo&rft.date=2017-06-27&rft.eissn=1091-6490&rft.volume=114&rft.issue=26&rft.spage=6806&rft_id=info:doi/10.1073%2Fpnas.1705402114&rft_id=info%3Apmid%2F28607080&rft.externalDocID=28607080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon