Structural studies of viperin, an antiviral radical SAM enzyme
Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45–362) complexed with S-adenosylhomocysteine (SAH) or 5′-deoxyadenosine (5′-dAdo) and L-methionine...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 26; pp. 6806 - 6811 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
27.06.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1705402114 |
Cover
Abstract | Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45–362) complexed with S-adenosylhomocysteine (SAH) or 5′-deoxyadenosine (5′-dAdo) and L-methionine (L-Met). Viperin contains a partial (βα)₆-barrel fold with a disordered N-terminal extension (residues 45–74) and a partially ordered C-terminal extension (residues 285–362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5′-dAdo and L-Met (SAM cleavage products) is consistent with the canonical mechanism of 5′-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type. |
---|---|
AbstractList | Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45–362) complexed with S-adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα)6-barrel fold with a disordered N-terminal extension (residues 45–74) and a partially ordered C-terminal extension (residues 285–362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. As a result, the viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type. We report structures of viperin, an antiviral radical S -adenosylmethionine (SAM) enzyme. The overall structure shows a canonical radical SAM enzyme fold that harbors a [4Fe-4S] cluster. Structures with a bound SAM analog or SAM cleavage products are consistent with a conventional mechanism of radical formation. Sequence alignments guided by the putative active site residues of viperin reveal viperin-like enzymes in species from all kingdoms of life. Structural alignments show similarity between viperin and the molybdenum cofactor biosynthetic enzyme MoaA and show that the active site architecture of viperin is consistent with a nucleoside triphosphate substrate. Viperin is an IFN-inducible radical S -adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45–362) complexed with S -adenosylhomocysteine (SAH) or 5′-deoxyadenosine (5′-dAdo) and l -methionine ( l -Met). Viperin contains a partial (βα) 6 -barrel fold with a disordered N-terminal extension (residues 45–74) and a partially ordered C-terminal extension (residues 285–362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5′-dAdo and l -Met (SAM cleavage products) is consistent with the canonical mechanism of 5′-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type. Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45–362) complexed with S-adenosylhomocysteine (SAH) or 5′-deoxyadenosine (5′-dAdo) and L-methionine (L-Met). Viperin contains a partial (βα)₆-barrel fold with a disordered N-terminal extension (residues 45–74) and a partially ordered C-terminal extension (residues 285–362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5′-dAdo and L-Met (SAM cleavage products) is consistent with the canonical mechanism of 5′-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type. Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45-362) complexed with S-adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα)6-barrel fold with a disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension (residues 285-362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type. Viperin is an IFN-inducible radical -adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45-362) complexed with -adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα) -barrel fold with a disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension (residues 285-362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type. Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45-362) complexed with S-adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα)6-barrel fold with a disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension (residues 285-362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45-362) complexed with S-adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα)6-barrel fold with a disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension (residues 285-362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type. |
Author | Cresswell, Peter Li, Yue Ealick, Steven E. Fenwick, Michael K. Modis, Yorgo |
Author_xml | – sequence: 1 givenname: Michael K. surname: Fenwick fullname: Fenwick, Michael K. organization: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 – sequence: 2 givenname: Yue surname: Li fullname: Li, Yue organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 – sequence: 3 givenname: Peter surname: Cresswell fullname: Cresswell, Peter organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 – sequence: 4 givenname: Yorgo surname: Modis fullname: Modis, Yorgo organization: Department of Medicine, University of Cambridge, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom – sequence: 5 givenname: Steven E. surname: Ealick fullname: Ealick, Steven E. organization: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28607080$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1374624$$D View this record in Osti.gov |
BookMark | eNp1kc9vFCEcxYmpsdvq2ZNmUi8enPbLAANcmjSNv5IaD9UzYdjvWDazsAKzSf3rZbOt1SYmBA583uPxfUfkIMSAhLykcEpBsrNNsPmUShAcOkr5E7KgoGnbcw0HZAHQyVbxjh-So5xXAKCFgmfksFM9SFCwIOfXJc2uzMlOTS7z0mNu4ths_QaTD-8aG-oqfut3QLJL7-p5ffGlwfDrdo3PydPRThlf3J3H5PuH998uP7VXXz9-vry4ap1gfWkVSuZ6pRilqAfFNYcRKQg5SKakZVQxxUBSzZGNQnR6kMo5Lh3jg9M4sGNyvvfdzMMalw5DqYHMJvm1TbcmWm_-vQn-xvyIWyO4Fp2EanCyN4i5eJOdL-huXAwBXTGUSd53vEJv715J8eeMuZi1zw6nyQaMczZUg-4Y9ExX9M0jdBXnFOoMKsV7XjeglXr9d-w_ee_nXwGxB1yKOSccTU1mi4-7X_jJUDC7ns2uZ_PQc9WdPdLdW_9f8WqvWOUS00OSntc6NLDfdgWx7w |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109396 crossref_primary_10_1016_j_dci_2021_104166 crossref_primary_10_1093_sumbio_qvae028 crossref_primary_10_1002_cben_201800003 crossref_primary_10_1016_j_jbc_2023_104791 crossref_primary_10_1021_acs_biochem_9b00741 crossref_primary_10_1126_science_aao6595 crossref_primary_10_3389_fmolb_2022_1032220 crossref_primary_10_1016_j_fsi_2018_12_012 crossref_primary_10_3389_fimmu_2019_00311 crossref_primary_10_1002_jmv_25595 crossref_primary_10_1021_acs_biochem_7b00608 crossref_primary_10_1007_s00705_020_04747_8 crossref_primary_10_1074_jbc_RA119_007719 crossref_primary_10_1134_S0006297921030081 crossref_primary_10_1002_1873_3468_12769 crossref_primary_10_1016_j_cbpb_2021_110699 crossref_primary_10_1007_s10753_024_02076_5 crossref_primary_10_3389_fimmu_2021_702971 crossref_primary_10_1016_j_fsi_2018_12_006 crossref_primary_10_1021_acs_biochem_0c00958 crossref_primary_10_1021_jacs_8b01493 crossref_primary_10_1146_annurev_virology_011720_095930 crossref_primary_10_1016_j_antiviral_2022_105487 crossref_primary_10_1074_jbc_REV120_012784 crossref_primary_10_1021_acs_biochem_9b01090 crossref_primary_10_1038_s41586_018_0238_4 crossref_primary_10_12688_f1000research_12450_1 crossref_primary_10_1128_jvi_01874_22 crossref_primary_10_1038_s41577_022_00705_4 crossref_primary_10_1038_s41557_021_00882_0 crossref_primary_10_1039_C8CC03565B crossref_primary_10_1080_07391102_2024_2436556 crossref_primary_10_3389_fmicb_2020_02069 crossref_primary_10_3390_v10070340 crossref_primary_10_1016_j_molcel_2022_02_031 crossref_primary_10_1016_j_chom_2018_07_014 crossref_primary_10_1016_j_micpath_2024_106919 crossref_primary_10_1039_C7MT00341B crossref_primary_10_1038_s41559_024_02463_z crossref_primary_10_1021_acs_biochem_4c00518 crossref_primary_10_1016_j_fsi_2023_109098 crossref_primary_10_1021_jacs_1c03956 crossref_primary_10_3390_v13061060 crossref_primary_10_1039_D3CC00638G crossref_primary_10_1074_jbc_RA118_003998 crossref_primary_10_1016_j_fsi_2019_06_015 crossref_primary_10_1371_journal_pbio_3002436 crossref_primary_10_1016_j_ygeno_2021_10_016 crossref_primary_10_1038_s41586_020_2762_2 crossref_primary_10_1186_s12864_024_10566_x crossref_primary_10_1038_s41467_024_50195_2 crossref_primary_10_1038_s41598_022_16233_z crossref_primary_10_31857_S0320972521030076 crossref_primary_10_1016_j_virol_2017_10_012 crossref_primary_10_1021_jacs_1c01045 crossref_primary_10_3390_v11010013 crossref_primary_10_1016_j_jbc_2021_100824 crossref_primary_10_1016_j_jhazmat_2023_131944 crossref_primary_10_1002_1873_3468_12941 crossref_primary_10_1016_j_cyto_2019_04_007 crossref_primary_10_1038_s41598_018_26516_z crossref_primary_10_3389_fpls_2024_1385169 |
Cites_doi | 10.1107/S0907444910007493 10.1099/0022-1317-81-11-2675 10.1073/pnas.1312228110 10.1371/journal.pntd.0002178 10.1021/ja027078v 10.1038/nchembio.121 10.1126/science.1200877 10.1021/jacs.5b03576 10.1128/JVI.05519-11 10.1073/pnas.0911679106 10.1021/cr4004709 10.1128/CMR.14.4.778-809.2001 10.1074/jbc.M604516200 10.1093/nar/gkq366 10.1073/pnas.1602486113 10.1016/j.ymeth.2011.07.005 10.1038/ncomms7480 10.1016/S0076-6879(97)76066-X 10.1073/pnas.181342398 10.1093/bioinformatics/bti541 10.1107/S0907444909012098 10.1073/pnas.011593298 10.1021/bi00159a019 10.1016/j.cub.2010.01.044 10.1126/science.1205358 10.1093/emboj/cdg598 10.1074/jbc.M807261200 10.1161/01.ATV.0000170130.85334.38 10.1021/cr9002616 10.1038/nature09138 10.1073/pnas.0510711103 10.1261/rna.814408 10.1146/annurev.biochem.67.1.227 10.1016/j.jmb.2007.05.022 10.1080/10409230701829169 10.1073/pnas.0505726102 10.1021/ja910850y 10.1073/pnas.1302417110 10.1016/j.bbapap.2015.04.008 10.1098/rspb.1957.0048 10.1093/nar/gkh381 10.1016/S0022-2836(05)80360-2 10.1002/jcc.20084 10.1111/cmi.12241 10.1073/pnas.0904385106 10.1073/pnas.1417252112 10.1073/pnas.94.25.13985 10.1016/j.febslet.2010.02.041 10.1073/pnas.1500697112 10.1128/JVI.02113-07 10.1002/hep.24542 10.1089/jir.2010.0127 10.1021/ja036120z 10.1189/jlb.69.6.912 10.1073/pnas.0806640105 10.1074/jbc.M313398200 10.1128/JVI.73.3.1846-1852.1999 10.1093/nar/gkh728 10.1107/S0907444902011678 10.1016/j.cell.2010.01.022 10.1021/bi101509u 10.1073/pnas.95.26.15623 10.1093/nar/29.5.1097 10.1126/science.1088493 10.1107/S0907444906005270 10.1016/j.chom.2007.06.009 10.1182/blood-2012-01-407395 10.1126/science.aad5367 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jun 27, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jun 27, 2017 |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OIOZB OTOTI 5PM |
DOI | 10.1073/pnas.1705402114 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Crystal structure of viperin |
EISSN | 1091-6490 |
EndPage | 6811 |
ExternalDocumentID | PMC5495270 1374624 28607080 10_1073_pnas_1705402114 26484990 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Howard Hughes Medical Institute – fundername: Wellcome Trust grantid: 101908/Z/13/Z – fundername: NIGMS NIH HHS grantid: R01 GM102869 – fundername: NIGMS NIH HHS grantid: P41 GM103403 – fundername: NIDDK NIH HHS grantid: R01 DK067081 – fundername: NIGMS NIH HHS grantid: R01 GM103869 – fundername: Howard Hughes Medical Institute (HHMI) grantid: No number – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM103869 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM103403 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: DK067081 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF DOOOF ECM EIF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 79B AAPBV ABPTK ADZLD ASUFR DNJUQ DWIUU OIOZB OTOTI PQEST TAF ZA5 5PM |
ID | FETCH-LOGICAL-c536t-8e73c688311e9b84940fe1057b7387a31838307194e3f5529b78cc47c34bc9eb3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:42:41 EDT 2025 Mon Jul 03 03:57:35 EDT 2023 Fri Sep 05 06:02:07 EDT 2025 Mon Jun 30 10:13:00 EDT 2025 Wed Feb 19 02:14:25 EST 2025 Tue Jul 01 03:19:36 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Fri May 30 11:46:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | antiviral cellular factor S-adenosyl methionine free radical radical SAM IFN-stimulated gene |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c536t-8e73c688311e9b84940fe1057b7387a31838307194e3f5529b78cc47c34bc9eb3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) National Institutes of Health (NIH) AC02-06CH11357; DK067081; GM102869 Reviewers: S.C.A., Albert Einstein College of Medicine; J.C.F.-C., Institut de Biologie Structurale; and H.H., University of Wisconsin. Contributed by Peter Cresswell, May 16, 2017 (sent for review March 31, 2017; reviewed by Steven C. Almo, Juan C. Fontecilla-Camps, and Hazel Holden) Author contributions: M.K.F., Y.L., P.C., Y.M., and S.E.E. designed research; M.K.F., Y.L., and Y.M. performed research; M.K.F., Y.L., Y.M., and S.E.E. analyzed data; and M.K.F., Y.L., P.C., Y.M., and S.E.E. wrote the paper. 1M.K.F. and Y.L. contributed equally to this work. |
ORCID | 0000-0002-6084-0429 0000000260840429 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1374624 |
PMID | 28607080 |
PQID | 1946419401 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5495270 osti_scitechconnect_1374624 proquest_miscellaneous_1909230639 proquest_journals_1946419401 pubmed_primary_28607080 crossref_citationtrail_10_1073_pnas_1705402114 crossref_primary_10_1073_pnas_1705402114 jstor_primary_26484990 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-27 |
PublicationDateYYYYMMDD | 2017-06-27 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Vey JL (e_1_3_4_37_2) 2011; 111 Painter J (e_1_3_4_65_2) 2006; 62 Takeuchi O (e_1_3_4_2_2) 2010; 140 Broderick JB (e_1_3_4_24_2) 2014; 114 Boudinot P (e_1_3_4_10_2) 2000; 81 Helbig KJ (e_1_3_4_17_2) 2013; 7 Holm L (e_1_3_4_48_2) 2010; 38 Otwinoski Z (e_1_3_4_61_2) 1997; 276 Dosztányi Z (e_1_3_4_35_2) 2005; 21 O’Neill LA (e_1_3_4_1_2) 2010; 20 Baker NA (e_1_3_4_70_2) 2001; 98 Goldman PJ (e_1_3_4_41_2) 2013; 110 Zhu H (e_1_3_4_9_2) 1997; 94 Szretter KJ (e_1_3_4_14_2) 2011; 85 Vey JL (e_1_3_4_50_2) 2008; 105 Grove TL (e_1_3_4_55_2) 2011; 332 Sofia HJ (e_1_3_4_21_2) 2001; 29 Krissinel E (e_1_3_4_46_2) 2007; 372 Boudinot P (e_1_3_4_47_2) 1999; 73 Berkovitch F (e_1_3_4_23_2) 2004; 303 Fenwick MK (e_1_3_4_26_2) 2015; 6 Walsby CJ (e_1_3_4_36_2) 2002; 124 DeLano WL (e_1_3_4_68_2) 2002 Hänzelmann P (e_1_3_4_60_2) 2004; 279 Chin KC (e_1_3_4_8_2) 2001; 98 McLaughlin MI (e_1_3_4_42_2) 2016; 113 Upadhyay AS (e_1_3_4_19_2) 2014; 16 Chen D (e_1_3_4_44_2) 2003; 125 Isaacs A (e_1_3_4_3_2) 1957; 147 Petrovich RM (e_1_3_4_30_2) 1992; 31 Nicolet Y (e_1_3_4_43_2) 2009; 106 Hinson ER (e_1_3_4_33_2) 2009; 106 Nasr N (e_1_3_4_13_2) 2012; 120 Nicolet Y (e_1_3_4_22_2) 2004; 32 Duschene KS (e_1_3_4_32_2) 2010; 584 Mehta AP (e_1_3_4_54_2) 2015; 1854 Dolinsky TJ (e_1_3_4_69_2) 2004; 32 Jiang D (e_1_3_4_16_2) 2008; 82 Adams PD (e_1_3_4_64_2) 2011; 55 Olofsson PS (e_1_3_4_11_2) 2005; 25 Wang X (e_1_3_4_18_2) 2007; 2 Zhang Y (e_1_3_4_31_2) 2010; 465 de Veer MJ (e_1_3_4_4_2) 2001; 69 Emsley P (e_1_3_4_66_2) 2010; 66 Helbig KJ (e_1_3_4_15_2) 2011; 54 Pettersen EF (e_1_3_4_67_2) 2004; 25 Schwalm EL (e_1_3_4_51_2) 2016; 352 Terwilliger TC (e_1_3_4_63_2) 2009; 65 Severa M (e_1_3_4_12_2) 2006; 281 Kampmeier JA (e_1_3_4_45_2) 2010; 49 Hover BM (e_1_3_4_53_2) 2015; 112 Yan F (e_1_3_4_57_2) 2010; 132 Fitzgerald KA (e_1_3_4_20_2) 2011; 31 Layer G (e_1_3_4_28_2) 2003; 22 Goldman PJ (e_1_3_4_40_2) 2013; 110 Boal AK (e_1_3_4_38_2) 2011; 332 Copley RR (e_1_3_4_58_2) 1994; 242 Samuel CE (e_1_3_4_6_2) 2001; 14 Altschul SF (e_1_3_4_52_2) 1990; 215 Hinson ER (e_1_3_4_34_2) 2009; 284 Dinis P (e_1_3_4_39_2) 2015; 112 Hänzelmann P (e_1_3_4_49_2) 2006; 103 Stark GR (e_1_3_4_7_2) 1998; 67 Frey PA (e_1_3_4_27_2) 2008; 43 Lepore BW (e_1_3_4_29_2) 2005; 102 Toh SM (e_1_3_4_56_2) 2008; 14 Chatterjee A (e_1_3_4_25_2) 2008; 4 Schneider TR (e_1_3_4_62_2) 2002; 58 Der SD (e_1_3_4_5_2) 1998; 95 Mehta AP (e_1_3_4_59_2) 2015; 137 |
References_xml | – volume: 66 start-page: 486 year: 2010 ident: e_1_3_4_66_2 article-title: Features and development of Coot publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444910007493 – volume: 81 start-page: 2675 year: 2000 ident: e_1_3_4_10_2 article-title: Vesicular stomatitis virus and pseudorabies virus induce a vig1/cig5 homologue in mouse dendritic cells via different pathways publication-title: J Gen Virol doi: 10.1099/0022-1317-81-11-2675 – volume: 110 start-page: 15949 year: 2013 ident: e_1_3_4_40_2 article-title: X-ray analysis of butirosin biosynthetic enzyme BtrN redefines structural motifs for AdoMet radical chemistry publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1312228110 – volume: 7 start-page: e2178 year: 2013 ident: e_1_3_4_17_2 article-title: Viperin is induced following Dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0002178 – volume: 124 start-page: 11270 year: 2002 ident: e_1_3_4_36_2 article-title: An anchoring role for FeS clusters: Chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme publication-title: J Am Chem Soc doi: 10.1021/ja027078v – volume: 4 start-page: 758 year: 2008 ident: e_1_3_4_25_2 article-title: Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily publication-title: Nat Chem Biol doi: 10.1038/nchembio.121 – volume: 332 start-page: 604 year: 2011 ident: e_1_3_4_55_2 article-title: A radically different mechanism for S-adenosylmethionine-dependent methyltransferases publication-title: Science doi: 10.1126/science.1200877 – volume: 137 start-page: 10444 year: 2015 ident: e_1_3_4_59_2 article-title: Anaerobic 5-hydroxybenzimidazole formation from aminoimidazole ribotide: An unanticipated intersection of thiamin and vitamin B12 biosynthesis publication-title: J Am Chem Soc doi: 10.1021/jacs.5b03576 – volume: 85 start-page: 11557 year: 2011 ident: e_1_3_4_14_2 article-title: The interferon-inducible gene viperin restricts West Nile virus pathogenesis publication-title: J Virol doi: 10.1128/JVI.05519-11 – volume: 106 start-page: 20452 year: 2009 ident: e_1_3_4_33_2 article-title: The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic alpha-helix publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0911679106 – volume: 114 start-page: 4229 year: 2014 ident: e_1_3_4_24_2 article-title: Radical S-adenosylmethionine enzymes publication-title: Chem Rev doi: 10.1021/cr4004709 – volume: 14 start-page: 778 year: 2001 ident: e_1_3_4_6_2 article-title: Antiviral actions of interferons publication-title: Clin Microbiol Rev doi: 10.1128/CMR.14.4.778-809.2001 – volume: 281 start-page: 26188 year: 2006 ident: e_1_3_4_12_2 article-title: Toll-like receptor-dependent and -independent viperin gene expression and counter-regulation by PRDI-binding factor-1/BLIMP1 publication-title: J Biol Chem doi: 10.1074/jbc.M604516200 – volume: 38 start-page: W545 year: 2010 ident: e_1_3_4_48_2 article-title: Dali server: Conservation mapping in 3D publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq366 – volume: 113 start-page: 9446 year: 2016 ident: e_1_3_4_42_2 article-title: Crystallographic snapshots of sulfur insertion by lipoyl synthase publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1602486113 – volume: 55 start-page: 94 year: 2011 ident: e_1_3_4_64_2 article-title: The Phenix software for automated determination of macromolecular structures publication-title: Methods doi: 10.1016/j.ymeth.2011.07.005 – volume: 6 start-page: 6480 year: 2015 ident: e_1_3_4_26_2 article-title: Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase publication-title: Nat Commun doi: 10.1038/ncomms7480 – volume: 276 start-page: 307 year: 1997 ident: e_1_3_4_61_2 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol doi: 10.1016/S0076-6879(97)76066-X – volume: 98 start-page: 10037 year: 2001 ident: e_1_3_4_70_2 article-title: Electrostatics of nanosystems: Application to microtubules and the ribosome publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.181342398 – volume: 21 start-page: 3433 year: 2005 ident: e_1_3_4_35_2 article-title: IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti541 – volume: 65 start-page: 582 year: 2009 ident: e_1_3_4_63_2 article-title: Decision-making in structure solution using Bayesian estimates of map quality: The PHENIX AutoSol wizard publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909012098 – volume: 98 start-page: 15125 year: 2001 ident: e_1_3_4_8_2 article-title: Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.011593298 – volume: 31 start-page: 10774 year: 1992 ident: e_1_3_4_30_2 article-title: Characterization of iron-sulfur clusters in lysine 2,3-aminomutase by electron paramagnetic resonance spectroscopy publication-title: Biochemistry doi: 10.1021/bi00159a019 – volume: 20 start-page: R328 year: 2010 ident: e_1_3_4_1_2 article-title: Sensing and signaling in antiviral innate immunity publication-title: Curr Biol doi: 10.1016/j.cub.2010.01.044 – volume: 332 start-page: 1089 year: 2011 ident: e_1_3_4_38_2 article-title: Structural basis for methyl transfer by a radical SAM enzyme publication-title: Science doi: 10.1126/science.1205358 – volume: 22 start-page: 6214 year: 2003 ident: e_1_3_4_28_2 article-title: Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of radical SAM enzymes publication-title: EMBO J doi: 10.1093/emboj/cdg598 – volume: 284 start-page: 4705 year: 2009 ident: e_1_3_4_34_2 article-title: The N-terminal amphipathic alpha-helix of viperin mediates localization to the cytosolic face of the endoplasmic reticulum and inhibits protein secretion publication-title: J Biol Chem doi: 10.1074/jbc.M807261200 – volume: 25 start-page: e113 year: 2005 ident: e_1_3_4_11_2 article-title: The antiviral cytomegalovirus inducible gene 5/viperin is expressed in atherosclerosis and regulated by proinflammatory agents publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000170130.85334.38 – volume: 111 start-page: 2487 year: 2011 ident: e_1_3_4_37_2 article-title: Structural insights into radical generation by the radical SAM superfamily publication-title: Chem Rev doi: 10.1021/cr9002616 – volume: 465 start-page: 891 year: 2010 ident: e_1_3_4_31_2 article-title: Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme publication-title: Nature doi: 10.1038/nature09138 – volume: 103 start-page: 6829 year: 2006 ident: e_1_3_4_49_2 article-title: Binding of 5′-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0510711103 – volume: 14 start-page: 98 year: 2008 ident: e_1_3_4_56_2 article-title: The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA publication-title: RNA doi: 10.1261/rna.814408 – volume: 67 start-page: 227 year: 1998 ident: e_1_3_4_7_2 article-title: How cells respond to interferons publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.67.1.227 – volume: 372 start-page: 774 year: 2007 ident: e_1_3_4_46_2 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J Mol Biol doi: 10.1016/j.jmb.2007.05.022 – volume: 43 start-page: 63 year: 2008 ident: e_1_3_4_27_2 article-title: The radical SAM superfamily publication-title: Crit Rev Biochem Mol Biol doi: 10.1080/10409230701829169 – volume: 102 start-page: 13819 year: 2005 ident: e_1_3_4_29_2 article-title: The x-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0505726102 – volume: 132 start-page: 3953 year: 2010 ident: e_1_3_4_57_2 article-title: RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA publication-title: J Am Chem Soc doi: 10.1021/ja910850y – volume: 110 start-page: 8519 year: 2013 ident: e_1_3_4_41_2 article-title: X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1302417110 – volume: 1854 start-page: 1073 year: 2015 ident: e_1_3_4_54_2 article-title: Molybdopterin biosynthesis-mechanistic studies on a novel MoaA catalyzed insertion of a purine carbon into the ribose of GTP publication-title: Biochim Biophys Acta doi: 10.1016/j.bbapap.2015.04.008 – volume: 147 start-page: 258 year: 1957 ident: e_1_3_4_3_2 article-title: Virus interference. I. The interferon publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.1957.0048 – volume: 32 start-page: W665 year: 2004 ident: e_1_3_4_69_2 article-title: PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh381 – volume: 215 start-page: 403 year: 1990 ident: e_1_3_4_52_2 article-title: Basic local alignment search tool publication-title: J Mol Biol doi: 10.1016/S0022-2836(05)80360-2 – volume: 25 start-page: 1605 year: 2004 ident: e_1_3_4_67_2 article-title: UCSF Chimera–A visualization system for exploratory research and analysis publication-title: J Comput Chem doi: 10.1002/jcc.20084 – volume: 16 start-page: 834 year: 2014 ident: e_1_3_4_19_2 article-title: Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity publication-title: Cell Microbiol doi: 10.1111/cmi.12241 – volume: 106 start-page: 14867 year: 2009 ident: e_1_3_4_43_2 article-title: Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0904385106 – volume: 112 start-page: 1362 year: 2015 ident: e_1_3_4_39_2 article-title: X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1417252112 – volume-title: The PyMOL Molecular Graphics System year: 2002 ident: e_1_3_4_68_2 – volume: 94 start-page: 13985 year: 1997 ident: e_1_3_4_9_2 article-title: Use of differential display analysis to assess the effect of human cytomegalovirus infection on the accumulation of cellular RNAs: Induction of interferon-responsive RNAs publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.25.13985 – volume: 584 start-page: 1263 year: 2010 ident: e_1_3_4_32_2 article-title: The antiviral protein viperin is a radical SAM enzyme publication-title: FEBS Lett doi: 10.1016/j.febslet.2010.02.041 – volume: 112 start-page: 6347 year: 2015 ident: e_1_3_4_53_2 article-title: Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1500697112 – volume: 82 start-page: 1665 year: 2008 ident: e_1_3_4_16_2 article-title: Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus publication-title: J Virol doi: 10.1128/JVI.02113-07 – volume: 54 start-page: 1506 year: 2011 ident: e_1_3_4_15_2 article-title: The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A publication-title: Hepatology doi: 10.1002/hep.24542 – volume: 31 start-page: 131 year: 2011 ident: e_1_3_4_20_2 article-title: The interferon inducible gene: Viperin publication-title: J Interferon Cytokine Res doi: 10.1089/jir.2010.0127 – volume: 125 start-page: 11788 year: 2003 ident: e_1_3_4_44_2 article-title: Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe-4S] center in lysine 2,3-aminomutase publication-title: J Am Chem Soc doi: 10.1021/ja036120z – volume: 69 start-page: 912 year: 2001 ident: e_1_3_4_4_2 article-title: Functional classification of interferon-stimulated genes identified using microarrays publication-title: J Leukoc Biol doi: 10.1189/jlb.69.6.912 – volume: 105 start-page: 16137 year: 2008 ident: e_1_3_4_50_2 article-title: Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0806640105 – volume: 279 start-page: 34721 year: 2004 ident: e_1_3_4_60_2 article-title: Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis publication-title: J Biol Chem doi: 10.1074/jbc.M313398200 – volume: 73 start-page: 1846 year: 1999 ident: e_1_3_4_47_2 article-title: vig-1, a new fish gene induced by the rhabdovirus glycoprotein, has a virus-induced homologue in humans and shares conserved motifs with the MoaA family publication-title: J Virol doi: 10.1128/JVI.73.3.1846-1852.1999 – volume: 32 start-page: 4015 year: 2004 ident: e_1_3_4_22_2 article-title: AdoMet radical proteins–From structure to evolution–Alignment of divergent protein sequences reveals strong secondary structure element conservation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh728 – volume: 58 start-page: 1772 year: 2002 ident: e_1_3_4_62_2 article-title: Substructure solution with SHELXD publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444902011678 – volume: 140 start-page: 805 year: 2010 ident: e_1_3_4_2_2 article-title: Pattern recognition receptors and inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 49 start-page: 10770 year: 2010 ident: e_1_3_4_45_2 article-title: Regioselectivity in the homolytic cleavage of S-adenosylmethionine publication-title: Biochemistry doi: 10.1021/bi101509u – volume: 95 start-page: 15623 year: 1998 ident: e_1_3_4_5_2 article-title: Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.26.15623 – volume: 29 start-page: 1097 year: 2001 ident: e_1_3_4_21_2 article-title: Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods publication-title: Nucleic Acids Res doi: 10.1093/nar/29.5.1097 – volume: 303 start-page: 76 year: 2004 ident: e_1_3_4_23_2 article-title: Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme publication-title: Science doi: 10.1126/science.1088493 – volume: 62 start-page: 439 year: 2006 ident: e_1_3_4_65_2 article-title: Optimal description of a protein structure in terms of multiple groups undergoing TLS motion publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444906005270 – volume: 2 start-page: 96 year: 2007 ident: e_1_3_4_18_2 article-title: The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts publication-title: Cell Host Microbe doi: 10.1016/j.chom.2007.06.009 – volume: 242 start-page: 321 year: 1994 ident: e_1_3_4_58_2 article-title: A structural analysis of phosphate and sulphate binding sites in proteins. Estimation of propensities for binding and conservation of phosphate binding sites publication-title: J Mol Biol – volume: 120 start-page: 778 year: 2012 ident: e_1_3_4_13_2 article-title: HIV-1 infection of human macrophages directly induces viperin which inhibits viral production publication-title: Blood doi: 10.1182/blood-2012-01-407395 – volume: 352 start-page: 309 year: 2016 ident: e_1_3_4_51_2 article-title: Crystallographic capture of a radical S-adenosylmethionine enzyme in the act of modifying tRNA publication-title: Science doi: 10.1126/science.aad5367 |
SSID | ssj0009580 |
Score | 2.4811828 |
Snippet | Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically... We report structures of viperin, an antiviral radical S -adenosylmethionine (SAM) enzyme. The overall structure shows a canonical radical SAM enzyme fold that... Viperin is an IFN-inducible radical -adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically... |
SourceID | pubmedcentral osti proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6806 |
SubjectTerms | Adenosylmethionine Animals antiviral cellular factor Archaea Bacteria BASIC BIOLOGICAL SCIENCES Binding sites Biological Sciences Conserved sequence Crystal structure Deoxyadenosine Enzymes free radical Fungi Guanosine triphosphate IFN-stimulated gene Interferon Methionine Mice Molybdenum Nucleotides Physical Sciences Protein Domains Protein Folding Proteins - chemistry Proteins - metabolism radical SAM Residues Ribonucleic acid RNA Rodents rRNA S-adenosyl methionine S-Adenosylmethionine Structural Homology, Protein Structure-Activity Relationship tRNA |
Title | Structural studies of viperin, an antiviral radical SAM enzyme |
URI | https://www.jstor.org/stable/26484990 https://www.ncbi.nlm.nih.gov/pubmed/28607080 https://www.proquest.com/docview/1946419401 https://www.proquest.com/docview/1909230639 https://www.osti.gov/servlets/purl/1374624 https://pubmed.ncbi.nlm.nih.gov/PMC5495270 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA86X3wRp07rpkTwYXLttU3SfLwIl6EMcZfBNtieStOmc6Dt2L0T3F_vyUc_7nUDFS7h0qQp5Hd6cpL-8jsIvZWCsLrgPOaaqZiZrI6l1DxOtVS6EISKyhFk53z_hH05zU4H2pg7XbLU0_Lm1nMl_4MqXANc7SnZf0C27xQuwH_AF0pAGMq_wvjIib864YyF5wPa2O_nhVUvbjwvE342P4RtclX4bzJHs4OJaW5-rcoUHPYz2aLjDcy7jcLZcOwk-ILFJJ4czmejSLLpcrIHIv6wf_rVEQbOrnsT2nNpo7rsyWOC8EFbec2Ds_bqvB3vSKSOPucP-E-N96IQhMSc-TygvZv1h0WDPZGx1-TSqQ786c7B_9gcxE2xmFrZH1jrhl5G4F7-cOgSycF7-axQawraXdV99IAIiLC6PZ1emlkmneiToB_WnmbVosP9K6GLZ6_CRN6CK75tebLOsh2FLceP0aOw3sAzbzyb6J5pnqDNDkW8G2TH3z1FHwdrwsGacFvjYE3vcdHg3pZwsCUMtoS9LT1DJ58_He_txyG7RlxmlC9jaQQtuZQ0TY3SkimW1MZmfdaCSlFYXy9hAkgVM7TOMqK0kGXJREmZLpXRdAttNG1jXiAsUqjIkqJKuGGkqnVRSUqFqkRF6lSKCE27gcvLID1vM6B8zx0FQtDcDno-DHqEdvsbLr3qyt1NtxwSfTtL2YRlfBKhbQtNDpGklUMuLW-sXOYpFYwTuG2nQywPbzT0qhhnUCRphN701eBv7Ue0ojHttW2TKLtspypCzz3Aw6ODoURIrEDfN7Ba7qs1zcU3p-meMZURkby8s89t9HB413bQBpiEeQXx8FK_dub8G8_JsjE |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+studies+of+viperin%2C+an+antiviral+radical+SAM+enzyme&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fenwick%2C+Michael+K&rft.au=Li%2C+Yue&rft.au=Cresswell%2C+Peter&rft.au=Modis%2C+Yorgo&rft.date=2017-06-27&rft.eissn=1091-6490&rft.volume=114&rft.issue=26&rft.spage=6806&rft_id=info:doi/10.1073%2Fpnas.1705402114&rft_id=info%3Apmid%2F28607080&rft.externalDocID=28607080 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |