Autophagy in metabolic syndrome: breaking the wheel by targeting the renin–angiotensin system

Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of ev...

Full description

Saved in:
Bibliographic Details
Published inCell death & disease Vol. 11; no. 2; p. 87
Main Authors Menikdiwela, Kalhara R., Ramalingam, Latha, Rasha, Fahmida, Wang, Shu, Dufour, Jannette M., Kalupahana, Nishan S., Sunahara, Karen K. S., Martins, Joilson O., Moustaid-Moussa, Naima
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2041-4889
2041-4889
DOI10.1038/s41419-020-2275-9

Cover

Abstract Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of evidence show that physiological systems, such as the renin–angiotensin system (RAS) and autophagy play vital regulatory roles in MetS. RAS is a pivotal system known for controlling blood pressure and fluid balance, whereas autophagy is involved in the degradation and recycling of cellular components, including proteins. Although RAS is activated in MetS, the interrelationship between RAS and autophagy varies in glucose homeostatic organs and their cross talk is poorly understood. Interestingly, autophagy is attenuated in the liver during MetS, whereas autophagic activity is induced in adipose tissue during MetS, indicating tissue-specific discordant roles. We discuss in vivo and in vitro studies conducted in metabolic tissues and dissect their tissue-specific effects. Moreover, our review will focus on the molecular mechanisms by which autophagy orchestrates MetS and the ways future treatments could target RAS in order to achieve metabolic homeostasis.
AbstractList Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of evidence show that physiological systems, such as the renin-angiotensin system (RAS) and autophagy play vital regulatory roles in MetS. RAS is a pivotal system known for controlling blood pressure and fluid balance, whereas autophagy is involved in the degradation and recycling of cellular components, including proteins. Although RAS is activated in MetS, the interrelationship between RAS and autophagy varies in glucose homeostatic organs and their cross talk is poorly understood. Interestingly, autophagy is attenuated in the liver during MetS, whereas autophagic activity is induced in adipose tissue during MetS, indicating tissue-specific discordant roles. We discuss in vivo and in vitro studies conducted in metabolic tissues and dissect their tissue-specific effects. Moreover, our review will focus on the molecular mechanisms by which autophagy orchestrates MetS and the ways future treatments could target RAS in order to achieve metabolic homeostasis.Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of evidence show that physiological systems, such as the renin-angiotensin system (RAS) and autophagy play vital regulatory roles in MetS. RAS is a pivotal system known for controlling blood pressure and fluid balance, whereas autophagy is involved in the degradation and recycling of cellular components, including proteins. Although RAS is activated in MetS, the interrelationship between RAS and autophagy varies in glucose homeostatic organs and their cross talk is poorly understood. Interestingly, autophagy is attenuated in the liver during MetS, whereas autophagic activity is induced in adipose tissue during MetS, indicating tissue-specific discordant roles. We discuss in vivo and in vitro studies conducted in metabolic tissues and dissect their tissue-specific effects. Moreover, our review will focus on the molecular mechanisms by which autophagy orchestrates MetS and the ways future treatments could target RAS in order to achieve metabolic homeostasis.
Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of evidence show that physiological systems, such as the renin-angiotensin system (RAS) and autophagy play vital regulatory roles in MetS. RAS is a pivotal system known for controlling blood pressure and fluid balance, whereas autophagy is involved in the degradation and recycling of cellular components, including proteins. Although RAS is activated in MetS, the interrelationship between RAS and autophagy varies in glucose homeostatic organs and their cross talk is poorly understood. Interestingly, autophagy is attenuated in the liver during MetS, whereas autophagic activity is induced in adipose tissue during MetS, indicating tissue-specific discordant roles. We discuss in vivo and in vitro studies conducted in metabolic tissues and dissect their tissue-specific effects. Moreover, our review will focus on the molecular mechanisms by which autophagy orchestrates MetS and the ways future treatments could target RAS in order to achieve metabolic homeostasis.
ArticleNumber 87
Author Moustaid-Moussa, Naima
Kalupahana, Nishan S.
Sunahara, Karen K. S.
Wang, Shu
Martins, Joilson O.
Menikdiwela, Kalhara R.
Rasha, Fahmida
Dufour, Jannette M.
Ramalingam, Latha
Author_xml – sequence: 1
  givenname: Kalhara R.
  surname: Menikdiwela
  fullname: Menikdiwela, Kalhara R.
  organization: Department of Nutritional Sciences, Texas Tech University, Obesity Research Institute, Texas Tech University
– sequence: 2
  givenname: Latha
  surname: Ramalingam
  fullname: Ramalingam, Latha
  organization: Department of Nutritional Sciences, Texas Tech University, Obesity Research Institute, Texas Tech University
– sequence: 3
  givenname: Fahmida
  surname: Rasha
  fullname: Rasha, Fahmida
  organization: Department of Nutritional Sciences, Texas Tech University, Obesity Research Institute, Texas Tech University
– sequence: 4
  givenname: Shu
  orcidid: 0000-0001-8078-9942
  surname: Wang
  fullname: Wang, Shu
  organization: Department of Nutritional Sciences, Texas Tech University, Obesity Research Institute, Texas Tech University
– sequence: 5
  givenname: Jannette M.
  surname: Dufour
  fullname: Dufour, Jannette M.
  organization: Obesity Research Institute, Texas Tech University, Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center
– sequence: 6
  givenname: Nishan S.
  surname: Kalupahana
  fullname: Kalupahana, Nishan S.
  organization: Department of Nutritional Sciences, Texas Tech University, Obesity Research Institute, Texas Tech University, Department of Physiology, Faculty of Medicine, University of Peradeniya
– sequence: 7
  givenname: Karen K. S.
  surname: Sunahara
  fullname: Sunahara, Karen K. S.
  organization: Department of Experimental Physiopatholgy, Medical School University of São Paulo
– sequence: 8
  givenname: Joilson O.
  orcidid: 0000-0003-2630-7038
  surname: Martins
  fullname: Martins, Joilson O.
  organization: Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP)
– sequence: 9
  givenname: Naima
  orcidid: 0000-0002-7508-8030
  surname: Moustaid-Moussa
  fullname: Moustaid-Moussa, Naima
  email: naima.moustaid-moussa@ttu.edu
  organization: Department of Nutritional Sciences, Texas Tech University, Obesity Research Institute, Texas Tech University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32015340$$D View this record in MEDLINE/PubMed
BookMark eNp9UctO3DAUtRCIx8AHsKkiddNNih9JHLOohBCPSkjdwNpyPDcZ08QebKdVdv0H_rBfUg_DtIBUvLCv7HPOPb7nAG1bZwGhY4I_E8zqk1CQgogcU5xTystcbKF9iguSF3Uttl_Ue-gohHucFmOYltUu2mMUk5IVeB_JszG65UJ1U2ZsNkBUjeuNzsJk594NcJo1HtR3Y7ssLiD7uQDos2bKovIdxM21B2vs71-PynbGRbAhaYUpRBgO0U6r-gBHz-cM3V1e3J5f5zffrr6en93kumRVzHmtq7lmVZk2jRsKmhMuQLUFpBLjqgQ9x4qLpm4FFbrVJRagRcVa1jaUsxn6stZdjs0Acw02etXLpTeD8pN0ysjXL9YsZOd-yEoIzpLODH16FvDuYYQQ5WCChr5XFtwYJGWpYxqpqBP04xvovRu9Td97QjFa8yfUh5eO_lrZzD4B-BqgvQvBQyu1iSoatzJoekmwXAUt10HLFLRcBS1FYpI3zI34exy65oSEtR34f6b_T_oDIRO9Nw
CitedBy_id crossref_primary_10_1186_s12906_025_04749_6
crossref_primary_10_1002_cbf_3908
crossref_primary_10_15252_embj_2021108863
crossref_primary_10_3390_cancers14071637
crossref_primary_10_3389_fcell_2021_670273
crossref_primary_10_1016_j_arr_2023_101967
crossref_primary_10_23868_202209004
crossref_primary_10_1016_j_bbrc_2024_151286
crossref_primary_10_1111_apha_14164
crossref_primary_10_1152_ajprenal_00018_2023
crossref_primary_10_2147_DMSO_S257797
crossref_primary_10_1007_s00403_024_03219_2
crossref_primary_10_1016_j_abb_2021_108951
crossref_primary_10_1038_s41598_023_49449_8
crossref_primary_10_1002_fft2_255
crossref_primary_10_3390_ijms26062770
crossref_primary_10_1007_s40618_023_02068_6
crossref_primary_10_1080_25785826_2023_2228074
crossref_primary_10_1080_26895293_2022_2078894
crossref_primary_10_2337_dbi20_0019
crossref_primary_10_1208_s12249_024_02928_1
crossref_primary_10_15252_embr_202052036
crossref_primary_10_1016_j_bbalip_2022_159181
crossref_primary_10_3934_mbe_2022270
crossref_primary_10_3389_fcell_2024_1360014
crossref_primary_10_1080_10409238_2021_1925219
crossref_primary_10_2174_1573399819666230502110511
crossref_primary_10_1111_obr_13313
crossref_primary_10_1155_2020_7527953
crossref_primary_10_3389_fendo_2021_707126
crossref_primary_10_3390_nu16234179
crossref_primary_10_3390_cells10082114
crossref_primary_10_1016_j_lfs_2022_121210
crossref_primary_10_1021_acschemneuro_2c00165
crossref_primary_10_1016_j_bbadis_2025_167678
crossref_primary_10_1016_j_lfs_2022_121335
crossref_primary_10_1155_2021_9928986
crossref_primary_10_1002_path_5985
crossref_primary_10_1007_s00018_024_05351_8
crossref_primary_10_1016_j_bbamcr_2024_119753
crossref_primary_10_1016_j_preteyeres_2022_101064
crossref_primary_10_2147_CCID_S284300
crossref_primary_10_1007_s11033_021_06298_w
crossref_primary_10_2147_IJN_S441418
crossref_primary_10_1002_jcla_23957
crossref_primary_10_1055_a_1948_4290
crossref_primary_10_1007_s00384_022_04265_w
crossref_primary_10_4254_wjh_v13_i1_6
crossref_primary_10_1042_BCJ20200894
crossref_primary_10_1007_s43032_023_01380_z
crossref_primary_10_3390_cells10020381
crossref_primary_10_1016_j_bbadis_2022_166477
crossref_primary_10_1016_j_mce_2021_111245
crossref_primary_10_1007_s10735_021_10013_1
crossref_primary_10_1016_j_biopha_2022_113715
crossref_primary_10_3389_fcell_2020_545852
crossref_primary_10_3389_fendo_2023_1149610
crossref_primary_10_2147_IDR_S265718
crossref_primary_10_1091_mbc_E20_05_0291
crossref_primary_10_1097_ICU_0000000000000747
crossref_primary_10_3389_fcell_2021_654913
crossref_primary_10_3389_fmed_2022_923334
Cites_doi 10.1038/cdd.2014.143
10.1038/nature07383
10.1016/j.metabol.2008.03.010
10.1016/j.jacc.2009.04.018
10.1080/15548627.2015.1106667
10.1152/ajpheart.00498.2016
10.1172/JCI118623
10.1016/j.bbadis.2016.07.019
10.1089/met.2004.2.82
10.1161/01.RES.0000261924.76669.36
10.1097/00005344-199000168-00018
10.1159/000329327
10.1016/j.jcmgh.2019.03.005
10.1038/nm1574
10.1038/nm.2079
10.1210/en.2014-1090
10.1079/096582197388608
10.1111/obr.12408
10.1080/15548627.2016.1178446
10.1083/jcb.200412022
10.1007/s11906-018-0803-0
10.1083/jcb.152.1.51
10.1016/S1357-2725(02)00311-4
10.1007/s11515-015-1354-2
10.1530/eje.0.1470495
10.1038/cdd.2008.163
10.1161/01.HYP.0000040262.48405.A8
10.1016/j.tcm.2015.10.004
10.1038/emboj.2011.398
10.1016/j.ijcard.2018.02.109
10.1016/j.cell.2006.01.016
10.1002/hep.22187
10.1161/HYPERTENSIONAHA.111.00469
10.1074/jbc.M602097200
10.3389/fimmu.2015.00637
10.1016/0092-8674(95)90194-9
10.1016/j.cmet.2010.05.006
10.1161/CIRCULATIONAHA.109.192644
10.1002/oby.21352
10.1101/gad.1599207
10.1016/j.yjmcc.2018.04.002
10.3109/10409238.2012.694843
10.1007/s00395-005-0528-5
10.1002/j.1875-9114.1987.tb04039.x
10.4161/auto.5.8.10153
10.1016/j.mce.2015.03.015
10.1073/pnas.0906048106
10.1016/j.phrs.2013.03.001
10.1007/s00395-009-0043-1
10.5888/pcd14.160287
10.1016/j.cmet.2010.04.005
10.1002/cbin.10634
10.1128/MCB.23.3.1085-1094.2003
10.1038/s41598-019-44834-8
10.1079/PNS200194
10.1210/en.2003-0150
10.1016/j.celrep.2018.10.040
10.7554/eLife.11205
10.1016/j.cmet.2008.08.009
10.4161/auto.4913
10.1016/S1097-2765(00)80211-7
10.4161/auto.5.8.9991
10.4161/auto.5924
10.1152/ajpheart.00796.2011
10.1152/ajpcell.00424.2009
10.1016/j.cmet.2008.08.013
10.1007/s00125-011-2350-y
10.1159/000495678
10.1210/jc.2010-1681
10.1083/jcb.78.1.152
10.1038/ncb2152
10.3892/ol.2017.5872
10.1016/j.devcel.2004.07.009
10.1038/nature01323
10.1016/j.cell.2016.05.051
10.1038/ncb1482
10.1038/ncb839
10.1161/HYPERTENSIONAHA.108.128488
10.1016/j.cyto.2011.09.002
10.1016/j.cyto.2011.08.022
10.1111/jpi.12333
10.1016/j.tcb.2003.12.002
10.4161/isl.1.2.9057
10.4161/auto.5.2.7656
10.1038/ijo.2013.27
10.1172/JCI73939
10.1016/j.bbrc.2009.03.039
10.1152/ajpendo.00497.2011
10.1016/j.bbadis.2014.05.005
10.4161/auto.26058
10.1186/1475-2840-4-6
10.1038/s41419-018-1168-7
10.1074/jbc.M111.254417
10.1073/pnas.0802128105
10.2119/molmed.2010.00023
10.1038/sj.ijo.0803632
10.1007/s12035-015-9177-3
10.1126/science.290.5497.1717
10.1155/jbb/2006/27012
10.1007/s10557-010-6274-4
10.1016/j.molcel.2008.03.003
10.1371/journal.pone.0018666
10.1074/jbc.M110.202911
10.1074/jbc.M603783200
10.1016/j.bbalip.2016.01.006
10.1091/mbc.e08-12-1249
10.1083/jcb.150.6.1507
10.1146/annurev-physiol-021317-121427
10.1038/nature07976
10.1161/HYPERTENSIONAHA.111.179457
10.1080/15548627.2016.1145326
10.3748/wjg.v20.i23.7325
10.1016/j.semnephrol.2013.11.009
10.1111/j.1467-789X.2011.00942.x
10.1016/j.ijcard.2016.12.127
10.1016/j.yjmcc.2018.08.028
10.1161/CIRCRESAHA.111.300483
10.1016/j.febslet.2007.01.096
10.1016/j.intimp.2016.02.023
10.1086/593174
10.4161/auto.25722
10.1038/ncb840
10.1038/ni.1823
10.1155/2012/282041
10.1111/jcmm.12687
10.1038/ncomms3300
10.1074/jbc.M405346200
10.1074/jbc.M109.033936
10.1038/s41574-018-0009-1
10.1038/ijo.2011.95
10.2337/db17-0223
10.1056/NEJM199304013281302
10.1016/j.freeradbiomed.2014.01.002
10.2337/db10-0705
10.1016/0092-8674(94)90006-X
10.1016/j.bbrc.2013.05.070
10.1074/jbc.273.7.3963
10.1159/000358676
10.1083/jcb.87.1.180
10.1124/jpet.111.184341
10.1038/oby.2002.70
10.7150/ijms.28106
10.1038/ni.1980
10.1152/ajpendo.00640.2012
10.1161/CIRCRESAHA.110.232306
10.1002/hep.29229
10.1155/2015/398483
10.1016/j.physbeh.2010.03.018
10.1186/s40169-017-0154-5
10.1038/sj.cdd.4401728
10.1038/nature03029
10.1001/jama.287.3.356
10.2337/db18-1979-P
10.2337/diacare.27.4.1011
10.3390/cells7100149
10.1016/j.immuni.2007.07.022
10.1038/oby.2011.299
10.1172/JCI35541
10.1111/acel.12427
10.1242/jcs.01620
10.1038/nrm2672
10.1038/srep35372
10.1073/pnas.2436255100
10.1038/nm.3014
10.1161/CIRCRESAHA.118.312208
ContentType Journal Article
Copyright The Author(s) 2020
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41419-020-2275-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-4889
ExternalDocumentID PMC6997396
32015340
10_1038_s41419_020_2275_9
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: SPRINT (TTU/FAPESP) Award (NMM, JM, LR)
– fundername: ;
GroupedDBID ---
0R~
3V.
53G
5VS
70F
7X7
88A
88I
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
E3Z
EBLON
EBS
EMOBN
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
LK8
M0L
M2P
M48
M7P
M~E
NAO
O5R
O5S
O9-
OK1
PIMPY
PQQKQ
PROAC
RNT
RPM
SNYQT
TR2
UKHRP
W2D
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c536t-78c6dc365dc3c0b2ec7179eaf4eec70065ecd0a79b8f929cfc509ec963f3fb273
IEDL.DBID M48
ISSN 2041-4889
IngestDate Thu Aug 21 14:09:26 EDT 2025
Fri Sep 05 03:03:06 EDT 2025
Wed Aug 13 04:57:36 EDT 2025
Thu Jan 02 22:56:58 EST 2025
Tue Jul 01 03:49:44 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Fri Feb 21 02:37:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-78c6dc365dc3c0b2ec7179eaf4eec70065ecd0a79b8f929cfc509ec963f3fb273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2630-7038
0000-0001-8078-9942
0000-0002-7508-8030
OpenAccessLink https://www.proquest.com/docview/2350328798?pq-origsite=%requestingapplication%
PMID 32015340
PQID 2350328798
PQPubID 2041963
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6997396
proquest_miscellaneous_2350904198
proquest_journals_2350328798
pubmed_primary_32015340
crossref_citationtrail_10_1038_s41419_020_2275_9
crossref_primary_10_1038_s41419_020_2275_9
springer_journals_10_1038_s41419_020_2275_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-03
PublicationDateYYYYMMDD 2020-02-03
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cell death & disease
PublicationTitleAbbrev Cell Death Dis
PublicationTitleAlternate Cell Death Dis
PublicationYear 2020
Publisher Nature Publishing Group UK
Springer Nature B.V
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
References ReavenGMInsulin resistance, cardiovascular disease, and the metabolic syndromeDiabetes Care2004271011101210.2337/diacare.27.4.101115047666
GuilluyCThe Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressureNat. Med.20101618319010.1038/nm.20791:CAS:528:DC%2BC3cXpslGmsQ%3D%3D20098430
PrieurXDifferential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese miceDiabetes20116079780910.2337/db10-07051:CAS:528:DC%2BC3MXktVKksb4%3D212663303046840
LiSSirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity.Hepatology20176693695210.1002/hep.292291:CAS:528:DC%2BC2sXhtlOhsbzE28437863
Matsuzawa-NagataNIncreased oxidative stress precedes the onset of high-fat diet–induced insulin resistance and obesityMetabolism2008571071107710.1016/j.metabol.2008.03.0101:CAS:528:DC%2BD1cXosleltLk%3D18640384
InokiKLiYZhuTWuJGuanK-LTSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signallingNat. Cell Biol.2002464865710.1038/ncb8391:CAS:528:DC%2BD38Xms1ahtL4%3D12172553
MatsuiYDistinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagyCirc. Res.200710091492210.1161/01.RES.0000261924.76669.361:CAS:528:DC%2BD2sXjtlWmsbo%3D17332429
KimKHAutophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokineNat. Med.2013198310.1038/nm.30141:CAS:528:DC%2BC38XhslGktb3E23202295
YousefiSCalpain-mediated cleavage of Atg5 switches autophagy to apoptosisNat. Cell Biol.200681124113210.1038/ncb14821:CAS:528:DC%2BD28XhtVWqsLfP16998475
GaoQActivation of autophagy contributes to the angiotensin ii-triggered apoptosis in a dopaminergic neuronal cell lineMol. Neurobiol.2016532911291910.1007/s12035-015-9177-31:CAS:528:DC%2BC2MXntVCnu7w%3D25902863
PutnamKShoemakerRYiannikourisFCassisLAThe renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndromeAm. J. Physiol. Heart Circulatory Physiol.2012302H1219H123010.1152/ajpheart.00796.20111:CAS:528:DC%2BC38XkslCis7c%3D
BorekMCharlapSFrishmanWEnalapril: A long‐acting angiotensin‐converting enzyme inhibitorPharmacother. J. Hum. Pharmacol. Drug Ther.1987713314510.1002/j.1875-9114.1987.tb04039.x1:CAS:528:DyaL1cXkvVGmsQ%3D%3D
ZhangYAdipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesisProc. Natl. Acad. Sci.2009106198601986510.1073/pnas.0906048106199105292785257
ParlakpinarHOzerMKAcetAEffects of captopril and angiotensin II receptor blockers (AT1, AT2) on myocardial ischemia–reperfusion induced infarct sizeCytokine20115668869410.1016/j.cyto.2011.09.0021:CAS:528:DC%2BC3MXhsFSktL7M21975128
KosackaJAutophagy in adipose tissue of patients with obesity and type 2 diabetesMol. Cell. Endocrinol.2015409213210.1016/j.mce.2015.03.0151:CAS:528:DC%2BC2MXlslCluro%3D25818883
FujitaniYEbatoCUchidaTKawamoriRWatadaHβ-cell autophagy: a novel mechanism regulating β-cell function and mass-Lessons from β-cell-specific Atg7-deficient miceIslets2009115115310.4161/isl.1.2.905721099263
KlionskyDJEmrSDAutophagy as a regulated pathway of cellular degradationScience20002901717172110.1126/science.290.5497.17171:CAS:528:DC%2BD3cXovVOitbw%3D110994042732363
KlionskyDJThe molecular machinery of autophagy: unanswered questionsJ. Cell Sci.200511871810.1242/jcs.016201:CAS:528:DC%2BD2MXhsVCrtb4%3D15615779
KovsanJAltered autophagy in human adipose tissues in obesityJ. Clin. Endocrinol. Metab.201196E268E27710.1210/jc.2010-16811:CAS:528:DC%2BC3MXisVOmtrg%3D21047928
FujitaniYKawamoriRWatadaHThe role of autophagy in pancreatic β-cell and diabetesAutophagy2009528028210.4161/auto.5.2.76561:CAS:528:DC%2BD1MXovFeiu7o%3D19158492
Chao, Y.-M., Lai, M.-D. & Chan, J. Y. Redox-sensitive endoplasmic reticulum stress and autophagy at rostral ventrolateral medulla contribute to hypertension in spontaneously hypertensive rats. Hypertensionhttps://doi.org/10.1161/HYPERTENSIONAHA.111.00469 (2013).
FinckenbergPCaloric restriction ameliorates angiotensin II–induced mitochondrial remodeling and cardiac hypertrophyHypertension201259768410.1161/HYPERTENSIONAHA.111.1794571:CAS:528:DC%2BC3MXhs1WksrrF22068868
ZhouMLong non-coding RNA H19 protects acute myocardial infarction through activating autophagy in miceEur. Rev. Med. Pharmacol. Sci.201822564756511:STN:280:DC%2BB3czgt1KhtA%3D%3D30229841
CaiJAutophagy ablation in adipocytes induces insulin resistance and reveals roles for lipid peroxide and Nrf2 signaling in adipose-liver crosstalkCell Rep.20182517081717. e510.1016/j.celrep.2018.10.0401:CAS:528:DC%2BC1cXitF2qtbrK304283426802939
KamadaYTor-mediated induction of autophagy via an Apg1 protein kinase complexJ. Cell Biol.20001501507151310.1083/jcb.150.6.15071:CAS:528:DC%2BD3cXmslGlsr4%3D109954542150712
LinLMas receptor mediates cardioprotection of angiotensin‐(1‐7) against Angiotensin II‐induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stressJ. Cell. Mol. Med.201620485710.1111/jcmm.126871:CAS:528:DC%2BC28XjtVGltg%3D%3D26515045
ZhangMKennySJGeLXuKSchekmanRTranslocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretionElife2015410.7554/eLife.11205265233924728131
SuFSimvastatin protects heart from pressure overload injury by inhibiting excessive autophagyInt. J. Med. Sci.2018151508151610.7150/ijms.28106304431726216062
WullschlegerSLoewithRHallMNTOR signaling in growth and metabolismCell200612447148410.1016/j.cell.2006.01.0161:CAS:528:DC%2BD28Xhslaqs74%3D16469695
MizushimaNAutophagy: process and functionGenes Dev.2007212861287310.1101/gad.15992071:CAS:528:DC%2BD2sXhtlGmsrjP18006683
MartinsRLithgowGJLinkWLong live FOXO: unraveling the role of FOXO proteins in aging and longevityAging Cell20161519620710.1111/acel.124271:CAS:528:DC%2BC2MXhvFKgs7vJ26643314
SaitohTLoss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β productionNature200845626426810.1038/nature073831:CAS:528:DC%2BD1cXhtlKmtLzN18849965
Wang, H.-J., Chen, S.-F. & Lo, W.-Y. Identification of cofilin-1 induces G0/G1 arrest and autophagy in angiotensin-(1-7)-treated human aortic endothelial cells from iTRAQ quantitative proteomics. Sci. Rep.6, 1–13 (2016).
Lapaquette, P., Guzzo, J., Bretillon, L. & Bringer, M.-A. Cellular and molecular connections between autophagy and inflammation. Mediators Inflamm.2015, 1–13 (2015).
CrişanTOInflammasome-independent modulation of cytokine response by autophagy in human cellsPLoS ONE2011610.1371/journal.pone.00186661:CAS:528:DC%2BC3MXltVWlt7Y%3D214909343072416
ZeydaMHuman adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator productionInt. J. Obes.2007311420142810.1038/sj.ijo.08036321:CAS:528:DC%2BD2sXpsF2qurs%3D
WardCAutophagy, lipophagy and lysosomal lipid storage disordersBiochim. Biophys. Acta2016186126928410.1016/j.bbalip.2016.01.0061:CAS:528:DC%2BC28XhtVejtLo%3D26778751
KimJKunduMViolletBGuanK-LAMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1Nat. Cell Biol.20111313214110.1038/ncb21521:CAS:528:DC%2BC3MXhtlamtb0%3D212583673987946
MenikdiwelaKRAngiotensin II Increases endoplasmic reticulum stress in adipose tissue and adipocytesSci. Rep.2019910.1038/s41598-019-44834-81:CAS:528:DC%2BC1MXhtFCltLbE311864466560092
QianQHepatic lysosomal iNOS activity impairs autophagy in obesityCell. Mol. Gastroenterol. Hepatol.201989511010.1016/j.jcmgh.2019.03.005309265816522853
LibbyPInflammation in atherosclerosisNature200242086887410.1038/nature013231:CAS:528:DC%2BD38XpsFygtb8%3D12490960
BaergaRZhangYChenP-HGoldmanSJinSVTargeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in miceAutophagy200951118113010.4161/auto.5.8.99911:CAS:528:DC%2BC3cXkvVeitrY%3D19844159
Qian, M., Fang, X. & Wang, X. Autophagy and inflammation. Clin. Transl. Med.6, 24 (2017).
MaianoCHueOMorinAJMoullecGPrevalence of overweight and obesity among children and adolescents with intellectual disabilities: a systematic review and meta‐analysisObes. Rev.20161759961110.1111/obr.124081:STN:280:DC%2BC28bovVWitQ%3D%3D27171466
ÖstAAttenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetesMol. Med.20101623524610.2119/molmed.2010.000231:CAS:528:DC%2BC3cXpsFejtbg%3D203868662896460
KimYCGuanK-LmTOR: a pharmacologic target for autophagy regulationJ. Clin. Investig.2015125253210.1172/JCI73939256545474382265
Kim, J.-A., Jang, H.-J., Martinez-Lemus, L. A. & Sowers, J. R. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin stimulated endothelial nitric oxide synthase and vasodilation. Am. J. Physiol. Heart Circ. Physiol.302, E201–E208 (2012).
TravassosLHNod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entryNat. Immunol.201011556210.1038/ni.18231:CAS:528:DC%2BD1MXhtlOrur3L19898471
NodaTOhsumiYTor, a phosphatidylinositol kinase homologue, controls autophagy in yeastJ. Biol. Chem.19982733963396610.1074/jbc.273.7.39631:CAS:528:DyaK1cXht1ahsr8%3D9461583
MorrellNWCellular and molecular basis of pulmonary arterial hypertensionJ. Am. Coll. Cardiol.200954S20S3110.1016/j.jacc.2009.04.0181:CAS:528:DC%2BC3cXkvVOks7g%3D195558552790324
QianQS-Nitrosoglutathione reductase dysfunction contributes to obesity-associated hepatic insulin resistance via regulating autophagyDiabetes20186719320710.2337/db17-02231:CAS:528:DC%2BC1cXhs12lt7vK29074597
CuervoAMAutophagy: in sickness and in healthTrends cell Biol.200414707710.1016/j.tcb.2003.12.0021:CAS:528:DC%2BD2cXhtVOrtL4%3D15102438
de KloetADKrauseEGWoodsSCThe renin angiotensin system and the metabolic syndromePhysiol. Behav.201010052553410.1016/j.physbeh.2010.03.0181:CAS:528:DC%2BC3cXntlWqtrY%3D203815102886177
Meng, Q. & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via IKK-beta/NF-kappaB pathway. J. Biol. Chem.https://d
L Lin (2275_CR119) 2016; 20
C Chambrier (2275_CR51) 2002; 10
N Mao (2275_CR120) 2016; 40
N Mizushima (2275_CR22) 2005; 12
J Sadoshima (2275_CR94) 2008; 4
L Yang (2275_CR57) 2010; 11
S Sciarretta (2275_CR86) 2018; 80
S Wullschleger (2275_CR69) 2006; 124
C Guilluy (2275_CR101) 2010; 16
J Harris (2275_CR161) 2007; 27
L Wilson-Fritch (2275_CR33) 2003; 23
H-X Yuan (2275_CR78) 2013; 9
Q Qian (2275_CR162) 2019; 8
2275_CR30
MJ LeMieux (2275_CR117) 2016; 24
X Prieur (2275_CR4) 2011; 60
LM Ignacio-Souza (2275_CR44) 2014; 155
J Harris (2275_CR147) 2011; 286
R Baerga (2275_CR9) 2009; 5
J Cai (2275_CR35) 2018; 25
Y Wang (2275_CR111) 2016; 312
P Finckenberg (2275_CR126) 2012; 59
M Zhang (2275_CR151) 2015; 4
CJ Potter (2275_CR71) 2002; 4
T Saitoh (2275_CR149) 2008; 456
JG Sánchez (2275_CR49) 2002; 147
S Namkoong (2275_CR62) 2018; 41
AB Novikoff (2275_CR34) 1980; 87
M Komatsu (2275_CR56) 2005; 169
ER Porrello (2275_CR133) 2009; 5
2275_CR42
AM Cuervo (2275_CR18) 2004; 14
2275_CR43
SK Michael (2275_CR102) 2008; 105
J Kosacka (2275_CR38) 2015; 409
2275_CR41
Q Qian (2275_CR54) 2018; 67
S Li (2275_CR64) 2017; 66
JS Kim (2275_CR58) 2008; 47
Y Woo (2275_CR168) 2017; 13
R Singh (2275_CR55) 2009; 458
M Zhou (2275_CR89) 2018; 22
Q Shen (2275_CR123) 2018; 51
T Jiang (2275_CR122) 2013; 71
M Djavaheri-Mergny (2275_CR21) 2006; 281
C Zhang (2275_CR10) 2013; 305
DJ Klionsky (2275_CR26) 2005; 118
2275_CR113
Q Gao (2275_CR134) 2016; 53
2275_CR116
L Long (2275_CR99) 2013; 112
P Tontonoz (2275_CR47) 1994; 79
A Hamacher-Brady (2275_CR32) 2006; 281
C Ebato (2275_CR79) 2008; 8
2275_CR118
L Ramalingam (2275_CR109) 2016
Z Cheng (2275_CR124) 2018; 125
T Ogihara (2275_CR12) 2002; 40
Y Kamada (2275_CR68) 2000; 150
I Tzameli (2275_CR46) 2004; 279
C Nuñez (2275_CR40) 2013; 37
M Abdellatif (2275_CR91) 2018; 123
NS Kalupahana (2275_CR108) 2012; 13
MA Testa (2275_CR112) 1993; 328
SA Kliewer (2275_CR52) 1995; 83
C Maiano (2275_CR2) 2016; 17
2275_CR61
J Kovsan (2275_CR27) 2011; 96
C Ward (2275_CR53) 2016; 1861
2275_CR100
HS Jung (2275_CR80) 2008; 8
KH Kim (2275_CR29) 2013; 19
NR Hadi (2275_CR167) 2017; 230
P Castets (2275_CR140) 2013; 9
W Quan (2275_CR81) 2012; 55
M Zeng (2275_CR160) 2013; 436
U Pfeifer (2275_CR67) 1978; 78
F Chen (2275_CR121) 2014; 33
D Chen (2275_CR157) 2016; 34
S Premaratna (2275_CR115) 2012; 36
K Nishida (2275_CR90) 2009; 16
A Kuma (2275_CR45) 2004; 432
S Mei (2275_CR63) 2011; 339
Y Fujitani (2275_CR83) 2009; 1
A Öst (2275_CR39) 2010; 16
Y Ding (2275_CR158) 2014; 34
KR Menikdiwela (2275_CR114) 2019; 9
2275_CR135
J-O Pyo (2275_CR164) 2013; 4
P Libby (2275_CR143) 2002; 420
JP Sutherland (2275_CR144) 2004; 2
2275_CR137
2275_CR136
J Kim (2275_CR25) 2001; 152
RH Eckel (2275_CR8) 2005; 365
A Rocchi (2275_CR11) 2015; 10
ES Ford (2275_CR3) 2002; 287
AD de Kloet (2275_CR15) 2010; 100
SP Baba (2275_CR93) 2018; 118
N Mizushima (2275_CR17) 2007; 21
J Harris (2275_CR145) 2011; 56
S Engeli (2275_CR13) 2003; 35
Y Fujitani (2275_CR84) 2009; 5
YC Kim (2275_CR74) 2015; 125
X Xiong (2275_CR132) 2018; 9
M Zeyda (2275_CR142) 2007; 31
DJ Klionsky (2275_CR19) 2000; 290
N Matsuzawa-Nagata (2275_CR85) 2008; 57
WW Hung (2275_CR105) 2011; 25
CH Jung (2275_CR75) 2009; 20
NS Kalupahana (2275_CR107) 2012; 47
T Saito (2275_CR88) 2016; 12
ED Rosen (2275_CR48) 1999; 4
C Rupérez (2275_CR98) 2018; 260
ER Porrello (2275_CR125) 2009; 53
H Xue (2275_CR159) 2016; 12
R Singh (2275_CR37) 2009; 119
P Codogno (2275_CR65) 2010; 11
H Parlakpinar (2275_CR129) 2011; 56
XM Ma (2275_CR82) 2009; 10
S Patel (2275_CR110) 2018; 20
R Martins (2275_CR60) 2016; 15
F Su (2275_CR128) 2018; 15
NW Morrell (2275_CR97) 2009; 54
BA Rothermel (2275_CR95) 2007; 3
NS Kalupahana (2275_CR16) 2012; 20
K Hara (2275_CR50) 2000; 84
B de Luxán‐Delgado (2275_CR66) 2016; 61
K Nakahira (2275_CR148) 2011; 12
P Trayhurn (2275_CR141) 2001; 60
S Rajagopalan (2275_CR104) 1996; 97
K Putnam (2275_CR14) 2012; 302
2275_CR156
K Alberti (2275_CR6) 2009; 120
2275_CR154
S Yousefi (2275_CR59) 2006; 8
J Harris (2275_CR153) 2008; 198
K Suzuki (2275_CR24) 2007; 581
A Whaley-Connell (2275_CR139) 2011; 34
GM Reaven (2275_CR7) 2004; 27
Y Mei (2275_CR96) 2015; 1852
A Nakai (2275_CR87) 2007; 13
Y Yamori (2275_CR103) 1990; 16
N Dupont (2275_CR152) 2011; 30
WJ Kwanten (2275_CR31) 2014; 20
H-Y Liu (2275_CR23) 2009; 284
DM Gwinn (2275_CR76) 2008; 30
2275_CR1
JL Lavoie (2275_CR106) 2003; 144
GP Diniz (2275_CR138) 2009; 104
Y Liu (2275_CR131) 2015; 22
2275_CR5
W Zhao (2275_CR127) 2014; 69
T Noda (2275_CR73) 1998; 273
Z Yue (2275_CR165) 2003; 100
K Inoki (2275_CR70) 2002; 4
TO Crişan (2275_CR146) 2011; 6
H Soussi (2275_CR28) 2016; 12
2275_CR20
Y Matsui (2275_CR92) 2007; 100
M Shibata (2275_CR163) 2009; 382
RC Scott (2275_CR72) 2004; 7
EF du Toit (2275_CR130) 2005; 100
LH Travassos (2275_CR155) 2010; 11
J Kim (2275_CR77) 2011; 13
Z Zhong (2275_CR150) 2016; 166
Y Zhang (2275_CR36) 2009; 106
M Borek (2275_CR166) 1987; 7
References_xml – reference: WardCAutophagy, lipophagy and lysosomal lipid storage disordersBiochim. Biophys. Acta2016186126928410.1016/j.bbalip.2016.01.0061:CAS:528:DC%2BC28XhtVejtLo%3D26778751
– reference: KlionskyDJThe molecular machinery of autophagy: unanswered questionsJ. Cell Sci.200511871810.1242/jcs.016201:CAS:528:DC%2BD2MXhsVCrtb4%3D15615779
– reference: FujitaniYEbatoCUchidaTKawamoriRWatadaHβ-cell autophagy: a novel mechanism regulating β-cell function and mass-Lessons from β-cell-specific Atg7-deficient miceIslets2009115115310.4161/isl.1.2.905721099263
– reference: NishidaKKyoiSYamaguchiOSadoshimaJOtsuKThe role of autophagy in the heartCell Death Differ.200916313810.1038/cdd.2008.1631:CAS:528:DC%2BD1cXhsV2it7%2FP19008922
– reference: MichaelSKHigh blood pressure arising from a defect in vascular functionProc. Natl Acad. Sci.20081056702670710.1073/pnas.0802128105184486762373316
– reference: TestaMAAndersonRBNackleyJFHollenbergNKQuality of life and antihypertensive therapy in men—a comparison of captopril with enalapril. The Quality-of-Life Hypertension Study GroupN. Engl. J. Med.199332890791310.1056/NEJM1993040132813021:STN:280:DyaK3s7ovV2itA%3D%3D8446137
– reference: Qian, M., Fang, X. & Wang, X. Autophagy and inflammation. Clin. Transl. Med.6, 24 (2017).
– reference: JungCHULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machineryMol. Biol. Cell2009201992200310.1091/mbc.e08-12-12491:CAS:528:DC%2BD1MXotVyqsL8%3D192251512663920
– reference: PorrelloERAngiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor–mediated cardiomyocyte autophagyHypertension2009531032104010.1161/HYPERTENSIONAHA.108.1284881:CAS:528:DC%2BD1MXlslChs7o%3D19433781
– reference: SaitohTLoss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β productionNature200845626426810.1038/nature073831:CAS:528:DC%2BD1cXhtlKmtLzN18849965
– reference: ChengZMst1 knockout enhances cardiomyocyte autophagic flux to alleviate angiotensin II-induced cardiac injury independent of angiotensin II receptorsJ. Mol. Cell. Cardiol.201812511712810.1016/j.yjmcc.2018.08.0281:CAS:528:DC%2BC1cXitVKhsbbL30193956
– reference: TrayhurnPBeattieJHPhysiological role of adipose tissue: white adipose tissue as an endocrine and secretory organProc. Nutr. Soc.20016032933910.1079/PNS2001941:CAS:528:DC%2BD3MXmslyhu7s%3D11681807
– reference: PotterCJPedrazaLGXuTAkt regulates growth by directly phosphorylating Tsc2Nat. Cell Biol.2002465866510.1038/ncb8401:CAS:528:DC%2BD38Xms1ahtLw%3D12172554
– reference: ZhaoWAtg5 deficiency-mediated mitophagy aggravates cardiac inflammation and injury in response to angiotensin IIFree Radic. Biol. Med.20146910811510.1016/j.freeradbiomed.2014.01.0021:CAS:528:DC%2BC2cXksVWltrg%3D24418158
– reference: LiuH-YHepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia inhibition of FoxO1-dependent expression of key autophagy genes by insulinJ. Biol. Chem.2009284314843149210.1074/jbc.M109.0339361:CAS:528:DC%2BD1MXhtlCjsrzO197589912781544
– reference: YueZJinSYangCLevineAJHeintzNBeclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressorProc. Natl Acad. Sci.2003100150771508210.1073/pnas.24362551001:CAS:528:DC%2BD3sXpvFaqtbg%3D14657337299911
– reference: Chao, Y.-M., Lai, M.-D. & Chan, J. Y. Redox-sensitive endoplasmic reticulum stress and autophagy at rostral ventrolateral medulla contribute to hypertension in spontaneously hypertensive rats. Hypertensionhttps://doi.org/10.1161/HYPERTENSIONAHA.111.00469 (2013).
– reference: NakaiAThe role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stressNat. Med.20071361962410.1038/nm15741:CAS:528:DC%2BD2sXkvVOgsr4%3D17450150
– reference: HaraKThe role of PPARγ as a thrifty gene both in mice and humansBr. J. Nutr.200084S235S23910.1079/0965821973886081:CAS:528:DC%2BD3MXhtlWls70%3D11242476
– reference: MenikdiwelaKRAngiotensin II Increases endoplasmic reticulum stress in adipose tissue and adipocytesSci. Rep.2019910.1038/s41598-019-44834-81:CAS:528:DC%2BC1MXhtFCltLbE311864466560092
– reference: FordESGilesWHDietzWHPrevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination SurveyJAMA200228735635910.1001/jama.287.3.35611790215
– reference: GuilluyCThe Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressureNat. Med.20101618319010.1038/nm.20791:CAS:528:DC%2BC3cXpslGmsQ%3D%3D20098430
– reference: PyoJ-OOverexpression of Atg5 in mice activates autophagy and extends lifespanNat. Commun.2013410.1038/ncomms33001:CAS:528:DC%2BC3sXhsVOrurbF23939249
– reference: BaergaRZhangYChenP-HGoldmanSJinSVTargeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in miceAutophagy200951118113010.4161/auto.5.8.99911:CAS:528:DC%2BC3cXkvVeitrY%3D19844159
– reference: LiuYLevineBAutosis and autophagic cell death: the dark side of autophagyCell Death Differ.20152236710.1038/cdd.2014.1431:CAS:528:DC%2BC2cXhs1ChsbbM25257169
– reference: LiSSirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity.Hepatology20176693695210.1002/hep.292291:CAS:528:DC%2BC2sXhtlOhsbzE28437863
– reference: du ToitEFNabbenMLochnerAA potential role for angiotensin II in obesity induced cardiac hypertrophy and ischaemic/reperfusion injuryBasic Res. Cardiol.200510034635410.1007/s00395-005-0528-51:CAS:528:DC%2BD2MXnvFyiurs%3D15821998
– reference: EbatoCAutophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat dietCell Metab.2008832533210.1016/j.cmet.2008.08.00918840363
– reference: ChambrierCEicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor γObes. Res.20021051852510.1038/oby.2002.701:CAS:528:DC%2BD38XmsVWmsrs%3D12055328
– reference: GwinnDMAMPK phosphorylation of raptor mediates a metabolic checkpointMol. Cell20083021422610.1016/j.molcel.2008.03.0031:CAS:528:DC%2BD1cXlsFentbg%3D184399002674027
– reference: Dai, D.-F. et al. Mitochondrial oxidative stress mediates angiotensin II–induced cardiac hypertrophy and Gαq overexpression–induced heart failure. Circ. Res.https://doi.org/10.1161/CIRCRESAHA.110.232306 (2011).
– reference: Moore, J. X., Chaudhary, N. & Akinyemiju, T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis.14, E24 (2017).
– reference: LavoieJLSigmundCDMinireview: overview of the renin-angiotensin system—an endocrine and paracrine systemEndocrinology20031442179218310.1210/en.2003-01501:CAS:528:DC%2BD3sXktFeht7g%3D12746271
– reference: Yadav, A. et al. ANG II promotes autophagy in podocytes. Am. J. Physiol. Cell Physiol.299, C488–C496 (2010).
– reference: WullschlegerSLoewithRHallMNTOR signaling in growth and metabolismCell200612447148410.1016/j.cell.2006.01.0161:CAS:528:DC%2BD28Xhslaqs74%3D16469695
– reference: Vitale, C. et al. Metabolic effect of telmisartan and losartan in hypertensive patients with metabolic syndrome. Cardiovasc. Diabetol.4, 6 (2005).
– reference: Zhang, Y., Sowers, J. R. & Ren, J. Targeting autophagy in obesity: from pathophysiology to management. Nat. Rev. Endocrinol.1, 356–376 (2018).
– reference: PatelSHussainTDimerization of AT2 and mas receptors in control of blood pressureCurr. Hypertens. Rep.2018201910.1007/s11906-018-0803-0
– reference: Wilson-FritchLMitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazoneMol. Cell. Biol.2003231085109410.1128/MCB.23.3.1085-1094.20031:CAS:528:DC%2BD3sXnvFGntA%3D%3D12529412140688
– reference: KomatsuMImpairment of starvation-induced and constitutive autophagy in Atg7-deficient miceJ. Cell Biol.200516942543410.1083/jcb.2004120221:CAS:528:DC%2BD2MXktFOjsLk%3D158668872171928
– reference: KliewerSAA prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiationCell19958381381910.1016/0092-8674(95)90194-91:CAS:528:DyaK2MXpvVehtb4%3D8521498
– reference: HarrisJAutophagy and cytokinesCytokine20115614014410.1016/j.cyto.2011.08.0221:CAS:528:DC%2BC3MXht1Knu7zJ21889357
– reference: KumaAThe role of autophagy during the early neonatal starvation periodNature20044321032103610.1038/nature030291:CAS:528:DC%2BD2cXhtFeisrnJ15525940
– reference: EckelRHGrundySMZimmetPZThe metabolic syndromeL2005365141514281:CAS:528:DC%2BD2MXjsVegtbg%3D
– reference: KimJSImpaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytesHepatology2008471725173610.1002/hep.221871:CAS:528:DC%2BD1cXmvVChtLY%3D18311843
– reference: FujitaniYKawamoriRWatadaHThe role of autophagy in pancreatic β-cell and diabetesAutophagy2009528028210.4161/auto.5.2.76561:CAS:528:DC%2BD1MXovFeiu7o%3D19158492
– reference: RupérezCAutophagic control of cardiac steatosis through FGF21 in obesity-associated cardiomyopathyInt. J. Cardiol.201826016317010.1016/j.ijcard.2018.02.10929519677
– reference: BabaSPDeficiency of aldose reductase exacerbates early pressure overload-induced cardiac dysfunction and autophagy in miceJ. Mol. Cell. Cardiol.201811818319210.1016/j.yjmcc.2018.04.0021:CAS:528:DC%2BC1cXntlCksLk%3D296272956205513
– reference: HarrisJHopeJCKeaneJTumor necrosis factor blockers influence macrophage responses to Mycobacterium tuberculosisJ. Infect. Dis.20081981842185010.1086/5931741:CAS:528:DC%2BD1MXhtFSlurw%3D18954258
– reference: GaoQActivation of autophagy contributes to the angiotensin ii-triggered apoptosis in a dopaminergic neuronal cell lineMol. Neurobiol.2016532911291910.1007/s12035-015-9177-31:CAS:528:DC%2BC2MXntVCnu7w%3D25902863
– reference: EngeliSThe adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome?Int. J. Biochem. Cell Biol.20033580782510.1016/S1357-2725(02)00311-41:CAS:528:DC%2BD3sXisFShurk%3D12676168
– reference: de KloetADKrauseEGWoodsSCThe renin angiotensin system and the metabolic syndromePhysiol. Behav.201010052553410.1016/j.physbeh.2010.03.0181:CAS:528:DC%2BC3cXntlWqtrY%3D203815102886177
– reference: SinghRAutophagy regulates adipose mass and differentiation in miceJ. Clin. Investig.20091193329333910.1172/JCI355411:CAS:528:DC%2BD1MXivF2kt7c%3D198551322769174
– reference: Kim, J.-A., Jang, H.-J., Martinez-Lemus, L. A. & Sowers, J. R. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin stimulated endothelial nitric oxide synthase and vasodilation. Am. J. Physiol. Heart Circ. Physiol.302, E201–E208 (2012).
– reference: PrieurXDifferential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese miceDiabetes20116079780910.2337/db10-07051:CAS:528:DC%2BC3MXktVKksb4%3D212663303046840
– reference: Kim, S. et al. The adipose renin-angiotensin system modulates systemic markers of insulin sensitivity and activates the intrarenal renin-angiotensin system. J. Biomed. Biotechnol6, https://doi.org/10.1155/jbb/2006/27012 (2006).
– reference: MaianoCHueOMorinAJMoullecGPrevalence of overweight and obesity among children and adolescents with intellectual disabilities: a systematic review and meta‐analysisObes. Rev.20161759961110.1111/obr.124081:STN:280:DC%2BC28bovVWitQ%3D%3D27171466
– reference: CaiJAutophagy ablation in adipocytes induces insulin resistance and reveals roles for lipid peroxide and Nrf2 signaling in adipose-liver crosstalkCell Rep.20182517081717. e510.1016/j.celrep.2018.10.0401:CAS:528:DC%2BC1cXitF2qtbrK304283426802939
– reference: YangLLiPFuSCalayESHotamisligilGSDefective hepatic autophagy in obesity promotes ER stress and causes insulin resistanceCell Metab.20101146747810.1016/j.cmet.2010.04.0051:CAS:528:DC%2BC3cXnsFyitrs%3D205191192881480
– reference: YuanH-XRussellRCGuanK-LRegulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagyAutophagy201391983199510.4161/auto.260581:CAS:528:DC%2BC2cXhtFyrtbfK240132184028342
– reference: HarrisJT helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosisImmunity20072750551710.1016/j.immuni.2007.07.0221:CAS:528:DC%2BD2sXhtFWmu7fL17892853
– reference: RamalingamLThe renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistanceBiochim Biophys. Acta201610.1016/j.bbadis.2016.07.019
– reference: KimKHAutophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokineNat. Med.2013198310.1038/nm.30141:CAS:528:DC%2BC38XhslGktb3E23202295
– reference: KalupahanaNSOverproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistanceObesity201220485610.1038/oby.2011.2991:CAS:528:DC%2BC3MXhs1OltrvI21979391
– reference: KalupahanaNSMoustaid-MoussaNThe adipose tissue renin-angiotensin system and metabolic disorders: a review of molecular mechanismsCrit. Rev. Biochem. Mol. Biol.20124737939010.3109/10409238.2012.6948431:CAS:528:DC%2BC38XptFWlu70%3D22720713
– reference: ZhangMKennySJGeLXuKSchekmanRTranslocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretionElife2015410.7554/eLife.11205265233924728131
– reference: DupontNAutophagy-based unconventional secretory pathway for extracellular delivery of IL-1βEMBO J.2011304701471110.1038/emboj.2011.3981:CAS:528:DC%2BC3MXhsVejsr%2FF220680513243609
– reference: ZengMNF-κB-mediated induction of autophagy in cardiac ischemia/reperfusion injuryBiochemical biophysical Res. Commun.201343618018510.1016/j.bbrc.2013.05.0701:CAS:528:DC%2BC3sXpslKqsLY%3D
– reference: PutnamKShoemakerRYiannikourisFCassisLAThe renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndromeAm. J. Physiol. Heart Circulatory Physiol.2012302H1219H123010.1152/ajpheart.00796.20111:CAS:528:DC%2BC38XkslCis7c%3D
– reference: QianQS-Nitrosoglutathione reductase dysfunction contributes to obesity-associated hepatic insulin resistance via regulating autophagyDiabetes20186719320710.2337/db17-02231:CAS:528:DC%2BC1cXhs12lt7vK29074597
– reference: Singh, R. & Cuervo, A. M. Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol.2012, 282041 (2012).
– reference: SadoshimaJThe role of autophagy during ischemia/reperfusionAutophagy2008440240310.4161/auto.592418367869
– reference: JungHSLoss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemiaCell Metab.2008831832410.1016/j.cmet.2008.08.0131:CAS:528:DC%2BD1cXht1Cit77O18840362
– reference: SuzukiKOhsumiYMolecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiaeFEBS Lett.20075812156216110.1016/j.febslet.2007.01.0961:CAS:528:DC%2BD2sXlt1Chs7k%3D17382324
– reference: KovsanJAltered autophagy in human adipose tissues in obesityJ. Clin. Endocrinol. Metab.201196E268E27710.1210/jc.2010-16811:CAS:528:DC%2BC3MXisVOmtrg%3D21047928
– reference: BorekMCharlapSFrishmanWEnalapril: A long‐acting angiotensin‐converting enzyme inhibitorPharmacother. J. Hum. Pharmacol. Drug Ther.1987713314510.1002/j.1875-9114.1987.tb04039.x1:CAS:528:DyaL1cXkvVGmsQ%3D%3D
– reference: MizushimaNThe pleiotropic role of autophagy: from protein metabolism to bactericideCell Death Differ.2005121535154110.1038/sj.cdd.44017281:CAS:528:DC%2BD2MXhtFCjt7%2FP16247501
– reference: SutherlandJPMcKinleyBEckelRHThe metabolic syndrome and inflammationMetab. Syndr. Relat. Disord.200428210410.1089/met.2004.2.821:CAS:528:DC%2BD2cXps1ajsLk%3D18370640
– reference: Ignacio-SouzaLMDefective regulation of the ubiquitin/proteasome system in the hypothalamus of obese male miceEndocrinology20141552831284410.1210/en.2014-10901:CAS:528:DC%2BC2cXhs1egsrbO24892821
– reference: SánchezJGRiosMSPérezCFLaaksoMLarradMMEffect of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma-2 gene on adiposity, insulin sensitivity and lipid profile in the Spanish populationEur. J. Endocrinol.200214749550110.1530/eje.0.1470495
– reference: MaXMBlenisJMolecular mechanisms of mTOR-mediated translational controlNat. Rev. Mol. Cell Biol.20091030731810.1038/nrm26721:CAS:528:DC%2BD1MXjvV2ltbs%3D19339977
– reference: DinizGPCarneiro-RamosMSBarreto-ChavesMLMAngiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3β/mTOR signaling pathwayBasic Res. Cardiol.200910410.1007/s00395-009-0043-11:CAS:528:DC%2BD1MXht1SktLrJ19588183
– reference: ZeydaMHuman adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator productionInt. J. Obes.2007311420142810.1038/sj.ijo.08036321:CAS:528:DC%2BD2sXpsF2qurs%3D
– reference: ZhongZSanchez-LopezEKarinMAutophagy, inflammation, and immunity: a troika governing cancer and its treatmentCell201616628829810.1016/j.cell.2016.05.0511:CAS:528:DC%2BC28XhtFynu7nN274198694947210
– reference: SinghRAutophagy regulates lipid metabolismNature20094581131113510.1038/nature079761:CAS:528:DC%2BD1MXjvV2ks7s%3D193399672676208
– reference: ZhangYAdipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesisProc. Natl. Acad. Sci.2009106198601986510.1073/pnas.0906048106199105292785257
– reference: YamoriYInternational cooperative study on the relationship between dietary factors and blood pressure: a report from the Cardiovascular Diseases and Alimentary Comparison (CARDIAC) StudyJ. Cardiovascular Pharmacol.199016S434710.1097/00005344-199000168-00018
– reference: JiangTAngiotensin-(1–7) inhibits autophagy in the brain of spontaneously hypertensive ratsPharmacol. Res.201371616810.1016/j.phrs.2013.03.0011:CAS:528:DC%2BC3sXls1Cgsbk%3D23499735
– reference: CodognoPMeijerAJAutophagy: a potential link between obesity and insulin resistanceCell Metab.20101144945110.1016/j.cmet.2010.05.0061:CAS:528:DC%2BC3cXnsFyitrw%3D20519116
– reference: AlbertiKHarmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of ObesityCirculation20091201640164510.1161/CIRCULATIONAHA.109.1926441:CAS:528:DC%2BD1MXht1OrtrrK19805654
– reference: SoussiHClémentKDugailIAdipose tissue autophagy status in obesity: Expression and flux—two faces of the pictureAutophagy20161258858910.1080/15548627.2015.11066671:CAS:528:DC%2BC28Xmt1aqt7w%3D26565777
– reference: KimJHuangW-PKlionskyDJMembrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complexJ. Cell Biol.2001152516410.1083/jcb.152.1.511:CAS:528:DC%2BD3MXjslyisA%3D%3D111499202193654
– reference: ÖstAAttenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetesMol. Med.20101623524610.2119/molmed.2010.000231:CAS:528:DC%2BC3cXpsFejtbg%3D203868662896460
– reference: KalupahanaNSMoustaid-MoussaNThe renin-angiotensin system: a link between obesity, inflammation and insulin resistanceObes. Rev.20121313614910.1111/j.1467-789X.2011.00942.x1:CAS:528:DC%2BC38Xlt1Gksbw%3D22034852
– reference: QianQHepatic lysosomal iNOS activity impairs autophagy in obesityCell. Mol. Gastroenterol. Hepatol.201989511010.1016/j.jcmgh.2019.03.005309265816522853
– reference: HungWWBlockade of the renin-angiotensin system ameliorates apelin production in 3T3-L1 AdipocytesCardiovasc. Drugs Ther.20112531210.1007/s10557-010-6274-41:CAS:528:DC%2BC3MXktF2itLc%3D21161354
– reference: MorrellNWCellular and molecular basis of pulmonary arterial hypertensionJ. Am. Coll. Cardiol.200954S20S3110.1016/j.jacc.2009.04.0181:CAS:528:DC%2BC3cXkvVOks7g%3D195558552790324
– reference: WangYDifferential effects of Mas receptor deficiency on cardiac function and blood pressure in obese male and female miceAm. J. Physiol. Heart Circ. Physiol.2016312H459H46810.1152/ajpheart.00498.2016279866595402015
– reference: KwantenWJMartinetWMichielsenPPFrancqueSMRole of autophagy in the pathophysiology of nonalcoholic fatty liver disease: a controversial issueWorld J. Gastroenterol.2014207325733810.3748/wjg.v20.i23.73251:CAS:528:DC%2BC2cXhs1ehtr3O249666034064078
– reference: SaitoTAutophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosisAutophagy20161257958710.1080/15548627.2016.11453261:CAS:528:DC%2BC28Xmt1aqtL0%3D268906104836017
– reference: Meng, Q. & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via IKK-beta/NF-kappaB pathway. J. Biol. Chem.https://doi.org/10.1074/jbc.M111.254417, 32324-32332 (2011).
– reference: MeiYThompsonMDCohenRATongXAutophagy and oxidative stress in cardiovascular diseasesBiochimica et. Biophysica Acta (BBA)-Mol. Basis Dis.2015185224325110.1016/j.bbadis.2014.05.0051:CAS:528:DC%2BC2cXotlylsrY%3D
– reference: PfeiferUInhibition by insulin of the formation of autophagic vacuoles in rat liver. A morphometric approach to the kinetics of intracellular degradation by autophagyJ. Cell Biol.19787815216710.1083/jcb.78.1.1521:CAS:528:DyaE1cXktlOhsr0%3D670291
– reference: QuanWAutophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in miceDiabetologia20125539240310.1007/s00125-011-2350-y1:CAS:528:DC%2BC3MXhs1yntbbI22075916
– reference: SciarrettaSMaejimaYZablockiDSadoshimaJThe role of autophagy in the heartAnnu. Rev. Physiol.20188012610.1146/annurev-physiol-021317-1214271:CAS:528:DC%2BC2sXhslajtL3E29068766
– reference: Moulis, M. & Vindis, C. Autophagy in metabolic age-related human diseases. Cells7, E149 (2018).
– reference: XiongXRibosomal protein S27-like regulates autophagy via the β-TrCP-DEPTOR-mTORC1 axisCell Death Dis.20189113110.1038/s41419-018-1168-71:CAS:528:DC%2BC1cXit1yntL%2FE304252366234217
– reference: ScottRCSchuldinerONeufeldTPRole and regulation of starvation-induced autophagy in the Drosophila fat bodyDev. Cell2004716717810.1016/j.devcel.2004.07.0091:CAS:528:DC%2BD2cXnsVKntr0%3D15296714
– reference: AbdellatifMSedejSCarmona-GutierrezDMadeoFKroemerGAutophagy in cardiovascular agingCirc. Res.201812380382410.1161/CIRCRESAHA.118.3122081:CAS:528:DC%2BC1cXhslSgu7bE30355077
– reference: OgiharaTAngiotensin II–induced insulin resistance is associated with enhanced insulin signalingHypertension20024087287910.1161/01.HYP.0000040262.48405.A81:CAS:528:DC%2BD38XovFKnsLY%3D12468572
– reference: MartinsRLithgowGJLinkWLong live FOXO: unraveling the role of FOXO proteins in aging and longevityAging Cell20161519620710.1111/acel.124271:CAS:528:DC%2BC2MXhvFKgs7vJ26643314
– reference: RothermelBAHillJAMyocyte autophagy in heart disease: friend or foe?Autophagy2007363263410.4161/auto.49131:CAS:528:DC%2BD2sXhtlOhsL7N17786025
– reference: MizushimaNAutophagy: process and functionGenes Dev.2007212861287310.1101/gad.15992071:CAS:528:DC%2BD2sXhtlGmsrjP18006683
– reference: XueHA novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathwayAutophagy2016121129115210.1080/15548627.2016.11784461:CAS:528:DC%2BC28Xps1yhs7g%3D271631614990999
– reference: RajagopalanSAngiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor toneJ. Clin. Investig.1996971916192310.1172/JCI1186231:CAS:528:DyaK28XisFegsLw%3D8621776507261
– reference: ShenQBiXLingLDingW1, 25-Dihydroxyvitamin D3 attenuates angiotensin II-induced renal injury by inhibiting mitochondrial dysfunction and autophagyCell. Physiol. Biochem.2018511751176210.1159/0004956781:CAS:528:DC%2BC1cXisFWrtLzN30504714
– reference: TontonozPHuESpiegelmanBMStimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factorCell1994791147115610.1016/0092-8674(94)90006-X1:STN:280:DyaK2M%2FpsVaqsg%3D%3D8001151
– reference: LinLMas receptor mediates cardioprotection of angiotensin‐(1‐7) against Angiotensin II‐induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stressJ. Cell. Mol. Med.201620485710.1111/jcmm.126871:CAS:528:DC%2BC28XjtVGltg%3D%3D26515045
– reference: FinckenbergPCaloric restriction ameliorates angiotensin II–induced mitochondrial remodeling and cardiac hypertrophyHypertension201259768410.1161/HYPERTENSIONAHA.111.1794571:CAS:528:DC%2BC3MXhs1WksrrF22068868
– reference: SuFSimvastatin protects heart from pressure overload injury by inhibiting excessive autophagyInt. J. Med. Sci.2018151508151610.7150/ijms.28106304431726216062
– reference: RosenEDPPARγ is required for the differentiation of adipose tissue in vivo and in vitroMol. Cell1999461161710.1016/S1097-2765(00)80211-71:CAS:528:DyaK1MXntFCgsb4%3D10549292
– reference: MeiSDifferential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytesJ. Pharmacol. Exp. Ther.201133948749810.1124/jpet.111.1843411:CAS:528:DC%2BC3MXhsFehtb3L218568593199993
– reference: PremaratnaSAngiotensin-converting enzyme inhibition reverses diet-induced obesity, insulin resistance and inflammation in C57BL/6J miceInt. J. Obes.20123623324310.1038/ijo.2011.951:CAS:528:DC%2BC38XisVGhtbg%3D
– reference: NodaTOhsumiYTor, a phosphatidylinositol kinase homologue, controls autophagy in yeastJ. Biol. Chem.19982733963396610.1074/jbc.273.7.39631:CAS:528:DyaK1cXht1ahsr8%3D9461583
– reference: HarrisJAutophagy controls IL-1β secretion by targeting pro-IL-1β for degradationJ. Biol. Chem.20112869587959710.1074/jbc.M110.2029111:CAS:528:DC%2BC3MXjtFOit7k%3D212282743058966
– reference: LibbyPInflammation in atherosclerosisNature200242086887410.1038/nature013231:CAS:528:DC%2BD38XpsFygtb8%3D12490960
– reference: ChenFAutophagy protects against senescence and apoptosis via the RAS-mitochondria in high-glucose-induced endothelial cellsCell. Physiol. Biochem.2014331058107410.1159/0003586761:CAS:528:DC%2BC2cXpsFCntro%3D24732710
– reference: CastetsPRüeggMAMTORC1 determines autophagy through ULK1 regulation in skeletal muscleAutophagy201391435143710.4161/auto.257221:CAS:528:DC%2BC2cXktF2rurs%3D23896646
– reference: KimYCGuanK-LmTOR: a pharmacologic target for autophagy regulationJ. Clin. Investig.2015125253210.1172/JCI73939256545474382265
– reference: ChenDEmodin attenuates TNF-alpha-induced apoptosis and autophagy in mouse C2C12 myoblasts though the phosphorylation of AktInt. Immunopharmacol.20163410711310.1016/j.intimp.2016.02.0231:CAS:528:DC%2BC28XjsFeqtrs%3D26943728
– reference: WooYJungYJAngiotensin II receptor blockers induce autophagy in prostate cancer cellsOncol. Lett.2017133579358510.3892/ol.2017.58721:CAS:528:DC%2BC1cXhsFWkurbF285295825431597
– reference: HadiNRAbdulzahraMSAl-HuseiniLMAl-AubaidyHAA comparison study of the echocardiographic changes in hypertensive patients treated with telmisartan vs. enalaprilInt. J. Cardiol.201723026927410.1016/j.ijcard.2016.12.12728041700
– reference: RocchiAHeCEmerging roles of autophagy in metabolism and metabolic disordersFront. Biol.20151015416410.1007/s11515-015-1354-21:CAS:528:DC%2BC2MXls1amsbY%3D
– reference: Grundy, S. M. Metabolic syndrome update. Trends in cardiovascular medicine 26, 364–373 (2016).
– reference: Jun, J. Y. et al. Peripheral Melanocortin 3 Receptor (MC3R) Regulates Hepatic Autophagy in Obesity. 67, (Supplement 1): 1979-P (American Diabetes Association, 2018). https://doi.org/10.2337/db18-1979-P.
– reference: NuñezCDefective regulation of adipose tissue autophagy in obesityInt. J. Obes.2013371473148010.1038/ijo.2013.271:CAS:528:DC%2BC3sXhslynsr3J
– reference: TzameliIRegulated production of a peroxisome proliferator-activated receptor-γ ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytesJ. Biol. Chem.2004279360933610210.1074/jbc.M4053462001:CAS:528:DC%2BD2cXmsl2htbk%3D15190061
– reference: KamadaYTor-mediated induction of autophagy via an Apg1 protein kinase complexJ. Cell Biol.20001501507151310.1083/jcb.150.6.15071:CAS:528:DC%2BD3cXmslGlsr4%3D109954542150712
– reference: LongLChloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradationnovelty and significanceCirc. Res.20131121159117010.1161/CIRCRESAHA.111.3004831:CAS:528:DC%2BC3sXlslans7Y%3D23446737
– reference: MaoNGinsenoside Rg1 inhibits angiotensin II-induced podocyte autophagy via AMPK/mTOR/PI3K pathwayCell Biol. Int.20164091792510.1002/cbin.106341:CAS:528:DC%2BC28XhtFCkurbF27296076
– reference: ZhangCAutophagy is involved in adipogenic differentiation by repressesing proteasome-dependent PPARγ2 degradationAm. J. Physiol. Endocrinol. Metab.2013305E530E53910.1152/ajpendo.00640.20121:CAS:528:DC%2BC3sXhsVSqurvM238008835504416
– reference: Wang, H.-J., Chen, S.-F. & Lo, W.-Y. Identification of cofilin-1 induces G0/G1 arrest and autophagy in angiotensin-(1-7)-treated human aortic endothelial cells from iTRAQ quantitative proteomics. Sci. Rep.6, 1–13 (2016).
– reference: CrişanTOInflammasome-independent modulation of cytokine response by autophagy in human cellsPLoS ONE2011610.1371/journal.pone.00186661:CAS:528:DC%2BC3MXltVWlt7Y%3D214909343072416
– reference: ReavenGMInsulin resistance, cardiovascular disease, and the metabolic syndromeDiabetes Care2004271011101210.2337/diacare.27.4.101115047666
– reference: YousefiSCalpain-mediated cleavage of Atg5 switches autophagy to apoptosisNat. Cell Biol.200681124113210.1038/ncb14821:CAS:528:DC%2BD28XhtVWqsLfP16998475
– reference: Matsuzawa-NagataNIncreased oxidative stress precedes the onset of high-fat diet–induced insulin resistance and obesityMetabolism2008571071107710.1016/j.metabol.2008.03.0101:CAS:528:DC%2BD1cXosleltLk%3D18640384
– reference: MatsuiYDistinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagyCirc. Res.200710091492210.1161/01.RES.0000261924.76669.361:CAS:528:DC%2BD2sXjtlWmsbo%3D17332429
– reference: Castoldi, A., Naffah de Souza, C., Câmara, N. O. S. & Moraes-Vieira, P. M. The macrophage switch in obesity development. Front. Immunol.6, 637 (2016).
– reference: Whaley-ConnellAAngiotensin II activation of mTOR results in tubulointerstitial fibrosis through loss of N-cadherinAm. J. Nephrol.20113411512510.1159/000329327217201563130895
– reference: CuervoAMAutophagy: in sickness and in healthTrends cell Biol.200414707710.1016/j.tcb.2003.12.0021:CAS:528:DC%2BD2cXhtVOrtL4%3D15102438
– reference: Lapaquette, P., Guzzo, J., Bretillon, L. & Bringer, M.-A. Cellular and molecular connections between autophagy and inflammation. Mediators Inflamm.2015, 1–13 (2015).
– reference: ShibataMThe MAP1-LC3 conjugation system is involved in lipid droplet formationBiochem. Biophys. Res. Commun.200938241942310.1016/j.bbrc.2009.03.0391:CAS:528:DC%2BD1MXkt1Sks7g%3D19285958
– reference: Djavaheri-MergnyMNF-κB activation represses tumor necrosis factor-α-induced autophagyJ. Biol. Chem.2006281303733038210.1074/jbc.M6020972001:CAS:528:DC%2BD28XhtVCrsLzN16857678
– reference: NovikoffABNovikoffPMRosenOMRubinCSOrganelle relationships in cultured 3T3-L1 preadipocytesJ. Cell Biol.19808718019610.1083/jcb.87.1.1801:STN:280:DyaL3M%2Fis1Cgsg%3D%3D7191426
– reference: DingYChoiMERegulation of autophagy by TGF-beta: emerging role in kidney fibrosisSemin. Nephrol.201434627110.1016/j.semnephrol.2013.11.0091:CAS:528:DC%2BC2cXhvVait74%3D24485031
– reference: de Luxán‐DelgadoBMelatonin reduces endoplasmic reticulum stress and autophagy in liver of leptin‐deficient miceJ. Pineal Res.20166110812310.1111/jpi.123331:CAS:528:DC%2BC28XpsFKqurw%3D27090356
– reference: KosackaJAutophagy in adipose tissue of patients with obesity and type 2 diabetesMol. Cell. Endocrinol.2015409213210.1016/j.mce.2015.03.0151:CAS:528:DC%2BC2MXlslCluro%3D25818883
– reference: NamkoongSChoC-SSempleILeeJHAutophagy dysregulation and obesity-associated pathologiesMol. Cells2018413101:CAS:528:DC%2BC1cXhvFGltb3M293706915792710
– reference: NakahiraKAutophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasomeNat. Immunol.20111222223010.1038/ni.19801:CAS:528:DC%2BC3cXhsFGgtrzE21151103
– reference: LeMieuxMJInactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activityObesity20162435936710.1002/oby.213521:CAS:528:DC%2BC28XhvV2ltr0%3D26704350
– reference: TravassosLHNod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entryNat. Immunol.201011556210.1038/ni.18231:CAS:528:DC%2BD1MXhtlOrur3L19898471
– reference: InokiKLiYZhuTWuJGuanK-LTSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signallingNat. Cell Biol.2002464865710.1038/ncb8391:CAS:528:DC%2BD38Xms1ahtL4%3D12172553
– reference: PorrelloERDelbridgeLMCardiomyocyte autophagy is regulated by angiotensin II type 1 and type 2 receptorsAutophagy200951215121610.4161/auto.5.8.1015319955853
– reference: ZhouMLong non-coding RNA H19 protects acute myocardial infarction through activating autophagy in miceEur. Rev. Med. Pharmacol. Sci.201822564756511:STN:280:DC%2BB3czgt1KhtA%3D%3D30229841
– reference: KlionskyDJEmrSDAutophagy as a regulated pathway of cellular degradationScience20002901717172110.1126/science.290.5497.17171:CAS:528:DC%2BD3cXovVOitbw%3D110994042732363
– reference: Hamacher-BradyABradyNRGottliebRAEnhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytesJ. Biol. Chem.2006281297762978710.1074/jbc.M6037832001:CAS:528:DC%2BD28XhtVahsb%2FE16882669
– reference: ParlakpinarHOzerMKAcetAEffects of captopril and angiotensin II receptor blockers (AT1, AT2) on myocardial ischemia–reperfusion induced infarct sizeCytokine20115668869410.1016/j.cyto.2011.09.0021:CAS:528:DC%2BC3MXhsFSktL7M21975128
– reference: KimJKunduMViolletBGuanK-LAMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1Nat. Cell Biol.20111313214110.1038/ncb21521:CAS:528:DC%2BC3MXhtlamtb0%3D212583673987946
– volume: 22
  start-page: 367
  year: 2015
  ident: 2275_CR131
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.143
– volume: 456
  start-page: 264
  year: 2008
  ident: 2275_CR149
  publication-title: Nature
  doi: 10.1038/nature07383
– volume: 57
  start-page: 1071
  year: 2008
  ident: 2275_CR85
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2008.03.010
– volume: 54
  start-page: S20
  year: 2009
  ident: 2275_CR97
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2009.04.018
– volume: 12
  start-page: 588
  year: 2016
  ident: 2275_CR28
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1106667
– volume: 312
  start-page: H459
  year: 2016
  ident: 2275_CR111
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00498.2016
– volume: 97
  start-page: 1916
  year: 1996
  ident: 2275_CR104
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI118623
– year: 2016
  ident: 2275_CR109
  publication-title: Biochim Biophys. Acta
  doi: 10.1016/j.bbadis.2016.07.019
– volume: 2
  start-page: 82
  year: 2004
  ident: 2275_CR144
  publication-title: Metab. Syndr. Relat. Disord.
  doi: 10.1089/met.2004.2.82
– volume: 100
  start-page: 914
  year: 2007
  ident: 2275_CR92
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000261924.76669.36
– volume: 16
  start-page: S43
  year: 1990
  ident: 2275_CR103
  publication-title: J. Cardiovascular Pharmacol.
  doi: 10.1097/00005344-199000168-00018
– volume: 34
  start-page: 115
  year: 2011
  ident: 2275_CR139
  publication-title: Am. J. Nephrol.
  doi: 10.1159/000329327
– volume: 8
  start-page: 95
  year: 2019
  ident: 2275_CR162
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
  doi: 10.1016/j.jcmgh.2019.03.005
– volume: 13
  start-page: 619
  year: 2007
  ident: 2275_CR87
  publication-title: Nat. Med.
  doi: 10.1038/nm1574
– volume: 16
  start-page: 183
  year: 2010
  ident: 2275_CR101
  publication-title: Nat. Med.
  doi: 10.1038/nm.2079
– volume: 155
  start-page: 2831
  year: 2014
  ident: 2275_CR44
  publication-title: Endocrinology
  doi: 10.1210/en.2014-1090
– volume: 84
  start-page: S235
  year: 2000
  ident: 2275_CR50
  publication-title: Br. J. Nutr.
  doi: 10.1079/096582197388608
– volume: 17
  start-page: 599
  year: 2016
  ident: 2275_CR2
  publication-title: Obes. Rev.
  doi: 10.1111/obr.12408
– volume: 12
  start-page: 1129
  year: 2016
  ident: 2275_CR159
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1178446
– volume: 169
  start-page: 425
  year: 2005
  ident: 2275_CR56
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200412022
– volume: 20
  start-page: 1
  year: 2018
  ident: 2275_CR110
  publication-title: Curr. Hypertens. Rep.
  doi: 10.1007/s11906-018-0803-0
– volume: 365
  start-page: 1415
  year: 2005
  ident: 2275_CR8
  publication-title: L
– volume: 152
  start-page: 51
  year: 2001
  ident: 2275_CR25
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.152.1.51
– volume: 35
  start-page: 807
  year: 2003
  ident: 2275_CR13
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/S1357-2725(02)00311-4
– volume: 10
  start-page: 154
  year: 2015
  ident: 2275_CR11
  publication-title: Front. Biol.
  doi: 10.1007/s11515-015-1354-2
– volume: 147
  start-page: 495
  year: 2002
  ident: 2275_CR49
  publication-title: Eur. J. Endocrinol.
  doi: 10.1530/eje.0.1470495
– volume: 16
  start-page: 31
  year: 2009
  ident: 2275_CR90
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2008.163
– volume: 40
  start-page: 872
  year: 2002
  ident: 2275_CR12
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000040262.48405.A8
– ident: 2275_CR5
  doi: 10.1016/j.tcm.2015.10.004
– volume: 30
  start-page: 4701
  year: 2011
  ident: 2275_CR152
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.398
– volume: 260
  start-page: 163
  year: 2018
  ident: 2275_CR98
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2018.02.109
– volume: 124
  start-page: 471
  year: 2006
  ident: 2275_CR69
  publication-title: Cell
  doi: 10.1016/j.cell.2006.01.016
– volume: 47
  start-page: 1725
  year: 2008
  ident: 2275_CR58
  publication-title: Hepatology
  doi: 10.1002/hep.22187
– ident: 2275_CR100
  doi: 10.1161/HYPERTENSIONAHA.111.00469
– volume: 281
  start-page: 30373
  year: 2006
  ident: 2275_CR21
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M602097200
– ident: 2275_CR156
  doi: 10.3389/fimmu.2015.00637
– volume: 83
  start-page: 813
  year: 1995
  ident: 2275_CR52
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90194-9
– volume: 11
  start-page: 449
  year: 2010
  ident: 2275_CR65
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.05.006
– volume: 120
  start-page: 1640
  year: 2009
  ident: 2275_CR6
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.192644
– volume: 24
  start-page: 359
  year: 2016
  ident: 2275_CR117
  publication-title: Obesity
  doi: 10.1002/oby.21352
– volume: 21
  start-page: 2861
  year: 2007
  ident: 2275_CR17
  publication-title: Genes Dev.
  doi: 10.1101/gad.1599207
– volume: 118
  start-page: 183
  year: 2018
  ident: 2275_CR93
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2018.04.002
– volume: 47
  start-page: 379
  year: 2012
  ident: 2275_CR107
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2012.694843
– volume: 100
  start-page: 346
  year: 2005
  ident: 2275_CR130
  publication-title: Basic Res. Cardiol.
  doi: 10.1007/s00395-005-0528-5
– volume: 7
  start-page: 133
  year: 1987
  ident: 2275_CR166
  publication-title: Pharmacother. J. Hum. Pharmacol. Drug Ther.
  doi: 10.1002/j.1875-9114.1987.tb04039.x
– volume: 5
  start-page: 1215
  year: 2009
  ident: 2275_CR133
  publication-title: Autophagy
  doi: 10.4161/auto.5.8.10153
– volume: 409
  start-page: 21
  year: 2015
  ident: 2275_CR38
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2015.03.015
– volume: 106
  start-page: 19860
  year: 2009
  ident: 2275_CR36
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0906048106
– volume: 71
  start-page: 61
  year: 2013
  ident: 2275_CR122
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2013.03.001
– volume: 104
  year: 2009
  ident: 2275_CR138
  publication-title: Basic Res. Cardiol.
  doi: 10.1007/s00395-009-0043-1
– ident: 2275_CR1
  doi: 10.5888/pcd14.160287
– volume: 11
  start-page: 467
  year: 2010
  ident: 2275_CR57
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.04.005
– volume: 22
  start-page: 5647
  year: 2018
  ident: 2275_CR89
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 40
  start-page: 917
  year: 2016
  ident: 2275_CR120
  publication-title: Cell Biol. Int.
  doi: 10.1002/cbin.10634
– volume: 23
  start-page: 1085
  year: 2003
  ident: 2275_CR33
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.3.1085-1094.2003
– volume: 9
  year: 2019
  ident: 2275_CR114
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-44834-8
– volume: 60
  start-page: 329
  year: 2001
  ident: 2275_CR141
  publication-title: Proc. Nutr. Soc.
  doi: 10.1079/PNS200194
– volume: 144
  start-page: 2179
  year: 2003
  ident: 2275_CR106
  publication-title: Endocrinology
  doi: 10.1210/en.2003-0150
– volume: 25
  start-page: 1708
  year: 2018
  ident: 2275_CR35
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.10.040
– volume: 4
  year: 2015
  ident: 2275_CR151
  publication-title: Elife
  doi: 10.7554/eLife.11205
– volume: 8
  start-page: 325
  year: 2008
  ident: 2275_CR79
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.08.009
– volume: 3
  start-page: 632
  year: 2007
  ident: 2275_CR95
  publication-title: Autophagy
  doi: 10.4161/auto.4913
– volume: 4
  start-page: 611
  year: 1999
  ident: 2275_CR48
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80211-7
– volume: 5
  start-page: 1118
  year: 2009
  ident: 2275_CR9
  publication-title: Autophagy
  doi: 10.4161/auto.5.8.9991
– volume: 4
  start-page: 402
  year: 2008
  ident: 2275_CR94
  publication-title: Autophagy
  doi: 10.4161/auto.5924
– volume: 302
  start-page: H1219
  year: 2012
  ident: 2275_CR14
  publication-title: Am. J. Physiol. Heart Circulatory Physiol.
  doi: 10.1152/ajpheart.00796.2011
– ident: 2275_CR136
  doi: 10.1152/ajpcell.00424.2009
– volume: 8
  start-page: 318
  year: 2008
  ident: 2275_CR80
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.08.013
– volume: 55
  start-page: 392
  year: 2012
  ident: 2275_CR81
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2350-y
– volume: 51
  start-page: 1751
  year: 2018
  ident: 2275_CR123
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000495678
– volume: 96
  start-page: E268
  year: 2011
  ident: 2275_CR27
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2010-1681
– volume: 78
  start-page: 152
  year: 1978
  ident: 2275_CR67
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.78.1.152
– volume: 13
  start-page: 132
  year: 2011
  ident: 2275_CR77
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2152
– volume: 13
  start-page: 3579
  year: 2017
  ident: 2275_CR168
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2017.5872
– volume: 7
  start-page: 167
  year: 2004
  ident: 2275_CR72
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2004.07.009
– volume: 420
  start-page: 868
  year: 2002
  ident: 2275_CR143
  publication-title: Nature
  doi: 10.1038/nature01323
– volume: 166
  start-page: 288
  year: 2016
  ident: 2275_CR150
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.051
– volume: 8
  start-page: 1124
  year: 2006
  ident: 2275_CR59
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1482
– volume: 4
  start-page: 648
  year: 2002
  ident: 2275_CR70
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb839
– volume: 53
  start-page: 1032
  year: 2009
  ident: 2275_CR125
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.108.128488
– volume: 56
  start-page: 688
  year: 2011
  ident: 2275_CR129
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2011.09.002
– volume: 56
  start-page: 140
  year: 2011
  ident: 2275_CR145
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2011.08.022
– volume: 61
  start-page: 108
  year: 2016
  ident: 2275_CR66
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12333
– volume: 14
  start-page: 70
  year: 2004
  ident: 2275_CR18
  publication-title: Trends cell Biol.
  doi: 10.1016/j.tcb.2003.12.002
– volume: 1
  start-page: 151
  year: 2009
  ident: 2275_CR83
  publication-title: Islets
  doi: 10.4161/isl.1.2.9057
– volume: 5
  start-page: 280
  year: 2009
  ident: 2275_CR84
  publication-title: Autophagy
  doi: 10.4161/auto.5.2.7656
– volume: 37
  start-page: 1473
  year: 2013
  ident: 2275_CR40
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2013.27
– volume: 125
  start-page: 25
  year: 2015
  ident: 2275_CR74
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI73939
– volume: 382
  start-page: 419
  year: 2009
  ident: 2275_CR163
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2009.03.039
– ident: 2275_CR137
  doi: 10.1152/ajpendo.00497.2011
– volume: 1852
  start-page: 243
  year: 2015
  ident: 2275_CR96
  publication-title: Biochimica et. Biophysica Acta (BBA)-Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2014.05.005
– volume: 9
  start-page: 1983
  year: 2013
  ident: 2275_CR78
  publication-title: Autophagy
  doi: 10.4161/auto.26058
– ident: 2275_CR113
  doi: 10.1186/1475-2840-4-6
– volume: 9
  start-page: 1131
  year: 2018
  ident: 2275_CR132
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-1168-7
– ident: 2275_CR43
  doi: 10.1074/jbc.M111.254417
– volume: 105
  start-page: 6702
  year: 2008
  ident: 2275_CR102
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0802128105
– volume: 16
  start-page: 235
  year: 2010
  ident: 2275_CR39
  publication-title: Mol. Med.
  doi: 10.2119/molmed.2010.00023
– volume: 31
  start-page: 1420
  year: 2007
  ident: 2275_CR142
  publication-title: Int. J. Obes.
  doi: 10.1038/sj.ijo.0803632
– volume: 53
  start-page: 2911
  year: 2016
  ident: 2275_CR134
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-015-9177-3
– volume: 290
  start-page: 1717
  year: 2000
  ident: 2275_CR19
  publication-title: Science
  doi: 10.1126/science.290.5497.1717
– ident: 2275_CR116
  doi: 10.1155/jbb/2006/27012
– volume: 25
  start-page: 3
  year: 2011
  ident: 2275_CR105
  publication-title: Cardiovasc. Drugs Ther.
  doi: 10.1007/s10557-010-6274-4
– volume: 30
  start-page: 214
  year: 2008
  ident: 2275_CR76
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.03.003
– volume: 6
  year: 2011
  ident: 2275_CR146
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0018666
– volume: 286
  start-page: 9587
  year: 2011
  ident: 2275_CR147
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.202911
– volume: 281
  start-page: 29776
  year: 2006
  ident: 2275_CR32
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M603783200
– volume: 1861
  start-page: 269
  year: 2016
  ident: 2275_CR53
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2016.01.006
– volume: 20
  start-page: 1992
  year: 2009
  ident: 2275_CR75
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e08-12-1249
– volume: 150
  start-page: 1507
  year: 2000
  ident: 2275_CR68
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.150.6.1507
– volume: 80
  start-page: 1
  year: 2018
  ident: 2275_CR86
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-021317-121427
– volume: 458
  start-page: 1131
  year: 2009
  ident: 2275_CR55
  publication-title: Nature
  doi: 10.1038/nature07976
– volume: 59
  start-page: 76
  year: 2012
  ident: 2275_CR126
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.111.179457
– volume: 12
  start-page: 579
  year: 2016
  ident: 2275_CR88
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1145326
– volume: 20
  start-page: 7325
  year: 2014
  ident: 2275_CR31
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v20.i23.7325
– volume: 34
  start-page: 62
  year: 2014
  ident: 2275_CR158
  publication-title: Semin. Nephrol.
  doi: 10.1016/j.semnephrol.2013.11.009
– volume: 13
  start-page: 136
  year: 2012
  ident: 2275_CR108
  publication-title: Obes. Rev.
  doi: 10.1111/j.1467-789X.2011.00942.x
– volume: 230
  start-page: 269
  year: 2017
  ident: 2275_CR167
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2016.12.127
– volume: 125
  start-page: 117
  year: 2018
  ident: 2275_CR124
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2018.08.028
– volume: 112
  start-page: 1159
  year: 2013
  ident: 2275_CR99
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.111.300483
– volume: 581
  start-page: 2156
  year: 2007
  ident: 2275_CR24
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.01.096
– volume: 34
  start-page: 107
  year: 2016
  ident: 2275_CR157
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2016.02.023
– volume: 198
  start-page: 1842
  year: 2008
  ident: 2275_CR153
  publication-title: J. Infect. Dis.
  doi: 10.1086/593174
– volume: 9
  start-page: 1435
  year: 2013
  ident: 2275_CR140
  publication-title: Autophagy
  doi: 10.4161/auto.25722
– volume: 4
  start-page: 658
  year: 2002
  ident: 2275_CR71
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb840
– volume: 11
  start-page: 55
  year: 2010
  ident: 2275_CR155
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1823
– ident: 2275_CR41
  doi: 10.1155/2012/282041
– volume: 20
  start-page: 48
  year: 2016
  ident: 2275_CR119
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.12687
– volume: 4
  year: 2013
  ident: 2275_CR164
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3300
– volume: 279
  start-page: 36093
  year: 2004
  ident: 2275_CR46
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M405346200
– volume: 284
  start-page: 31484
  year: 2009
  ident: 2275_CR23
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.033936
– ident: 2275_CR42
  doi: 10.1038/s41574-018-0009-1
– volume: 36
  start-page: 233
  year: 2012
  ident: 2275_CR115
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2011.95
– volume: 67
  start-page: 193
  year: 2018
  ident: 2275_CR54
  publication-title: Diabetes
  doi: 10.2337/db17-0223
– volume: 328
  start-page: 907
  year: 1993
  ident: 2275_CR112
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199304013281302
– volume: 69
  start-page: 108
  year: 2014
  ident: 2275_CR127
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2014.01.002
– volume: 60
  start-page: 797
  year: 2011
  ident: 2275_CR4
  publication-title: Diabetes
  doi: 10.2337/db10-0705
– volume: 79
  start-page: 1147
  year: 1994
  ident: 2275_CR47
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90006-X
– volume: 436
  start-page: 180
  year: 2013
  ident: 2275_CR160
  publication-title: Biochemical biophysical Res. Commun.
  doi: 10.1016/j.bbrc.2013.05.070
– volume: 41
  start-page: 3
  year: 2018
  ident: 2275_CR62
  publication-title: Mol. Cells
– volume: 273
  start-page: 3963
  year: 1998
  ident: 2275_CR73
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.7.3963
– volume: 33
  start-page: 1058
  year: 2014
  ident: 2275_CR121
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000358676
– volume: 87
  start-page: 180
  year: 1980
  ident: 2275_CR34
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.87.1.180
– volume: 339
  start-page: 487
  year: 2011
  ident: 2275_CR63
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.111.184341
– volume: 10
  start-page: 518
  year: 2002
  ident: 2275_CR51
  publication-title: Obes. Res.
  doi: 10.1038/oby.2002.70
– volume: 15
  start-page: 1508
  year: 2018
  ident: 2275_CR128
  publication-title: Int. J. Med. Sci.
  doi: 10.7150/ijms.28106
– volume: 12
  start-page: 222
  year: 2011
  ident: 2275_CR148
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1980
– volume: 305
  start-page: E530
  year: 2013
  ident: 2275_CR10
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00640.2012
– ident: 2275_CR118
  doi: 10.1161/CIRCRESAHA.110.232306
– volume: 66
  start-page: 936
  year: 2017
  ident: 2275_CR64
  publication-title: Hepatology
  doi: 10.1002/hep.29229
– ident: 2275_CR154
  doi: 10.1155/2015/398483
– volume: 100
  start-page: 525
  year: 2010
  ident: 2275_CR15
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2010.03.018
– ident: 2275_CR20
  doi: 10.1186/s40169-017-0154-5
– volume: 12
  start-page: 1535
  year: 2005
  ident: 2275_CR22
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401728
– volume: 432
  start-page: 1032
  year: 2004
  ident: 2275_CR45
  publication-title: Nature
  doi: 10.1038/nature03029
– volume: 287
  start-page: 356
  year: 2002
  ident: 2275_CR3
  publication-title: JAMA
  doi: 10.1001/jama.287.3.356
– ident: 2275_CR61
  doi: 10.2337/db18-1979-P
– volume: 27
  start-page: 1011
  year: 2004
  ident: 2275_CR7
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.4.1011
– ident: 2275_CR30
  doi: 10.3390/cells7100149
– volume: 27
  start-page: 505
  year: 2007
  ident: 2275_CR161
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.07.022
– volume: 20
  start-page: 48
  year: 2012
  ident: 2275_CR16
  publication-title: Obesity
  doi: 10.1038/oby.2011.299
– volume: 119
  start-page: 3329
  year: 2009
  ident: 2275_CR37
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI35541
– volume: 15
  start-page: 196
  year: 2016
  ident: 2275_CR60
  publication-title: Aging Cell
  doi: 10.1111/acel.12427
– volume: 118
  start-page: 7
  year: 2005
  ident: 2275_CR26
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01620
– volume: 10
  start-page: 307
  year: 2009
  ident: 2275_CR82
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2672
– ident: 2275_CR135
  doi: 10.1038/srep35372
– volume: 100
  start-page: 15077
  year: 2003
  ident: 2275_CR165
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2436255100
– volume: 19
  start-page: 83
  year: 2013
  ident: 2275_CR29
  publication-title: Nat. Med.
  doi: 10.1038/nm.3014
– volume: 123
  start-page: 803
  year: 2018
  ident: 2275_CR91
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.118.312208
SSID ssj0000330256
Score 2.488499
SecondaryResourceType review_article
Snippet Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 87
SubjectTerms 13
13/21
38
631/80/39
64
64/60
692/699/2743/393
Adipose tissue
Adipose Tissue - metabolism
Adipose Tissue - pathology
Angiotensin
Antibodies
Autophagy
Autophagy - physiology
Biochemistry
Biomedical and Life Sciences
Blood pressure
Cell Biology
Cell Culture
Energy Metabolism
Heart Diseases - metabolism
Heart Diseases - pathology
Homeostasis
Humans
Immunology
Inflammation
Insulin Resistance
Life Sciences
Liver
Liver - metabolism
Liver - pathology
Metabolic syndrome
Metabolic Syndrome - metabolism
Metabolic Syndrome - pathology
Molecular modelling
Obesity - metabolism
Obesity - pathology
Pancreas
Phagocytosis
Renin
Renin-Angiotensin System - physiology
Review
Review Article
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS-wwEB48inBexPupN3LAJyXYbdKk8UUWURbB86Swb6FNU13Yk1V3F9k3_4P_0F_ipDdZRV9KadJLMknnm8zkG4BDjiDAoC6gedIR1FOc06SIBM2ZEDJXWc7LfdzX_0Tvll_143694Dauwyqbf2L5o85Hxq-Rn0Qs9tRvUiVnD4_UZ43y3tU6hcYvWOogEvGpG2RftmssIRrrqNIbZyZLTsa8w_2uHbSZokjGVM2roy8Y82uo5Cd_aamGLldhpcaPpFsJfA0WrFuH5Sqj5GwDdHfqmQLSuxkZOPLfTlDGw4EhDTHBKUETuExARRD5ked7a4ckm5EqILy57CPw3NvLa-ruBqMyxN2RivJ5E24vL27Oe7TOoUBNzMSEysSI3DAR48GEWWQN2m_KpgW3eOoBiDV5mEqVJQUiJVMYRBDW4LQsWJEhttmCRTdy9g8Qq2KlClRn3AreMTLlUV4oVP8I-cLY2gDCpiu1qQnGfZ6LoS4d3SzRVe9r7H3te1-rAI7aWx4qdo2fKu818tH1RBvrj2ERwN-2GKeI93ukzo6mVR0V4sOwznYlzvZtDAFQzHgYgJwTdFvB02_Pl7jBfUnDLZSSTIkAjpsh8fFZ3zZi5-dG7MLvyA9OHxbO9mBx8jS1-4h6JtlBObTfARQGATA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swED-yjMFexv52bruhwp42zGzrn7W3EhrKYHtqIG_CluUkkCplcRh563foN-wn6UmOXbKwwV6MsU62fHfy_WSdfgL4xBAEGIwFcZWnIvYU53FeZyKuqBCyUmXFwjruHz_F5YR9n_LpANJuLUxI2g-UluEz3WWHfV2zlPnlNjjYyTLJY_UEnuaScu_UIzHqf6skOD7HKN7NX9L8sOZ-BDqAlYfZkX9MkYbIM34JL3aQkZy3jXwFA-tew7N2E8ntG9DnG08OUMy2ZOHItW3QrMuFIR0XwTeCo96w5xRBsEd-z61dknJL2hzw7rJPunP3t3eFmy1WIavdkZbl-S1MxhdXo8t4t21CbDgVTSxzIypDBceDScrMGhyyKVvUzOKpxxzWVEkhVZnXCI5MbRA0WIM9saZ1iXDmHQzdytn3QKziStUYwZgVLDWyYFlVK4z4iPISbm0ESadKbXac4n5ri6UOc9s01632NWpfe-1rFcHnvspNS6jxL-HTzj5617fWOqPckwBKlUdw1hdjr_BTHYWzq00roxK8Gcoctebsn0YR83DKkgjknqF7Ac-4vV_iFvPAvC2UklSJCL50LvHYrL--xPF_SZ_A88z7qk8Mp6cwbH5t7AfEPU35MXj6AyZr_ns
  priority: 102
  providerName: Springer Nature
Title Autophagy in metabolic syndrome: breaking the wheel by targeting the renin–angiotensin system
URI https://link.springer.com/article/10.1038/s41419-020-2275-9
https://www.ncbi.nlm.nih.gov/pubmed/32015340
https://www.proquest.com/docview/2350328798
https://www.proquest.com/docview/2350904198
https://pubmed.ncbi.nlm.nih.gov/PMC6997396
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_uA8EX8due5xLBJyXaTdKkEUTWZY9jwUPUhX2R0qbp3cKa9e520X3xb3eStCvrneJLWpr0azJpftOZ_AbgmUAQYHAuoHXel9RTnNO8YZLWXEpV66oWYR33-xN5PBHjaTbdgS69VSvAy2tNO59PanIxf_njfP0WB_ybuGQ8f3Up-sIvxUFDiDGVUb0L-8Fd5CP5WrQfPsxou7OQz5WlAi2nPNedn_O6q2zPVFfg59Uoyj9cqWGGOroNt1poSQZRF-7AjnV34UZMNrm-B18GK08iUJ6uycyRr3aJ3T-fGdJxFrwmaB2H3FQEQSH5fmbtnFRrEmPFu8M-OM_R0p3OFiH23ZHIBX0fJkejz8Nj2iZXoCbjcklVbmRtuMywMGnFrEHDTtuyERZ3PTKxpk5Lpau8QQhlGoPQwhocrw1vKgQ9D2DPLZx9BMTqTOsG5zlhpegbVQpWNxpxAWLBNLM2gbQTZGFa5nGfAGNeBA84z4so-wJlX3jZFzqB55tTvkXajX81Pux6p-gUqGA881SBSucJPN1U49jxDpHS2cUqttGoCr7Nw9iZm7txREYZF2kCaqubNw08L_d2jZudBX5uqbXiWibwolOI34_115c4-I-nfAw3mddPHzTOD2FvebGyTxATLase7Kqp6sH-YDD-NMbtu9HJh494dCiHvfCfoRfGgi9_jn4BxmsNTg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcEP8EChgJLqCoWdtxYqQKFWi1pe0KoVbqzSS20660eAu7q2pvvAPvw8PwJIyTONVS0VsvURQ7Px6PM589428AXnIEARptQWzyvog9xXmcV1TEhgmRGVkaXu_j3h-KwSH_dJQercDvsBfGh1WGf2L9ozYT7dfI1ylLPfVbJvN3p99jnzXKe1dDCo2iTa1gNmqKsXZjx65dnOEUbrqx8xH7-xWl21sHHwZxm2Ug1ikTszjLtTCaiRQPOimp1TjDkbaouMVTb6KtNkmRyTKvEEvoSqONtRoVt2JVidYfn3sNVrlfQOnB6vut4ecv3SpPwpgHFcGdyvL1Ke9zv28IZ22UZmkslw3iBZR7MVjzH49tbQi3b8OtFsGSzUbl7sCKdXfhepPTcnEP1ObccxUUxwsycuSbnaGWjUeaBGqEtwQn4XUKLILYk5ydWDsm5YI0Ienhso8BdH9-_irc8WhSB9k70pBO34fDK5HvA-i5ibOPgFiZSlmhQeVW8L7OCk5NJRGAIOhMUmsjSIIolW4pzn2mjbGqXe0sV430FUpfeekrGcHr7pbTht_jssproX9UO9Sn6lwxI3jRFeMg9Z6XwtnJvKkjE3wY1nnYdGf3NoYQLGU8iSBb6uiugicAXy5xo5OaCFxImTEpIngTVOL8s_7biMeXN-I53Bgc7O-pvZ3h7hO4Sb2i-iB1tga92Y-5fYoYbFY-axWdwNerHlt_AWnXRoQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIhAXxG9JKWAkuICizdqOHSNVqKKsWgoVByrtzSSO3a60eEt3V9Xe-g59Gx6HJ-k4f9VS0VsvUZQ4Px7PZD5nxt8AvOEIAgz6grjM-iIOFOdx5qiISyaELFVR8mod97d9sXPAvwzT4Qr8adfChLTK9ptYfajLiQn_yHuUpYH6Taqs55q0iO_bg4_Hv-NQQSpEWttyGrWK7NnFKU7fppu72zjWbykdfP7xaSduKgzEJmViFsvMiNIwkeLGJAW1Bmc3yuaOW9wN7tmaMsmlKjKHOMI4g_7VGlRax1yBnh_vewtuS4ZdRluSQ9n930kYC3CiDaSyrDflfR5WDOF8jVKZxmrZFV7Bt1fTNP-J1VYucPAA7jfYlWzVyvYQVqx_BHfqapaLx6C35oGlID9ckJEnv-wM9Ws8MqQlRfhAcPpdFb8iiDrJ6ZG1Y1IsSJ2M3h4O2X_-79l57g9Hkyq93pOabvoJHNyIdJ_Cqp94-wyIValSDl0pt4L3jcw5LZ1C6IFwM0mtjSBpRalNQ24eamyMdRVkZ5mupa9R-jpIX6sI3nWXHNfMHtc13mjHRzdGPtWXKhnB6-40mmeIueTeTuZ1G5XgzbDNWj2c3dMYgq-U8SQCuTTQXYNA_b18xo-OKgpwoZRkSkTwvlWJy9f6byfWr-_EK7iLFqW_7u7vPYd7NOhpyE5nG7A6O5nbFwi-ZsXLSssJ_Lxps7oAkG9EIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+in+metabolic+syndrome%3A+breaking+the+wheel+by+targeting+the+renin-angiotensin+system&rft.jtitle=Cell+death+%26+disease&rft.au=Menikdiwela%2C+Kalhara+R&rft.au=Ramalingam%2C+Latha&rft.au=Rasha%2C+Fahmida&rft.au=Wang%2C+Shu&rft.date=2020-02-03&rft.issn=2041-4889&rft.eissn=2041-4889&rft.volume=11&rft.issue=2&rft.spage=87&rft_id=info:doi/10.1038%2Fs41419-020-2275-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-4889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-4889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-4889&client=summon