Autophagy in metabolic syndrome: breaking the wheel by targeting the renin–angiotensin system
Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of ev...
Saved in:
Published in | Cell death & disease Vol. 11; no. 2; p. 87 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.02.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2041-4889 2041-4889 |
DOI | 10.1038/s41419-020-2275-9 |
Cover
Abstract | Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of evidence show that physiological systems, such as the renin–angiotensin system (RAS) and autophagy play vital regulatory roles in MetS. RAS is a pivotal system known for controlling blood pressure and fluid balance, whereas autophagy is involved in the degradation and recycling of cellular components, including proteins. Although RAS is activated in MetS, the interrelationship between RAS and autophagy varies in glucose homeostatic organs and their cross talk is poorly understood. Interestingly, autophagy is attenuated in the liver during MetS, whereas autophagic activity is induced in adipose tissue during MetS, indicating tissue-specific discordant roles. We discuss in vivo and in vitro studies conducted in metabolic tissues and dissect their tissue-specific effects. Moreover, our review will focus on the molecular mechanisms by which autophagy orchestrates MetS and the ways future treatments could target RAS in order to achieve metabolic homeostasis. |
---|---|
AbstractList | Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of evidence show that physiological systems, such as the renin-angiotensin system (RAS) and autophagy play vital regulatory roles in MetS. RAS is a pivotal system known for controlling blood pressure and fluid balance, whereas autophagy is involved in the degradation and recycling of cellular components, including proteins. Although RAS is activated in MetS, the interrelationship between RAS and autophagy varies in glucose homeostatic organs and their cross talk is poorly understood. Interestingly, autophagy is attenuated in the liver during MetS, whereas autophagic activity is induced in adipose tissue during MetS, indicating tissue-specific discordant roles. We discuss in vivo and in vitro studies conducted in metabolic tissues and dissect their tissue-specific effects. Moreover, our review will focus on the molecular mechanisms by which autophagy orchestrates MetS and the ways future treatments could target RAS in order to achieve metabolic homeostasis.Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of evidence show that physiological systems, such as the renin-angiotensin system (RAS) and autophagy play vital regulatory roles in MetS. RAS is a pivotal system known for controlling blood pressure and fluid balance, whereas autophagy is involved in the degradation and recycling of cellular components, including proteins. Although RAS is activated in MetS, the interrelationship between RAS and autophagy varies in glucose homeostatic organs and their cross talk is poorly understood. Interestingly, autophagy is attenuated in the liver during MetS, whereas autophagic activity is induced in adipose tissue during MetS, indicating tissue-specific discordant roles. We discuss in vivo and in vitro studies conducted in metabolic tissues and dissect their tissue-specific effects. Moreover, our review will focus on the molecular mechanisms by which autophagy orchestrates MetS and the ways future treatments could target RAS in order to achieve metabolic homeostasis. Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of evidence show that physiological systems, such as the renin-angiotensin system (RAS) and autophagy play vital regulatory roles in MetS. RAS is a pivotal system known for controlling blood pressure and fluid balance, whereas autophagy is involved in the degradation and recycling of cellular components, including proteins. Although RAS is activated in MetS, the interrelationship between RAS and autophagy varies in glucose homeostatic organs and their cross talk is poorly understood. Interestingly, autophagy is attenuated in the liver during MetS, whereas autophagic activity is induced in adipose tissue during MetS, indicating tissue-specific discordant roles. We discuss in vivo and in vitro studies conducted in metabolic tissues and dissect their tissue-specific effects. Moreover, our review will focus on the molecular mechanisms by which autophagy orchestrates MetS and the ways future treatments could target RAS in order to achieve metabolic homeostasis. |
ArticleNumber | 87 |
Author | Moustaid-Moussa, Naima Kalupahana, Nishan S. Sunahara, Karen K. S. Wang, Shu Martins, Joilson O. Menikdiwela, Kalhara R. Rasha, Fahmida Dufour, Jannette M. Ramalingam, Latha |
Author_xml | – sequence: 1 givenname: Kalhara R. surname: Menikdiwela fullname: Menikdiwela, Kalhara R. organization: Department of Nutritional Sciences, Texas Tech University, Obesity Research Institute, Texas Tech University – sequence: 2 givenname: Latha surname: Ramalingam fullname: Ramalingam, Latha organization: Department of Nutritional Sciences, Texas Tech University, Obesity Research Institute, Texas Tech University – sequence: 3 givenname: Fahmida surname: Rasha fullname: Rasha, Fahmida organization: Department of Nutritional Sciences, Texas Tech University, Obesity Research Institute, Texas Tech University – sequence: 4 givenname: Shu orcidid: 0000-0001-8078-9942 surname: Wang fullname: Wang, Shu organization: Department of Nutritional Sciences, Texas Tech University, Obesity Research Institute, Texas Tech University – sequence: 5 givenname: Jannette M. surname: Dufour fullname: Dufour, Jannette M. organization: Obesity Research Institute, Texas Tech University, Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center – sequence: 6 givenname: Nishan S. surname: Kalupahana fullname: Kalupahana, Nishan S. organization: Department of Nutritional Sciences, Texas Tech University, Obesity Research Institute, Texas Tech University, Department of Physiology, Faculty of Medicine, University of Peradeniya – sequence: 7 givenname: Karen K. S. surname: Sunahara fullname: Sunahara, Karen K. S. organization: Department of Experimental Physiopatholgy, Medical School University of São Paulo – sequence: 8 givenname: Joilson O. orcidid: 0000-0003-2630-7038 surname: Martins fullname: Martins, Joilson O. organization: Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP) – sequence: 9 givenname: Naima orcidid: 0000-0002-7508-8030 surname: Moustaid-Moussa fullname: Moustaid-Moussa, Naima email: naima.moustaid-moussa@ttu.edu organization: Department of Nutritional Sciences, Texas Tech University, Obesity Research Institute, Texas Tech University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32015340$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctO3DAUtRCIx8AHsKkiddNNih9JHLOohBCPSkjdwNpyPDcZ08QebKdVdv0H_rBfUg_DtIBUvLCv7HPOPb7nAG1bZwGhY4I_E8zqk1CQgogcU5xTystcbKF9iguSF3Uttl_Ue-gohHucFmOYltUu2mMUk5IVeB_JszG65UJ1U2ZsNkBUjeuNzsJk594NcJo1HtR3Y7ssLiD7uQDos2bKovIdxM21B2vs71-PynbGRbAhaYUpRBgO0U6r-gBHz-cM3V1e3J5f5zffrr6en93kumRVzHmtq7lmVZk2jRsKmhMuQLUFpBLjqgQ9x4qLpm4FFbrVJRagRcVa1jaUsxn6stZdjs0Acw02etXLpTeD8pN0ysjXL9YsZOd-yEoIzpLODH16FvDuYYQQ5WCChr5XFtwYJGWpYxqpqBP04xvovRu9Td97QjFa8yfUh5eO_lrZzD4B-BqgvQvBQyu1iSoatzJoekmwXAUt10HLFLRcBS1FYpI3zI34exy65oSEtR34f6b_T_oDIRO9Nw |
CitedBy_id | crossref_primary_10_1186_s12906_025_04749_6 crossref_primary_10_1002_cbf_3908 crossref_primary_10_15252_embj_2021108863 crossref_primary_10_3390_cancers14071637 crossref_primary_10_3389_fcell_2021_670273 crossref_primary_10_1016_j_arr_2023_101967 crossref_primary_10_23868_202209004 crossref_primary_10_1016_j_bbrc_2024_151286 crossref_primary_10_1111_apha_14164 crossref_primary_10_1152_ajprenal_00018_2023 crossref_primary_10_2147_DMSO_S257797 crossref_primary_10_1007_s00403_024_03219_2 crossref_primary_10_1016_j_abb_2021_108951 crossref_primary_10_1038_s41598_023_49449_8 crossref_primary_10_1002_fft2_255 crossref_primary_10_3390_ijms26062770 crossref_primary_10_1007_s40618_023_02068_6 crossref_primary_10_1080_25785826_2023_2228074 crossref_primary_10_1080_26895293_2022_2078894 crossref_primary_10_2337_dbi20_0019 crossref_primary_10_1208_s12249_024_02928_1 crossref_primary_10_15252_embr_202052036 crossref_primary_10_1016_j_bbalip_2022_159181 crossref_primary_10_3934_mbe_2022270 crossref_primary_10_3389_fcell_2024_1360014 crossref_primary_10_1080_10409238_2021_1925219 crossref_primary_10_2174_1573399819666230502110511 crossref_primary_10_1111_obr_13313 crossref_primary_10_1155_2020_7527953 crossref_primary_10_3389_fendo_2021_707126 crossref_primary_10_3390_nu16234179 crossref_primary_10_3390_cells10082114 crossref_primary_10_1016_j_lfs_2022_121210 crossref_primary_10_1021_acschemneuro_2c00165 crossref_primary_10_1016_j_bbadis_2025_167678 crossref_primary_10_1016_j_lfs_2022_121335 crossref_primary_10_1155_2021_9928986 crossref_primary_10_1002_path_5985 crossref_primary_10_1007_s00018_024_05351_8 crossref_primary_10_1016_j_bbamcr_2024_119753 crossref_primary_10_1016_j_preteyeres_2022_101064 crossref_primary_10_2147_CCID_S284300 crossref_primary_10_1007_s11033_021_06298_w crossref_primary_10_2147_IJN_S441418 crossref_primary_10_1002_jcla_23957 crossref_primary_10_1055_a_1948_4290 crossref_primary_10_1007_s00384_022_04265_w crossref_primary_10_4254_wjh_v13_i1_6 crossref_primary_10_1042_BCJ20200894 crossref_primary_10_1007_s43032_023_01380_z crossref_primary_10_3390_cells10020381 crossref_primary_10_1016_j_bbadis_2022_166477 crossref_primary_10_1016_j_mce_2021_111245 crossref_primary_10_1007_s10735_021_10013_1 crossref_primary_10_1016_j_biopha_2022_113715 crossref_primary_10_3389_fcell_2020_545852 crossref_primary_10_3389_fendo_2023_1149610 crossref_primary_10_2147_IDR_S265718 crossref_primary_10_1091_mbc_E20_05_0291 crossref_primary_10_1097_ICU_0000000000000747 crossref_primary_10_3389_fcell_2021_654913 crossref_primary_10_3389_fmed_2022_923334 |
Cites_doi | 10.1038/cdd.2014.143 10.1038/nature07383 10.1016/j.metabol.2008.03.010 10.1016/j.jacc.2009.04.018 10.1080/15548627.2015.1106667 10.1152/ajpheart.00498.2016 10.1172/JCI118623 10.1016/j.bbadis.2016.07.019 10.1089/met.2004.2.82 10.1161/01.RES.0000261924.76669.36 10.1097/00005344-199000168-00018 10.1159/000329327 10.1016/j.jcmgh.2019.03.005 10.1038/nm1574 10.1038/nm.2079 10.1210/en.2014-1090 10.1079/096582197388608 10.1111/obr.12408 10.1080/15548627.2016.1178446 10.1083/jcb.200412022 10.1007/s11906-018-0803-0 10.1083/jcb.152.1.51 10.1016/S1357-2725(02)00311-4 10.1007/s11515-015-1354-2 10.1530/eje.0.1470495 10.1038/cdd.2008.163 10.1161/01.HYP.0000040262.48405.A8 10.1016/j.tcm.2015.10.004 10.1038/emboj.2011.398 10.1016/j.ijcard.2018.02.109 10.1016/j.cell.2006.01.016 10.1002/hep.22187 10.1161/HYPERTENSIONAHA.111.00469 10.1074/jbc.M602097200 10.3389/fimmu.2015.00637 10.1016/0092-8674(95)90194-9 10.1016/j.cmet.2010.05.006 10.1161/CIRCULATIONAHA.109.192644 10.1002/oby.21352 10.1101/gad.1599207 10.1016/j.yjmcc.2018.04.002 10.3109/10409238.2012.694843 10.1007/s00395-005-0528-5 10.1002/j.1875-9114.1987.tb04039.x 10.4161/auto.5.8.10153 10.1016/j.mce.2015.03.015 10.1073/pnas.0906048106 10.1016/j.phrs.2013.03.001 10.1007/s00395-009-0043-1 10.5888/pcd14.160287 10.1016/j.cmet.2010.04.005 10.1002/cbin.10634 10.1128/MCB.23.3.1085-1094.2003 10.1038/s41598-019-44834-8 10.1079/PNS200194 10.1210/en.2003-0150 10.1016/j.celrep.2018.10.040 10.7554/eLife.11205 10.1016/j.cmet.2008.08.009 10.4161/auto.4913 10.1016/S1097-2765(00)80211-7 10.4161/auto.5.8.9991 10.4161/auto.5924 10.1152/ajpheart.00796.2011 10.1152/ajpcell.00424.2009 10.1016/j.cmet.2008.08.013 10.1007/s00125-011-2350-y 10.1159/000495678 10.1210/jc.2010-1681 10.1083/jcb.78.1.152 10.1038/ncb2152 10.3892/ol.2017.5872 10.1016/j.devcel.2004.07.009 10.1038/nature01323 10.1016/j.cell.2016.05.051 10.1038/ncb1482 10.1038/ncb839 10.1161/HYPERTENSIONAHA.108.128488 10.1016/j.cyto.2011.09.002 10.1016/j.cyto.2011.08.022 10.1111/jpi.12333 10.1016/j.tcb.2003.12.002 10.4161/isl.1.2.9057 10.4161/auto.5.2.7656 10.1038/ijo.2013.27 10.1172/JCI73939 10.1016/j.bbrc.2009.03.039 10.1152/ajpendo.00497.2011 10.1016/j.bbadis.2014.05.005 10.4161/auto.26058 10.1186/1475-2840-4-6 10.1038/s41419-018-1168-7 10.1074/jbc.M111.254417 10.1073/pnas.0802128105 10.2119/molmed.2010.00023 10.1038/sj.ijo.0803632 10.1007/s12035-015-9177-3 10.1126/science.290.5497.1717 10.1155/jbb/2006/27012 10.1007/s10557-010-6274-4 10.1016/j.molcel.2008.03.003 10.1371/journal.pone.0018666 10.1074/jbc.M110.202911 10.1074/jbc.M603783200 10.1016/j.bbalip.2016.01.006 10.1091/mbc.e08-12-1249 10.1083/jcb.150.6.1507 10.1146/annurev-physiol-021317-121427 10.1038/nature07976 10.1161/HYPERTENSIONAHA.111.179457 10.1080/15548627.2016.1145326 10.3748/wjg.v20.i23.7325 10.1016/j.semnephrol.2013.11.009 10.1111/j.1467-789X.2011.00942.x 10.1016/j.ijcard.2016.12.127 10.1016/j.yjmcc.2018.08.028 10.1161/CIRCRESAHA.111.300483 10.1016/j.febslet.2007.01.096 10.1016/j.intimp.2016.02.023 10.1086/593174 10.4161/auto.25722 10.1038/ncb840 10.1038/ni.1823 10.1155/2012/282041 10.1111/jcmm.12687 10.1038/ncomms3300 10.1074/jbc.M405346200 10.1074/jbc.M109.033936 10.1038/s41574-018-0009-1 10.1038/ijo.2011.95 10.2337/db17-0223 10.1056/NEJM199304013281302 10.1016/j.freeradbiomed.2014.01.002 10.2337/db10-0705 10.1016/0092-8674(94)90006-X 10.1016/j.bbrc.2013.05.070 10.1074/jbc.273.7.3963 10.1159/000358676 10.1083/jcb.87.1.180 10.1124/jpet.111.184341 10.1038/oby.2002.70 10.7150/ijms.28106 10.1038/ni.1980 10.1152/ajpendo.00640.2012 10.1161/CIRCRESAHA.110.232306 10.1002/hep.29229 10.1155/2015/398483 10.1016/j.physbeh.2010.03.018 10.1186/s40169-017-0154-5 10.1038/sj.cdd.4401728 10.1038/nature03029 10.1001/jama.287.3.356 10.2337/db18-1979-P 10.2337/diacare.27.4.1011 10.3390/cells7100149 10.1016/j.immuni.2007.07.022 10.1038/oby.2011.299 10.1172/JCI35541 10.1111/acel.12427 10.1242/jcs.01620 10.1038/nrm2672 10.1038/srep35372 10.1073/pnas.2436255100 10.1038/nm.3014 10.1161/CIRCRESAHA.118.312208 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41419-020-2275-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-4889 |
ExternalDocumentID | PMC6997396 32015340 10_1038_s41419_020_2275_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: SPRINT (TTU/FAPESP) Award (NMM, JM, LR) – fundername: ; |
GroupedDBID | --- 0R~ 3V. 53G 5VS 70F 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO E3Z EBLON EBS EMOBN FRP FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ KQ8 LK8 M0L M2P M48 M7P M~E NAO O5R O5S O9- OK1 PIMPY PQQKQ PROAC RNT RPM SNYQT TR2 UKHRP W2D AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c536t-78c6dc365dc3c0b2ec7179eaf4eec70065ecd0a79b8f929cfc509ec963f3fb273 |
IEDL.DBID | M48 |
ISSN | 2041-4889 |
IngestDate | Thu Aug 21 14:09:26 EDT 2025 Fri Sep 05 03:03:06 EDT 2025 Wed Aug 13 04:57:36 EDT 2025 Thu Jan 02 22:56:58 EST 2025 Tue Jul 01 03:49:44 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Fri Feb 21 02:37:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-78c6dc365dc3c0b2ec7179eaf4eec70065ecd0a79b8f929cfc509ec963f3fb273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2630-7038 0000-0001-8078-9942 0000-0002-7508-8030 |
OpenAccessLink | https://www.proquest.com/docview/2350328798?pq-origsite=%requestingapplication% |
PMID | 32015340 |
PQID | 2350328798 |
PQPubID | 2041963 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6997396 proquest_miscellaneous_2350904198 proquest_journals_2350328798 pubmed_primary_32015340 crossref_citationtrail_10_1038_s41419_020_2275_9 crossref_primary_10_1038_s41419_020_2275_9 springer_journals_10_1038_s41419_020_2275_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-03 |
PublicationDateYYYYMMDD | 2020-02-03 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cell death & disease |
PublicationTitleAbbrev | Cell Death Dis |
PublicationTitleAlternate | Cell Death Dis |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Springer Nature B.V |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V |
References | ReavenGMInsulin resistance, cardiovascular disease, and the metabolic syndromeDiabetes Care2004271011101210.2337/diacare.27.4.101115047666 GuilluyCThe Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressureNat. Med.20101618319010.1038/nm.20791:CAS:528:DC%2BC3cXpslGmsQ%3D%3D20098430 PrieurXDifferential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese miceDiabetes20116079780910.2337/db10-07051:CAS:528:DC%2BC3MXktVKksb4%3D212663303046840 LiSSirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity.Hepatology20176693695210.1002/hep.292291:CAS:528:DC%2BC2sXhtlOhsbzE28437863 Matsuzawa-NagataNIncreased oxidative stress precedes the onset of high-fat diet–induced insulin resistance and obesityMetabolism2008571071107710.1016/j.metabol.2008.03.0101:CAS:528:DC%2BD1cXosleltLk%3D18640384 InokiKLiYZhuTWuJGuanK-LTSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signallingNat. Cell Biol.2002464865710.1038/ncb8391:CAS:528:DC%2BD38Xms1ahtL4%3D12172553 MatsuiYDistinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagyCirc. Res.200710091492210.1161/01.RES.0000261924.76669.361:CAS:528:DC%2BD2sXjtlWmsbo%3D17332429 KimKHAutophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokineNat. Med.2013198310.1038/nm.30141:CAS:528:DC%2BC38XhslGktb3E23202295 YousefiSCalpain-mediated cleavage of Atg5 switches autophagy to apoptosisNat. Cell Biol.200681124113210.1038/ncb14821:CAS:528:DC%2BD28XhtVWqsLfP16998475 GaoQActivation of autophagy contributes to the angiotensin ii-triggered apoptosis in a dopaminergic neuronal cell lineMol. Neurobiol.2016532911291910.1007/s12035-015-9177-31:CAS:528:DC%2BC2MXntVCnu7w%3D25902863 PutnamKShoemakerRYiannikourisFCassisLAThe renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndromeAm. J. Physiol. Heart Circulatory Physiol.2012302H1219H123010.1152/ajpheart.00796.20111:CAS:528:DC%2BC38XkslCis7c%3D BorekMCharlapSFrishmanWEnalapril: A long‐acting angiotensin‐converting enzyme inhibitorPharmacother. J. Hum. Pharmacol. Drug Ther.1987713314510.1002/j.1875-9114.1987.tb04039.x1:CAS:528:DyaL1cXkvVGmsQ%3D%3D ZhangYAdipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesisProc. Natl. Acad. Sci.2009106198601986510.1073/pnas.0906048106199105292785257 ParlakpinarHOzerMKAcetAEffects of captopril and angiotensin II receptor blockers (AT1, AT2) on myocardial ischemia–reperfusion induced infarct sizeCytokine20115668869410.1016/j.cyto.2011.09.0021:CAS:528:DC%2BC3MXhsFSktL7M21975128 KosackaJAutophagy in adipose tissue of patients with obesity and type 2 diabetesMol. Cell. Endocrinol.2015409213210.1016/j.mce.2015.03.0151:CAS:528:DC%2BC2MXlslCluro%3D25818883 FujitaniYEbatoCUchidaTKawamoriRWatadaHβ-cell autophagy: a novel mechanism regulating β-cell function and mass-Lessons from β-cell-specific Atg7-deficient miceIslets2009115115310.4161/isl.1.2.905721099263 KlionskyDJEmrSDAutophagy as a regulated pathway of cellular degradationScience20002901717172110.1126/science.290.5497.17171:CAS:528:DC%2BD3cXovVOitbw%3D110994042732363 KlionskyDJThe molecular machinery of autophagy: unanswered questionsJ. Cell Sci.200511871810.1242/jcs.016201:CAS:528:DC%2BD2MXhsVCrtb4%3D15615779 KovsanJAltered autophagy in human adipose tissues in obesityJ. Clin. Endocrinol. Metab.201196E268E27710.1210/jc.2010-16811:CAS:528:DC%2BC3MXisVOmtrg%3D21047928 FujitaniYKawamoriRWatadaHThe role of autophagy in pancreatic β-cell and diabetesAutophagy2009528028210.4161/auto.5.2.76561:CAS:528:DC%2BD1MXovFeiu7o%3D19158492 Chao, Y.-M., Lai, M.-D. & Chan, J. Y. Redox-sensitive endoplasmic reticulum stress and autophagy at rostral ventrolateral medulla contribute to hypertension in spontaneously hypertensive rats. Hypertensionhttps://doi.org/10.1161/HYPERTENSIONAHA.111.00469 (2013). FinckenbergPCaloric restriction ameliorates angiotensin II–induced mitochondrial remodeling and cardiac hypertrophyHypertension201259768410.1161/HYPERTENSIONAHA.111.1794571:CAS:528:DC%2BC3MXhs1WksrrF22068868 ZhouMLong non-coding RNA H19 protects acute myocardial infarction through activating autophagy in miceEur. Rev. Med. Pharmacol. Sci.201822564756511:STN:280:DC%2BB3czgt1KhtA%3D%3D30229841 CaiJAutophagy ablation in adipocytes induces insulin resistance and reveals roles for lipid peroxide and Nrf2 signaling in adipose-liver crosstalkCell Rep.20182517081717. e510.1016/j.celrep.2018.10.0401:CAS:528:DC%2BC1cXitF2qtbrK304283426802939 KamadaYTor-mediated induction of autophagy via an Apg1 protein kinase complexJ. Cell Biol.20001501507151310.1083/jcb.150.6.15071:CAS:528:DC%2BD3cXmslGlsr4%3D109954542150712 LinLMas receptor mediates cardioprotection of angiotensin‐(1‐7) against Angiotensin II‐induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stressJ. Cell. Mol. Med.201620485710.1111/jcmm.126871:CAS:528:DC%2BC28XjtVGltg%3D%3D26515045 ZhangMKennySJGeLXuKSchekmanRTranslocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretionElife2015410.7554/eLife.11205265233924728131 SuFSimvastatin protects heart from pressure overload injury by inhibiting excessive autophagyInt. J. Med. Sci.2018151508151610.7150/ijms.28106304431726216062 WullschlegerSLoewithRHallMNTOR signaling in growth and metabolismCell200612447148410.1016/j.cell.2006.01.0161:CAS:528:DC%2BD28Xhslaqs74%3D16469695 MizushimaNAutophagy: process and functionGenes Dev.2007212861287310.1101/gad.15992071:CAS:528:DC%2BD2sXhtlGmsrjP18006683 MartinsRLithgowGJLinkWLong live FOXO: unraveling the role of FOXO proteins in aging and longevityAging Cell20161519620710.1111/acel.124271:CAS:528:DC%2BC2MXhvFKgs7vJ26643314 SaitohTLoss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β productionNature200845626426810.1038/nature073831:CAS:528:DC%2BD1cXhtlKmtLzN18849965 Wang, H.-J., Chen, S.-F. & Lo, W.-Y. Identification of cofilin-1 induces G0/G1 arrest and autophagy in angiotensin-(1-7)-treated human aortic endothelial cells from iTRAQ quantitative proteomics. Sci. Rep.6, 1–13 (2016). Lapaquette, P., Guzzo, J., Bretillon, L. & Bringer, M.-A. Cellular and molecular connections between autophagy and inflammation. Mediators Inflamm.2015, 1–13 (2015). CrişanTOInflammasome-independent modulation of cytokine response by autophagy in human cellsPLoS ONE2011610.1371/journal.pone.00186661:CAS:528:DC%2BC3MXltVWlt7Y%3D214909343072416 ZeydaMHuman adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator productionInt. J. Obes.2007311420142810.1038/sj.ijo.08036321:CAS:528:DC%2BD2sXpsF2qurs%3D WardCAutophagy, lipophagy and lysosomal lipid storage disordersBiochim. Biophys. Acta2016186126928410.1016/j.bbalip.2016.01.0061:CAS:528:DC%2BC28XhtVejtLo%3D26778751 KimJKunduMViolletBGuanK-LAMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1Nat. Cell Biol.20111313214110.1038/ncb21521:CAS:528:DC%2BC3MXhtlamtb0%3D212583673987946 MenikdiwelaKRAngiotensin II Increases endoplasmic reticulum stress in adipose tissue and adipocytesSci. Rep.2019910.1038/s41598-019-44834-81:CAS:528:DC%2BC1MXhtFCltLbE311864466560092 QianQHepatic lysosomal iNOS activity impairs autophagy in obesityCell. Mol. Gastroenterol. Hepatol.201989511010.1016/j.jcmgh.2019.03.005309265816522853 LibbyPInflammation in atherosclerosisNature200242086887410.1038/nature013231:CAS:528:DC%2BD38XpsFygtb8%3D12490960 BaergaRZhangYChenP-HGoldmanSJinSVTargeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in miceAutophagy200951118113010.4161/auto.5.8.99911:CAS:528:DC%2BC3cXkvVeitrY%3D19844159 Qian, M., Fang, X. & Wang, X. Autophagy and inflammation. Clin. Transl. Med.6, 24 (2017). MaianoCHueOMorinAJMoullecGPrevalence of overweight and obesity among children and adolescents with intellectual disabilities: a systematic review and meta‐analysisObes. Rev.20161759961110.1111/obr.124081:STN:280:DC%2BC28bovVWitQ%3D%3D27171466 ÖstAAttenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetesMol. Med.20101623524610.2119/molmed.2010.000231:CAS:528:DC%2BC3cXpsFejtbg%3D203868662896460 KimYCGuanK-LmTOR: a pharmacologic target for autophagy regulationJ. Clin. Investig.2015125253210.1172/JCI73939256545474382265 Kim, J.-A., Jang, H.-J., Martinez-Lemus, L. A. & Sowers, J. R. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin stimulated endothelial nitric oxide synthase and vasodilation. Am. J. Physiol. Heart Circ. Physiol.302, E201–E208 (2012). TravassosLHNod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entryNat. Immunol.201011556210.1038/ni.18231:CAS:528:DC%2BD1MXhtlOrur3L19898471 NodaTOhsumiYTor, a phosphatidylinositol kinase homologue, controls autophagy in yeastJ. Biol. Chem.19982733963396610.1074/jbc.273.7.39631:CAS:528:DyaK1cXht1ahsr8%3D9461583 MorrellNWCellular and molecular basis of pulmonary arterial hypertensionJ. Am. Coll. Cardiol.200954S20S3110.1016/j.jacc.2009.04.0181:CAS:528:DC%2BC3cXkvVOks7g%3D195558552790324 QianQS-Nitrosoglutathione reductase dysfunction contributes to obesity-associated hepatic insulin resistance via regulating autophagyDiabetes20186719320710.2337/db17-02231:CAS:528:DC%2BC1cXhs12lt7vK29074597 CuervoAMAutophagy: in sickness and in healthTrends cell Biol.200414707710.1016/j.tcb.2003.12.0021:CAS:528:DC%2BD2cXhtVOrtL4%3D15102438 de KloetADKrauseEGWoodsSCThe renin angiotensin system and the metabolic syndromePhysiol. Behav.201010052553410.1016/j.physbeh.2010.03.0181:CAS:528:DC%2BC3cXntlWqtrY%3D203815102886177 Meng, Q. & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via IKK-beta/NF-kappaB pathway. J. Biol. Chem.https://d L Lin (2275_CR119) 2016; 20 C Chambrier (2275_CR51) 2002; 10 N Mao (2275_CR120) 2016; 40 N Mizushima (2275_CR22) 2005; 12 J Sadoshima (2275_CR94) 2008; 4 L Yang (2275_CR57) 2010; 11 S Sciarretta (2275_CR86) 2018; 80 S Wullschleger (2275_CR69) 2006; 124 C Guilluy (2275_CR101) 2010; 16 J Harris (2275_CR161) 2007; 27 L Wilson-Fritch (2275_CR33) 2003; 23 H-X Yuan (2275_CR78) 2013; 9 Q Qian (2275_CR162) 2019; 8 2275_CR30 MJ LeMieux (2275_CR117) 2016; 24 X Prieur (2275_CR4) 2011; 60 LM Ignacio-Souza (2275_CR44) 2014; 155 J Harris (2275_CR147) 2011; 286 R Baerga (2275_CR9) 2009; 5 J Cai (2275_CR35) 2018; 25 Y Wang (2275_CR111) 2016; 312 P Finckenberg (2275_CR126) 2012; 59 M Zhang (2275_CR151) 2015; 4 CJ Potter (2275_CR71) 2002; 4 T Saitoh (2275_CR149) 2008; 456 JG Sánchez (2275_CR49) 2002; 147 S Namkoong (2275_CR62) 2018; 41 AB Novikoff (2275_CR34) 1980; 87 M Komatsu (2275_CR56) 2005; 169 ER Porrello (2275_CR133) 2009; 5 2275_CR42 AM Cuervo (2275_CR18) 2004; 14 2275_CR43 SK Michael (2275_CR102) 2008; 105 J Kosacka (2275_CR38) 2015; 409 2275_CR41 Q Qian (2275_CR54) 2018; 67 S Li (2275_CR64) 2017; 66 JS Kim (2275_CR58) 2008; 47 Y Woo (2275_CR168) 2017; 13 R Singh (2275_CR55) 2009; 458 M Zhou (2275_CR89) 2018; 22 Q Shen (2275_CR123) 2018; 51 T Jiang (2275_CR122) 2013; 71 M Djavaheri-Mergny (2275_CR21) 2006; 281 C Zhang (2275_CR10) 2013; 305 DJ Klionsky (2275_CR26) 2005; 118 2275_CR113 Q Gao (2275_CR134) 2016; 53 2275_CR116 L Long (2275_CR99) 2013; 112 P Tontonoz (2275_CR47) 1994; 79 A Hamacher-Brady (2275_CR32) 2006; 281 C Ebato (2275_CR79) 2008; 8 2275_CR118 L Ramalingam (2275_CR109) 2016 Z Cheng (2275_CR124) 2018; 125 T Ogihara (2275_CR12) 2002; 40 Y Kamada (2275_CR68) 2000; 150 I Tzameli (2275_CR46) 2004; 279 C Nuñez (2275_CR40) 2013; 37 M Abdellatif (2275_CR91) 2018; 123 NS Kalupahana (2275_CR108) 2012; 13 MA Testa (2275_CR112) 1993; 328 SA Kliewer (2275_CR52) 1995; 83 C Maiano (2275_CR2) 2016; 17 2275_CR61 J Kovsan (2275_CR27) 2011; 96 C Ward (2275_CR53) 2016; 1861 2275_CR100 HS Jung (2275_CR80) 2008; 8 KH Kim (2275_CR29) 2013; 19 NR Hadi (2275_CR167) 2017; 230 P Castets (2275_CR140) 2013; 9 W Quan (2275_CR81) 2012; 55 M Zeng (2275_CR160) 2013; 436 U Pfeifer (2275_CR67) 1978; 78 F Chen (2275_CR121) 2014; 33 D Chen (2275_CR157) 2016; 34 S Premaratna (2275_CR115) 2012; 36 K Nishida (2275_CR90) 2009; 16 A Kuma (2275_CR45) 2004; 432 S Mei (2275_CR63) 2011; 339 Y Fujitani (2275_CR83) 2009; 1 A Öst (2275_CR39) 2010; 16 Y Ding (2275_CR158) 2014; 34 KR Menikdiwela (2275_CR114) 2019; 9 2275_CR135 J-O Pyo (2275_CR164) 2013; 4 P Libby (2275_CR143) 2002; 420 JP Sutherland (2275_CR144) 2004; 2 2275_CR137 2275_CR136 J Kim (2275_CR25) 2001; 152 RH Eckel (2275_CR8) 2005; 365 A Rocchi (2275_CR11) 2015; 10 ES Ford (2275_CR3) 2002; 287 AD de Kloet (2275_CR15) 2010; 100 SP Baba (2275_CR93) 2018; 118 N Mizushima (2275_CR17) 2007; 21 J Harris (2275_CR145) 2011; 56 S Engeli (2275_CR13) 2003; 35 Y Fujitani (2275_CR84) 2009; 5 YC Kim (2275_CR74) 2015; 125 X Xiong (2275_CR132) 2018; 9 M Zeyda (2275_CR142) 2007; 31 DJ Klionsky (2275_CR19) 2000; 290 N Matsuzawa-Nagata (2275_CR85) 2008; 57 WW Hung (2275_CR105) 2011; 25 CH Jung (2275_CR75) 2009; 20 NS Kalupahana (2275_CR107) 2012; 47 T Saito (2275_CR88) 2016; 12 ED Rosen (2275_CR48) 1999; 4 C Rupérez (2275_CR98) 2018; 260 ER Porrello (2275_CR125) 2009; 53 H Xue (2275_CR159) 2016; 12 R Singh (2275_CR37) 2009; 119 P Codogno (2275_CR65) 2010; 11 H Parlakpinar (2275_CR129) 2011; 56 XM Ma (2275_CR82) 2009; 10 S Patel (2275_CR110) 2018; 20 R Martins (2275_CR60) 2016; 15 F Su (2275_CR128) 2018; 15 NW Morrell (2275_CR97) 2009; 54 BA Rothermel (2275_CR95) 2007; 3 NS Kalupahana (2275_CR16) 2012; 20 K Hara (2275_CR50) 2000; 84 B de Luxán‐Delgado (2275_CR66) 2016; 61 K Nakahira (2275_CR148) 2011; 12 P Trayhurn (2275_CR141) 2001; 60 S Rajagopalan (2275_CR104) 1996; 97 K Putnam (2275_CR14) 2012; 302 2275_CR156 K Alberti (2275_CR6) 2009; 120 2275_CR154 S Yousefi (2275_CR59) 2006; 8 J Harris (2275_CR153) 2008; 198 K Suzuki (2275_CR24) 2007; 581 A Whaley-Connell (2275_CR139) 2011; 34 GM Reaven (2275_CR7) 2004; 27 Y Mei (2275_CR96) 2015; 1852 A Nakai (2275_CR87) 2007; 13 Y Yamori (2275_CR103) 1990; 16 N Dupont (2275_CR152) 2011; 30 WJ Kwanten (2275_CR31) 2014; 20 H-Y Liu (2275_CR23) 2009; 284 DM Gwinn (2275_CR76) 2008; 30 2275_CR1 JL Lavoie (2275_CR106) 2003; 144 GP Diniz (2275_CR138) 2009; 104 Y Liu (2275_CR131) 2015; 22 2275_CR5 W Zhao (2275_CR127) 2014; 69 T Noda (2275_CR73) 1998; 273 Z Yue (2275_CR165) 2003; 100 K Inoki (2275_CR70) 2002; 4 TO Crişan (2275_CR146) 2011; 6 H Soussi (2275_CR28) 2016; 12 2275_CR20 Y Matsui (2275_CR92) 2007; 100 M Shibata (2275_CR163) 2009; 382 RC Scott (2275_CR72) 2004; 7 EF du Toit (2275_CR130) 2005; 100 LH Travassos (2275_CR155) 2010; 11 J Kim (2275_CR77) 2011; 13 Z Zhong (2275_CR150) 2016; 166 Y Zhang (2275_CR36) 2009; 106 M Borek (2275_CR166) 1987; 7 |
References_xml | – reference: WardCAutophagy, lipophagy and lysosomal lipid storage disordersBiochim. Biophys. Acta2016186126928410.1016/j.bbalip.2016.01.0061:CAS:528:DC%2BC28XhtVejtLo%3D26778751 – reference: KlionskyDJThe molecular machinery of autophagy: unanswered questionsJ. Cell Sci.200511871810.1242/jcs.016201:CAS:528:DC%2BD2MXhsVCrtb4%3D15615779 – reference: FujitaniYEbatoCUchidaTKawamoriRWatadaHβ-cell autophagy: a novel mechanism regulating β-cell function and mass-Lessons from β-cell-specific Atg7-deficient miceIslets2009115115310.4161/isl.1.2.905721099263 – reference: NishidaKKyoiSYamaguchiOSadoshimaJOtsuKThe role of autophagy in the heartCell Death Differ.200916313810.1038/cdd.2008.1631:CAS:528:DC%2BD1cXhsV2it7%2FP19008922 – reference: MichaelSKHigh blood pressure arising from a defect in vascular functionProc. Natl Acad. Sci.20081056702670710.1073/pnas.0802128105184486762373316 – reference: TestaMAAndersonRBNackleyJFHollenbergNKQuality of life and antihypertensive therapy in men—a comparison of captopril with enalapril. The Quality-of-Life Hypertension Study GroupN. Engl. J. Med.199332890791310.1056/NEJM1993040132813021:STN:280:DyaK3s7ovV2itA%3D%3D8446137 – reference: Qian, M., Fang, X. & Wang, X. Autophagy and inflammation. Clin. Transl. Med.6, 24 (2017). – reference: JungCHULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machineryMol. Biol. Cell2009201992200310.1091/mbc.e08-12-12491:CAS:528:DC%2BD1MXotVyqsL8%3D192251512663920 – reference: PorrelloERAngiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor–mediated cardiomyocyte autophagyHypertension2009531032104010.1161/HYPERTENSIONAHA.108.1284881:CAS:528:DC%2BD1MXlslChs7o%3D19433781 – reference: SaitohTLoss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β productionNature200845626426810.1038/nature073831:CAS:528:DC%2BD1cXhtlKmtLzN18849965 – reference: ChengZMst1 knockout enhances cardiomyocyte autophagic flux to alleviate angiotensin II-induced cardiac injury independent of angiotensin II receptorsJ. Mol. Cell. Cardiol.201812511712810.1016/j.yjmcc.2018.08.0281:CAS:528:DC%2BC1cXitVKhsbbL30193956 – reference: TrayhurnPBeattieJHPhysiological role of adipose tissue: white adipose tissue as an endocrine and secretory organProc. Nutr. Soc.20016032933910.1079/PNS2001941:CAS:528:DC%2BD3MXmslyhu7s%3D11681807 – reference: PotterCJPedrazaLGXuTAkt regulates growth by directly phosphorylating Tsc2Nat. Cell Biol.2002465866510.1038/ncb8401:CAS:528:DC%2BD38Xms1ahtLw%3D12172554 – reference: ZhaoWAtg5 deficiency-mediated mitophagy aggravates cardiac inflammation and injury in response to angiotensin IIFree Radic. Biol. Med.20146910811510.1016/j.freeradbiomed.2014.01.0021:CAS:528:DC%2BC2cXksVWltrg%3D24418158 – reference: LiuH-YHepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia inhibition of FoxO1-dependent expression of key autophagy genes by insulinJ. Biol. Chem.2009284314843149210.1074/jbc.M109.0339361:CAS:528:DC%2BD1MXhtlCjsrzO197589912781544 – reference: YueZJinSYangCLevineAJHeintzNBeclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressorProc. Natl Acad. Sci.2003100150771508210.1073/pnas.24362551001:CAS:528:DC%2BD3sXpvFaqtbg%3D14657337299911 – reference: Chao, Y.-M., Lai, M.-D. & Chan, J. Y. Redox-sensitive endoplasmic reticulum stress and autophagy at rostral ventrolateral medulla contribute to hypertension in spontaneously hypertensive rats. Hypertensionhttps://doi.org/10.1161/HYPERTENSIONAHA.111.00469 (2013). – reference: NakaiAThe role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stressNat. Med.20071361962410.1038/nm15741:CAS:528:DC%2BD2sXkvVOgsr4%3D17450150 – reference: HaraKThe role of PPARγ as a thrifty gene both in mice and humansBr. J. Nutr.200084S235S23910.1079/0965821973886081:CAS:528:DC%2BD3MXhtlWls70%3D11242476 – reference: MenikdiwelaKRAngiotensin II Increases endoplasmic reticulum stress in adipose tissue and adipocytesSci. Rep.2019910.1038/s41598-019-44834-81:CAS:528:DC%2BC1MXhtFCltLbE311864466560092 – reference: FordESGilesWHDietzWHPrevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination SurveyJAMA200228735635910.1001/jama.287.3.35611790215 – reference: GuilluyCThe Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressureNat. Med.20101618319010.1038/nm.20791:CAS:528:DC%2BC3cXpslGmsQ%3D%3D20098430 – reference: PyoJ-OOverexpression of Atg5 in mice activates autophagy and extends lifespanNat. Commun.2013410.1038/ncomms33001:CAS:528:DC%2BC3sXhsVOrurbF23939249 – reference: BaergaRZhangYChenP-HGoldmanSJinSVTargeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in miceAutophagy200951118113010.4161/auto.5.8.99911:CAS:528:DC%2BC3cXkvVeitrY%3D19844159 – reference: LiuYLevineBAutosis and autophagic cell death: the dark side of autophagyCell Death Differ.20152236710.1038/cdd.2014.1431:CAS:528:DC%2BC2cXhs1ChsbbM25257169 – reference: LiSSirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity.Hepatology20176693695210.1002/hep.292291:CAS:528:DC%2BC2sXhtlOhsbzE28437863 – reference: du ToitEFNabbenMLochnerAA potential role for angiotensin II in obesity induced cardiac hypertrophy and ischaemic/reperfusion injuryBasic Res. Cardiol.200510034635410.1007/s00395-005-0528-51:CAS:528:DC%2BD2MXnvFyiurs%3D15821998 – reference: EbatoCAutophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat dietCell Metab.2008832533210.1016/j.cmet.2008.08.00918840363 – reference: ChambrierCEicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor γObes. Res.20021051852510.1038/oby.2002.701:CAS:528:DC%2BD38XmsVWmsrs%3D12055328 – reference: GwinnDMAMPK phosphorylation of raptor mediates a metabolic checkpointMol. Cell20083021422610.1016/j.molcel.2008.03.0031:CAS:528:DC%2BD1cXlsFentbg%3D184399002674027 – reference: Dai, D.-F. et al. Mitochondrial oxidative stress mediates angiotensin II–induced cardiac hypertrophy and Gαq overexpression–induced heart failure. Circ. Res.https://doi.org/10.1161/CIRCRESAHA.110.232306 (2011). – reference: Moore, J. X., Chaudhary, N. & Akinyemiju, T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis.14, E24 (2017). – reference: LavoieJLSigmundCDMinireview: overview of the renin-angiotensin system—an endocrine and paracrine systemEndocrinology20031442179218310.1210/en.2003-01501:CAS:528:DC%2BD3sXktFeht7g%3D12746271 – reference: Yadav, A. et al. ANG II promotes autophagy in podocytes. Am. J. Physiol. Cell Physiol.299, C488–C496 (2010). – reference: WullschlegerSLoewithRHallMNTOR signaling in growth and metabolismCell200612447148410.1016/j.cell.2006.01.0161:CAS:528:DC%2BD28Xhslaqs74%3D16469695 – reference: Vitale, C. et al. Metabolic effect of telmisartan and losartan in hypertensive patients with metabolic syndrome. Cardiovasc. Diabetol.4, 6 (2005). – reference: Zhang, Y., Sowers, J. R. & Ren, J. Targeting autophagy in obesity: from pathophysiology to management. Nat. Rev. Endocrinol.1, 356–376 (2018). – reference: PatelSHussainTDimerization of AT2 and mas receptors in control of blood pressureCurr. Hypertens. Rep.2018201910.1007/s11906-018-0803-0 – reference: Wilson-FritchLMitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazoneMol. Cell. Biol.2003231085109410.1128/MCB.23.3.1085-1094.20031:CAS:528:DC%2BD3sXnvFGntA%3D%3D12529412140688 – reference: KomatsuMImpairment of starvation-induced and constitutive autophagy in Atg7-deficient miceJ. Cell Biol.200516942543410.1083/jcb.2004120221:CAS:528:DC%2BD2MXktFOjsLk%3D158668872171928 – reference: KliewerSAA prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiationCell19958381381910.1016/0092-8674(95)90194-91:CAS:528:DyaK2MXpvVehtb4%3D8521498 – reference: HarrisJAutophagy and cytokinesCytokine20115614014410.1016/j.cyto.2011.08.0221:CAS:528:DC%2BC3MXht1Knu7zJ21889357 – reference: KumaAThe role of autophagy during the early neonatal starvation periodNature20044321032103610.1038/nature030291:CAS:528:DC%2BD2cXhtFeisrnJ15525940 – reference: EckelRHGrundySMZimmetPZThe metabolic syndromeL2005365141514281:CAS:528:DC%2BD2MXjsVegtbg%3D – reference: KimJSImpaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytesHepatology2008471725173610.1002/hep.221871:CAS:528:DC%2BD1cXmvVChtLY%3D18311843 – reference: FujitaniYKawamoriRWatadaHThe role of autophagy in pancreatic β-cell and diabetesAutophagy2009528028210.4161/auto.5.2.76561:CAS:528:DC%2BD1MXovFeiu7o%3D19158492 – reference: RupérezCAutophagic control of cardiac steatosis through FGF21 in obesity-associated cardiomyopathyInt. J. Cardiol.201826016317010.1016/j.ijcard.2018.02.10929519677 – reference: BabaSPDeficiency of aldose reductase exacerbates early pressure overload-induced cardiac dysfunction and autophagy in miceJ. Mol. Cell. Cardiol.201811818319210.1016/j.yjmcc.2018.04.0021:CAS:528:DC%2BC1cXntlCksLk%3D296272956205513 – reference: HarrisJHopeJCKeaneJTumor necrosis factor blockers influence macrophage responses to Mycobacterium tuberculosisJ. Infect. Dis.20081981842185010.1086/5931741:CAS:528:DC%2BD1MXhtFSlurw%3D18954258 – reference: GaoQActivation of autophagy contributes to the angiotensin ii-triggered apoptosis in a dopaminergic neuronal cell lineMol. Neurobiol.2016532911291910.1007/s12035-015-9177-31:CAS:528:DC%2BC2MXntVCnu7w%3D25902863 – reference: EngeliSThe adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome?Int. J. Biochem. Cell Biol.20033580782510.1016/S1357-2725(02)00311-41:CAS:528:DC%2BD3sXisFShurk%3D12676168 – reference: de KloetADKrauseEGWoodsSCThe renin angiotensin system and the metabolic syndromePhysiol. Behav.201010052553410.1016/j.physbeh.2010.03.0181:CAS:528:DC%2BC3cXntlWqtrY%3D203815102886177 – reference: SinghRAutophagy regulates adipose mass and differentiation in miceJ. Clin. Investig.20091193329333910.1172/JCI355411:CAS:528:DC%2BD1MXivF2kt7c%3D198551322769174 – reference: Kim, J.-A., Jang, H.-J., Martinez-Lemus, L. A. & Sowers, J. R. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin stimulated endothelial nitric oxide synthase and vasodilation. Am. J. Physiol. Heart Circ. Physiol.302, E201–E208 (2012). – reference: PrieurXDifferential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese miceDiabetes20116079780910.2337/db10-07051:CAS:528:DC%2BC3MXktVKksb4%3D212663303046840 – reference: Kim, S. et al. The adipose renin-angiotensin system modulates systemic markers of insulin sensitivity and activates the intrarenal renin-angiotensin system. J. Biomed. Biotechnol6, https://doi.org/10.1155/jbb/2006/27012 (2006). – reference: MaianoCHueOMorinAJMoullecGPrevalence of overweight and obesity among children and adolescents with intellectual disabilities: a systematic review and meta‐analysisObes. Rev.20161759961110.1111/obr.124081:STN:280:DC%2BC28bovVWitQ%3D%3D27171466 – reference: CaiJAutophagy ablation in adipocytes induces insulin resistance and reveals roles for lipid peroxide and Nrf2 signaling in adipose-liver crosstalkCell Rep.20182517081717. e510.1016/j.celrep.2018.10.0401:CAS:528:DC%2BC1cXitF2qtbrK304283426802939 – reference: YangLLiPFuSCalayESHotamisligilGSDefective hepatic autophagy in obesity promotes ER stress and causes insulin resistanceCell Metab.20101146747810.1016/j.cmet.2010.04.0051:CAS:528:DC%2BC3cXnsFyitrs%3D205191192881480 – reference: YuanH-XRussellRCGuanK-LRegulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagyAutophagy201391983199510.4161/auto.260581:CAS:528:DC%2BC2cXhtFyrtbfK240132184028342 – reference: HarrisJT helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosisImmunity20072750551710.1016/j.immuni.2007.07.0221:CAS:528:DC%2BD2sXhtFWmu7fL17892853 – reference: RamalingamLThe renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistanceBiochim Biophys. Acta201610.1016/j.bbadis.2016.07.019 – reference: KimKHAutophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokineNat. Med.2013198310.1038/nm.30141:CAS:528:DC%2BC38XhslGktb3E23202295 – reference: KalupahanaNSOverproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistanceObesity201220485610.1038/oby.2011.2991:CAS:528:DC%2BC3MXhs1OltrvI21979391 – reference: KalupahanaNSMoustaid-MoussaNThe adipose tissue renin-angiotensin system and metabolic disorders: a review of molecular mechanismsCrit. Rev. Biochem. Mol. Biol.20124737939010.3109/10409238.2012.6948431:CAS:528:DC%2BC38XptFWlu70%3D22720713 – reference: ZhangMKennySJGeLXuKSchekmanRTranslocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretionElife2015410.7554/eLife.11205265233924728131 – reference: DupontNAutophagy-based unconventional secretory pathway for extracellular delivery of IL-1βEMBO J.2011304701471110.1038/emboj.2011.3981:CAS:528:DC%2BC3MXhsVejsr%2FF220680513243609 – reference: ZengMNF-κB-mediated induction of autophagy in cardiac ischemia/reperfusion injuryBiochemical biophysical Res. Commun.201343618018510.1016/j.bbrc.2013.05.0701:CAS:528:DC%2BC3sXpslKqsLY%3D – reference: PutnamKShoemakerRYiannikourisFCassisLAThe renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndromeAm. J. Physiol. Heart Circulatory Physiol.2012302H1219H123010.1152/ajpheart.00796.20111:CAS:528:DC%2BC38XkslCis7c%3D – reference: QianQS-Nitrosoglutathione reductase dysfunction contributes to obesity-associated hepatic insulin resistance via regulating autophagyDiabetes20186719320710.2337/db17-02231:CAS:528:DC%2BC1cXhs12lt7vK29074597 – reference: Singh, R. & Cuervo, A. M. Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol.2012, 282041 (2012). – reference: SadoshimaJThe role of autophagy during ischemia/reperfusionAutophagy2008440240310.4161/auto.592418367869 – reference: JungHSLoss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemiaCell Metab.2008831832410.1016/j.cmet.2008.08.0131:CAS:528:DC%2BD1cXht1Cit77O18840362 – reference: SuzukiKOhsumiYMolecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiaeFEBS Lett.20075812156216110.1016/j.febslet.2007.01.0961:CAS:528:DC%2BD2sXlt1Chs7k%3D17382324 – reference: KovsanJAltered autophagy in human adipose tissues in obesityJ. Clin. Endocrinol. Metab.201196E268E27710.1210/jc.2010-16811:CAS:528:DC%2BC3MXisVOmtrg%3D21047928 – reference: BorekMCharlapSFrishmanWEnalapril: A long‐acting angiotensin‐converting enzyme inhibitorPharmacother. J. Hum. Pharmacol. Drug Ther.1987713314510.1002/j.1875-9114.1987.tb04039.x1:CAS:528:DyaL1cXkvVGmsQ%3D%3D – reference: MizushimaNThe pleiotropic role of autophagy: from protein metabolism to bactericideCell Death Differ.2005121535154110.1038/sj.cdd.44017281:CAS:528:DC%2BD2MXhtFCjt7%2FP16247501 – reference: SutherlandJPMcKinleyBEckelRHThe metabolic syndrome and inflammationMetab. Syndr. Relat. Disord.200428210410.1089/met.2004.2.821:CAS:528:DC%2BD2cXps1ajsLk%3D18370640 – reference: Ignacio-SouzaLMDefective regulation of the ubiquitin/proteasome system in the hypothalamus of obese male miceEndocrinology20141552831284410.1210/en.2014-10901:CAS:528:DC%2BC2cXhs1egsrbO24892821 – reference: SánchezJGRiosMSPérezCFLaaksoMLarradMMEffect of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma-2 gene on adiposity, insulin sensitivity and lipid profile in the Spanish populationEur. J. Endocrinol.200214749550110.1530/eje.0.1470495 – reference: MaXMBlenisJMolecular mechanisms of mTOR-mediated translational controlNat. Rev. Mol. Cell Biol.20091030731810.1038/nrm26721:CAS:528:DC%2BD1MXjvV2ltbs%3D19339977 – reference: DinizGPCarneiro-RamosMSBarreto-ChavesMLMAngiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3β/mTOR signaling pathwayBasic Res. Cardiol.200910410.1007/s00395-009-0043-11:CAS:528:DC%2BD1MXht1SktLrJ19588183 – reference: ZeydaMHuman adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator productionInt. J. Obes.2007311420142810.1038/sj.ijo.08036321:CAS:528:DC%2BD2sXpsF2qurs%3D – reference: ZhongZSanchez-LopezEKarinMAutophagy, inflammation, and immunity: a troika governing cancer and its treatmentCell201616628829810.1016/j.cell.2016.05.0511:CAS:528:DC%2BC28XhtFynu7nN274198694947210 – reference: SinghRAutophagy regulates lipid metabolismNature20094581131113510.1038/nature079761:CAS:528:DC%2BD1MXjvV2ks7s%3D193399672676208 – reference: ZhangYAdipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesisProc. Natl. Acad. Sci.2009106198601986510.1073/pnas.0906048106199105292785257 – reference: YamoriYInternational cooperative study on the relationship between dietary factors and blood pressure: a report from the Cardiovascular Diseases and Alimentary Comparison (CARDIAC) StudyJ. Cardiovascular Pharmacol.199016S434710.1097/00005344-199000168-00018 – reference: JiangTAngiotensin-(1–7) inhibits autophagy in the brain of spontaneously hypertensive ratsPharmacol. Res.201371616810.1016/j.phrs.2013.03.0011:CAS:528:DC%2BC3sXls1Cgsbk%3D23499735 – reference: CodognoPMeijerAJAutophagy: a potential link between obesity and insulin resistanceCell Metab.20101144945110.1016/j.cmet.2010.05.0061:CAS:528:DC%2BC3cXnsFyitrw%3D20519116 – reference: AlbertiKHarmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of ObesityCirculation20091201640164510.1161/CIRCULATIONAHA.109.1926441:CAS:528:DC%2BD1MXht1OrtrrK19805654 – reference: SoussiHClémentKDugailIAdipose tissue autophagy status in obesity: Expression and flux—two faces of the pictureAutophagy20161258858910.1080/15548627.2015.11066671:CAS:528:DC%2BC28Xmt1aqt7w%3D26565777 – reference: KimJHuangW-PKlionskyDJMembrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complexJ. Cell Biol.2001152516410.1083/jcb.152.1.511:CAS:528:DC%2BD3MXjslyisA%3D%3D111499202193654 – reference: ÖstAAttenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetesMol. Med.20101623524610.2119/molmed.2010.000231:CAS:528:DC%2BC3cXpsFejtbg%3D203868662896460 – reference: KalupahanaNSMoustaid-MoussaNThe renin-angiotensin system: a link between obesity, inflammation and insulin resistanceObes. Rev.20121313614910.1111/j.1467-789X.2011.00942.x1:CAS:528:DC%2BC38Xlt1Gksbw%3D22034852 – reference: QianQHepatic lysosomal iNOS activity impairs autophagy in obesityCell. Mol. Gastroenterol. Hepatol.201989511010.1016/j.jcmgh.2019.03.005309265816522853 – reference: HungWWBlockade of the renin-angiotensin system ameliorates apelin production in 3T3-L1 AdipocytesCardiovasc. Drugs Ther.20112531210.1007/s10557-010-6274-41:CAS:528:DC%2BC3MXktF2itLc%3D21161354 – reference: MorrellNWCellular and molecular basis of pulmonary arterial hypertensionJ. Am. Coll. Cardiol.200954S20S3110.1016/j.jacc.2009.04.0181:CAS:528:DC%2BC3cXkvVOks7g%3D195558552790324 – reference: WangYDifferential effects of Mas receptor deficiency on cardiac function and blood pressure in obese male and female miceAm. J. Physiol. Heart Circ. Physiol.2016312H459H46810.1152/ajpheart.00498.2016279866595402015 – reference: KwantenWJMartinetWMichielsenPPFrancqueSMRole of autophagy in the pathophysiology of nonalcoholic fatty liver disease: a controversial issueWorld J. Gastroenterol.2014207325733810.3748/wjg.v20.i23.73251:CAS:528:DC%2BC2cXhs1ehtr3O249666034064078 – reference: SaitoTAutophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosisAutophagy20161257958710.1080/15548627.2016.11453261:CAS:528:DC%2BC28Xmt1aqtL0%3D268906104836017 – reference: Meng, Q. & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via IKK-beta/NF-kappaB pathway. J. Biol. Chem.https://doi.org/10.1074/jbc.M111.254417, 32324-32332 (2011). – reference: MeiYThompsonMDCohenRATongXAutophagy and oxidative stress in cardiovascular diseasesBiochimica et. Biophysica Acta (BBA)-Mol. Basis Dis.2015185224325110.1016/j.bbadis.2014.05.0051:CAS:528:DC%2BC2cXotlylsrY%3D – reference: PfeiferUInhibition by insulin of the formation of autophagic vacuoles in rat liver. A morphometric approach to the kinetics of intracellular degradation by autophagyJ. Cell Biol.19787815216710.1083/jcb.78.1.1521:CAS:528:DyaE1cXktlOhsr0%3D670291 – reference: QuanWAutophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in miceDiabetologia20125539240310.1007/s00125-011-2350-y1:CAS:528:DC%2BC3MXhs1yntbbI22075916 – reference: SciarrettaSMaejimaYZablockiDSadoshimaJThe role of autophagy in the heartAnnu. Rev. Physiol.20188012610.1146/annurev-physiol-021317-1214271:CAS:528:DC%2BC2sXhslajtL3E29068766 – reference: Moulis, M. & Vindis, C. Autophagy in metabolic age-related human diseases. Cells7, E149 (2018). – reference: XiongXRibosomal protein S27-like regulates autophagy via the β-TrCP-DEPTOR-mTORC1 axisCell Death Dis.20189113110.1038/s41419-018-1168-71:CAS:528:DC%2BC1cXit1yntL%2FE304252366234217 – reference: ScottRCSchuldinerONeufeldTPRole and regulation of starvation-induced autophagy in the Drosophila fat bodyDev. Cell2004716717810.1016/j.devcel.2004.07.0091:CAS:528:DC%2BD2cXnsVKntr0%3D15296714 – reference: AbdellatifMSedejSCarmona-GutierrezDMadeoFKroemerGAutophagy in cardiovascular agingCirc. Res.201812380382410.1161/CIRCRESAHA.118.3122081:CAS:528:DC%2BC1cXhslSgu7bE30355077 – reference: OgiharaTAngiotensin II–induced insulin resistance is associated with enhanced insulin signalingHypertension20024087287910.1161/01.HYP.0000040262.48405.A81:CAS:528:DC%2BD38XovFKnsLY%3D12468572 – reference: MartinsRLithgowGJLinkWLong live FOXO: unraveling the role of FOXO proteins in aging and longevityAging Cell20161519620710.1111/acel.124271:CAS:528:DC%2BC2MXhvFKgs7vJ26643314 – reference: RothermelBAHillJAMyocyte autophagy in heart disease: friend or foe?Autophagy2007363263410.4161/auto.49131:CAS:528:DC%2BD2sXhtlOhsL7N17786025 – reference: MizushimaNAutophagy: process and functionGenes Dev.2007212861287310.1101/gad.15992071:CAS:528:DC%2BD2sXhtlGmsrjP18006683 – reference: XueHA novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathwayAutophagy2016121129115210.1080/15548627.2016.11784461:CAS:528:DC%2BC28Xps1yhs7g%3D271631614990999 – reference: RajagopalanSAngiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor toneJ. Clin. Investig.1996971916192310.1172/JCI1186231:CAS:528:DyaK28XisFegsLw%3D8621776507261 – reference: ShenQBiXLingLDingW1, 25-Dihydroxyvitamin D3 attenuates angiotensin II-induced renal injury by inhibiting mitochondrial dysfunction and autophagyCell. Physiol. Biochem.2018511751176210.1159/0004956781:CAS:528:DC%2BC1cXisFWrtLzN30504714 – reference: TontonozPHuESpiegelmanBMStimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factorCell1994791147115610.1016/0092-8674(94)90006-X1:STN:280:DyaK2M%2FpsVaqsg%3D%3D8001151 – reference: LinLMas receptor mediates cardioprotection of angiotensin‐(1‐7) against Angiotensin II‐induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stressJ. Cell. Mol. Med.201620485710.1111/jcmm.126871:CAS:528:DC%2BC28XjtVGltg%3D%3D26515045 – reference: FinckenbergPCaloric restriction ameliorates angiotensin II–induced mitochondrial remodeling and cardiac hypertrophyHypertension201259768410.1161/HYPERTENSIONAHA.111.1794571:CAS:528:DC%2BC3MXhs1WksrrF22068868 – reference: SuFSimvastatin protects heart from pressure overload injury by inhibiting excessive autophagyInt. J. Med. Sci.2018151508151610.7150/ijms.28106304431726216062 – reference: RosenEDPPARγ is required for the differentiation of adipose tissue in vivo and in vitroMol. Cell1999461161710.1016/S1097-2765(00)80211-71:CAS:528:DyaK1MXntFCgsb4%3D10549292 – reference: MeiSDifferential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytesJ. Pharmacol. Exp. Ther.201133948749810.1124/jpet.111.1843411:CAS:528:DC%2BC3MXhsFehtb3L218568593199993 – reference: PremaratnaSAngiotensin-converting enzyme inhibition reverses diet-induced obesity, insulin resistance and inflammation in C57BL/6J miceInt. J. Obes.20123623324310.1038/ijo.2011.951:CAS:528:DC%2BC38XisVGhtbg%3D – reference: NodaTOhsumiYTor, a phosphatidylinositol kinase homologue, controls autophagy in yeastJ. Biol. Chem.19982733963396610.1074/jbc.273.7.39631:CAS:528:DyaK1cXht1ahsr8%3D9461583 – reference: HarrisJAutophagy controls IL-1β secretion by targeting pro-IL-1β for degradationJ. Biol. Chem.20112869587959710.1074/jbc.M110.2029111:CAS:528:DC%2BC3MXjtFOit7k%3D212282743058966 – reference: LibbyPInflammation in atherosclerosisNature200242086887410.1038/nature013231:CAS:528:DC%2BD38XpsFygtb8%3D12490960 – reference: ChenFAutophagy protects against senescence and apoptosis via the RAS-mitochondria in high-glucose-induced endothelial cellsCell. Physiol. Biochem.2014331058107410.1159/0003586761:CAS:528:DC%2BC2cXpsFCntro%3D24732710 – reference: CastetsPRüeggMAMTORC1 determines autophagy through ULK1 regulation in skeletal muscleAutophagy201391435143710.4161/auto.257221:CAS:528:DC%2BC2cXktF2rurs%3D23896646 – reference: KimYCGuanK-LmTOR: a pharmacologic target for autophagy regulationJ. Clin. Investig.2015125253210.1172/JCI73939256545474382265 – reference: ChenDEmodin attenuates TNF-alpha-induced apoptosis and autophagy in mouse C2C12 myoblasts though the phosphorylation of AktInt. Immunopharmacol.20163410711310.1016/j.intimp.2016.02.0231:CAS:528:DC%2BC28XjsFeqtrs%3D26943728 – reference: WooYJungYJAngiotensin II receptor blockers induce autophagy in prostate cancer cellsOncol. Lett.2017133579358510.3892/ol.2017.58721:CAS:528:DC%2BC1cXhsFWkurbF285295825431597 – reference: HadiNRAbdulzahraMSAl-HuseiniLMAl-AubaidyHAA comparison study of the echocardiographic changes in hypertensive patients treated with telmisartan vs. enalaprilInt. J. Cardiol.201723026927410.1016/j.ijcard.2016.12.12728041700 – reference: RocchiAHeCEmerging roles of autophagy in metabolism and metabolic disordersFront. Biol.20151015416410.1007/s11515-015-1354-21:CAS:528:DC%2BC2MXls1amsbY%3D – reference: Grundy, S. M. Metabolic syndrome update. Trends in cardiovascular medicine 26, 364–373 (2016). – reference: Jun, J. Y. et al. Peripheral Melanocortin 3 Receptor (MC3R) Regulates Hepatic Autophagy in Obesity. 67, (Supplement 1): 1979-P (American Diabetes Association, 2018). https://doi.org/10.2337/db18-1979-P. – reference: NuñezCDefective regulation of adipose tissue autophagy in obesityInt. J. Obes.2013371473148010.1038/ijo.2013.271:CAS:528:DC%2BC3sXhslynsr3J – reference: TzameliIRegulated production of a peroxisome proliferator-activated receptor-γ ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytesJ. Biol. Chem.2004279360933610210.1074/jbc.M4053462001:CAS:528:DC%2BD2cXmsl2htbk%3D15190061 – reference: KamadaYTor-mediated induction of autophagy via an Apg1 protein kinase complexJ. Cell Biol.20001501507151310.1083/jcb.150.6.15071:CAS:528:DC%2BD3cXmslGlsr4%3D109954542150712 – reference: LongLChloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradationnovelty and significanceCirc. Res.20131121159117010.1161/CIRCRESAHA.111.3004831:CAS:528:DC%2BC3sXlslans7Y%3D23446737 – reference: MaoNGinsenoside Rg1 inhibits angiotensin II-induced podocyte autophagy via AMPK/mTOR/PI3K pathwayCell Biol. Int.20164091792510.1002/cbin.106341:CAS:528:DC%2BC28XhtFCkurbF27296076 – reference: ZhangCAutophagy is involved in adipogenic differentiation by repressesing proteasome-dependent PPARγ2 degradationAm. J. Physiol. Endocrinol. Metab.2013305E530E53910.1152/ajpendo.00640.20121:CAS:528:DC%2BC3sXhsVSqurvM238008835504416 – reference: Wang, H.-J., Chen, S.-F. & Lo, W.-Y. Identification of cofilin-1 induces G0/G1 arrest and autophagy in angiotensin-(1-7)-treated human aortic endothelial cells from iTRAQ quantitative proteomics. Sci. Rep.6, 1–13 (2016). – reference: CrişanTOInflammasome-independent modulation of cytokine response by autophagy in human cellsPLoS ONE2011610.1371/journal.pone.00186661:CAS:528:DC%2BC3MXltVWlt7Y%3D214909343072416 – reference: ReavenGMInsulin resistance, cardiovascular disease, and the metabolic syndromeDiabetes Care2004271011101210.2337/diacare.27.4.101115047666 – reference: YousefiSCalpain-mediated cleavage of Atg5 switches autophagy to apoptosisNat. Cell Biol.200681124113210.1038/ncb14821:CAS:528:DC%2BD28XhtVWqsLfP16998475 – reference: Matsuzawa-NagataNIncreased oxidative stress precedes the onset of high-fat diet–induced insulin resistance and obesityMetabolism2008571071107710.1016/j.metabol.2008.03.0101:CAS:528:DC%2BD1cXosleltLk%3D18640384 – reference: MatsuiYDistinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagyCirc. Res.200710091492210.1161/01.RES.0000261924.76669.361:CAS:528:DC%2BD2sXjtlWmsbo%3D17332429 – reference: Castoldi, A., Naffah de Souza, C., Câmara, N. O. S. & Moraes-Vieira, P. M. The macrophage switch in obesity development. Front. Immunol.6, 637 (2016). – reference: Whaley-ConnellAAngiotensin II activation of mTOR results in tubulointerstitial fibrosis through loss of N-cadherinAm. J. Nephrol.20113411512510.1159/000329327217201563130895 – reference: CuervoAMAutophagy: in sickness and in healthTrends cell Biol.200414707710.1016/j.tcb.2003.12.0021:CAS:528:DC%2BD2cXhtVOrtL4%3D15102438 – reference: Lapaquette, P., Guzzo, J., Bretillon, L. & Bringer, M.-A. Cellular and molecular connections between autophagy and inflammation. Mediators Inflamm.2015, 1–13 (2015). – reference: ShibataMThe MAP1-LC3 conjugation system is involved in lipid droplet formationBiochem. Biophys. Res. Commun.200938241942310.1016/j.bbrc.2009.03.0391:CAS:528:DC%2BD1MXkt1Sks7g%3D19285958 – reference: Djavaheri-MergnyMNF-κB activation represses tumor necrosis factor-α-induced autophagyJ. Biol. Chem.2006281303733038210.1074/jbc.M6020972001:CAS:528:DC%2BD28XhtVCrsLzN16857678 – reference: NovikoffABNovikoffPMRosenOMRubinCSOrganelle relationships in cultured 3T3-L1 preadipocytesJ. Cell Biol.19808718019610.1083/jcb.87.1.1801:STN:280:DyaL3M%2Fis1Cgsg%3D%3D7191426 – reference: DingYChoiMERegulation of autophagy by TGF-beta: emerging role in kidney fibrosisSemin. Nephrol.201434627110.1016/j.semnephrol.2013.11.0091:CAS:528:DC%2BC2cXhvVait74%3D24485031 – reference: de Luxán‐DelgadoBMelatonin reduces endoplasmic reticulum stress and autophagy in liver of leptin‐deficient miceJ. Pineal Res.20166110812310.1111/jpi.123331:CAS:528:DC%2BC28XpsFKqurw%3D27090356 – reference: KosackaJAutophagy in adipose tissue of patients with obesity and type 2 diabetesMol. Cell. Endocrinol.2015409213210.1016/j.mce.2015.03.0151:CAS:528:DC%2BC2MXlslCluro%3D25818883 – reference: NamkoongSChoC-SSempleILeeJHAutophagy dysregulation and obesity-associated pathologiesMol. Cells2018413101:CAS:528:DC%2BC1cXhvFGltb3M293706915792710 – reference: NakahiraKAutophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasomeNat. Immunol.20111222223010.1038/ni.19801:CAS:528:DC%2BC3cXhsFGgtrzE21151103 – reference: LeMieuxMJInactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activityObesity20162435936710.1002/oby.213521:CAS:528:DC%2BC28XhvV2ltr0%3D26704350 – reference: TravassosLHNod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entryNat. Immunol.201011556210.1038/ni.18231:CAS:528:DC%2BD1MXhtlOrur3L19898471 – reference: InokiKLiYZhuTWuJGuanK-LTSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signallingNat. Cell Biol.2002464865710.1038/ncb8391:CAS:528:DC%2BD38Xms1ahtL4%3D12172553 – reference: PorrelloERDelbridgeLMCardiomyocyte autophagy is regulated by angiotensin II type 1 and type 2 receptorsAutophagy200951215121610.4161/auto.5.8.1015319955853 – reference: ZhouMLong non-coding RNA H19 protects acute myocardial infarction through activating autophagy in miceEur. Rev. Med. Pharmacol. Sci.201822564756511:STN:280:DC%2BB3czgt1KhtA%3D%3D30229841 – reference: KlionskyDJEmrSDAutophagy as a regulated pathway of cellular degradationScience20002901717172110.1126/science.290.5497.17171:CAS:528:DC%2BD3cXovVOitbw%3D110994042732363 – reference: Hamacher-BradyABradyNRGottliebRAEnhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytesJ. Biol. Chem.2006281297762978710.1074/jbc.M6037832001:CAS:528:DC%2BD28XhtVahsb%2FE16882669 – reference: ParlakpinarHOzerMKAcetAEffects of captopril and angiotensin II receptor blockers (AT1, AT2) on myocardial ischemia–reperfusion induced infarct sizeCytokine20115668869410.1016/j.cyto.2011.09.0021:CAS:528:DC%2BC3MXhsFSktL7M21975128 – reference: KimJKunduMViolletBGuanK-LAMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1Nat. Cell Biol.20111313214110.1038/ncb21521:CAS:528:DC%2BC3MXhtlamtb0%3D212583673987946 – volume: 22 start-page: 367 year: 2015 ident: 2275_CR131 publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.143 – volume: 456 start-page: 264 year: 2008 ident: 2275_CR149 publication-title: Nature doi: 10.1038/nature07383 – volume: 57 start-page: 1071 year: 2008 ident: 2275_CR85 publication-title: Metabolism doi: 10.1016/j.metabol.2008.03.010 – volume: 54 start-page: S20 year: 2009 ident: 2275_CR97 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2009.04.018 – volume: 12 start-page: 588 year: 2016 ident: 2275_CR28 publication-title: Autophagy doi: 10.1080/15548627.2015.1106667 – volume: 312 start-page: H459 year: 2016 ident: 2275_CR111 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00498.2016 – volume: 97 start-page: 1916 year: 1996 ident: 2275_CR104 publication-title: J. Clin. Investig. doi: 10.1172/JCI118623 – year: 2016 ident: 2275_CR109 publication-title: Biochim Biophys. Acta doi: 10.1016/j.bbadis.2016.07.019 – volume: 2 start-page: 82 year: 2004 ident: 2275_CR144 publication-title: Metab. Syndr. Relat. Disord. doi: 10.1089/met.2004.2.82 – volume: 100 start-page: 914 year: 2007 ident: 2275_CR92 publication-title: Circ. Res. doi: 10.1161/01.RES.0000261924.76669.36 – volume: 16 start-page: S43 year: 1990 ident: 2275_CR103 publication-title: J. Cardiovascular Pharmacol. doi: 10.1097/00005344-199000168-00018 – volume: 34 start-page: 115 year: 2011 ident: 2275_CR139 publication-title: Am. J. Nephrol. doi: 10.1159/000329327 – volume: 8 start-page: 95 year: 2019 ident: 2275_CR162 publication-title: Cell. Mol. Gastroenterol. Hepatol. doi: 10.1016/j.jcmgh.2019.03.005 – volume: 13 start-page: 619 year: 2007 ident: 2275_CR87 publication-title: Nat. Med. doi: 10.1038/nm1574 – volume: 16 start-page: 183 year: 2010 ident: 2275_CR101 publication-title: Nat. Med. doi: 10.1038/nm.2079 – volume: 155 start-page: 2831 year: 2014 ident: 2275_CR44 publication-title: Endocrinology doi: 10.1210/en.2014-1090 – volume: 84 start-page: S235 year: 2000 ident: 2275_CR50 publication-title: Br. J. Nutr. doi: 10.1079/096582197388608 – volume: 17 start-page: 599 year: 2016 ident: 2275_CR2 publication-title: Obes. Rev. doi: 10.1111/obr.12408 – volume: 12 start-page: 1129 year: 2016 ident: 2275_CR159 publication-title: Autophagy doi: 10.1080/15548627.2016.1178446 – volume: 169 start-page: 425 year: 2005 ident: 2275_CR56 publication-title: J. Cell Biol. doi: 10.1083/jcb.200412022 – volume: 20 start-page: 1 year: 2018 ident: 2275_CR110 publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-018-0803-0 – volume: 365 start-page: 1415 year: 2005 ident: 2275_CR8 publication-title: L – volume: 152 start-page: 51 year: 2001 ident: 2275_CR25 publication-title: J. Cell Biol. doi: 10.1083/jcb.152.1.51 – volume: 35 start-page: 807 year: 2003 ident: 2275_CR13 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(02)00311-4 – volume: 10 start-page: 154 year: 2015 ident: 2275_CR11 publication-title: Front. Biol. doi: 10.1007/s11515-015-1354-2 – volume: 147 start-page: 495 year: 2002 ident: 2275_CR49 publication-title: Eur. J. Endocrinol. doi: 10.1530/eje.0.1470495 – volume: 16 start-page: 31 year: 2009 ident: 2275_CR90 publication-title: Cell Death Differ. doi: 10.1038/cdd.2008.163 – volume: 40 start-page: 872 year: 2002 ident: 2275_CR12 publication-title: Hypertension doi: 10.1161/01.HYP.0000040262.48405.A8 – ident: 2275_CR5 doi: 10.1016/j.tcm.2015.10.004 – volume: 30 start-page: 4701 year: 2011 ident: 2275_CR152 publication-title: EMBO J. doi: 10.1038/emboj.2011.398 – volume: 260 start-page: 163 year: 2018 ident: 2275_CR98 publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2018.02.109 – volume: 124 start-page: 471 year: 2006 ident: 2275_CR69 publication-title: Cell doi: 10.1016/j.cell.2006.01.016 – volume: 47 start-page: 1725 year: 2008 ident: 2275_CR58 publication-title: Hepatology doi: 10.1002/hep.22187 – ident: 2275_CR100 doi: 10.1161/HYPERTENSIONAHA.111.00469 – volume: 281 start-page: 30373 year: 2006 ident: 2275_CR21 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M602097200 – ident: 2275_CR156 doi: 10.3389/fimmu.2015.00637 – volume: 83 start-page: 813 year: 1995 ident: 2275_CR52 publication-title: Cell doi: 10.1016/0092-8674(95)90194-9 – volume: 11 start-page: 449 year: 2010 ident: 2275_CR65 publication-title: Cell Metab. doi: 10.1016/j.cmet.2010.05.006 – volume: 120 start-page: 1640 year: 2009 ident: 2275_CR6 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.192644 – volume: 24 start-page: 359 year: 2016 ident: 2275_CR117 publication-title: Obesity doi: 10.1002/oby.21352 – volume: 21 start-page: 2861 year: 2007 ident: 2275_CR17 publication-title: Genes Dev. doi: 10.1101/gad.1599207 – volume: 118 start-page: 183 year: 2018 ident: 2275_CR93 publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2018.04.002 – volume: 47 start-page: 379 year: 2012 ident: 2275_CR107 publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.3109/10409238.2012.694843 – volume: 100 start-page: 346 year: 2005 ident: 2275_CR130 publication-title: Basic Res. Cardiol. doi: 10.1007/s00395-005-0528-5 – volume: 7 start-page: 133 year: 1987 ident: 2275_CR166 publication-title: Pharmacother. J. Hum. Pharmacol. Drug Ther. doi: 10.1002/j.1875-9114.1987.tb04039.x – volume: 5 start-page: 1215 year: 2009 ident: 2275_CR133 publication-title: Autophagy doi: 10.4161/auto.5.8.10153 – volume: 409 start-page: 21 year: 2015 ident: 2275_CR38 publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2015.03.015 – volume: 106 start-page: 19860 year: 2009 ident: 2275_CR36 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0906048106 – volume: 71 start-page: 61 year: 2013 ident: 2275_CR122 publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2013.03.001 – volume: 104 year: 2009 ident: 2275_CR138 publication-title: Basic Res. Cardiol. doi: 10.1007/s00395-009-0043-1 – ident: 2275_CR1 doi: 10.5888/pcd14.160287 – volume: 11 start-page: 467 year: 2010 ident: 2275_CR57 publication-title: Cell Metab. doi: 10.1016/j.cmet.2010.04.005 – volume: 22 start-page: 5647 year: 2018 ident: 2275_CR89 publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 40 start-page: 917 year: 2016 ident: 2275_CR120 publication-title: Cell Biol. Int. doi: 10.1002/cbin.10634 – volume: 23 start-page: 1085 year: 2003 ident: 2275_CR33 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.3.1085-1094.2003 – volume: 9 year: 2019 ident: 2275_CR114 publication-title: Sci. Rep. doi: 10.1038/s41598-019-44834-8 – volume: 60 start-page: 329 year: 2001 ident: 2275_CR141 publication-title: Proc. Nutr. Soc. doi: 10.1079/PNS200194 – volume: 144 start-page: 2179 year: 2003 ident: 2275_CR106 publication-title: Endocrinology doi: 10.1210/en.2003-0150 – volume: 25 start-page: 1708 year: 2018 ident: 2275_CR35 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.10.040 – volume: 4 year: 2015 ident: 2275_CR151 publication-title: Elife doi: 10.7554/eLife.11205 – volume: 8 start-page: 325 year: 2008 ident: 2275_CR79 publication-title: Cell Metab. doi: 10.1016/j.cmet.2008.08.009 – volume: 3 start-page: 632 year: 2007 ident: 2275_CR95 publication-title: Autophagy doi: 10.4161/auto.4913 – volume: 4 start-page: 611 year: 1999 ident: 2275_CR48 publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80211-7 – volume: 5 start-page: 1118 year: 2009 ident: 2275_CR9 publication-title: Autophagy doi: 10.4161/auto.5.8.9991 – volume: 4 start-page: 402 year: 2008 ident: 2275_CR94 publication-title: Autophagy doi: 10.4161/auto.5924 – volume: 302 start-page: H1219 year: 2012 ident: 2275_CR14 publication-title: Am. J. Physiol. Heart Circulatory Physiol. doi: 10.1152/ajpheart.00796.2011 – ident: 2275_CR136 doi: 10.1152/ajpcell.00424.2009 – volume: 8 start-page: 318 year: 2008 ident: 2275_CR80 publication-title: Cell Metab. doi: 10.1016/j.cmet.2008.08.013 – volume: 55 start-page: 392 year: 2012 ident: 2275_CR81 publication-title: Diabetologia doi: 10.1007/s00125-011-2350-y – volume: 51 start-page: 1751 year: 2018 ident: 2275_CR123 publication-title: Cell. Physiol. Biochem. doi: 10.1159/000495678 – volume: 96 start-page: E268 year: 2011 ident: 2275_CR27 publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2010-1681 – volume: 78 start-page: 152 year: 1978 ident: 2275_CR67 publication-title: J. Cell Biol. doi: 10.1083/jcb.78.1.152 – volume: 13 start-page: 132 year: 2011 ident: 2275_CR77 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2152 – volume: 13 start-page: 3579 year: 2017 ident: 2275_CR168 publication-title: Oncol. Lett. doi: 10.3892/ol.2017.5872 – volume: 7 start-page: 167 year: 2004 ident: 2275_CR72 publication-title: Dev. Cell doi: 10.1016/j.devcel.2004.07.009 – volume: 420 start-page: 868 year: 2002 ident: 2275_CR143 publication-title: Nature doi: 10.1038/nature01323 – volume: 166 start-page: 288 year: 2016 ident: 2275_CR150 publication-title: Cell doi: 10.1016/j.cell.2016.05.051 – volume: 8 start-page: 1124 year: 2006 ident: 2275_CR59 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1482 – volume: 4 start-page: 648 year: 2002 ident: 2275_CR70 publication-title: Nat. Cell Biol. doi: 10.1038/ncb839 – volume: 53 start-page: 1032 year: 2009 ident: 2275_CR125 publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.108.128488 – volume: 56 start-page: 688 year: 2011 ident: 2275_CR129 publication-title: Cytokine doi: 10.1016/j.cyto.2011.09.002 – volume: 56 start-page: 140 year: 2011 ident: 2275_CR145 publication-title: Cytokine doi: 10.1016/j.cyto.2011.08.022 – volume: 61 start-page: 108 year: 2016 ident: 2275_CR66 publication-title: J. Pineal Res. doi: 10.1111/jpi.12333 – volume: 14 start-page: 70 year: 2004 ident: 2275_CR18 publication-title: Trends cell Biol. doi: 10.1016/j.tcb.2003.12.002 – volume: 1 start-page: 151 year: 2009 ident: 2275_CR83 publication-title: Islets doi: 10.4161/isl.1.2.9057 – volume: 5 start-page: 280 year: 2009 ident: 2275_CR84 publication-title: Autophagy doi: 10.4161/auto.5.2.7656 – volume: 37 start-page: 1473 year: 2013 ident: 2275_CR40 publication-title: Int. J. Obes. doi: 10.1038/ijo.2013.27 – volume: 125 start-page: 25 year: 2015 ident: 2275_CR74 publication-title: J. Clin. Investig. doi: 10.1172/JCI73939 – volume: 382 start-page: 419 year: 2009 ident: 2275_CR163 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2009.03.039 – ident: 2275_CR137 doi: 10.1152/ajpendo.00497.2011 – volume: 1852 start-page: 243 year: 2015 ident: 2275_CR96 publication-title: Biochimica et. Biophysica Acta (BBA)-Mol. Basis Dis. doi: 10.1016/j.bbadis.2014.05.005 – volume: 9 start-page: 1983 year: 2013 ident: 2275_CR78 publication-title: Autophagy doi: 10.4161/auto.26058 – ident: 2275_CR113 doi: 10.1186/1475-2840-4-6 – volume: 9 start-page: 1131 year: 2018 ident: 2275_CR132 publication-title: Cell Death Dis. doi: 10.1038/s41419-018-1168-7 – ident: 2275_CR43 doi: 10.1074/jbc.M111.254417 – volume: 105 start-page: 6702 year: 2008 ident: 2275_CR102 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0802128105 – volume: 16 start-page: 235 year: 2010 ident: 2275_CR39 publication-title: Mol. Med. doi: 10.2119/molmed.2010.00023 – volume: 31 start-page: 1420 year: 2007 ident: 2275_CR142 publication-title: Int. J. Obes. doi: 10.1038/sj.ijo.0803632 – volume: 53 start-page: 2911 year: 2016 ident: 2275_CR134 publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9177-3 – volume: 290 start-page: 1717 year: 2000 ident: 2275_CR19 publication-title: Science doi: 10.1126/science.290.5497.1717 – ident: 2275_CR116 doi: 10.1155/jbb/2006/27012 – volume: 25 start-page: 3 year: 2011 ident: 2275_CR105 publication-title: Cardiovasc. Drugs Ther. doi: 10.1007/s10557-010-6274-4 – volume: 30 start-page: 214 year: 2008 ident: 2275_CR76 publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.03.003 – volume: 6 year: 2011 ident: 2275_CR146 publication-title: PLoS ONE doi: 10.1371/journal.pone.0018666 – volume: 286 start-page: 9587 year: 2011 ident: 2275_CR147 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.202911 – volume: 281 start-page: 29776 year: 2006 ident: 2275_CR32 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M603783200 – volume: 1861 start-page: 269 year: 2016 ident: 2275_CR53 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2016.01.006 – volume: 20 start-page: 1992 year: 2009 ident: 2275_CR75 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e08-12-1249 – volume: 150 start-page: 1507 year: 2000 ident: 2275_CR68 publication-title: J. Cell Biol. doi: 10.1083/jcb.150.6.1507 – volume: 80 start-page: 1 year: 2018 ident: 2275_CR86 publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021317-121427 – volume: 458 start-page: 1131 year: 2009 ident: 2275_CR55 publication-title: Nature doi: 10.1038/nature07976 – volume: 59 start-page: 76 year: 2012 ident: 2275_CR126 publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.111.179457 – volume: 12 start-page: 579 year: 2016 ident: 2275_CR88 publication-title: Autophagy doi: 10.1080/15548627.2016.1145326 – volume: 20 start-page: 7325 year: 2014 ident: 2275_CR31 publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v20.i23.7325 – volume: 34 start-page: 62 year: 2014 ident: 2275_CR158 publication-title: Semin. Nephrol. doi: 10.1016/j.semnephrol.2013.11.009 – volume: 13 start-page: 136 year: 2012 ident: 2275_CR108 publication-title: Obes. Rev. doi: 10.1111/j.1467-789X.2011.00942.x – volume: 230 start-page: 269 year: 2017 ident: 2275_CR167 publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2016.12.127 – volume: 125 start-page: 117 year: 2018 ident: 2275_CR124 publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2018.08.028 – volume: 112 start-page: 1159 year: 2013 ident: 2275_CR99 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.111.300483 – volume: 581 start-page: 2156 year: 2007 ident: 2275_CR24 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.01.096 – volume: 34 start-page: 107 year: 2016 ident: 2275_CR157 publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2016.02.023 – volume: 198 start-page: 1842 year: 2008 ident: 2275_CR153 publication-title: J. Infect. Dis. doi: 10.1086/593174 – volume: 9 start-page: 1435 year: 2013 ident: 2275_CR140 publication-title: Autophagy doi: 10.4161/auto.25722 – volume: 4 start-page: 658 year: 2002 ident: 2275_CR71 publication-title: Nat. Cell Biol. doi: 10.1038/ncb840 – volume: 11 start-page: 55 year: 2010 ident: 2275_CR155 publication-title: Nat. Immunol. doi: 10.1038/ni.1823 – ident: 2275_CR41 doi: 10.1155/2012/282041 – volume: 20 start-page: 48 year: 2016 ident: 2275_CR119 publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.12687 – volume: 4 year: 2013 ident: 2275_CR164 publication-title: Nat. Commun. doi: 10.1038/ncomms3300 – volume: 279 start-page: 36093 year: 2004 ident: 2275_CR46 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M405346200 – volume: 284 start-page: 31484 year: 2009 ident: 2275_CR23 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.033936 – ident: 2275_CR42 doi: 10.1038/s41574-018-0009-1 – volume: 36 start-page: 233 year: 2012 ident: 2275_CR115 publication-title: Int. J. Obes. doi: 10.1038/ijo.2011.95 – volume: 67 start-page: 193 year: 2018 ident: 2275_CR54 publication-title: Diabetes doi: 10.2337/db17-0223 – volume: 328 start-page: 907 year: 1993 ident: 2275_CR112 publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199304013281302 – volume: 69 start-page: 108 year: 2014 ident: 2275_CR127 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.01.002 – volume: 60 start-page: 797 year: 2011 ident: 2275_CR4 publication-title: Diabetes doi: 10.2337/db10-0705 – volume: 79 start-page: 1147 year: 1994 ident: 2275_CR47 publication-title: Cell doi: 10.1016/0092-8674(94)90006-X – volume: 436 start-page: 180 year: 2013 ident: 2275_CR160 publication-title: Biochemical biophysical Res. Commun. doi: 10.1016/j.bbrc.2013.05.070 – volume: 41 start-page: 3 year: 2018 ident: 2275_CR62 publication-title: Mol. Cells – volume: 273 start-page: 3963 year: 1998 ident: 2275_CR73 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.7.3963 – volume: 33 start-page: 1058 year: 2014 ident: 2275_CR121 publication-title: Cell. Physiol. Biochem. doi: 10.1159/000358676 – volume: 87 start-page: 180 year: 1980 ident: 2275_CR34 publication-title: J. Cell Biol. doi: 10.1083/jcb.87.1.180 – volume: 339 start-page: 487 year: 2011 ident: 2275_CR63 publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.111.184341 – volume: 10 start-page: 518 year: 2002 ident: 2275_CR51 publication-title: Obes. Res. doi: 10.1038/oby.2002.70 – volume: 15 start-page: 1508 year: 2018 ident: 2275_CR128 publication-title: Int. J. Med. Sci. doi: 10.7150/ijms.28106 – volume: 12 start-page: 222 year: 2011 ident: 2275_CR148 publication-title: Nat. Immunol. doi: 10.1038/ni.1980 – volume: 305 start-page: E530 year: 2013 ident: 2275_CR10 publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00640.2012 – ident: 2275_CR118 doi: 10.1161/CIRCRESAHA.110.232306 – volume: 66 start-page: 936 year: 2017 ident: 2275_CR64 publication-title: Hepatology doi: 10.1002/hep.29229 – ident: 2275_CR154 doi: 10.1155/2015/398483 – volume: 100 start-page: 525 year: 2010 ident: 2275_CR15 publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2010.03.018 – ident: 2275_CR20 doi: 10.1186/s40169-017-0154-5 – volume: 12 start-page: 1535 year: 2005 ident: 2275_CR22 publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401728 – volume: 432 start-page: 1032 year: 2004 ident: 2275_CR45 publication-title: Nature doi: 10.1038/nature03029 – volume: 287 start-page: 356 year: 2002 ident: 2275_CR3 publication-title: JAMA doi: 10.1001/jama.287.3.356 – ident: 2275_CR61 doi: 10.2337/db18-1979-P – volume: 27 start-page: 1011 year: 2004 ident: 2275_CR7 publication-title: Diabetes Care doi: 10.2337/diacare.27.4.1011 – ident: 2275_CR30 doi: 10.3390/cells7100149 – volume: 27 start-page: 505 year: 2007 ident: 2275_CR161 publication-title: Immunity doi: 10.1016/j.immuni.2007.07.022 – volume: 20 start-page: 48 year: 2012 ident: 2275_CR16 publication-title: Obesity doi: 10.1038/oby.2011.299 – volume: 119 start-page: 3329 year: 2009 ident: 2275_CR37 publication-title: J. Clin. Investig. doi: 10.1172/JCI35541 – volume: 15 start-page: 196 year: 2016 ident: 2275_CR60 publication-title: Aging Cell doi: 10.1111/acel.12427 – volume: 118 start-page: 7 year: 2005 ident: 2275_CR26 publication-title: J. Cell Sci. doi: 10.1242/jcs.01620 – volume: 10 start-page: 307 year: 2009 ident: 2275_CR82 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2672 – ident: 2275_CR135 doi: 10.1038/srep35372 – volume: 100 start-page: 15077 year: 2003 ident: 2275_CR165 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2436255100 – volume: 19 start-page: 83 year: 2013 ident: 2275_CR29 publication-title: Nat. Med. doi: 10.1038/nm.3014 – volume: 123 start-page: 803 year: 2018 ident: 2275_CR91 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.312208 |
SSID | ssj0000330256 |
Score | 2.488499 |
SecondaryResourceType | review_article |
Snippet | Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 87 |
SubjectTerms | 13 13/21 38 631/80/39 64 64/60 692/699/2743/393 Adipose tissue Adipose Tissue - metabolism Adipose Tissue - pathology Angiotensin Antibodies Autophagy Autophagy - physiology Biochemistry Biomedical and Life Sciences Blood pressure Cell Biology Cell Culture Energy Metabolism Heart Diseases - metabolism Heart Diseases - pathology Homeostasis Humans Immunology Inflammation Insulin Resistance Life Sciences Liver Liver - metabolism Liver - pathology Metabolic syndrome Metabolic Syndrome - metabolism Metabolic Syndrome - pathology Molecular modelling Obesity - metabolism Obesity - pathology Pancreas Phagocytosis Renin Renin-Angiotensin System - physiology Review Review Article |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS-wwEB48inBexPupN3LAJyXYbdKk8UUWURbB86Swb6FNU13Yk1V3F9k3_4P_0F_ipDdZRV9KadJLMknnm8zkG4BDjiDAoC6gedIR1FOc06SIBM2ZEDJXWc7LfdzX_0Tvll_143694Dauwyqbf2L5o85Hxq-Rn0Qs9tRvUiVnD4_UZ43y3tU6hcYvWOogEvGpG2RftmssIRrrqNIbZyZLTsa8w_2uHbSZokjGVM2roy8Y82uo5Cd_aamGLldhpcaPpFsJfA0WrFuH5Sqj5GwDdHfqmQLSuxkZOPLfTlDGw4EhDTHBKUETuExARRD5ked7a4ckm5EqILy57CPw3NvLa-ruBqMyxN2RivJ5E24vL27Oe7TOoUBNzMSEysSI3DAR48GEWWQN2m_KpgW3eOoBiDV5mEqVJQUiJVMYRBDW4LQsWJEhttmCRTdy9g8Qq2KlClRn3AreMTLlUV4oVP8I-cLY2gDCpiu1qQnGfZ6LoS4d3SzRVe9r7H3te1-rAI7aWx4qdo2fKu818tH1RBvrj2ERwN-2GKeI93ukzo6mVR0V4sOwznYlzvZtDAFQzHgYgJwTdFvB02_Pl7jBfUnDLZSSTIkAjpsh8fFZ3zZi5-dG7MLvyA9OHxbO9mBx8jS1-4h6JtlBObTfARQGATA priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swED-yjMFexv52bruhwp42zGzrn7W3EhrKYHtqIG_CluUkkCplcRh563foN-wn6UmOXbKwwV6MsU62fHfy_WSdfgL4xBAEGIwFcZWnIvYU53FeZyKuqBCyUmXFwjruHz_F5YR9n_LpANJuLUxI2g-UluEz3WWHfV2zlPnlNjjYyTLJY_UEnuaScu_UIzHqf6skOD7HKN7NX9L8sOZ-BDqAlYfZkX9MkYbIM34JL3aQkZy3jXwFA-tew7N2E8ntG9DnG08OUMy2ZOHItW3QrMuFIR0XwTeCo96w5xRBsEd-z61dknJL2hzw7rJPunP3t3eFmy1WIavdkZbl-S1MxhdXo8t4t21CbDgVTSxzIypDBceDScrMGhyyKVvUzOKpxxzWVEkhVZnXCI5MbRA0WIM9saZ1iXDmHQzdytn3QKziStUYwZgVLDWyYFlVK4z4iPISbm0ESadKbXac4n5ri6UOc9s01632NWpfe-1rFcHnvspNS6jxL-HTzj5617fWOqPckwBKlUdw1hdjr_BTHYWzq00roxK8Gcoctebsn0YR83DKkgjknqF7Ac-4vV_iFvPAvC2UklSJCL50LvHYrL--xPF_SZ_A88z7qk8Mp6cwbH5t7AfEPU35MXj6AyZr_ns priority: 102 providerName: Springer Nature |
Title | Autophagy in metabolic syndrome: breaking the wheel by targeting the renin–angiotensin system |
URI | https://link.springer.com/article/10.1038/s41419-020-2275-9 https://www.ncbi.nlm.nih.gov/pubmed/32015340 https://www.proquest.com/docview/2350328798 https://www.proquest.com/docview/2350904198 https://pubmed.ncbi.nlm.nih.gov/PMC6997396 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_uA8EX8due5xLBJyXaTdKkEUTWZY9jwUPUhX2R0qbp3cKa9e520X3xb3eStCvrneJLWpr0azJpftOZ_AbgmUAQYHAuoHXel9RTnNO8YZLWXEpV66oWYR33-xN5PBHjaTbdgS69VSvAy2tNO59PanIxf_njfP0WB_ybuGQ8f3Up-sIvxUFDiDGVUb0L-8Fd5CP5WrQfPsxou7OQz5WlAi2nPNedn_O6q2zPVFfg59Uoyj9cqWGGOroNt1poSQZRF-7AjnV34UZMNrm-B18GK08iUJ6uycyRr3aJ3T-fGdJxFrwmaB2H3FQEQSH5fmbtnFRrEmPFu8M-OM_R0p3OFiH23ZHIBX0fJkejz8Nj2iZXoCbjcklVbmRtuMywMGnFrEHDTtuyERZ3PTKxpk5Lpau8QQhlGoPQwhocrw1vKgQ9D2DPLZx9BMTqTOsG5zlhpegbVQpWNxpxAWLBNLM2gbQTZGFa5nGfAGNeBA84z4so-wJlX3jZFzqB55tTvkXajX81Pux6p-gUqGA881SBSucJPN1U49jxDpHS2cUqttGoCr7Nw9iZm7txREYZF2kCaqubNw08L_d2jZudBX5uqbXiWibwolOI34_115c4-I-nfAw3mddPHzTOD2FvebGyTxATLase7Kqp6sH-YDD-NMbtu9HJh494dCiHvfCfoRfGgi9_jn4BxmsNTg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcEP8EChgJLqCoWdtxYqQKFWi1pe0KoVbqzSS20660eAu7q2pvvAPvw8PwJIyTONVS0VsvURQ7Px6PM589428AXnIEARptQWzyvog9xXmcV1TEhgmRGVkaXu_j3h-KwSH_dJQercDvsBfGh1WGf2L9ozYT7dfI1ylLPfVbJvN3p99jnzXKe1dDCo2iTa1gNmqKsXZjx65dnOEUbrqx8xH7-xWl21sHHwZxm2Ug1ikTszjLtTCaiRQPOimp1TjDkbaouMVTb6KtNkmRyTKvEEvoSqONtRoVt2JVidYfn3sNVrlfQOnB6vut4ecv3SpPwpgHFcGdyvL1Ke9zv28IZ22UZmkslw3iBZR7MVjzH49tbQi3b8OtFsGSzUbl7sCKdXfhepPTcnEP1ObccxUUxwsycuSbnaGWjUeaBGqEtwQn4XUKLILYk5ydWDsm5YI0Ienhso8BdH9-_irc8WhSB9k70pBO34fDK5HvA-i5ibOPgFiZSlmhQeVW8L7OCk5NJRGAIOhMUmsjSIIolW4pzn2mjbGqXe0sV430FUpfeekrGcHr7pbTht_jssproX9UO9Sn6lwxI3jRFeMg9Z6XwtnJvKkjE3wY1nnYdGf3NoYQLGU8iSBb6uiugicAXy5xo5OaCFxImTEpIngTVOL8s_7biMeXN-I53Bgc7O-pvZ3h7hO4Sb2i-iB1tga92Y-5fYoYbFY-axWdwNerHlt_AWnXRoQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIhAXxG9JKWAkuICizdqOHSNVqKKsWgoVByrtzSSO3a60eEt3V9Xe-g59Gx6HJ-k4f9VS0VsvUZQ4Px7PZD5nxt8AvOEIAgz6grjM-iIOFOdx5qiISyaELFVR8mod97d9sXPAvwzT4Qr8adfChLTK9ptYfajLiQn_yHuUpYH6Taqs55q0iO_bg4_Hv-NQQSpEWttyGrWK7NnFKU7fppu72zjWbykdfP7xaSduKgzEJmViFsvMiNIwkeLGJAW1Bmc3yuaOW9wN7tmaMsmlKjKHOMI4g_7VGlRax1yBnh_vewtuS4ZdRluSQ9n930kYC3CiDaSyrDflfR5WDOF8jVKZxmrZFV7Bt1fTNP-J1VYucPAA7jfYlWzVyvYQVqx_BHfqapaLx6C35oGlID9ckJEnv-wM9Ws8MqQlRfhAcPpdFb8iiDrJ6ZG1Y1IsSJ2M3h4O2X_-79l57g9Hkyq93pOabvoJHNyIdJ_Cqp94-wyIValSDl0pt4L3jcw5LZ1C6IFwM0mtjSBpRalNQ24eamyMdRVkZ5mupa9R-jpIX6sI3nWXHNfMHtc13mjHRzdGPtWXKhnB6-40mmeIueTeTuZ1G5XgzbDNWj2c3dMYgq-U8SQCuTTQXYNA_b18xo-OKgpwoZRkSkTwvlWJy9f6byfWr-_EK7iLFqW_7u7vPYd7NOhpyE5nG7A6O5nbFwi-ZsXLSssJ_Lxps7oAkG9EIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+in+metabolic+syndrome%3A+breaking+the+wheel+by+targeting+the+renin-angiotensin+system&rft.jtitle=Cell+death+%26+disease&rft.au=Menikdiwela%2C+Kalhara+R&rft.au=Ramalingam%2C+Latha&rft.au=Rasha%2C+Fahmida&rft.au=Wang%2C+Shu&rft.date=2020-02-03&rft.issn=2041-4889&rft.eissn=2041-4889&rft.volume=11&rft.issue=2&rft.spage=87&rft_id=info:doi/10.1038%2Fs41419-020-2275-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-4889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-4889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-4889&client=summon |