Convolutional Neural Networks for Segmenting Cerebellar Fissures from Magnetic Resonance Imaging

The human cerebellum plays an important role in coordination tasks. Diseases such as spinocerebellar ataxias tend to cause severe damage to the cerebellum, leading patients to a progressive loss of motor coordination. The detection of such damages can help specialists to approximate the state of the...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 4; p. 1345
Main Authors Cabeza-Ruiz, Robin, Velázquez-Pérez, Luis, Linares-Barranco, Alejandro, Pérez-Rodríguez, Roberto
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22041345

Cover

Abstract The human cerebellum plays an important role in coordination tasks. Diseases such as spinocerebellar ataxias tend to cause severe damage to the cerebellum, leading patients to a progressive loss of motor coordination. The detection of such damages can help specialists to approximate the state of the disease, as well as to perform statistical analysis, in order to propose treatment therapies for the patients. Manual segmentation of such patterns from magnetic resonance imaging is a very difficult and time-consuming task, and is not a viable solution if the number of images to process is relatively large. In recent years, deep learning techniques such as convolutional neural networks (CNNs or convnets) have experienced an increased development, and many researchers have used them to automatically segment medical images. In this research, we propose the use of convolutional neural networks for automatically segmenting the cerebellar fissures from brain magnetic resonance imaging. Three models are presented, based on the same CNN architecture, for obtaining three different binary masks: fissures, cerebellum with fissures, and cerebellum without fissures. The models perform well in terms of precision and efficiency. Evaluation results show that convnets can be trained for such purposes, and could be considered as additional tools in the diagnosis and characterization of neurodegenerative diseases.
AbstractList The human cerebellum plays an important role in coordination tasks. Diseases such as spinocerebellar ataxias tend to cause severe damage to the cerebellum, leading patients to a progressive loss of motor coordination. The detection of such damages can help specialists to approximate the state of the disease, as well as to perform statistical analysis, in order to propose treatment therapies for the patients. Manual segmentation of such patterns from magnetic resonance imaging is a very difficult and time-consuming task, and is not a viable solution if the number of images to process is relatively large. In recent years, deep learning techniques such as convolutional neural networks (CNNs or convnets) have experienced an increased development, and many researchers have used them to automatically segment medical images. In this research, we propose the use of convolutional neural networks for automatically segmenting the cerebellar fissures from brain magnetic resonance imaging. Three models are presented, based on the same CNN architecture, for obtaining three different binary masks: fissures, cerebellum with fissures, and cerebellum without fissures. The models perform well in terms of precision and efficiency. Evaluation results show that convnets can be trained for such purposes, and could be considered as additional tools in the diagnosis and characterization of neurodegenerative diseases.
The human cerebellum plays an important role in coordination tasks. Diseases such as spinocerebellar ataxias tend to cause severe damage to the cerebellum, leading patients to a progressive loss of motor coordination. The detection of such damages can help specialists to approximate the state of the disease, as well as to perform statistical analysis, in order to propose treatment therapies for the patients. Manual segmentation of such patterns from magnetic resonance imaging is a very difficult and time-consuming task, and is not a viable solution if the number of images to process is relatively large. In recent years, deep learning techniques such as convolutional neural networks (CNNs or convnets) have experienced an increased development, and many researchers have used them to automatically segment medical images. In this research, we propose the use of convolutional neural networks for automatically segmenting the cerebellar fissures from brain magnetic resonance imaging. Three models are presented, based on the same CNN architecture, for obtaining three different binary masks: fissures, cerebellum with fissures, and cerebellum without fissures. The models perform well in terms of precision and efficiency. Evaluation results show that convnets can be trained for such purposes, and could be considered as additional tools in the diagnosis and characterization of neurodegenerative diseases.The human cerebellum plays an important role in coordination tasks. Diseases such as spinocerebellar ataxias tend to cause severe damage to the cerebellum, leading patients to a progressive loss of motor coordination. The detection of such damages can help specialists to approximate the state of the disease, as well as to perform statistical analysis, in order to propose treatment therapies for the patients. Manual segmentation of such patterns from magnetic resonance imaging is a very difficult and time-consuming task, and is not a viable solution if the number of images to process is relatively large. In recent years, deep learning techniques such as convolutional neural networks (CNNs or convnets) have experienced an increased development, and many researchers have used them to automatically segment medical images. In this research, we propose the use of convolutional neural networks for automatically segmenting the cerebellar fissures from brain magnetic resonance imaging. Three models are presented, based on the same CNN architecture, for obtaining three different binary masks: fissures, cerebellum with fissures, and cerebellum without fissures. The models perform well in terms of precision and efficiency. Evaluation results show that convnets can be trained for such purposes, and could be considered as additional tools in the diagnosis and characterization of neurodegenerative diseases.
Audience Academic
Author Linares-Barranco, Alejandro
Cabeza-Ruiz, Robin
Pérez-Rodríguez, Roberto
Velázquez-Pérez, Luis
AuthorAffiliation 1 CAD/CAM Study Centre, University of Holguín, Holguín 80100, Cuba; roberto.perez@uho.edu.cu
3 Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín 80100, Cuba
5 Escuela Politécnica Superior (EPS), University of Seville, 41011 Seville, Spain
4 Robotics and Tech. of Computers Lab, University of Seville, 41012 Seville, Spain; alinares@us.es
2 Cuban Academy of Sciences, Havana 10200, Cuba; velazq63@gmail.com
6 Smart Computer Systems Research and Engineering Lab (SCORE), Research Institute of Computer Engineering (I3US), University of Seville, 41012 Seville, Spain
AuthorAffiliation_xml – name: 3 Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín 80100, Cuba
– name: 4 Robotics and Tech. of Computers Lab, University of Seville, 41012 Seville, Spain; alinares@us.es
– name: 6 Smart Computer Systems Research and Engineering Lab (SCORE), Research Institute of Computer Engineering (I3US), University of Seville, 41012 Seville, Spain
– name: 1 CAD/CAM Study Centre, University of Holguín, Holguín 80100, Cuba; roberto.perez@uho.edu.cu
– name: 5 Escuela Politécnica Superior (EPS), University of Seville, 41011 Seville, Spain
– name: 2 Cuban Academy of Sciences, Havana 10200, Cuba; velazq63@gmail.com
Author_xml – sequence: 1
  givenname: Robin
  orcidid: 0000-0003-4719-8264
  surname: Cabeza-Ruiz
  fullname: Cabeza-Ruiz, Robin
– sequence: 2
  givenname: Luis
  surname: Velázquez-Pérez
  fullname: Velázquez-Pérez, Luis
– sequence: 3
  givenname: Alejandro
  orcidid: 0000-0002-6056-740X
  surname: Linares-Barranco
  fullname: Linares-Barranco, Alejandro
– sequence: 4
  givenname: Roberto
  orcidid: 0000-0001-5741-5168
  surname: Pérez-Rodríguez
  fullname: Pérez-Rodríguez, Roberto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35214268$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhiNURNuFAy-AInEBpG3tOHacC1K1orBSAQl6N44zCV4Se7GTVn17Jk1ZulWFcpho_M3vmd9znBw47yBJXlJywlhJTmOWkZyynD9Jjmie5UuJiYN7_4fJcYwbQjLGmHyWHDKe4ZmQR8mPlXdXvhsH653u0i8whtswXPvwK6aND-l3aHtwg3VtuoIAFXSdDum5jXEMgEjwffpZtw4Ga9JvEFHIGUjXvW6x5nnytNFdhBd3cZFcnn-4XH1aXnz9uF6dXSwNZ2JYFlToUjNK86YkQDkpyzqTggmgORWipsCzRhaSsoJLie1XOclkLggr81pQtkjWs2zt9UZtg-11uFFeW3Wb8KFVOmCDHSioZCVBSAa6QdcKyY0oWaVJYZrMAEetd7PW6Lb65lp33U6QEjU5rnaOI_x-hrdj1UNt0Cl0cK-D_RNnf6rWXylZCkbKSeDNnUDwv0eIg-ptNJPJDvwYVSbwzXg-hUXy-gG68WPAd5spWpQZ5_-oVuO01jUe7zWTqDpDAwVaSyfDTh6h8Kuhtwb3q7GY3yt4dX_Q3YR_dwmBtzNggo8xQPNf104fsMYOelpC7MJ2j1T8AT-_5Ig
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3243178
crossref_primary_10_1002_mds_29934
crossref_primary_10_1016_j_compbiomed_2023_107777
crossref_primary_10_3390_brainsci14010053
crossref_primary_10_1002_ana_26573
Cites_doi 10.1109/42.816072
10.1109/CVPR.2017.437
10.1016/S0031-3203(96)00142-2
10.1109/TMI.2010.2046908
10.1038/s41572-019-0074-3
10.5220/0008494005280535
10.1073/pnas.1415122111
10.1002/hbm.10123
10.1016/j.cviu.2017.04.002
10.1109/TMI.2018.2835303
10.1109/CVPR.2015.7298594
10.1016/j.neuroimage.2018.08.003
10.1016/j.neuroimage.2012.10.064
10.1016/j.neuroimage.2016.11.003
10.3390/app10165683
10.1016/j.neuroimage.2017.01.073
10.54294/uvnhin
10.1016/S1053-8119(09)70884-5
10.1016/j.neuroimage.2014.09.056
10.1016/j.neuroimage.2007.11.034
10.3390/s21041122
10.1007/978-3-319-24574-4_28
10.1186/s12880-015-0068-x
10.1111/j.1468-1331.2005.01011.x
10.1109/ACCESS.2020.2998537
10.1002/hbm.22529
10.1016/j.patrec.2005.10.010
10.1016/j.media.2020.101639
10.1002/acn3.504
10.1109/EMBC.2016.7591443
10.1007/s00401-012-1000-x
10.1109/TSMC.1979.4310076
10.1109/3DV.2016.79
10.1109/IST.2017.8261460
10.1016/j.neuroimage.2009.01.045
10.1016/j.neuroimage.2017.04.039
10.1109/ACCESS.2020.3008868
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s22041345
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_eb8b8e683eaf413785c693ba07cf2ce5
10.3390/s22041345
PMC8963095
A781609911
35214268
10_3390_s22041345
Genre Journal Article
GeographicLocations Mexico
GeographicLocations_xml – name: Mexico
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c536t-716a9a3114f90e15099d28636e14166d1e52f878137588521b4028460394d613
IEDL.DBID UNPAY
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:26 EDT 2025
Wed Oct 01 16:16:25 EDT 2025
Tue Sep 30 16:56:12 EDT 2025
Wed Oct 01 14:19:26 EDT 2025
Fri Jul 25 20:40:47 EDT 2025
Tue Jun 17 22:24:33 EDT 2025
Tue Jun 10 21:12:58 EDT 2025
Wed Feb 19 02:26:37 EST 2025
Wed Oct 01 03:21:24 EDT 2025
Thu Apr 24 23:00:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cerebellar fissures
magnetic resonance imaging
neurodegenerative disease
convolutional neural network
cerebellum segmentation
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-716a9a3114f90e15099d28636e14166d1e52f878137588521b4028460394d613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4719-8264
0000-0002-6056-740X
0000-0001-5741-5168
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/22/4/1345/pdf?version=1644545473
PMID 35214268
PQID 2633179255
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_eb8b8e683eaf413785c693ba07cf2ce5
unpaywall_primary_10_3390_s22041345
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8963095
proquest_miscellaneous_2633854263
proquest_journals_2633179255
gale_infotracmisc_A781609911
gale_infotracacademiconefile_A781609911
pubmed_primary_35214268
crossref_primary_10_3390_s22041345
crossref_citationtrail_10_3390_s22041345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kim (ref_9) 2020; 8
Zeiler (ref_13) 2014; 12
Fonov (ref_33) 2009; 47
Fawcett (ref_47) 2006; 27
Chen (ref_20) 2018; 37
ref_18
ref_17
ref_16
ref_15
Han (ref_4) 2019; 10949
Bradley (ref_50) 1997; 30
ref_25
ref_24
ref_23
ref_22
(ref_14) 2020; 8
ref_21
Cocosco (ref_44) 1997; 5
Tustison (ref_32) 2010; 29
Han (ref_1) 2020; 218
ref_28
ref_27
ref_26
Kennedy (ref_42) 2015; 104
Chan (ref_43) 2014; 111
Inagaki (ref_30) 2005; 12
Gousias (ref_39) 2008; 40
Dolz (ref_11) 2018; 170
Kwan (ref_45) 1999; 18
Otsu (ref_35) 1979; 9
Hammers (ref_38) 2003; 19
Baumela (ref_36) 2013; 36
(ref_10) 2016; 10
ref_34
Diedrichsen (ref_7) 2009; 46
Vijaymeena (ref_49) 2016; 3
ref_37
Carass (ref_6) 2018; 183
Romero (ref_5) 2016; 147
Kansal (ref_2) 2017; 140
Faillenot (ref_40) 2017; 150
ref_46
Reetz (ref_29) 2018; 5
Klockgether (ref_3) 2019; 5
Thyreau (ref_12) 2020; 61
Mennes (ref_41) 2013; 15
Weier (ref_8) 2014; 35
ref_48
Milletari (ref_19) 2016; 164
Seidel (ref_31) 2012; 124
References_xml – volume: 18
  start-page: 1085
  year: 1999
  ident: ref_45
  article-title: MRI Simulation-Based Evaluation of Image-Processing and Classification Methods
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.816072
– ident: ref_26
– ident: ref_24
  doi: 10.1109/CVPR.2017.437
– volume: 30
  start-page: 1145
  year: 1997
  ident: ref_50
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 10949
  start-page: 109490K
  year: 2019
  ident: ref_4
  article-title: Cerebellum Parcellation with Convolutional Neural Networks
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– volume: 12
  start-page: 818
  year: 2014
  ident: ref_13
  article-title: Visualizing and Understanding Convolutional Networks
  publication-title: Anal. Chem. Res.
– volume: 29
  start-page: 1310
  year: 2010
  ident: ref_32
  article-title: N4ITK: Improved N3 Bias Correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 5
  start-page: 24
  year: 2019
  ident: ref_3
  article-title: Spinocerebellar ataxia
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/s41572-019-0074-3
– ident: ref_17
  doi: 10.5220/0008494005280535
– volume: 218
  start-page: 116819
  year: 2020
  ident: ref_1
  article-title: Automatic Cerebellum Anatomical Parcellation using U-Net with Locally Constrained Optimization
  publication-title: IEEE Trans. Med. Imaging
– volume: 111
  start-page: E4997
  year: 2014
  ident: ref_43
  article-title: Decreased segregation of brain systems across the healthy adult lifespan
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1415122111
– volume: 19
  start-page: 224
  year: 2003
  ident: ref_38
  article-title: Three-Dimensional Maximum Probability Atlas of the Human Brain, with Particular Reference to the Temporal Lobe
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10123
– volume: 164
  start-page: 92
  year: 2016
  ident: ref_19
  article-title: Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput
  publication-title: Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.04.002
– volume: 37
  start-page: 1
  year: 2018
  ident: ref_20
  article-title: DRINet for Medical Image Segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2835303
– ident: ref_23
  doi: 10.1109/CVPR.2015.7298594
– volume: 183
  start-page: 150
  year: 2018
  ident: ref_6
  article-title: Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.08.003
– volume: 15
  start-page: 683
  year: 2013
  ident: ref_41
  article-title: Making data sharing work: The FCP/INDI experience
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.064
– volume: 147
  start-page: 916
  year: 2016
  ident: ref_5
  article-title: CERES: A new cerebellum lobule segmentation method
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.003
– ident: ref_15
  doi: 10.3390/app10165683
– ident: ref_27
– volume: 150
  start-page: 88
  year: 2017
  ident: ref_40
  article-title: Macroanatomy and 3D Probabilistic Atlas of the Human Insula
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.01.073
– ident: ref_34
  doi: 10.54294/uvnhin
– volume: 47
  start-page: S102
  year: 2009
  ident: ref_33
  article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(09)70884-5
– volume: 104
  start-page: 21
  year: 2015
  ident: ref_42
  article-title: Age Trajectories of Functional Activation Under Conditions of Low and High Processing Demands: An Adult Lifespan fMRI Study of the Aging Brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.056
– volume: 40
  start-page: 672
  year: 2008
  ident: ref_39
  article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.034
– ident: ref_28
– ident: ref_16
  doi: 10.3390/s21041122
– ident: ref_22
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_48
  doi: 10.1186/s12880-015-0068-x
– volume: 5
  start-page: 425
  year: 1997
  ident: ref_44
  article-title: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database
  publication-title: Neuroimage
– volume: 12
  start-page: 725
  year: 2005
  ident: ref_30
  article-title: Positron emission tomography and magnetic resonance imaging in spinocerebellar ataxia type 2: A study of symptomatic and asymptomatic individuals
  publication-title: Eur. J. Neurol.
  doi: 10.1111/j.1468-1331.2005.01011.x
– volume: 36
  start-page: 2
  year: 2013
  ident: ref_36
  article-title: A morphological approach to curvature-based evolution of curves and surfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: ref_37
– volume: 10
  start-page: 1
  year: 2016
  ident: ref_10
  article-title: volBrain: An Online MRI Brain Volumetry System
  publication-title: Front. Neuroinform.
– volume: 8
  start-page: 101550
  year: 2020
  ident: ref_9
  article-title: Deep Cerebellar Nuclei Segmentation via Semi-Supervised Deep Context-Aware Learning from 7T Diffusion MRI
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2998537
– ident: ref_25
– volume: 35
  start-page: 5026
  year: 2014
  ident: ref_8
  article-title: Rapid Automatic Segmentation of the Human Cerebellum and its Lobules (RASCAL)—Implementation and Application of the Patch-based Label-fusion Technique with a Template Library to Segment the Human Cerebellum
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22529
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_47
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 61
  start-page: 101639
  year: 2020
  ident: ref_12
  article-title: Learning a cortical parcellation of the brain robust to the MRI segmentation with convolutional neural networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101639
– volume: 140
  start-page: 707
  year: 2017
  ident: ref_2
  article-title: Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration
  publication-title: Brain
– volume: 5
  start-page: 128
  year: 2018
  ident: ref_29
  article-title: Brain atrophy measures in preclinical and manifest spinocerebellar ataxia type 2
  publication-title: Ann. Clin. Transl. Neurol.
  doi: 10.1002/acn3.504
– ident: ref_21
  doi: 10.1109/EMBC.2016.7591443
– volume: 124
  start-page: 1
  year: 2012
  ident: ref_31
  article-title: Brain pathology of spinocerebellar ataxias
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-012-1000-x
– volume: 9
  start-page: 62
  year: 1979
  ident: ref_35
  article-title: A Threshold Selection Method from Gray-Level Histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– ident: ref_46
  doi: 10.1109/3DV.2016.79
– volume: 3
  start-page: 19
  year: 2016
  ident: ref_49
  article-title: A survey on similarity measures in text mining
  publication-title: Mach. Learn. Appl. Int. J.
– ident: ref_18
  doi: 10.1109/IST.2017.8261460
– volume: 46
  start-page: 39
  year: 2009
  ident: ref_7
  article-title: A probabilistic MR atlas of the human cerebellum
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.045
– volume: 170
  start-page: 456
  year: 2018
  ident: ref_11
  article-title: 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.04.039
– volume: 8
  start-page: 128613
  year: 2020
  ident: ref_14
  article-title: PROMETEO: A CNN-Based Computer-Aided Diagnosis System for WSI Prostate Cancer Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008868
SSID ssj0023338
Score 2.3810315
Snippet The human cerebellum plays an important role in coordination tasks. Diseases such as spinocerebellar ataxias tend to cause severe damage to the cerebellum,...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1345
SubjectTerms Alzheimer's disease
Atrophy
Automation
Brain
Brain research
Care and treatment
cerebellar fissures
Cerebellum - diagnostic imaging
cerebellum segmentation
convolutional neural network
Datasets
Humans
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging equipment
Nervous system diseases
Neural networks
Neural Networks, Computer
neurodegenerative disease
Patients
Registration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXoAD4k1oi8xDgkvUJH7EObYrVgWpXChSb8bxOgvS4q32QdV_3xknGyU8xIXTSuuJFM_DM9_uzGeAN1J6QTAjJSKSVGgh0koXZVpmGEzoL660NI189kmdfhEfL-TF4Kov6glr6YFbxR35WtfaK829bfDALbV0quK1zUrXFM5H9lJMYzsw1UEtjsir5RHiCOqP1kWR4cM0szTIPpGk__ejeJCLfu2TvL0Nl_b6yi4WgyQ0vQ_3uuqRHbdv_QBu-fAQ7g44BR_B18ky_Oz8CUWJfCN-xG7vNcMalX3289gkFOZs4lee_nqwKzYlEyD4ZjRxws7sPNB8I6Pf94mUw7MPP-KNRo_hfPr-fHKadtcopE5ytUkREdnKcgQ-TZV5LACralZoxZXPsRpTs9zLotGlRuVKrTGd14gpsSzJeCVmmO2fwF5YBv8MGGpCFrVSOiPU5pwWTjRiVuNJJZ10WQLvdto1rqMYp5suFgahBhnC9IZI4FUvetnyavxJ6IRM1AsQFXb8Ah3EdA5i_uUgCbwlAxsKWHwZZ7u5A9wSUV-ZY9y5Qp3keQIHI0kMNDde3rmI6QJ9bQrFsQKrEJgl8LJfpifJdsEvt62MlsSMn8DT1qP6LWH9m-OKTqAc-dpoz-OV8P1bpAHXeHZigZzA694r_67K5_9Dlftwp6Dpj9i0fgB7m9XWH2JNtqlfxPC7AVABMpg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOQAHxLMNFGQeElyiJnHiOCdUViwFqVwoUm_GcZwFaess-wDx75lxvGHD67RSPFnZnrcz8xngWVHYnNKMmIBI4lzmeVzJrIzLBJUJ5cWUmrqRT9-Lk4_5u_PiPBy4rUJZ5dYmekPddIbOyI8ywdHVVRgBv1x8jenWKPq6Gq7QuAxXUiSgki45fTMkXBzzrx5NiGNqf7TKsgRtNnUu7fggD9X_p0He8Ui_V0te3biF_vFdz-c7rmh6E26EGJId90y_BZesuw3Xd5AF78CnSee-BalCUoLg8D--5nvFMFJlH-zMlwq5GZvYpaUPEHrJpsQITMEZ9Z2wUz1z1OXI6JSfoDkse3vh7zW6C2fT12eTkzhcphCbgot1jHmRrjTH9KetEothYFU1mRRc2BRjMtGktshaWcqUYwYh0anXmFlicJLwKm_Q59-DPdc5ewAMd6LIaiFkQrmbMTI3eZs3NdqrwhQmieDFdneVCUDjdN_FXGHCQYxQAyMieDKQLnp0jb8RvSIWDQQEiO0fdMuZCvqlbC1raYXkVrf4VolTERWvdVKaNjMW_-Q5MViR2uJkjA7dB7gkAsBSx7hygXuSphEcjihR3cx4eCsiKqj7Sv0SzggeD8P0JvHO2W7T08iC8PEj2O8lalgSRsEpjsgIypGsjdY8HnFfPnswcIkWFMPkCJ4OUvnvrbz__8k_gGsZdXf4ovRD2FsvN_Yhxlzr-pFXrJ-fHCkn
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcoAeEO8aCloeElxc7H15fUCoREQFKVxopd7MerMOSMEpTgL03zOzdqwYisQpUnY28s7M7swX73wD8FwpLwlmxEREEksjZZwbnsVZgpsJ_cVllqqRJx_18an8cKbOdmDTY7NT4PJSaEf9pE6b-eGv7xdvcMO_JsSJkP3VkvMEz2KprsBVDEicnHsi-5cJXIjQ0JpqumKMh0lLMDScOghLgb3_7zN6K0j9eYHy2ro-txc_7Xy-FZ3GN-FGl1ayo9YPbsGOr2_D3hbZ4B34PFrUPzpHQ1Fi5Qgf4Rr4kmHyyj75Wbg9VM_YyDee3knYho3JNojKGZWisImd1VT4yOiPf2Lr8Oz9t9Dq6C6cjN-djI7jrr9C7JTQqxihks2tQERU5YnHzDDPp9xooX2KaZqepl7xymQmFQgqDMb5EsEm5iuJyOUU04B7sFsvar8PDDWheKm1SQjOOWekk5WclniEKadcEsHLjXYL13GPUwuMeYEYhAxR9IaI4Gkvet4Sblwm9JZM1AsQR3b4YtHMim7LFb40pfHaCG8rnJXho-hclDbJXMWdxx95QQYuyLfwYZztChJwScSJVRzhyjXqJE0jOBhI4g50w-GNixQbBy64Fpia5YjYInjSD9NMsl3tF-tWxiiizI_gfutR_ZIwMUaH1SaCbOBrgzUPR-qvXwI_uMFDFTPnCJ71XvlvVT74by08hOucaj_ClfUD2F01a_8IM7JV-Tjst9_ofzCC
  priority: 102
  providerName: Scholars Portal
Title Convolutional Neural Networks for Segmenting Cerebellar Fissures from Magnetic Resonance Imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/35214268
https://www.proquest.com/docview/2633179255
https://www.proquest.com/docview/2633854263
https://pubmed.ncbi.nlm.nih.gov/PMC8963095
https://www.mdpi.com/1424-8220/22/4/1345/pdf?version=1644545473
https://doaj.org/article/eb8b8e683eaf413785c693ba07cf2ce5
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6x7QE48H4Elio8JLhkm4ftOCfUrbYsSK1WsCuVUzZxnbKipFUfi-DXM-O4UbOAhMQlVeNxlLHH9jfxzGeAV5xrRm6GR0QkHpOMeYkMYy_2cTChvag4o2zk4Ugcn7EPYz6255yubFgluuIXZpKmLCwPVzC_G4Zd1g0ixruLSfH20n5KQqjPODFSRXvQFrTD1IL22eik99nkFNnKFZ9QhM59d4V_GT2msQoZsv7fp-SdNelqvOT1TbnIfnzPZrOdxWhwG863alQxKF8PNuv8QP28wvD4H3regVsWqLq9yrLuwjVd3oObO_SF9-G8Py8vremiKPF8mB8TWL5yEQ67n_TUxCOVU7evl5p2ObKlO6DeRj_fpeQWd5hNS0qldGkrgfg_tPv-mzk86QGcDo5O-8eePbHBUzwSaw-dryzJIvSxisTXiDWTZBJKEQkdIPATk0DzsJCxDCJ0UyQihxzdV0RAfpSwCQKLh9Aq56V-DC42Ng9zIaRPDqJSkilWsEmOkyJXXPkOvNl2YKosmzkdqjFL0auhvk7rvnbgRS26qCg8_iR0SFZQCxDrtrkxX05TO4hTnctcaiEjnRVYK8ZXEUmUZ36silBpfMhrsqGU5gZ8GZXZFAdUiVi20h5qLrBNgsCB_YYkjmnVLN5aYWrnlFUaigjBXoI-oAPP62KqSX1X6vmmkpGcSPgdeFQZba0SQm00NCEdiBvm3NC5WVJefDGM4xKnacTiDrysDf_vTfnkn6Sewo2QMklMAPw-tNbLjX6G-G6dd2AvHsd4lYN3HWgfHo1OPnbMtxK8Dpns2DH-CwhDS_k
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4ty2HhgHgTWMC8BJdoE9txnANCS6Fq2e1eKFJvJnHdglSS0ger_VH8R2by2pbXbU-V6klke96x5xuA51HkJKUZPgGR-FJL6Seax34coDKhvNg4pWrkwYnqfZIfRtFoB342tTB0rbKxiaWhHheWvpEfcCXQ1SUYAb-Zf_epaxSdrjYtNCqxOHJnp5iyLV_33yF_X3DefT_s9Py6q4BvI6FWPiYIaZIKzAMmSeAwHkqSMddKKBdicKLGoYv4RMc6FBhKa_RuGaZY6KUDkcgxOj987SW4LEUgCao_Hp3ndwLTvQq8SIgkOFhyHqCLoEKpDZdXdgb40_5vOMDfL2furfN5enaazmYbnq97Ha7VISs7rGTsBuy4_CZc3QAyvAWfO0X-oxZiJCXEj_KnvGK-ZBgYs49uWt5Myqes4xaOzjvSBesS3zHjZ1TmwgbpNKeiSkaHCoQE4lj_W9lG6TYML2KX78BuXuTuHjDciYhnSumAUkVrtbRyIscZmsfIRjbw4FWzu8bWuObUXmNmML8hRpiWER48bUnnFZjH34jeEotaAsLfLv8oFlNTq7Nxmc60U1q4dIJPxTgVlYgsDWI74dbhS14Sgw1ZCZyMTetiB1wS4W2ZQ1y5wj0JQw_2tyhRu-32cCMiprYuS3OuCx48aYfpSeJd7op1RaMjguP34G4lUe2SMOgOcUR7EG_J2taat0fyr19K7HGNBhujcg-etVL57628___JP4a93nBwbI77J0cP4AqnwpLyPvw-7K4Wa_cQw71V9qhUMgbmgpX6F341YJ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFSKBOUBcRZDgeUSvFixd-31-gGhkhI1lFZItFLeFnu9DkjBDjmo-mn8HTO-mnC99SlSdmztzj3eOQCeh6ENKMxwqRGJG6ggcGPFIzfyUJiQX0yUUDXy4ZHcPwnej8LRBvxsa2EorbLViZWizkpD38h7XAo0dTF6wL28SYv4uDd4M_3u0gQpumltx2nULHJgz04xfJu_Hu4hrV9wPnh33N93mwkDrgmFXLgYLCRxIjAmyGPPom8UxxlXUkjro6MiM9-GPFeR8gW61QotXYrhFlpsT8RBhoYQX3sJLkciEJRNFo3OYz2BoV_dyEiI2OvNOffQXFDR1Ir5q6YE_GkLVozh74maV5fFNDk7TSaTFSs4uAHXG_eV7db8dhM2bHELrq00NbwNn_tl8aNhaASl7h_VT5VuPmfoJLNPdlxlKRVj1rczS3cfyYwNiAcw-mdU8sIOk3FBBZaMLhioK4hlw2_VSKU7cHwRWL4Lm0VZ2HvAEBMhT6VUHoWNxqjABHmQpagqQxMaz4FXLXa1aXqc06iNicZYhwihO0I48LQDndaNPf4G9JZI1AFQL-7qj3I21o1oa5uqVFmphE1yfCrCrchYpIkXmZwbiy95SQTWpDFwMyZpCh_wSNR7S-_iySXixPcd2FmDREk368sti-hG08z1uVw48KRbpieJdoUtlzWMCqk1vwPbNUd1R0IH3McV5UC0xmtrZ15fKb5-qfqQK1Te6KE78Kzjyn-j8v7_N_8YrqA46w_Do4MHsMWpxqRKjd-BzcVsaR-i57dIH1UyxkBfsEz_AlH8ZNo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5B9wAceC8EFhQeElyyefgR54RKRbUg7QqJXWk5ZR3HKStKWvWxCH49M4kbNQtISJyq1uMoY4_H39QznwFeCmE5hRkBEZEEXHEeZCpJgzTCxYT2YlJN1ciHR_LghH84FafuntOlS6vEUPy8cdJUhRXgDhaFSRLyMGZchPOyenPh_kpCqM8FMVKxq7Aj6YRpADsnRx-Hn5uaIte55RNiGNyHS_zK6TG9Xagh6__dJW_tSZfzJa-t67n-8V1Pp1ub0fgWnG3UaHNQvu6vV8W--XmJ4fE_9LwNNx1Q9YetZd2BK7a-Cze26AvvwdloVl8400VR4vloPprE8qWPcNj_ZCdNPlI98Ud2YemUQy_8Mc02xvk-Fbf4h3pSUymlT0cJxP9h_fffmsuT7sPx-N3x6CBwNzYERjC5CjD40plmGGNVWWQRa2ZZmSjJpI0R-MkytiKpVKpihmGKQuRQYPiKCChiGS8RWOzCoJ7V9iH4ONgiKaRUEQWIxihueMXLAp2iMMJEHrzeTGBuHJs5XaoxzTGqobnOu7n24HknOm8pPP4k9JasoBMg1u3mh9likrtFnNtCFcpKxayusFeKryIzVugoNVViLD7kFdlQTr4BX8ZoV-KAKhHLVj5EzSWOSRx7sNeTxDVt-s0bK8ydT1nmiWQI9jKMAT141jVTT5q72s7WrYwSRMLvwYPWaDuVEGqjoUnlQdoz557O_Zb6_EvDOK7QTSMW9-BFZ_h_H8pH_yT1GK4nVEnSJMDvwWC1WNsniO9WxVO3hn8B6rhGww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Neural+Networks+for+Segmenting+Cerebellar+Fissures+from+Magnetic+Resonance+Imaging&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cabeza-Ruiz%2C+Robin&rft.au=Vel%C3%A1zquez-P%C3%A9rez%2C+Luis&rft.au=Linares-Barranco%2C+Alejandro&rft.au=P%C3%A9rez-Rodr%C3%ADguez%2C+Roberto&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=4&rft_id=info:doi/10.3390%2Fs22041345&rft.externalDocID=A781609911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon