Convolutional Neural Networks for Segmenting Cerebellar Fissures from Magnetic Resonance Imaging
The human cerebellum plays an important role in coordination tasks. Diseases such as spinocerebellar ataxias tend to cause severe damage to the cerebellum, leading patients to a progressive loss of motor coordination. The detection of such damages can help specialists to approximate the state of the...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 4; p. 1345 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.02.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22041345 |
Cover
Abstract | The human cerebellum plays an important role in coordination tasks. Diseases such as spinocerebellar ataxias tend to cause severe damage to the cerebellum, leading patients to a progressive loss of motor coordination. The detection of such damages can help specialists to approximate the state of the disease, as well as to perform statistical analysis, in order to propose treatment therapies for the patients. Manual segmentation of such patterns from magnetic resonance imaging is a very difficult and time-consuming task, and is not a viable solution if the number of images to process is relatively large. In recent years, deep learning techniques such as convolutional neural networks (CNNs or convnets) have experienced an increased development, and many researchers have used them to automatically segment medical images. In this research, we propose the use of convolutional neural networks for automatically segmenting the cerebellar fissures from brain magnetic resonance imaging. Three models are presented, based on the same CNN architecture, for obtaining three different binary masks: fissures, cerebellum with fissures, and cerebellum without fissures. The models perform well in terms of precision and efficiency. Evaluation results show that convnets can be trained for such purposes, and could be considered as additional tools in the diagnosis and characterization of neurodegenerative diseases. |
---|---|
AbstractList | The human cerebellum plays an important role in coordination tasks. Diseases such as spinocerebellar ataxias tend to cause severe damage to the cerebellum, leading patients to a progressive loss of motor coordination. The detection of such damages can help specialists to approximate the state of the disease, as well as to perform statistical analysis, in order to propose treatment therapies for the patients. Manual segmentation of such patterns from magnetic resonance imaging is a very difficult and time-consuming task, and is not a viable solution if the number of images to process is relatively large. In recent years, deep learning techniques such as convolutional neural networks (CNNs or convnets) have experienced an increased development, and many researchers have used them to automatically segment medical images. In this research, we propose the use of convolutional neural networks for automatically segmenting the cerebellar fissures from brain magnetic resonance imaging. Three models are presented, based on the same CNN architecture, for obtaining three different binary masks: fissures, cerebellum with fissures, and cerebellum without fissures. The models perform well in terms of precision and efficiency. Evaluation results show that convnets can be trained for such purposes, and could be considered as additional tools in the diagnosis and characterization of neurodegenerative diseases. The human cerebellum plays an important role in coordination tasks. Diseases such as spinocerebellar ataxias tend to cause severe damage to the cerebellum, leading patients to a progressive loss of motor coordination. The detection of such damages can help specialists to approximate the state of the disease, as well as to perform statistical analysis, in order to propose treatment therapies for the patients. Manual segmentation of such patterns from magnetic resonance imaging is a very difficult and time-consuming task, and is not a viable solution if the number of images to process is relatively large. In recent years, deep learning techniques such as convolutional neural networks (CNNs or convnets) have experienced an increased development, and many researchers have used them to automatically segment medical images. In this research, we propose the use of convolutional neural networks for automatically segmenting the cerebellar fissures from brain magnetic resonance imaging. Three models are presented, based on the same CNN architecture, for obtaining three different binary masks: fissures, cerebellum with fissures, and cerebellum without fissures. The models perform well in terms of precision and efficiency. Evaluation results show that convnets can be trained for such purposes, and could be considered as additional tools in the diagnosis and characterization of neurodegenerative diseases.The human cerebellum plays an important role in coordination tasks. Diseases such as spinocerebellar ataxias tend to cause severe damage to the cerebellum, leading patients to a progressive loss of motor coordination. The detection of such damages can help specialists to approximate the state of the disease, as well as to perform statistical analysis, in order to propose treatment therapies for the patients. Manual segmentation of such patterns from magnetic resonance imaging is a very difficult and time-consuming task, and is not a viable solution if the number of images to process is relatively large. In recent years, deep learning techniques such as convolutional neural networks (CNNs or convnets) have experienced an increased development, and many researchers have used them to automatically segment medical images. In this research, we propose the use of convolutional neural networks for automatically segmenting the cerebellar fissures from brain magnetic resonance imaging. Three models are presented, based on the same CNN architecture, for obtaining three different binary masks: fissures, cerebellum with fissures, and cerebellum without fissures. The models perform well in terms of precision and efficiency. Evaluation results show that convnets can be trained for such purposes, and could be considered as additional tools in the diagnosis and characterization of neurodegenerative diseases. |
Audience | Academic |
Author | Linares-Barranco, Alejandro Cabeza-Ruiz, Robin Pérez-Rodríguez, Roberto Velázquez-Pérez, Luis |
AuthorAffiliation | 1 CAD/CAM Study Centre, University of Holguín, Holguín 80100, Cuba; roberto.perez@uho.edu.cu 3 Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín 80100, Cuba 5 Escuela Politécnica Superior (EPS), University of Seville, 41011 Seville, Spain 4 Robotics and Tech. of Computers Lab, University of Seville, 41012 Seville, Spain; alinares@us.es 2 Cuban Academy of Sciences, Havana 10200, Cuba; velazq63@gmail.com 6 Smart Computer Systems Research and Engineering Lab (SCORE), Research Institute of Computer Engineering (I3US), University of Seville, 41012 Seville, Spain |
AuthorAffiliation_xml | – name: 3 Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín 80100, Cuba – name: 4 Robotics and Tech. of Computers Lab, University of Seville, 41012 Seville, Spain; alinares@us.es – name: 6 Smart Computer Systems Research and Engineering Lab (SCORE), Research Institute of Computer Engineering (I3US), University of Seville, 41012 Seville, Spain – name: 1 CAD/CAM Study Centre, University of Holguín, Holguín 80100, Cuba; roberto.perez@uho.edu.cu – name: 5 Escuela Politécnica Superior (EPS), University of Seville, 41011 Seville, Spain – name: 2 Cuban Academy of Sciences, Havana 10200, Cuba; velazq63@gmail.com |
Author_xml | – sequence: 1 givenname: Robin orcidid: 0000-0003-4719-8264 surname: Cabeza-Ruiz fullname: Cabeza-Ruiz, Robin – sequence: 2 givenname: Luis surname: Velázquez-Pérez fullname: Velázquez-Pérez, Luis – sequence: 3 givenname: Alejandro orcidid: 0000-0002-6056-740X surname: Linares-Barranco fullname: Linares-Barranco, Alejandro – sequence: 4 givenname: Roberto orcidid: 0000-0001-5741-5168 surname: Pérez-Rodríguez fullname: Pérez-Rodríguez, Roberto |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35214268$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksFu1DAQhiNURNuFAy-AInEBpG3tOHacC1K1orBSAQl6N44zCV4Se7GTVn17Jk1ZulWFcpho_M3vmd9znBw47yBJXlJywlhJTmOWkZyynD9Jjmie5UuJiYN7_4fJcYwbQjLGmHyWHDKe4ZmQR8mPlXdXvhsH653u0i8whtswXPvwK6aND-l3aHtwg3VtuoIAFXSdDum5jXEMgEjwffpZtw4Ga9JvEFHIGUjXvW6x5nnytNFdhBd3cZFcnn-4XH1aXnz9uF6dXSwNZ2JYFlToUjNK86YkQDkpyzqTggmgORWipsCzRhaSsoJLie1XOclkLggr81pQtkjWs2zt9UZtg-11uFFeW3Wb8KFVOmCDHSioZCVBSAa6QdcKyY0oWaVJYZrMAEetd7PW6Lb65lp33U6QEjU5rnaOI_x-hrdj1UNt0Cl0cK-D_RNnf6rWXylZCkbKSeDNnUDwv0eIg-ptNJPJDvwYVSbwzXg-hUXy-gG68WPAd5spWpQZ5_-oVuO01jUe7zWTqDpDAwVaSyfDTh6h8Kuhtwb3q7GY3yt4dX_Q3YR_dwmBtzNggo8xQPNf104fsMYOelpC7MJ2j1T8AT-_5Ig |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3243178 crossref_primary_10_1002_mds_29934 crossref_primary_10_1016_j_compbiomed_2023_107777 crossref_primary_10_3390_brainsci14010053 crossref_primary_10_1002_ana_26573 |
Cites_doi | 10.1109/42.816072 10.1109/CVPR.2017.437 10.1016/S0031-3203(96)00142-2 10.1109/TMI.2010.2046908 10.1038/s41572-019-0074-3 10.5220/0008494005280535 10.1073/pnas.1415122111 10.1002/hbm.10123 10.1016/j.cviu.2017.04.002 10.1109/TMI.2018.2835303 10.1109/CVPR.2015.7298594 10.1016/j.neuroimage.2018.08.003 10.1016/j.neuroimage.2012.10.064 10.1016/j.neuroimage.2016.11.003 10.3390/app10165683 10.1016/j.neuroimage.2017.01.073 10.54294/uvnhin 10.1016/S1053-8119(09)70884-5 10.1016/j.neuroimage.2014.09.056 10.1016/j.neuroimage.2007.11.034 10.3390/s21041122 10.1007/978-3-319-24574-4_28 10.1186/s12880-015-0068-x 10.1111/j.1468-1331.2005.01011.x 10.1109/ACCESS.2020.2998537 10.1002/hbm.22529 10.1016/j.patrec.2005.10.010 10.1016/j.media.2020.101639 10.1002/acn3.504 10.1109/EMBC.2016.7591443 10.1007/s00401-012-1000-x 10.1109/TSMC.1979.4310076 10.1109/3DV.2016.79 10.1109/IST.2017.8261460 10.1016/j.neuroimage.2009.01.045 10.1016/j.neuroimage.2017.04.039 10.1109/ACCESS.2020.3008868 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.3390/s22041345 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_eb8b8e683eaf413785c693ba07cf2ce5 10.3390/s22041345 PMC8963095 A781609911 35214268 10_3390_s22041345 |
Genre | Journal Article |
GeographicLocations | Mexico |
GeographicLocations_xml | – name: Mexico |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c536t-716a9a3114f90e15099d28636e14166d1e52f878137588521b4028460394d613 |
IEDL.DBID | UNPAY |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:26 EDT 2025 Wed Oct 01 16:16:25 EDT 2025 Tue Sep 30 16:56:12 EDT 2025 Wed Oct 01 14:19:26 EDT 2025 Fri Jul 25 20:40:47 EDT 2025 Tue Jun 17 22:24:33 EDT 2025 Tue Jun 10 21:12:58 EDT 2025 Wed Feb 19 02:26:37 EST 2025 Wed Oct 01 03:21:24 EDT 2025 Thu Apr 24 23:00:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | cerebellar fissures magnetic resonance imaging neurodegenerative disease convolutional neural network cerebellum segmentation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-716a9a3114f90e15099d28636e14166d1e52f878137588521b4028460394d613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4719-8264 0000-0002-6056-740X 0000-0001-5741-5168 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/22/4/1345/pdf?version=1644545473 |
PMID | 35214268 |
PQID | 2633179255 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eb8b8e683eaf413785c693ba07cf2ce5 unpaywall_primary_10_3390_s22041345 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8963095 proquest_miscellaneous_2633854263 proquest_journals_2633179255 gale_infotracmisc_A781609911 gale_infotracacademiconefile_A781609911 pubmed_primary_35214268 crossref_primary_10_3390_s22041345 crossref_citationtrail_10_3390_s22041345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kim (ref_9) 2020; 8 Zeiler (ref_13) 2014; 12 Fonov (ref_33) 2009; 47 Fawcett (ref_47) 2006; 27 Chen (ref_20) 2018; 37 ref_18 ref_17 ref_16 ref_15 Han (ref_4) 2019; 10949 Bradley (ref_50) 1997; 30 ref_25 ref_24 ref_23 ref_22 (ref_14) 2020; 8 ref_21 Cocosco (ref_44) 1997; 5 Tustison (ref_32) 2010; 29 Han (ref_1) 2020; 218 ref_28 ref_27 ref_26 Kennedy (ref_42) 2015; 104 Chan (ref_43) 2014; 111 Inagaki (ref_30) 2005; 12 Gousias (ref_39) 2008; 40 Dolz (ref_11) 2018; 170 Kwan (ref_45) 1999; 18 Otsu (ref_35) 1979; 9 Hammers (ref_38) 2003; 19 Baumela (ref_36) 2013; 36 (ref_10) 2016; 10 ref_34 Diedrichsen (ref_7) 2009; 46 Vijaymeena (ref_49) 2016; 3 ref_37 Carass (ref_6) 2018; 183 Romero (ref_5) 2016; 147 Kansal (ref_2) 2017; 140 Faillenot (ref_40) 2017; 150 ref_46 Reetz (ref_29) 2018; 5 Klockgether (ref_3) 2019; 5 Thyreau (ref_12) 2020; 61 Mennes (ref_41) 2013; 15 Weier (ref_8) 2014; 35 ref_48 Milletari (ref_19) 2016; 164 Seidel (ref_31) 2012; 124 |
References_xml | – volume: 18 start-page: 1085 year: 1999 ident: ref_45 article-title: MRI Simulation-Based Evaluation of Image-Processing and Classification Methods publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.816072 – ident: ref_26 – ident: ref_24 doi: 10.1109/CVPR.2017.437 – volume: 30 start-page: 1145 year: 1997 ident: ref_50 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(96)00142-2 – volume: 10949 start-page: 109490K year: 2019 ident: ref_4 article-title: Cerebellum Parcellation with Convolutional Neural Networks publication-title: Proc. SPIE Int. Soc. Opt. Eng. – volume: 12 start-page: 818 year: 2014 ident: ref_13 article-title: Visualizing and Understanding Convolutional Networks publication-title: Anal. Chem. Res. – volume: 29 start-page: 1310 year: 2010 ident: ref_32 article-title: N4ITK: Improved N3 Bias Correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: 5 start-page: 24 year: 2019 ident: ref_3 article-title: Spinocerebellar ataxia publication-title: Nat. Rev. Dis. Primers doi: 10.1038/s41572-019-0074-3 – ident: ref_17 doi: 10.5220/0008494005280535 – volume: 218 start-page: 116819 year: 2020 ident: ref_1 article-title: Automatic Cerebellum Anatomical Parcellation using U-Net with Locally Constrained Optimization publication-title: IEEE Trans. Med. Imaging – volume: 111 start-page: E4997 year: 2014 ident: ref_43 article-title: Decreased segregation of brain systems across the healthy adult lifespan publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1415122111 – volume: 19 start-page: 224 year: 2003 ident: ref_38 article-title: Three-Dimensional Maximum Probability Atlas of the Human Brain, with Particular Reference to the Temporal Lobe publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10123 – volume: 164 start-page: 92 year: 2016 ident: ref_19 article-title: Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput publication-title: Vis. Image Underst. doi: 10.1016/j.cviu.2017.04.002 – volume: 37 start-page: 1 year: 2018 ident: ref_20 article-title: DRINet for Medical Image Segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2835303 – ident: ref_23 doi: 10.1109/CVPR.2015.7298594 – volume: 183 start-page: 150 year: 2018 ident: ref_6 article-title: Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.08.003 – volume: 15 start-page: 683 year: 2013 ident: ref_41 article-title: Making data sharing work: The FCP/INDI experience publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.10.064 – volume: 147 start-page: 916 year: 2016 ident: ref_5 article-title: CERES: A new cerebellum lobule segmentation method publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.003 – ident: ref_15 doi: 10.3390/app10165683 – ident: ref_27 – volume: 150 start-page: 88 year: 2017 ident: ref_40 article-title: Macroanatomy and 3D Probabilistic Atlas of the Human Insula publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.073 – ident: ref_34 doi: 10.54294/uvnhin – volume: 47 start-page: S102 year: 2009 ident: ref_33 article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood publication-title: Neuroimage doi: 10.1016/S1053-8119(09)70884-5 – volume: 104 start-page: 21 year: 2015 ident: ref_42 article-title: Age Trajectories of Functional Activation Under Conditions of Low and High Processing Demands: An Adult Lifespan fMRI Study of the Aging Brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.09.056 – volume: 40 start-page: 672 year: 2008 ident: ref_39 article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.11.034 – ident: ref_28 – ident: ref_16 doi: 10.3390/s21041122 – ident: ref_22 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_48 doi: 10.1186/s12880-015-0068-x – volume: 5 start-page: 425 year: 1997 ident: ref_44 article-title: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database publication-title: Neuroimage – volume: 12 start-page: 725 year: 2005 ident: ref_30 article-title: Positron emission tomography and magnetic resonance imaging in spinocerebellar ataxia type 2: A study of symptomatic and asymptomatic individuals publication-title: Eur. J. Neurol. doi: 10.1111/j.1468-1331.2005.01011.x – volume: 36 start-page: 2 year: 2013 ident: ref_36 article-title: A morphological approach to curvature-based evolution of curves and surfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: ref_37 – volume: 10 start-page: 1 year: 2016 ident: ref_10 article-title: volBrain: An Online MRI Brain Volumetry System publication-title: Front. Neuroinform. – volume: 8 start-page: 101550 year: 2020 ident: ref_9 article-title: Deep Cerebellar Nuclei Segmentation via Semi-Supervised Deep Context-Aware Learning from 7T Diffusion MRI publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2998537 – ident: ref_25 – volume: 35 start-page: 5026 year: 2014 ident: ref_8 article-title: Rapid Automatic Segmentation of the Human Cerebellum and its Lobules (RASCAL)—Implementation and Application of the Patch-based Label-fusion Technique with a Template Library to Segment the Human Cerebellum publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22529 – volume: 27 start-page: 861 year: 2006 ident: ref_47 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 61 start-page: 101639 year: 2020 ident: ref_12 article-title: Learning a cortical parcellation of the brain robust to the MRI segmentation with convolutional neural networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101639 – volume: 140 start-page: 707 year: 2017 ident: ref_2 article-title: Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration publication-title: Brain – volume: 5 start-page: 128 year: 2018 ident: ref_29 article-title: Brain atrophy measures in preclinical and manifest spinocerebellar ataxia type 2 publication-title: Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.504 – ident: ref_21 doi: 10.1109/EMBC.2016.7591443 – volume: 124 start-page: 1 year: 2012 ident: ref_31 article-title: Brain pathology of spinocerebellar ataxias publication-title: Acta Neuropathol. doi: 10.1007/s00401-012-1000-x – volume: 9 start-page: 62 year: 1979 ident: ref_35 article-title: A Threshold Selection Method from Gray-Level Histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – ident: ref_46 doi: 10.1109/3DV.2016.79 – volume: 3 start-page: 19 year: 2016 ident: ref_49 article-title: A survey on similarity measures in text mining publication-title: Mach. Learn. Appl. Int. J. – ident: ref_18 doi: 10.1109/IST.2017.8261460 – volume: 46 start-page: 39 year: 2009 ident: ref_7 article-title: A probabilistic MR atlas of the human cerebellum publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.045 – volume: 170 start-page: 456 year: 2018 ident: ref_11 article-title: 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.039 – volume: 8 start-page: 128613 year: 2020 ident: ref_14 article-title: PROMETEO: A CNN-Based Computer-Aided Diagnosis System for WSI Prostate Cancer Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008868 |
SSID | ssj0023338 |
Score | 2.3810315 |
Snippet | The human cerebellum plays an important role in coordination tasks. Diseases such as spinocerebellar ataxias tend to cause severe damage to the cerebellum,... |
SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1345 |
SubjectTerms | Alzheimer's disease Atrophy Automation Brain Brain research Care and treatment cerebellar fissures Cerebellum - diagnostic imaging cerebellum segmentation convolutional neural network Datasets Humans Image Processing, Computer-Assisted - methods Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging equipment Nervous system diseases Neural networks Neural Networks, Computer neurodegenerative disease Patients Registration |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXoAD4k1oi8xDgkvUJH7EObYrVgWpXChSb8bxOgvS4q32QdV_3xknGyU8xIXTSuuJFM_DM9_uzGeAN1J6QTAjJSKSVGgh0koXZVpmGEzoL660NI189kmdfhEfL-TF4Kov6glr6YFbxR35WtfaK829bfDALbV0quK1zUrXFM5H9lJMYzsw1UEtjsir5RHiCOqP1kWR4cM0szTIPpGk__ejeJCLfu2TvL0Nl_b6yi4WgyQ0vQ_3uuqRHbdv_QBu-fAQ7g44BR_B18ky_Oz8CUWJfCN-xG7vNcMalX3289gkFOZs4lee_nqwKzYlEyD4ZjRxws7sPNB8I6Pf94mUw7MPP-KNRo_hfPr-fHKadtcopE5ytUkREdnKcgQ-TZV5LACralZoxZXPsRpTs9zLotGlRuVKrTGd14gpsSzJeCVmmO2fwF5YBv8MGGpCFrVSOiPU5pwWTjRiVuNJJZ10WQLvdto1rqMYp5suFgahBhnC9IZI4FUvetnyavxJ6IRM1AsQFXb8Ah3EdA5i_uUgCbwlAxsKWHwZZ7u5A9wSUV-ZY9y5Qp3keQIHI0kMNDde3rmI6QJ9bQrFsQKrEJgl8LJfpifJdsEvt62MlsSMn8DT1qP6LWH9m-OKTqAc-dpoz-OV8P1bpAHXeHZigZzA694r_67K5_9Dlftwp6Dpj9i0fgB7m9XWH2JNtqlfxPC7AVABMpg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOQAHxLMNFGQeElyiJnHiOCdUViwFqVwoUm_GcZwFaess-wDx75lxvGHD67RSPFnZnrcz8xngWVHYnNKMmIBI4lzmeVzJrIzLBJUJ5cWUmrqRT9-Lk4_5u_PiPBy4rUJZ5dYmekPddIbOyI8ywdHVVRgBv1x8jenWKPq6Gq7QuAxXUiSgki45fTMkXBzzrx5NiGNqf7TKsgRtNnUu7fggD9X_p0He8Ui_V0te3biF_vFdz-c7rmh6E26EGJId90y_BZesuw3Xd5AF78CnSee-BalCUoLg8D--5nvFMFJlH-zMlwq5GZvYpaUPEHrJpsQITMEZ9Z2wUz1z1OXI6JSfoDkse3vh7zW6C2fT12eTkzhcphCbgot1jHmRrjTH9KetEothYFU1mRRc2BRjMtGktshaWcqUYwYh0anXmFlicJLwKm_Q59-DPdc5ewAMd6LIaiFkQrmbMTI3eZs3NdqrwhQmieDFdneVCUDjdN_FXGHCQYxQAyMieDKQLnp0jb8RvSIWDQQEiO0fdMuZCvqlbC1raYXkVrf4VolTERWvdVKaNjMW_-Q5MViR2uJkjA7dB7gkAsBSx7hygXuSphEcjihR3cx4eCsiKqj7Sv0SzggeD8P0JvHO2W7T08iC8PEj2O8lalgSRsEpjsgIypGsjdY8HnFfPnswcIkWFMPkCJ4OUvnvrbz__8k_gGsZdXf4ovRD2FsvN_Yhxlzr-pFXrJ-fHCkn priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcoAeEO8aCloeElxc7H15fUCoREQFKVxopd7MerMOSMEpTgL03zOzdqwYisQpUnY28s7M7swX73wD8FwpLwlmxEREEksjZZwbnsVZgpsJ_cVllqqRJx_18an8cKbOdmDTY7NT4PJSaEf9pE6b-eGv7xdvcMO_JsSJkP3VkvMEz2KprsBVDEicnHsi-5cJXIjQ0JpqumKMh0lLMDScOghLgb3_7zN6K0j9eYHy2ro-txc_7Xy-FZ3GN-FGl1ayo9YPbsGOr2_D3hbZ4B34PFrUPzpHQ1Fi5Qgf4Rr4kmHyyj75Wbg9VM_YyDee3knYho3JNojKGZWisImd1VT4yOiPf2Lr8Oz9t9Dq6C6cjN-djI7jrr9C7JTQqxihks2tQERU5YnHzDDPp9xooX2KaZqepl7xymQmFQgqDMb5EsEm5iuJyOUU04B7sFsvar8PDDWheKm1SQjOOWekk5WclniEKadcEsHLjXYL13GPUwuMeYEYhAxR9IaI4Gkvet4Sblwm9JZM1AsQR3b4YtHMim7LFb40pfHaCG8rnJXho-hclDbJXMWdxx95QQYuyLfwYZztChJwScSJVRzhyjXqJE0jOBhI4g50w-GNixQbBy64Fpia5YjYInjSD9NMsl3tF-tWxiiizI_gfutR_ZIwMUaH1SaCbOBrgzUPR-qvXwI_uMFDFTPnCJ71XvlvVT74by08hOucaj_ClfUD2F01a_8IM7JV-Tjst9_ofzCC priority: 102 providerName: Scholars Portal |
Title | Convolutional Neural Networks for Segmenting Cerebellar Fissures from Magnetic Resonance Imaging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35214268 https://www.proquest.com/docview/2633179255 https://www.proquest.com/docview/2633854263 https://pubmed.ncbi.nlm.nih.gov/PMC8963095 https://www.mdpi.com/1424-8220/22/4/1345/pdf?version=1644545473 https://doaj.org/article/eb8b8e683eaf413785c693ba07cf2ce5 |
UnpaywallVersion | publishedVersion |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6x7QE48H4Elio8JLhkm4ftOCfUrbYsSK1WsCuVUzZxnbKipFUfi-DXM-O4UbOAhMQlVeNxlLHH9jfxzGeAV5xrRm6GR0QkHpOMeYkMYy_2cTChvag4o2zk4Ugcn7EPYz6255yubFgluuIXZpKmLCwPVzC_G4Zd1g0ixruLSfH20n5KQqjPODFSRXvQFrTD1IL22eik99nkFNnKFZ9QhM59d4V_GT2msQoZsv7fp-SdNelqvOT1TbnIfnzPZrOdxWhwG863alQxKF8PNuv8QP28wvD4H3regVsWqLq9yrLuwjVd3oObO_SF9-G8Py8vremiKPF8mB8TWL5yEQ67n_TUxCOVU7evl5p2ObKlO6DeRj_fpeQWd5hNS0qldGkrgfg_tPv-mzk86QGcDo5O-8eePbHBUzwSaw-dryzJIvSxisTXiDWTZBJKEQkdIPATk0DzsJCxDCJ0UyQihxzdV0RAfpSwCQKLh9Aq56V-DC42Ng9zIaRPDqJSkilWsEmOkyJXXPkOvNl2YKosmzkdqjFL0auhvk7rvnbgRS26qCg8_iR0SFZQCxDrtrkxX05TO4hTnctcaiEjnRVYK8ZXEUmUZ36silBpfMhrsqGU5gZ8GZXZFAdUiVi20h5qLrBNgsCB_YYkjmnVLN5aYWrnlFUaigjBXoI-oAPP62KqSX1X6vmmkpGcSPgdeFQZba0SQm00NCEdiBvm3NC5WVJefDGM4xKnacTiDrysDf_vTfnkn6Sewo2QMklMAPw-tNbLjX6G-G6dd2AvHsd4lYN3HWgfHo1OPnbMtxK8Dpns2DH-CwhDS_k |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4ty2HhgHgTWMC8BJdoE9txnANCS6Fq2e1eKFJvJnHdglSS0ger_VH8R2by2pbXbU-V6klke96x5xuA51HkJKUZPgGR-FJL6Seax34coDKhvNg4pWrkwYnqfZIfRtFoB342tTB0rbKxiaWhHheWvpEfcCXQ1SUYAb-Zf_epaxSdrjYtNCqxOHJnp5iyLV_33yF_X3DefT_s9Py6q4BvI6FWPiYIaZIKzAMmSeAwHkqSMddKKBdicKLGoYv4RMc6FBhKa_RuGaZY6KUDkcgxOj987SW4LEUgCao_Hp3ndwLTvQq8SIgkOFhyHqCLoEKpDZdXdgb40_5vOMDfL2furfN5enaazmYbnq97Ha7VISs7rGTsBuy4_CZc3QAyvAWfO0X-oxZiJCXEj_KnvGK-ZBgYs49uWt5Myqes4xaOzjvSBesS3zHjZ1TmwgbpNKeiSkaHCoQE4lj_W9lG6TYML2KX78BuXuTuHjDciYhnSumAUkVrtbRyIscZmsfIRjbw4FWzu8bWuObUXmNmML8hRpiWER48bUnnFZjH34jeEotaAsLfLv8oFlNTq7Nxmc60U1q4dIJPxTgVlYgsDWI74dbhS14Sgw1ZCZyMTetiB1wS4W2ZQ1y5wj0JQw_2tyhRu-32cCMiprYuS3OuCx48aYfpSeJd7op1RaMjguP34G4lUe2SMOgOcUR7EG_J2taat0fyr19K7HGNBhujcg-etVL57628___JP4a93nBwbI77J0cP4AqnwpLyPvw-7K4Wa_cQw71V9qhUMgbmgpX6F341YJ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFSKBOUBcRZDgeUSvFixd-31-gGhkhI1lFZItFLeFnu9DkjBDjmo-mn8HTO-mnC99SlSdmztzj3eOQCeh6ENKMxwqRGJG6ggcGPFIzfyUJiQX0yUUDXy4ZHcPwnej8LRBvxsa2EorbLViZWizkpD38h7XAo0dTF6wL28SYv4uDd4M_3u0gQpumltx2nULHJgz04xfJu_Hu4hrV9wPnh33N93mwkDrgmFXLgYLCRxIjAmyGPPom8UxxlXUkjro6MiM9-GPFeR8gW61QotXYrhFlpsT8RBhoYQX3sJLkciEJRNFo3OYz2BoV_dyEiI2OvNOffQXFDR1Ir5q6YE_GkLVozh74maV5fFNDk7TSaTFSs4uAHXG_eV7db8dhM2bHELrq00NbwNn_tl8aNhaASl7h_VT5VuPmfoJLNPdlxlKRVj1rczS3cfyYwNiAcw-mdU8sIOk3FBBZaMLhioK4hlw2_VSKU7cHwRWL4Lm0VZ2HvAEBMhT6VUHoWNxqjABHmQpagqQxMaz4FXLXa1aXqc06iNicZYhwihO0I48LQDndaNPf4G9JZI1AFQL-7qj3I21o1oa5uqVFmphE1yfCrCrchYpIkXmZwbiy95SQTWpDFwMyZpCh_wSNR7S-_iySXixPcd2FmDREk368sti-hG08z1uVw48KRbpieJdoUtlzWMCqk1vwPbNUd1R0IH3McV5UC0xmtrZ15fKb5-qfqQK1Te6KE78Kzjyn-j8v7_N_8YrqA46w_Do4MHsMWpxqRKjd-BzcVsaR-i57dIH1UyxkBfsEz_AlH8ZNo |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5B9wAceC8EFhQeElyyefgR54RKRbUg7QqJXWk5ZR3HKStKWvWxCH49M4kbNQtISJyq1uMoY4_H39QznwFeCmE5hRkBEZEEXHEeZCpJgzTCxYT2YlJN1ciHR_LghH84FafuntOlS6vEUPy8cdJUhRXgDhaFSRLyMGZchPOyenPh_kpCqM8FMVKxq7Aj6YRpADsnRx-Hn5uaIte55RNiGNyHS_zK6TG9Xagh6__dJW_tSZfzJa-t67n-8V1Pp1ub0fgWnG3UaHNQvu6vV8W--XmJ4fE_9LwNNx1Q9YetZd2BK7a-Cze26AvvwdloVl8400VR4vloPprE8qWPcNj_ZCdNPlI98Ud2YemUQy_8Mc02xvk-Fbf4h3pSUymlT0cJxP9h_fffmsuT7sPx-N3x6CBwNzYERjC5CjD40plmGGNVWWQRa2ZZmSjJpI0R-MkytiKpVKpihmGKQuRQYPiKCChiGS8RWOzCoJ7V9iH4ONgiKaRUEQWIxihueMXLAp2iMMJEHrzeTGBuHJs5XaoxzTGqobnOu7n24HknOm8pPP4k9JasoBMg1u3mh9likrtFnNtCFcpKxayusFeKryIzVugoNVViLD7kFdlQTr4BX8ZoV-KAKhHLVj5EzSWOSRx7sNeTxDVt-s0bK8ydT1nmiWQI9jKMAT141jVTT5q72s7WrYwSRMLvwYPWaDuVEGqjoUnlQdoz557O_Zb6_EvDOK7QTSMW9-BFZ_h_H8pH_yT1GK4nVEnSJMDvwWC1WNsniO9WxVO3hn8B6rhGww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Neural+Networks+for+Segmenting+Cerebellar+Fissures+from+Magnetic+Resonance+Imaging&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cabeza-Ruiz%2C+Robin&rft.au=Vel%C3%A1zquez-P%C3%A9rez%2C+Luis&rft.au=Linares-Barranco%2C+Alejandro&rft.au=P%C3%A9rez-Rodr%C3%ADguez%2C+Roberto&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=4&rft_id=info:doi/10.3390%2Fs22041345&rft.externalDocID=A781609911 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |