Identifying lupus patients in electronic health records: Development and validation of machine learning algorithms and application of rule-based algorithms
To utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate data-driven SLE EHR algorithms and assessed performance of existing rule-based algorithms. We randomly selected subjects with ≥ 1 SLE ICD-9/10 c...
Saved in:
| Published in | Seminars in arthritis and rheumatism Vol. 49; no. 1; pp. 84 - 90 |
|---|---|
| Main Authors | , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.08.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0049-0172 1532-866X 1532-866X |
| DOI | 10.1016/j.semarthrit.2019.01.002 |
Cover
| Abstract | To utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate data-driven SLE EHR algorithms and assessed performance of existing rule-based algorithms.
We randomly selected subjects with ≥ 1 SLE ICD-9/10 codes from our EHR and identified gold standard definite and probable SLE cases by chart review, based on 1997 ACR or 2012 SLICC Classification Criteria. From a training set, we extracted coded and narrative concepts using natural language processing and generated algorithms using penalized logistic regression to classify definite or definite/probable SLE. We assessed predictive characteristics in internal and external cohort validations. We also tested performance characteristics of published rule-based algorithms with pre-specified permutations of ICD-9 codes, laboratory tests and medications in our EHR.
At a specificity of 97%, our machine learning coded algorithm for definite SLE had 90% positive predictive value (PPV) and 64% sensitivity and for definite/probable SLE, 92% PPV and 47% sensitivity. In the external validation, at 97% specificity, the definite/probable algorithm had 94% PPV and 60% sensitivity. Adding NLP concepts did not improve performance metrics. The PPVs of published rule-based algorithms ranged from 45–79% in our EHR.
Our machine learning SLE algorithms performed well in internal and external validation. Rule-based SLE algorithms did not transport as well to our EHR. Unique EHR characteristics, clinical practices and research goals regarding the desired sensitivity and specificity of the case definition must be considered when applying algorithms to identify SLE patients. |
|---|---|
| AbstractList | To utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate data-driven SLE EHR algorithms and assessed performance of existing rule-based algorithms.
We randomly selected subjects with ≥ 1 SLE ICD-9/10 codes from our EHR and identified gold standard definite and probable SLE cases by chart review, based on 1997 ACR or 2012 SLICC Classification Criteria. From a training set, we extracted coded and narrative concepts using natural language processing and generated algorithms using penalized logistic regression to classify definite or definite/probable SLE. We assessed predictive characteristics in internal and external cohort validations. We also tested performance characteristics of published rule-based algorithms with pre-specified permutations of ICD-9 codes, laboratory tests and medications in our EHR.
At a specificity of 97%, our machine learning coded algorithm for definite SLE had 90% positive predictive value (PPV) and 64% sensitivity and for definite/probable SLE, 92% PPV and 47% sensitivity. In the external validation, at 97% specificity, the definite/probable algorithm had 94% PPV and 60% sensitivity. Adding NLP concepts did not improve performance metrics. The PPVs of published rule-based algorithms ranged from 45–79% in our EHR.
Our machine learning SLE algorithms performed well in internal and external validation. Rule-based SLE algorithms did not transport as well to our EHR. Unique EHR characteristics, clinical practices and research goals regarding the desired sensitivity and specificity of the case definition must be considered when applying algorithms to identify SLE patients. To utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate data-driven SLE EHR algorithms and assessed performance of existing rule-based algorithms.OBJECTIVETo utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate data-driven SLE EHR algorithms and assessed performance of existing rule-based algorithms.We randomly selected subjects with ≥ 1 SLE ICD-9/10 codes from our EHR and identified gold standard definite and probable SLE cases by chart review, based on 1997 ACR or 2012 SLICC Classification Criteria. From a training set, we extracted coded and narrative concepts using natural language processing and generated algorithms using penalized logistic regression to classify definite or definite/probable SLE. We assessed predictive characteristics in internal and external cohort validations. We also tested performance characteristics of published rule-based algorithms with pre-specified permutations of ICD-9 codes, laboratory tests and medications in our EHR.METHODSWe randomly selected subjects with ≥ 1 SLE ICD-9/10 codes from our EHR and identified gold standard definite and probable SLE cases by chart review, based on 1997 ACR or 2012 SLICC Classification Criteria. From a training set, we extracted coded and narrative concepts using natural language processing and generated algorithms using penalized logistic regression to classify definite or definite/probable SLE. We assessed predictive characteristics in internal and external cohort validations. We also tested performance characteristics of published rule-based algorithms with pre-specified permutations of ICD-9 codes, laboratory tests and medications in our EHR.At a specificity of 97%, our machine learning coded algorithm for definite SLE had 90% positive predictive value (PPV) and 64% sensitivity and for definite/probable SLE, 92% PPV and 47% sensitivity. In the external validation, at 97% specificity, the definite/probable algorithm had 94% PPV and 60% sensitivity. Adding NLP concepts did not improve performance metrics. The PPVs of published rule-based algorithms ranged from 45-79% in our EHR.RESULTSAt a specificity of 97%, our machine learning coded algorithm for definite SLE had 90% positive predictive value (PPV) and 64% sensitivity and for definite/probable SLE, 92% PPV and 47% sensitivity. In the external validation, at 97% specificity, the definite/probable algorithm had 94% PPV and 60% sensitivity. Adding NLP concepts did not improve performance metrics. The PPVs of published rule-based algorithms ranged from 45-79% in our EHR.Our machine learning SLE algorithms performed well in internal and external validation. Rule-based SLE algorithms did not transport as well to our EHR. Unique EHR characteristics, clinical practices and research goals regarding the desired sensitivity and specificity of the case definition must be considered when applying algorithms to identify SLE patients.CONCLUSIONOur machine learning SLE algorithms performed well in internal and external validation. Rule-based SLE algorithms did not transport as well to our EHR. Unique EHR characteristics, clinical practices and research goals regarding the desired sensitivity and specificity of the case definition must be considered when applying algorithms to identify SLE patients. |
| Author | Castro, Victor M. Gainer, Vivian Liao, Katherine P. Carroll, Robert Feldman, Candace H. Costenbader, Karen H. Jorge, April Hong, Chuan Denny, Joshua C. Crofford, Leslie Cai, Tianxi Karlson, Elizabeth W. Barnado, April Cai, Tianrun |
| AuthorAffiliation | 4 Harvard T.H. Chan School of Public Health 7 Department of Biomedical Informatics, Vanderbilt University Medical Center 3 Division of Rheumatology and Immunology, Vanderbilt University Medical Center 6 Department of Biomedical Informatics, Harvard Medical School 2 Research Information Systems and Computing, Partners Healthcare 5 Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School 1 Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School |
| AuthorAffiliation_xml | – name: 7 Department of Biomedical Informatics, Vanderbilt University Medical Center – name: 1 Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School – name: 2 Research Information Systems and Computing, Partners Healthcare – name: 3 Division of Rheumatology and Immunology, Vanderbilt University Medical Center – name: 5 Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – name: 6 Department of Biomedical Informatics, Harvard Medical School – name: 4 Harvard T.H. Chan School of Public Health |
| Author_xml | – sequence: 1 givenname: April surname: Jorge fullname: Jorge, April email: AMJorge@mgh.harvard.edu organization: Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Bulfinch 165, Boston, MA 02114, United States – sequence: 2 givenname: Victor M. surname: Castro fullname: Castro, Victor M. organization: Research Information Systems and Computing, Partners Healthcare, United States – sequence: 3 givenname: April surname: Barnado fullname: Barnado, April organization: Division of Rheumatology and Immunology, Vanderbilt University Medical Center, United States – sequence: 4 givenname: Vivian surname: Gainer fullname: Gainer, Vivian organization: Research Information Systems and Computing, Partners Healthcare, United States – sequence: 5 givenname: Chuan surname: Hong fullname: Hong, Chuan organization: Harvard T.H. Chan School of Public Health, United States – sequence: 6 givenname: Tianxi surname: Cai fullname: Cai, Tianxi organization: Research Information Systems and Computing, Partners Healthcare, United States – sequence: 7 givenname: Tianrun surname: Cai fullname: Cai, Tianrun organization: Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States – sequence: 8 givenname: Robert surname: Carroll fullname: Carroll, Robert organization: Department of Biomedical Informatics, Vanderbilt University Medical Center, United States – sequence: 9 givenname: Joshua C. surname: Denny fullname: Denny, Joshua C. organization: Department of Biomedical Informatics, Vanderbilt University Medical Center, United States – sequence: 10 givenname: Leslie orcidid: 0000-0002-6347-5738 surname: Crofford fullname: Crofford, Leslie organization: Division of Rheumatology and Immunology, Vanderbilt University Medical Center, United States – sequence: 11 givenname: Karen H. surname: Costenbader fullname: Costenbader, Karen H. organization: Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States – sequence: 12 givenname: Katherine P. orcidid: 0000-0002-4797-3200 surname: Liao fullname: Liao, Katherine P. organization: Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States – sequence: 13 givenname: Elizabeth W. surname: Karlson fullname: Karlson, Elizabeth W. organization: Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States – sequence: 14 givenname: Candace H. surname: Feldman fullname: Feldman, Candace H. organization: Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30665626$$D View this record in MEDLINE/PubMed |
| BookMark | eNqdksFu1DAQhi1URLeFV0A-csliO4kTc0DQQkulSlxA4mY5zmTjxbGDnSzaZ-Fl8XbLtnBacbI0_v_P43_mDJ047wAhTMmSEspfr5cRBhWmPphpyQgVS0KXhLAnaEHLnGU1599O0IKQQmSEVuwUncW4JoRSTqpn6DQnnJec8QX6ddOCm0y3NW6F7TzOEY9qMqkWsXEYLOgpeGc07kHZqccBtA9tfIM_wAasH4ckxcq1eKOsaZPVO-w7PCjdGwfYggpux1Z25VO3_RDv1GocrdEHeZgtZI2K0D4SPkdPO2UjvLg_z9HXq49fLj9lt5-vby7f32a6zPmUFVVdEci1agrBKy4KobuybLjiJaVdzgpFauBQt8BqUVaN1qzWeao0LQgGIj9HYs-d3ai2P5W1cgwm5buVlMhd4HItHwKXu8AloTIFnrxv995xbgZodUojqAe_V0b-feNML1d-IzknoiRFAry6BwT_Y4Y4ycFEDdYqB36OktFK5IIKlifpy8dvHR75M80kqPcCHXyMAbr_-MfBqs10N57UtbHHAC72AEiT2hgIMuq0Rhpak1Zmkq03x0De_QPR1qTlU_Y7bI9D_AaEywIa |
| CitedBy_id | crossref_primary_10_1002_acr_24132 crossref_primary_10_1002_acr_24770 crossref_primary_10_1016_j_autrev_2023_103496 crossref_primary_10_1016_j_autrev_2023_103294 crossref_primary_10_1038_s41596_019_0227_6 crossref_primary_10_1007_s10067_024_07210_0 crossref_primary_10_1136_lupus_2024_001329 crossref_primary_10_1177_09612033231206830 crossref_primary_10_1109_ACCESS_2022_3149477 crossref_primary_10_3389_fphar_2023_1180962 crossref_primary_10_1136_lupus_2022_000790 crossref_primary_10_1109_ACCESS_2020_3016782 crossref_primary_10_1177_1759720X221105978 crossref_primary_10_1016_j_cmpb_2020_105315 crossref_primary_10_1002_acr_24522 crossref_primary_10_1109_ACCESS_2020_3002191 crossref_primary_10_3389_fphar_2021_720694 crossref_primary_10_1136_lupus_2023_001140 crossref_primary_10_1016_j_semarthrit_2022_152106 crossref_primary_10_1093_jamia_ocad054 crossref_primary_10_3390_biomedinformatics4020065 crossref_primary_10_1002_art_42924 crossref_primary_10_1002_acr2_11236 crossref_primary_10_1136_lupus_2021_000488 crossref_primary_10_2174_1386207326666230306114626 crossref_primary_10_1002_acr2_11391 crossref_primary_10_1093_rap_rkaa005 crossref_primary_10_1016_S2665_9913_20_30168_5 crossref_primary_10_2196_40755 crossref_primary_10_1093_jamia_ocad202 crossref_primary_10_2139_ssrn_4154913 crossref_primary_10_3390_diagnostics13121995 crossref_primary_10_1016_j_jbi_2023_104335 crossref_primary_10_1038_s41598_022_20845_w crossref_primary_10_3390_ijms24054514 crossref_primary_10_1016_j_compbiomed_2024_108920 crossref_primary_10_1016_j_semarthrit_2023_152167 crossref_primary_10_1007_s10067_023_06606_8 crossref_primary_10_1155_2022_7167066 crossref_primary_10_1161_JAHA_123_030821 crossref_primary_10_1186_s12911_024_02448_9 crossref_primary_10_1055_a_1938_0436 crossref_primary_10_1002_acr2_11405 crossref_primary_10_1038_s41584_021_00708_w crossref_primary_10_1002_acr2_11447 crossref_primary_10_2215_CJN_07810621 crossref_primary_10_1016_j_clim_2023_109810 crossref_primary_10_1016_j_compbiomed_2023_107757 crossref_primary_10_1016_j_nlp_2024_100123 crossref_primary_10_1002_acr2_11211 crossref_primary_10_1007_s40257_024_00844_5 crossref_primary_10_1371_journal_pone_0274276 crossref_primary_10_1007_s13555_024_01218_9 crossref_primary_10_1177_09612033241238052 crossref_primary_10_1002_acr_25509 crossref_primary_10_1007_s12016_020_08805_6 crossref_primary_10_2196_23934 crossref_primary_10_1177_09612033221114805 |
| Cites_doi | 10.1002/art.34473 10.1198/016214506000000735 10.1002/acr.22989 10.1136/bmj.h1885 10.1001/archophthalmol.2011.371 10.1002/acr.20184 10.1002/art.1780400928 10.1136/amiajnl-2011-000583 10.3390/jpm6010011 10.1093/jamia/ocy154 10.1038/clpt.2008.89 10.1093/jamia/ocw135 10.1093/jamia/ocv034 10.1197/jamia.M3378 10.3899/jrheum.101149 10.1016/S0031-3203(96)00142-2 10.1016/j.vaccine.2013.06.104 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.semarthrit.2019.01.002 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1532-866X |
| EndPage | 90 |
| ExternalDocumentID | 10.1016/j.semarthrit.2019.01.002 PMC6609504 30665626 10_1016_j_semarthrit_2019_01_002 S0049017218306516 |
| Genre | Validation Study Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: P30 AR072577 – fundername: NCATS NIH HHS grantid: UL1 TR002243 – fundername: NCRR NIH HHS grantid: UL1 RR024975 – fundername: NIAMS NIH HHS grantid: K24 AR052403 – fundername: NHGRI NIH HHS grantid: U01 HG008685 – fundername: NIAMS NIH HHS grantid: R01 AR057327 – fundername: NIAMS NIH HHS grantid: T32 AR007258 – fundername: NIAMS NIH HHS grantid: K24 AR066109 – fundername: NIAMS NIH HHS grantid: K08 AR072757 – fundername: NIAMS NIH HHS grantid: P30 AR070253 |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFRF ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV BR6 CAG COF CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDU HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B M29 M41 MO0 N9A O-L O9- OAUVE OI0 OV- OZT P-8 P-9 P2P PC. Q38 QTD R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K UNMZH WUQ XFW Z5R ZGI ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW LCYCR RIG AAYXX CITATION AFCTW CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c536t-47870e3cab49676949cf55b6a6511f324a08e6e8de28957bcc28c3e6ebde92e93 |
| IEDL.DBID | .~1 |
| ISSN | 0049-0172 1532-866X |
| IngestDate | Sun Oct 26 04:15:28 EDT 2025 Tue Sep 30 16:55:14 EDT 2025 Sun Sep 28 07:02:31 EDT 2025 Wed Feb 19 02:27:49 EST 2025 Thu Oct 02 04:27:39 EDT 2025 Thu Apr 24 23:00:58 EDT 2025 Fri Feb 23 02:29:28 EST 2024 Tue Oct 14 19:31:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Systemic lupus erythematosus Algorithms Bioinformatics Electronic health records |
| Language | English |
| License | Copyright © 2019 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c536t-47870e3cab49676949cf55b6a6511f324a08e6e8de28957bcc28c3e6ebde92e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0002-6347-5738 0000-0002-4797-3200 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0049017218306516 |
| PMID | 30665626 |
| PQID | 2179391923 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1016_j_semarthrit_2019_01_002 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6609504 proquest_miscellaneous_2179391923 pubmed_primary_30665626 crossref_primary_10_1016_j_semarthrit_2019_01_002 crossref_citationtrail_10_1016_j_semarthrit_2019_01_002 elsevier_sciencedirect_doi_10_1016_j_semarthrit_2019_01_002 elsevier_clinicalkey_doi_10_1016_j_semarthrit_2019_01_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Seminars in arthritis and rheumatism |
| PublicationTitleAlternate | Semin Arthritis Rheum |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Hochberg (bib0008) 1997; 40 Roden, Pulley, Basford, Bernard, Clayton, Balser (bib0010) 2008; 84 Goryachev, Sordo, Zeng (bib0012) 2006 Bradley (bib0016) 1997; 30 National Institutes of Health. U.S. National Library of Medicine. Unified Medical Language System (UMLS) Terminology Services. 2018; Available from Yu, Liao, Shaw, Gainer, Churchill, Szolovits (bib0011) 2015; 22 Moores, Sathe (bib0001) 2013; 31 Carroll, Thompson, Eyler, Mandelin, Cai, Zink (bib0004) 2012; 19 Murray, Avati, Schmajuk, Yazdany (bib0020) 2019; 26 Liao, Cai, Savova, Murphy, Karlson, Ananthakrishnan (bib0005) 2015; 350 Barnado, Casey, Carroll, Wheless, Denny, Crofford (bib0003) 2017; 69 . Liao, Cai, Gainer, Goryachev, Zeng-treitler, Raychaudhuri (bib0013) 2010; 62 Jiang, Wu, Shah, Priyanka, Denny, Xu (bib0017) 2014; 2014 Bernatsky, Linehan, Hanly (bib0002) 2011; 38 Wright, Bates (bib0006) 2014 Marmor (bib0019) 2012; 130 Zou (bib0015) 2006; 101 Petri, Orbai, Alarcon, Gordon, Merrill, Fortin (bib0009) 2012; 64 Yu, Chakrabortty, Liao, Cai, Ananthakrishnan, Gainer (bib0014) 2017; 24 Gainer, Cagan, Castro, Duey, Ghosh, Goodson (bib0007) 2016; 6 Xu, Stenner, Doan, Johnson, Waitman, Denny (bib0018) 2010; 17 Roden (10.1016/j.semarthrit.2019.01.002_bib0010) 2008; 84 Marmor (10.1016/j.semarthrit.2019.01.002_bib0019) 2012; 130 Xu (10.1016/j.semarthrit.2019.01.002_bib0018) 2010; 17 Murray (10.1016/j.semarthrit.2019.01.002_bib0020) 2019; 26 Barnado (10.1016/j.semarthrit.2019.01.002_bib0003) 2017; 69 Bernatsky (10.1016/j.semarthrit.2019.01.002_bib0002) 2011; 38 Liao (10.1016/j.semarthrit.2019.01.002_bib0005) 2015; 350 Wright (10.1016/j.semarthrit.2019.01.002_bib0006) 2014 Goryachev (10.1016/j.semarthrit.2019.01.002_bib0012) 2006 Moores (10.1016/j.semarthrit.2019.01.002_bib0001) 2013; 31 Gainer (10.1016/j.semarthrit.2019.01.002_bib0007) 2016; 6 Yu (10.1016/j.semarthrit.2019.01.002_bib0014) 2017; 24 Carroll (10.1016/j.semarthrit.2019.01.002_bib0004) 2012; 19 Bradley (10.1016/j.semarthrit.2019.01.002_bib0016) 1997; 30 10.1016/j.semarthrit.2019.01.002_bib0021 Zou (10.1016/j.semarthrit.2019.01.002_bib0015) 2006; 101 Yu (10.1016/j.semarthrit.2019.01.002_bib0011) 2015; 22 Hochberg (10.1016/j.semarthrit.2019.01.002_bib0008) 1997; 40 Liao (10.1016/j.semarthrit.2019.01.002_bib0013) 2010; 62 Petri (10.1016/j.semarthrit.2019.01.002_bib0009) 2012; 64 Jiang (10.1016/j.semarthrit.2019.01.002_bib0017) 2014; 2014 |
| References_xml | – volume: 19 start-page: e162 year: 2012 end-page: e169 ident: bib0004 article-title: Portability of an algorithm to identify rheumatoid arthritis in electronic health records publication-title: J Am Med Inform Assoc – volume: 30 start-page: 1145 year: 1997 end-page: 1159 ident: bib0016 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recognit – volume: 6 year: 2016 ident: bib0007 article-title: The Biobank portal for partners personalized medicine: a query tool for working with consented biobank samples, genotypes, and phenotypes using i2b2 publication-title: J Personal Med – reference: National Institutes of Health. U.S. National Library of Medicine. Unified Medical Language System (UMLS) Terminology Services. 2018; Available from: – volume: 62 start-page: 1120 year: 2010 end-page: 1127 ident: bib0013 article-title: Electronic medical records for discovery research in rheumatoid arthritis publication-title: Arthritis Care Res – volume: 101 start-page: 1418 year: 2006 end-page: 1429 ident: bib0015 article-title: The adaptive lasso and its oracle properties publication-title: J Am Stat Assoc – volume: 130 start-page: 461 year: 2012 end-page: 469 ident: bib0019 article-title: Comparison of screening procedures in hydroxychloroquine toxicity publication-title: Arch Ophthalmol – volume: 2014 start-page: 37 year: 2014 end-page: 42 ident: bib0017 article-title: Extracting and standardizing medication information in clinical text – the MedEx-UIMA system publication-title: AMIA summits on translational science proceedings – volume: 26 start-page: 61 year: 2019 end-page: 65 ident: bib0020 article-title: Automated and flexible identification of complex disease: building a model for systemic lupus erythematosus using noisy labeling publication-title: J Am Med Inform Assoc – reference: . – volume: 17 start-page: 19 year: 2010 end-page: 24 ident: bib0018 article-title: MedEx: a medication information extraction system for clinical narratives publication-title: J Am Med Inform Assoc – volume: 350 start-page: h1885 year: 2015 ident: bib0005 article-title: Development of phenotype algorithms using electronic medical records and incorporating natural language processing publication-title: BMJ – volume: 31 start-page: K62 year: 2013 end-page: K73 ident: bib0001 article-title: A systematic review of validated methods for identifying systemic lupus erythematosus (SLE) using administrative or claims data publication-title: Vaccine – volume: 40 start-page: 1725 year: 1997 ident: bib0008 article-title: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus publication-title: Arthritis Rheum – volume: 64 start-page: 2677 year: 2012 end-page: 2686 ident: bib0009 article-title: Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus publication-title: Arthritis Rheum – year: 2014 ident: bib0006 article-title: Chapter 6: patients, doctors, and information technology at Brigham and women's hospital and partners healthcare publication-title: Clinical decision support: the road to broad adoption – volume: 24 start-page: e143 year: 2017 end-page: e1e9 ident: bib0014 article-title: Surrogate-assisted feature extraction for high-throughput phenotyping publication-title: J Am Med Inform Assoc – volume: 38 start-page: 1612 year: 2011 end-page: 1616 ident: bib0002 article-title: The accuracy of administrative data diagnoses of systemic autoimmune rheumatic diseases publication-title: J Rheumatol – start-page: 931 year: 2006 ident: bib0012 article-title: A suite of natural language processing tools developed for the I2B2 project publication-title: Proceedings of AMIA symposium – volume: 69 start-page: 687 year: 2017 end-page: 693 ident: bib0003 article-title: Developing electronic health record algorithms that accurately identify patients with systemic lupus erythematosus publication-title: Arthritis Care Res – volume: 84 start-page: 362 year: 2008 end-page: 369 ident: bib0010 article-title: Development of a large-scale de-identified DNA biobank to enable personalized medicine publication-title: Clin Pharmacol Ther – volume: 22 start-page: 993 year: 2015 end-page: 1000 ident: bib0011 article-title: Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources publication-title: J Am Med Inform Assoc – volume: 64 start-page: 2677 issue: 8 year: 2012 ident: 10.1016/j.semarthrit.2019.01.002_bib0009 article-title: Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus publication-title: Arthritis Rheum doi: 10.1002/art.34473 – volume: 101 start-page: 1418 year: 2006 ident: 10.1016/j.semarthrit.2019.01.002_bib0015 article-title: The adaptive lasso and its oracle properties publication-title: J Am Stat Assoc doi: 10.1198/016214506000000735 – volume: 69 start-page: 687 issue: 5 year: 2017 ident: 10.1016/j.semarthrit.2019.01.002_bib0003 article-title: Developing electronic health record algorithms that accurately identify patients with systemic lupus erythematosus publication-title: Arthritis Care Res doi: 10.1002/acr.22989 – year: 2014 ident: 10.1016/j.semarthrit.2019.01.002_bib0006 article-title: Chapter 6: patients, doctors, and information technology at Brigham and women's hospital and partners healthcare – volume: 350 start-page: h1885 year: 2015 ident: 10.1016/j.semarthrit.2019.01.002_bib0005 article-title: Development of phenotype algorithms using electronic medical records and incorporating natural language processing publication-title: BMJ doi: 10.1136/bmj.h1885 – volume: 130 start-page: 461 issue: 4 year: 2012 ident: 10.1016/j.semarthrit.2019.01.002_bib0019 article-title: Comparison of screening procedures in hydroxychloroquine toxicity publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2011.371 – volume: 62 start-page: 1120 issue: 8 year: 2010 ident: 10.1016/j.semarthrit.2019.01.002_bib0013 article-title: Electronic medical records for discovery research in rheumatoid arthritis publication-title: Arthritis Care Res doi: 10.1002/acr.20184 – ident: 10.1016/j.semarthrit.2019.01.002_bib0021 – volume: 40 start-page: 1725 issue: 9 year: 1997 ident: 10.1016/j.semarthrit.2019.01.002_bib0008 article-title: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus publication-title: Arthritis Rheum doi: 10.1002/art.1780400928 – volume: 19 start-page: e162 issue: e1 year: 2012 ident: 10.1016/j.semarthrit.2019.01.002_bib0004 article-title: Portability of an algorithm to identify rheumatoid arthritis in electronic health records publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2011-000583 – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.semarthrit.2019.01.002_bib0007 article-title: The Biobank portal for partners personalized medicine: a query tool for working with consented biobank samples, genotypes, and phenotypes using i2b2 publication-title: J Personal Med doi: 10.3390/jpm6010011 – volume: 26 start-page: 61 issue: 1 year: 2019 ident: 10.1016/j.semarthrit.2019.01.002_bib0020 article-title: Automated and flexible identification of complex disease: building a model for systemic lupus erythematosus using noisy labeling publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocy154 – volume: 2014 start-page: 37 year: 2014 ident: 10.1016/j.semarthrit.2019.01.002_bib0017 article-title: Extracting and standardizing medication information in clinical text – the MedEx-UIMA system – volume: 84 start-page: 362 issue: 3 year: 2008 ident: 10.1016/j.semarthrit.2019.01.002_bib0010 article-title: Development of a large-scale de-identified DNA biobank to enable personalized medicine publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2008.89 – volume: 24 start-page: e143 issue: e1 year: 2017 ident: 10.1016/j.semarthrit.2019.01.002_bib0014 article-title: Surrogate-assisted feature extraction for high-throughput phenotyping publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocw135 – volume: 22 start-page: 993 issue: 5 year: 2015 ident: 10.1016/j.semarthrit.2019.01.002_bib0011 article-title: Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocv034 – volume: 17 start-page: 19 issue: 1 year: 2010 ident: 10.1016/j.semarthrit.2019.01.002_bib0018 article-title: MedEx: a medication information extraction system for clinical narratives publication-title: J Am Med Inform Assoc doi: 10.1197/jamia.M3378 – start-page: 931 year: 2006 ident: 10.1016/j.semarthrit.2019.01.002_bib0012 article-title: A suite of natural language processing tools developed for the I2B2 project – volume: 38 start-page: 1612 issue: 8 year: 2011 ident: 10.1016/j.semarthrit.2019.01.002_bib0002 article-title: The accuracy of administrative data diagnoses of systemic autoimmune rheumatic diseases publication-title: J Rheumatol doi: 10.3899/jrheum.101149 – volume: 30 start-page: 1145 issue: 7 year: 1997 ident: 10.1016/j.semarthrit.2019.01.002_bib0016 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recognit doi: 10.1016/S0031-3203(96)00142-2 – volume: 31 start-page: K62 issue: 10 year: 2013 ident: 10.1016/j.semarthrit.2019.01.002_bib0001 article-title: A systematic review of validated methods for identifying systemic lupus erythematosus (SLE) using administrative or claims data publication-title: Vaccine doi: 10.1016/j.vaccine.2013.06.104 |
| SSID | ssj0011607 |
| Score | 2.5079887 |
| Snippet | To utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 84 |
| SubjectTerms | Adult Aged Algorithms Bioinformatics Databases, Factual Electronic Health Records Female Humans Lupus Erythematosus, Systemic - diagnosis Machine Learning Male Middle Aged Natural Language Processing Sensitivity and Specificity Systemic lupus erythematosus |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaWrgRcWN6UBWQkrtnm4bjxclohqhUSKw5UKifLdpw2S5pWm0YI_gp_dsePZFuWQwW3JvW08mQ8Hme--Qahd0qCX4zzNMiKKAlIJAr4REQQjzPwmLmCC8v2eUHPp-TTLJ0doElXC2Ngld73O59uvbW_M_LaHInlaF2WpsyXMHuIyUwD9IjeQYc0hZh8gA6nF1_Ovrn0sgEE2S5OsLph-VM685AeB_Rq9BJ-dwFncYP0YpbF079l-cs-dTsOvQ2nvNfWa_Hzh6iqrb1qcoTm3SwdROX7SbuRJ-rXHwSQ_6-Gh-iBD2fxmRv6CB3o-jG6-9kn7J-g364Q2BZT4apdtw32TK4NLmt804QHu4JM7F4aNad4C82ERZ1jWBGl6_-EVwVeWgyoxr7pxRyLar4C3S6WjR29lZc3w6_aSgdmw863Bj5F08nHrx_OA98PIlBpQjeB4REKdaKEJMwgcwlTRZpKKmDOUQGRoQgzTXWWazhFpmOpVJypBO7IXLNYs-QZGtSrWr-Ap6_CQmiZkbhISSFzBlFjApET_IPQIiZDNO6ePleeLN307Kh4h4q75Dd2w43d8DDiYDdDFPWSa0cYsocM6wyMdwWx4MI57Gp7yL7vZXcsZk_pt509c_ArJlkkar1qGx4bz81M_D9Ez5199_NJTL4OTsKgpR3L7wcYzvLdb-pyYbnLqSE4DEG_cb9G9lbTy38ROkb3zZXDbL5Cg81Vq19DHLmRb7yTuAbT_3lB priority: 102 providerName: Unpaywall |
| Title | Identifying lupus patients in electronic health records: Development and validation of machine learning algorithms and application of rule-based algorithms |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0049017218306516 https://dx.doi.org/10.1016/j.semarthrit.2019.01.002 https://www.ncbi.nlm.nih.gov/pubmed/30665626 https://www.proquest.com/docview/2179391923 https://pubmed.ncbi.nlm.nih.gov/PMC6609504 https://www.sciencedirect.com/science/article/am/pii/S0049017218306516 |
| UnpaywallVersion | publishedVersion |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1532-866X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011607 issn: 0049-0172 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection customDbUrl: eissn: 1532-866X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011607 issn: 0049-0172 databaseCode: ACRLP dateStart: 19950801 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1532-866X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011607 issn: 0049-0172 databaseCode: AIKHN dateStart: 19950801 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1532-866X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011607 issn: 0049-0172 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1532-866X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011607 issn: 0049-0172 databaseCode: AKRWK dateStart: 19710501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECWCBEh7KdKmi7sELNCrGi3UwuZkBA3cBjV6iIH0RFAUFauQZSOyUPTSH-nPZoakFBvpwUBPWkzKIGc0HGrevCHkg8rBLoZF7GVlEHkskCWcMemFaQYWs1BwYdg-p8lkxr5ex9d75LzPhUFYpbP91qYba-3unLrZPF1VFeb4Mm52MBlWPw-QdpuxFKsYfPwzwDwCJFCzUWbEBaU9msdivFq9gEfOYRuOIC9uCDzdB5Z_LFEPXdCHSMpHXbOSv3_Jut5Ypi6OyBPnX9KxHcJTsqebZ-Twm4ugH5O_NjPXZDfRult1LXXUqi2tGnpfFYfaDElqv-K0n-gGvIjKpqCgopUtyESXJV0YUKamrgrFDZX1zRJGPF-0pvVGoByb33a19nAFLTYaPiezi89X5xPPFWjwVBwlaw-JfXwdKZkzjlBZxlUZx3kiQRxBCa6a9DOd6KzQsK2L01ypMFMR3MkLzUPNoxdkv1k2-hXIRPml1HnGwjJmZV5wcOMicGXgH6SWIRuRtJeJUI69HIto1KKHqf0U99IUKE3hBwKkOSLB0HNlGTx26MN7sYs-QxVsqoBlZoe-Z0PfLU3esff7XssEvOgYvZGNXnatCNGUcnTIR-Sl1bphPBEG0GBrCrO0pY9DAyQR3_6lqeaGTDxBxkEf5jccNHfnaXr9X0N9Qx7jlUVTviX769tOvwMPb52fmFf4hByMv1xOpnCcTb-Pf9wBH_FZ-g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBa6Dlh3GfZe9tSAXb3asvzQdhqKFdnW9tQCvQmyLDcuHCeoYwy99I_sz46UZDdBdwiwW2JLCSTSFGl-_EjIJ12AXWRlEuRVFAc8UhV84ipgWQ4Ws9TwxbJ9nqTTM_7zPDnfIQdDLQzCKr3tdzbdWmt_Zd_v5v6yrrHGlwsbweTY_TxK75H7PGEZRmCfb0acR4QMai7NjMCgbIDzOJBXZ-bwmzOIwxHlJSyDp3_D8o8z6q4PehdKude3S3X9WzXN2jl1-Jg88g4m_ebW8ITsmPYpeXDsU-jPyB9XmmvLm2jTL_uOem7VjtYtvW2LQ12JJHWvcbovdA1fRFVbUtDR2nVkoouKzi0q01DfhuKCquZiASuezTs7ei1TjsOv-sYEeISWawOfk7PD76cH08B3aAh0EqerAJl9QhNrVXCBWFkudJUkRapAHlEFvpoKc5OavDQQ1yVZoTXLdQxXitIIZkT8guy2i9a8ApnosFKmyDmrEl4VpQA_LgZfBv5BGcX4hGSDTKT29OXYRaORA07tUt5KU6I0ZRhJkOaEROPMpaPw2GKOGMQuhxJVMKoSzpkt5n4d526o8pazPw5aJuFJx_SNas2i7yRDWyrQI5-Ql07rxvXEmEGD2BR2aUMfxwHIIr55p61nlk08RcrBEPaXjZq79Ta9_q-lfiB709PjI3n04-TXG_IQ7zho5Vuyu7rqzTtw91bFe_s4_wXMhlnf |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaWrgRcWN6UBWQkrtnm4bjxclohqhUSKw5UKifLdpw2S5pWm0YI_gp_dsePZFuWQwW3JvW08mQ8Hme--Qahd0qCX4zzNMiKKAlIJAr4REQQjzPwmLmCC8v2eUHPp-TTLJ0doElXC2Ngld73O59uvbW_M_LaHInlaF2WpsyXMHuIyUwD9IjeQYc0hZh8gA6nF1_Ovrn0sgEE2S5OsLph-VM685AeB_Rq9BJ-dwFncYP0YpbF079l-cs-dTsOvQ2nvNfWa_Hzh6iqrb1qcoTm3SwdROX7SbuRJ-rXHwSQ_6-Gh-iBD2fxmRv6CB3o-jG6-9kn7J-g364Q2BZT4apdtw32TK4NLmt804QHu4JM7F4aNad4C82ERZ1jWBGl6_-EVwVeWgyoxr7pxRyLar4C3S6WjR29lZc3w6_aSgdmw863Bj5F08nHrx_OA98PIlBpQjeB4REKdaKEJMwgcwlTRZpKKmDOUQGRoQgzTXWWazhFpmOpVJypBO7IXLNYs-QZGtSrWr-Ap6_CQmiZkbhISSFzBlFjApET_IPQIiZDNO6ePleeLN307Kh4h4q75Dd2w43d8DDiYDdDFPWSa0cYsocM6wyMdwWx4MI57Gp7yL7vZXcsZk_pt509c_ArJlkkar1qGx4bz81M_D9Ez5199_NJTL4OTsKgpR3L7wcYzvLdb-pyYbnLqSE4DEG_cb9G9lbTy38ROkb3zZXDbL5Cg81Vq19DHLmRb7yTuAbT_3lB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+lupus+patients+in+electronic+health+records%3A+Development+and+validation+of+machine+learning+algorithms+and+application+of+rule-based+algorithms&rft.jtitle=Seminars+in+arthritis+and+rheumatism&rft.au=Jorge%2C+April&rft.au=Castro%2C+Victor+M.&rft.au=Barnado%2C+April&rft.au=Gainer%2C+Vivian&rft.date=2019-08-01&rft.pub=Elsevier+Inc&rft.issn=0049-0172&rft.volume=49&rft.issue=1&rft.spage=84&rft.epage=90&rft_id=info:doi/10.1016%2Fj.semarthrit.2019.01.002&rft.externalDocID=S0049017218306516 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-0172&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-0172&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-0172&client=summon |