Identifying lupus patients in electronic health records: Development and validation of machine learning algorithms and application of rule-based algorithms

To utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate data-driven SLE EHR algorithms and assessed performance of existing rule-based algorithms. We randomly selected subjects with ≥ 1 SLE ICD-9/10 c...

Full description

Saved in:
Bibliographic Details
Published inSeminars in arthritis and rheumatism Vol. 49; no. 1; pp. 84 - 90
Main Authors Jorge, April, Castro, Victor M., Barnado, April, Gainer, Vivian, Hong, Chuan, Cai, Tianxi, Cai, Tianrun, Carroll, Robert, Denny, Joshua C., Crofford, Leslie, Costenbader, Karen H., Liao, Katherine P., Karlson, Elizabeth W., Feldman, Candace H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2019
Subjects
Online AccessGet full text
ISSN0049-0172
1532-866X
1532-866X
DOI10.1016/j.semarthrit.2019.01.002

Cover

Abstract To utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate data-driven SLE EHR algorithms and assessed performance of existing rule-based algorithms. We randomly selected subjects with ≥ 1 SLE ICD-9/10 codes from our EHR and identified gold standard definite and probable SLE cases by chart review, based on 1997 ACR or 2012 SLICC Classification Criteria. From a training set, we extracted coded and narrative concepts using natural language processing and generated algorithms using penalized logistic regression to classify definite or definite/probable SLE. We assessed predictive characteristics in internal and external cohort validations. We also tested performance characteristics of published rule-based algorithms with pre-specified permutations of ICD-9 codes, laboratory tests and medications in our EHR. At a specificity of 97%, our machine learning coded algorithm for definite SLE had 90% positive predictive value (PPV) and 64% sensitivity and for definite/probable SLE, 92% PPV and 47% sensitivity. In the external validation, at 97% specificity, the definite/probable algorithm had 94% PPV and 60% sensitivity. Adding NLP concepts did not improve performance metrics. The PPVs of published rule-based algorithms ranged from 45–79% in our EHR. Our machine learning SLE algorithms performed well in internal and external validation. Rule-based SLE algorithms did not transport as well to our EHR. Unique EHR characteristics, clinical practices and research goals regarding the desired sensitivity and specificity of the case definition must be considered when applying algorithms to identify SLE patients.
AbstractList To utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate data-driven SLE EHR algorithms and assessed performance of existing rule-based algorithms. We randomly selected subjects with ≥ 1 SLE ICD-9/10 codes from our EHR and identified gold standard definite and probable SLE cases by chart review, based on 1997 ACR or 2012 SLICC Classification Criteria. From a training set, we extracted coded and narrative concepts using natural language processing and generated algorithms using penalized logistic regression to classify definite or definite/probable SLE. We assessed predictive characteristics in internal and external cohort validations. We also tested performance characteristics of published rule-based algorithms with pre-specified permutations of ICD-9 codes, laboratory tests and medications in our EHR. At a specificity of 97%, our machine learning coded algorithm for definite SLE had 90% positive predictive value (PPV) and 64% sensitivity and for definite/probable SLE, 92% PPV and 47% sensitivity. In the external validation, at 97% specificity, the definite/probable algorithm had 94% PPV and 60% sensitivity. Adding NLP concepts did not improve performance metrics. The PPVs of published rule-based algorithms ranged from 45–79% in our EHR. Our machine learning SLE algorithms performed well in internal and external validation. Rule-based SLE algorithms did not transport as well to our EHR. Unique EHR characteristics, clinical practices and research goals regarding the desired sensitivity and specificity of the case definition must be considered when applying algorithms to identify SLE patients.
To utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate data-driven SLE EHR algorithms and assessed performance of existing rule-based algorithms.OBJECTIVETo utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate data-driven SLE EHR algorithms and assessed performance of existing rule-based algorithms.We randomly selected subjects with ≥ 1 SLE ICD-9/10 codes from our EHR and identified gold standard definite and probable SLE cases by chart review, based on 1997 ACR or 2012 SLICC Classification Criteria. From a training set, we extracted coded and narrative concepts using natural language processing and generated algorithms using penalized logistic regression to classify definite or definite/probable SLE. We assessed predictive characteristics in internal and external cohort validations. We also tested performance characteristics of published rule-based algorithms with pre-specified permutations of ICD-9 codes, laboratory tests and medications in our EHR.METHODSWe randomly selected subjects with ≥ 1 SLE ICD-9/10 codes from our EHR and identified gold standard definite and probable SLE cases by chart review, based on 1997 ACR or 2012 SLICC Classification Criteria. From a training set, we extracted coded and narrative concepts using natural language processing and generated algorithms using penalized logistic regression to classify definite or definite/probable SLE. We assessed predictive characteristics in internal and external cohort validations. We also tested performance characteristics of published rule-based algorithms with pre-specified permutations of ICD-9 codes, laboratory tests and medications in our EHR.At a specificity of 97%, our machine learning coded algorithm for definite SLE had 90% positive predictive value (PPV) and 64% sensitivity and for definite/probable SLE, 92% PPV and 47% sensitivity. In the external validation, at 97% specificity, the definite/probable algorithm had 94% PPV and 60% sensitivity. Adding NLP concepts did not improve performance metrics. The PPVs of published rule-based algorithms ranged from 45-79% in our EHR.RESULTSAt a specificity of 97%, our machine learning coded algorithm for definite SLE had 90% positive predictive value (PPV) and 64% sensitivity and for definite/probable SLE, 92% PPV and 47% sensitivity. In the external validation, at 97% specificity, the definite/probable algorithm had 94% PPV and 60% sensitivity. Adding NLP concepts did not improve performance metrics. The PPVs of published rule-based algorithms ranged from 45-79% in our EHR.Our machine learning SLE algorithms performed well in internal and external validation. Rule-based SLE algorithms did not transport as well to our EHR. Unique EHR characteristics, clinical practices and research goals regarding the desired sensitivity and specificity of the case definition must be considered when applying algorithms to identify SLE patients.CONCLUSIONOur machine learning SLE algorithms performed well in internal and external validation. Rule-based SLE algorithms did not transport as well to our EHR. Unique EHR characteristics, clinical practices and research goals regarding the desired sensitivity and specificity of the case definition must be considered when applying algorithms to identify SLE patients.
Author Castro, Victor M.
Gainer, Vivian
Liao, Katherine P.
Carroll, Robert
Feldman, Candace H.
Costenbader, Karen H.
Jorge, April
Hong, Chuan
Denny, Joshua C.
Crofford, Leslie
Cai, Tianxi
Karlson, Elizabeth W.
Barnado, April
Cai, Tianrun
AuthorAffiliation 4 Harvard T.H. Chan School of Public Health
7 Department of Biomedical Informatics, Vanderbilt University Medical Center
3 Division of Rheumatology and Immunology, Vanderbilt University Medical Center
6 Department of Biomedical Informatics, Harvard Medical School
2 Research Information Systems and Computing, Partners Healthcare
5 Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
1 Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School
AuthorAffiliation_xml – name: 7 Department of Biomedical Informatics, Vanderbilt University Medical Center
– name: 1 Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School
– name: 2 Research Information Systems and Computing, Partners Healthcare
– name: 3 Division of Rheumatology and Immunology, Vanderbilt University Medical Center
– name: 5 Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– name: 6 Department of Biomedical Informatics, Harvard Medical School
– name: 4 Harvard T.H. Chan School of Public Health
Author_xml – sequence: 1
  givenname: April
  surname: Jorge
  fullname: Jorge, April
  email: AMJorge@mgh.harvard.edu
  organization: Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Bulfinch 165, Boston, MA 02114, United States
– sequence: 2
  givenname: Victor M.
  surname: Castro
  fullname: Castro, Victor M.
  organization: Research Information Systems and Computing, Partners Healthcare, United States
– sequence: 3
  givenname: April
  surname: Barnado
  fullname: Barnado, April
  organization: Division of Rheumatology and Immunology, Vanderbilt University Medical Center, United States
– sequence: 4
  givenname: Vivian
  surname: Gainer
  fullname: Gainer, Vivian
  organization: Research Information Systems and Computing, Partners Healthcare, United States
– sequence: 5
  givenname: Chuan
  surname: Hong
  fullname: Hong, Chuan
  organization: Harvard T.H. Chan School of Public Health, United States
– sequence: 6
  givenname: Tianxi
  surname: Cai
  fullname: Cai, Tianxi
  organization: Research Information Systems and Computing, Partners Healthcare, United States
– sequence: 7
  givenname: Tianrun
  surname: Cai
  fullname: Cai, Tianrun
  organization: Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States
– sequence: 8
  givenname: Robert
  surname: Carroll
  fullname: Carroll, Robert
  organization: Department of Biomedical Informatics, Vanderbilt University Medical Center, United States
– sequence: 9
  givenname: Joshua C.
  surname: Denny
  fullname: Denny, Joshua C.
  organization: Department of Biomedical Informatics, Vanderbilt University Medical Center, United States
– sequence: 10
  givenname: Leslie
  orcidid: 0000-0002-6347-5738
  surname: Crofford
  fullname: Crofford, Leslie
  organization: Division of Rheumatology and Immunology, Vanderbilt University Medical Center, United States
– sequence: 11
  givenname: Karen H.
  surname: Costenbader
  fullname: Costenbader, Karen H.
  organization: Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States
– sequence: 12
  givenname: Katherine P.
  orcidid: 0000-0002-4797-3200
  surname: Liao
  fullname: Liao, Katherine P.
  organization: Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States
– sequence: 13
  givenname: Elizabeth W.
  surname: Karlson
  fullname: Karlson, Elizabeth W.
  organization: Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States
– sequence: 14
  givenname: Candace H.
  surname: Feldman
  fullname: Feldman, Candace H.
  organization: Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30665626$$D View this record in MEDLINE/PubMed
BookMark eNqdksFu1DAQhi1URLeFV0A-csliO4kTc0DQQkulSlxA4mY5zmTjxbGDnSzaZ-Fl8XbLtnBacbI0_v_P43_mDJ047wAhTMmSEspfr5cRBhWmPphpyQgVS0KXhLAnaEHLnGU1599O0IKQQmSEVuwUncW4JoRSTqpn6DQnnJec8QX6ddOCm0y3NW6F7TzOEY9qMqkWsXEYLOgpeGc07kHZqccBtA9tfIM_wAasH4ckxcq1eKOsaZPVO-w7PCjdGwfYggpux1Z25VO3_RDv1GocrdEHeZgtZI2K0D4SPkdPO2UjvLg_z9HXq49fLj9lt5-vby7f32a6zPmUFVVdEci1agrBKy4KobuybLjiJaVdzgpFauBQt8BqUVaN1qzWeao0LQgGIj9HYs-d3ai2P5W1cgwm5buVlMhd4HItHwKXu8AloTIFnrxv995xbgZodUojqAe_V0b-feNML1d-IzknoiRFAry6BwT_Y4Y4ycFEDdYqB36OktFK5IIKlifpy8dvHR75M80kqPcCHXyMAbr_-MfBqs10N57UtbHHAC72AEiT2hgIMuq0Rhpak1Zmkq03x0De_QPR1qTlU_Y7bI9D_AaEywIa
CitedBy_id crossref_primary_10_1002_acr_24132
crossref_primary_10_1002_acr_24770
crossref_primary_10_1016_j_autrev_2023_103496
crossref_primary_10_1016_j_autrev_2023_103294
crossref_primary_10_1038_s41596_019_0227_6
crossref_primary_10_1007_s10067_024_07210_0
crossref_primary_10_1136_lupus_2024_001329
crossref_primary_10_1177_09612033231206830
crossref_primary_10_1109_ACCESS_2022_3149477
crossref_primary_10_3389_fphar_2023_1180962
crossref_primary_10_1136_lupus_2022_000790
crossref_primary_10_1109_ACCESS_2020_3016782
crossref_primary_10_1177_1759720X221105978
crossref_primary_10_1016_j_cmpb_2020_105315
crossref_primary_10_1002_acr_24522
crossref_primary_10_1109_ACCESS_2020_3002191
crossref_primary_10_3389_fphar_2021_720694
crossref_primary_10_1136_lupus_2023_001140
crossref_primary_10_1016_j_semarthrit_2022_152106
crossref_primary_10_1093_jamia_ocad054
crossref_primary_10_3390_biomedinformatics4020065
crossref_primary_10_1002_art_42924
crossref_primary_10_1002_acr2_11236
crossref_primary_10_1136_lupus_2021_000488
crossref_primary_10_2174_1386207326666230306114626
crossref_primary_10_1002_acr2_11391
crossref_primary_10_1093_rap_rkaa005
crossref_primary_10_1016_S2665_9913_20_30168_5
crossref_primary_10_2196_40755
crossref_primary_10_1093_jamia_ocad202
crossref_primary_10_2139_ssrn_4154913
crossref_primary_10_3390_diagnostics13121995
crossref_primary_10_1016_j_jbi_2023_104335
crossref_primary_10_1038_s41598_022_20845_w
crossref_primary_10_3390_ijms24054514
crossref_primary_10_1016_j_compbiomed_2024_108920
crossref_primary_10_1016_j_semarthrit_2023_152167
crossref_primary_10_1007_s10067_023_06606_8
crossref_primary_10_1155_2022_7167066
crossref_primary_10_1161_JAHA_123_030821
crossref_primary_10_1186_s12911_024_02448_9
crossref_primary_10_1055_a_1938_0436
crossref_primary_10_1002_acr2_11405
crossref_primary_10_1038_s41584_021_00708_w
crossref_primary_10_1002_acr2_11447
crossref_primary_10_2215_CJN_07810621
crossref_primary_10_1016_j_clim_2023_109810
crossref_primary_10_1016_j_compbiomed_2023_107757
crossref_primary_10_1016_j_nlp_2024_100123
crossref_primary_10_1002_acr2_11211
crossref_primary_10_1007_s40257_024_00844_5
crossref_primary_10_1371_journal_pone_0274276
crossref_primary_10_1007_s13555_024_01218_9
crossref_primary_10_1177_09612033241238052
crossref_primary_10_1002_acr_25509
crossref_primary_10_1007_s12016_020_08805_6
crossref_primary_10_2196_23934
crossref_primary_10_1177_09612033221114805
Cites_doi 10.1002/art.34473
10.1198/016214506000000735
10.1002/acr.22989
10.1136/bmj.h1885
10.1001/archophthalmol.2011.371
10.1002/acr.20184
10.1002/art.1780400928
10.1136/amiajnl-2011-000583
10.3390/jpm6010011
10.1093/jamia/ocy154
10.1038/clpt.2008.89
10.1093/jamia/ocw135
10.1093/jamia/ocv034
10.1197/jamia.M3378
10.3899/jrheum.101149
10.1016/S0031-3203(96)00142-2
10.1016/j.vaccine.2013.06.104
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.semarthrit.2019.01.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-866X
EndPage 90
ExternalDocumentID 10.1016/j.semarthrit.2019.01.002
PMC6609504
30665626
10_1016_j_semarthrit_2019_01_002
S0049017218306516
Genre Validation Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: P30 AR072577
– fundername: NCATS NIH HHS
  grantid: UL1 TR002243
– fundername: NCRR NIH HHS
  grantid: UL1 RR024975
– fundername: NIAMS NIH HHS
  grantid: K24 AR052403
– fundername: NHGRI NIH HHS
  grantid: U01 HG008685
– fundername: NIAMS NIH HHS
  grantid: R01 AR057327
– fundername: NIAMS NIH HHS
  grantid: T32 AR007258
– fundername: NIAMS NIH HHS
  grantid: K24 AR066109
– fundername: NIAMS NIH HHS
  grantid: K08 AR072757
– fundername: NIAMS NIH HHS
  grantid: P30 AR070253
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
BR6
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDU
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OI0
OV-
OZT
P-8
P-9
P2P
PC.
Q38
QTD
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UNMZH
WUQ
XFW
Z5R
ZGI
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c536t-47870e3cab49676949cf55b6a6511f324a08e6e8de28957bcc28c3e6ebde92e93
IEDL.DBID .~1
ISSN 0049-0172
1532-866X
IngestDate Sun Oct 26 04:15:28 EDT 2025
Tue Sep 30 16:55:14 EDT 2025
Sun Sep 28 07:02:31 EDT 2025
Wed Feb 19 02:27:49 EST 2025
Thu Oct 02 04:27:39 EDT 2025
Thu Apr 24 23:00:58 EDT 2025
Fri Feb 23 02:29:28 EST 2024
Tue Oct 14 19:31:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Systemic lupus erythematosus
Algorithms
Bioinformatics
Electronic health records
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-47870e3cab49676949cf55b6a6511f324a08e6e8de28957bcc28c3e6ebde92e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-6347-5738
0000-0002-4797-3200
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0049017218306516
PMID 30665626
PQID 2179391923
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1016_j_semarthrit_2019_01_002
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6609504
proquest_miscellaneous_2179391923
pubmed_primary_30665626
crossref_primary_10_1016_j_semarthrit_2019_01_002
crossref_citationtrail_10_1016_j_semarthrit_2019_01_002
elsevier_sciencedirect_doi_10_1016_j_semarthrit_2019_01_002
elsevier_clinicalkey_doi_10_1016_j_semarthrit_2019_01_002
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Seminars in arthritis and rheumatism
PublicationTitleAlternate Semin Arthritis Rheum
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hochberg (bib0008) 1997; 40
Roden, Pulley, Basford, Bernard, Clayton, Balser (bib0010) 2008; 84
Goryachev, Sordo, Zeng (bib0012) 2006
Bradley (bib0016) 1997; 30
National Institutes of Health. U.S. National Library of Medicine. Unified Medical Language System (UMLS) Terminology Services. 2018; Available from
Yu, Liao, Shaw, Gainer, Churchill, Szolovits (bib0011) 2015; 22
Moores, Sathe (bib0001) 2013; 31
Carroll, Thompson, Eyler, Mandelin, Cai, Zink (bib0004) 2012; 19
Murray, Avati, Schmajuk, Yazdany (bib0020) 2019; 26
Liao, Cai, Savova, Murphy, Karlson, Ananthakrishnan (bib0005) 2015; 350
Barnado, Casey, Carroll, Wheless, Denny, Crofford (bib0003) 2017; 69
.
Liao, Cai, Gainer, Goryachev, Zeng-treitler, Raychaudhuri (bib0013) 2010; 62
Jiang, Wu, Shah, Priyanka, Denny, Xu (bib0017) 2014; 2014
Bernatsky, Linehan, Hanly (bib0002) 2011; 38
Wright, Bates (bib0006) 2014
Marmor (bib0019) 2012; 130
Zou (bib0015) 2006; 101
Petri, Orbai, Alarcon, Gordon, Merrill, Fortin (bib0009) 2012; 64
Yu, Chakrabortty, Liao, Cai, Ananthakrishnan, Gainer (bib0014) 2017; 24
Gainer, Cagan, Castro, Duey, Ghosh, Goodson (bib0007) 2016; 6
Xu, Stenner, Doan, Johnson, Waitman, Denny (bib0018) 2010; 17
Roden (10.1016/j.semarthrit.2019.01.002_bib0010) 2008; 84
Marmor (10.1016/j.semarthrit.2019.01.002_bib0019) 2012; 130
Xu (10.1016/j.semarthrit.2019.01.002_bib0018) 2010; 17
Murray (10.1016/j.semarthrit.2019.01.002_bib0020) 2019; 26
Barnado (10.1016/j.semarthrit.2019.01.002_bib0003) 2017; 69
Bernatsky (10.1016/j.semarthrit.2019.01.002_bib0002) 2011; 38
Liao (10.1016/j.semarthrit.2019.01.002_bib0005) 2015; 350
Wright (10.1016/j.semarthrit.2019.01.002_bib0006) 2014
Goryachev (10.1016/j.semarthrit.2019.01.002_bib0012) 2006
Moores (10.1016/j.semarthrit.2019.01.002_bib0001) 2013; 31
Gainer (10.1016/j.semarthrit.2019.01.002_bib0007) 2016; 6
Yu (10.1016/j.semarthrit.2019.01.002_bib0014) 2017; 24
Carroll (10.1016/j.semarthrit.2019.01.002_bib0004) 2012; 19
Bradley (10.1016/j.semarthrit.2019.01.002_bib0016) 1997; 30
10.1016/j.semarthrit.2019.01.002_bib0021
Zou (10.1016/j.semarthrit.2019.01.002_bib0015) 2006; 101
Yu (10.1016/j.semarthrit.2019.01.002_bib0011) 2015; 22
Hochberg (10.1016/j.semarthrit.2019.01.002_bib0008) 1997; 40
Liao (10.1016/j.semarthrit.2019.01.002_bib0013) 2010; 62
Petri (10.1016/j.semarthrit.2019.01.002_bib0009) 2012; 64
Jiang (10.1016/j.semarthrit.2019.01.002_bib0017) 2014; 2014
References_xml – volume: 19
  start-page: e162
  year: 2012
  end-page: e169
  ident: bib0004
  article-title: Portability of an algorithm to identify rheumatoid arthritis in electronic health records
  publication-title: J Am Med Inform Assoc
– volume: 30
  start-page: 1145
  year: 1997
  end-page: 1159
  ident: bib0016
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognit
– volume: 6
  year: 2016
  ident: bib0007
  article-title: The Biobank portal for partners personalized medicine: a query tool for working with consented biobank samples, genotypes, and phenotypes using i2b2
  publication-title: J Personal Med
– reference: National Institutes of Health. U.S. National Library of Medicine. Unified Medical Language System (UMLS) Terminology Services. 2018; Available from:
– volume: 62
  start-page: 1120
  year: 2010
  end-page: 1127
  ident: bib0013
  article-title: Electronic medical records for discovery research in rheumatoid arthritis
  publication-title: Arthritis Care Res
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: bib0015
  article-title: The adaptive lasso and its oracle properties
  publication-title: J Am Stat Assoc
– volume: 130
  start-page: 461
  year: 2012
  end-page: 469
  ident: bib0019
  article-title: Comparison of screening procedures in hydroxychloroquine toxicity
  publication-title: Arch Ophthalmol
– volume: 2014
  start-page: 37
  year: 2014
  end-page: 42
  ident: bib0017
  article-title: Extracting and standardizing medication information in clinical text – the MedEx-UIMA system
  publication-title: AMIA summits on translational science proceedings
– volume: 26
  start-page: 61
  year: 2019
  end-page: 65
  ident: bib0020
  article-title: Automated and flexible identification of complex disease: building a model for systemic lupus erythematosus using noisy labeling
  publication-title: J Am Med Inform Assoc
– reference: .
– volume: 17
  start-page: 19
  year: 2010
  end-page: 24
  ident: bib0018
  article-title: MedEx: a medication information extraction system for clinical narratives
  publication-title: J Am Med Inform Assoc
– volume: 350
  start-page: h1885
  year: 2015
  ident: bib0005
  article-title: Development of phenotype algorithms using electronic medical records and incorporating natural language processing
  publication-title: BMJ
– volume: 31
  start-page: K62
  year: 2013
  end-page: K73
  ident: bib0001
  article-title: A systematic review of validated methods for identifying systemic lupus erythematosus (SLE) using administrative or claims data
  publication-title: Vaccine
– volume: 40
  start-page: 1725
  year: 1997
  ident: bib0008
  article-title: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus
  publication-title: Arthritis Rheum
– volume: 64
  start-page: 2677
  year: 2012
  end-page: 2686
  ident: bib0009
  article-title: Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus
  publication-title: Arthritis Rheum
– year: 2014
  ident: bib0006
  article-title: Chapter 6: patients, doctors, and information technology at Brigham and women's hospital and partners healthcare
  publication-title: Clinical decision support: the road to broad adoption
– volume: 24
  start-page: e143
  year: 2017
  end-page: e1e9
  ident: bib0014
  article-title: Surrogate-assisted feature extraction for high-throughput phenotyping
  publication-title: J Am Med Inform Assoc
– volume: 38
  start-page: 1612
  year: 2011
  end-page: 1616
  ident: bib0002
  article-title: The accuracy of administrative data diagnoses of systemic autoimmune rheumatic diseases
  publication-title: J Rheumatol
– start-page: 931
  year: 2006
  ident: bib0012
  article-title: A suite of natural language processing tools developed for the I2B2 project
  publication-title: Proceedings of AMIA symposium
– volume: 69
  start-page: 687
  year: 2017
  end-page: 693
  ident: bib0003
  article-title: Developing electronic health record algorithms that accurately identify patients with systemic lupus erythematosus
  publication-title: Arthritis Care Res
– volume: 84
  start-page: 362
  year: 2008
  end-page: 369
  ident: bib0010
  article-title: Development of a large-scale de-identified DNA biobank to enable personalized medicine
  publication-title: Clin Pharmacol Ther
– volume: 22
  start-page: 993
  year: 2015
  end-page: 1000
  ident: bib0011
  article-title: Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources
  publication-title: J Am Med Inform Assoc
– volume: 64
  start-page: 2677
  issue: 8
  year: 2012
  ident: 10.1016/j.semarthrit.2019.01.002_bib0009
  article-title: Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus
  publication-title: Arthritis Rheum
  doi: 10.1002/art.34473
– volume: 101
  start-page: 1418
  year: 2006
  ident: 10.1016/j.semarthrit.2019.01.002_bib0015
  article-title: The adaptive lasso and its oracle properties
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000000735
– volume: 69
  start-page: 687
  issue: 5
  year: 2017
  ident: 10.1016/j.semarthrit.2019.01.002_bib0003
  article-title: Developing electronic health record algorithms that accurately identify patients with systemic lupus erythematosus
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.22989
– year: 2014
  ident: 10.1016/j.semarthrit.2019.01.002_bib0006
  article-title: Chapter 6: patients, doctors, and information technology at Brigham and women's hospital and partners healthcare
– volume: 350
  start-page: h1885
  year: 2015
  ident: 10.1016/j.semarthrit.2019.01.002_bib0005
  article-title: Development of phenotype algorithms using electronic medical records and incorporating natural language processing
  publication-title: BMJ
  doi: 10.1136/bmj.h1885
– volume: 130
  start-page: 461
  issue: 4
  year: 2012
  ident: 10.1016/j.semarthrit.2019.01.002_bib0019
  article-title: Comparison of screening procedures in hydroxychloroquine toxicity
  publication-title: Arch Ophthalmol
  doi: 10.1001/archophthalmol.2011.371
– volume: 62
  start-page: 1120
  issue: 8
  year: 2010
  ident: 10.1016/j.semarthrit.2019.01.002_bib0013
  article-title: Electronic medical records for discovery research in rheumatoid arthritis
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.20184
– ident: 10.1016/j.semarthrit.2019.01.002_bib0021
– volume: 40
  start-page: 1725
  issue: 9
  year: 1997
  ident: 10.1016/j.semarthrit.2019.01.002_bib0008
  article-title: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus
  publication-title: Arthritis Rheum
  doi: 10.1002/art.1780400928
– volume: 19
  start-page: e162
  issue: e1
  year: 2012
  ident: 10.1016/j.semarthrit.2019.01.002_bib0004
  article-title: Portability of an algorithm to identify rheumatoid arthritis in electronic health records
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000583
– volume: 6
  issue: 1
  year: 2016
  ident: 10.1016/j.semarthrit.2019.01.002_bib0007
  article-title: The Biobank portal for partners personalized medicine: a query tool for working with consented biobank samples, genotypes, and phenotypes using i2b2
  publication-title: J Personal Med
  doi: 10.3390/jpm6010011
– volume: 26
  start-page: 61
  issue: 1
  year: 2019
  ident: 10.1016/j.semarthrit.2019.01.002_bib0020
  article-title: Automated and flexible identification of complex disease: building a model for systemic lupus erythematosus using noisy labeling
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocy154
– volume: 2014
  start-page: 37
  year: 2014
  ident: 10.1016/j.semarthrit.2019.01.002_bib0017
  article-title: Extracting and standardizing medication information in clinical text – the MedEx-UIMA system
– volume: 84
  start-page: 362
  issue: 3
  year: 2008
  ident: 10.1016/j.semarthrit.2019.01.002_bib0010
  article-title: Development of a large-scale de-identified DNA biobank to enable personalized medicine
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2008.89
– volume: 24
  start-page: e143
  issue: e1
  year: 2017
  ident: 10.1016/j.semarthrit.2019.01.002_bib0014
  article-title: Surrogate-assisted feature extraction for high-throughput phenotyping
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocw135
– volume: 22
  start-page: 993
  issue: 5
  year: 2015
  ident: 10.1016/j.semarthrit.2019.01.002_bib0011
  article-title: Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocv034
– volume: 17
  start-page: 19
  issue: 1
  year: 2010
  ident: 10.1016/j.semarthrit.2019.01.002_bib0018
  article-title: MedEx: a medication information extraction system for clinical narratives
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M3378
– start-page: 931
  year: 2006
  ident: 10.1016/j.semarthrit.2019.01.002_bib0012
  article-title: A suite of natural language processing tools developed for the I2B2 project
– volume: 38
  start-page: 1612
  issue: 8
  year: 2011
  ident: 10.1016/j.semarthrit.2019.01.002_bib0002
  article-title: The accuracy of administrative data diagnoses of systemic autoimmune rheumatic diseases
  publication-title: J Rheumatol
  doi: 10.3899/jrheum.101149
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: 10.1016/j.semarthrit.2019.01.002_bib0016
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 31
  start-page: K62
  issue: 10
  year: 2013
  ident: 10.1016/j.semarthrit.2019.01.002_bib0001
  article-title: A systematic review of validated methods for identifying systemic lupus erythematosus (SLE) using administrative or claims data
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2013.06.104
SSID ssj0011607
Score 2.5079887
Snippet To utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 84
SubjectTerms Adult
Aged
Algorithms
Bioinformatics
Databases, Factual
Electronic Health Records
Female
Humans
Lupus Erythematosus, Systemic - diagnosis
Machine Learning
Male
Middle Aged
Natural Language Processing
Sensitivity and Specificity
Systemic lupus erythematosus
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaWrgRcWN6UBWQkrtnm4bjxclohqhUSKw5UKifLdpw2S5pWm0YI_gp_dsePZFuWQwW3JvW08mQ8Hme--Qahd0qCX4zzNMiKKAlIJAr4REQQjzPwmLmCC8v2eUHPp-TTLJ0doElXC2Ngld73O59uvbW_M_LaHInlaF2WpsyXMHuIyUwD9IjeQYc0hZh8gA6nF1_Ovrn0sgEE2S5OsLph-VM685AeB_Rq9BJ-dwFncYP0YpbF079l-cs-dTsOvQ2nvNfWa_Hzh6iqrb1qcoTm3SwdROX7SbuRJ-rXHwSQ_6-Gh-iBD2fxmRv6CB3o-jG6-9kn7J-g364Q2BZT4apdtw32TK4NLmt804QHu4JM7F4aNad4C82ERZ1jWBGl6_-EVwVeWgyoxr7pxRyLar4C3S6WjR29lZc3w6_aSgdmw863Bj5F08nHrx_OA98PIlBpQjeB4REKdaKEJMwgcwlTRZpKKmDOUQGRoQgzTXWWazhFpmOpVJypBO7IXLNYs-QZGtSrWr-Ap6_CQmiZkbhISSFzBlFjApET_IPQIiZDNO6ePleeLN307Kh4h4q75Dd2w43d8DDiYDdDFPWSa0cYsocM6wyMdwWx4MI57Gp7yL7vZXcsZk_pt509c_ArJlkkar1qGx4bz81M_D9Ez5199_NJTL4OTsKgpR3L7wcYzvLdb-pyYbnLqSE4DEG_cb9G9lbTy38ROkb3zZXDbL5Cg81Vq19DHLmRb7yTuAbT_3lB
  priority: 102
  providerName: Unpaywall
Title Identifying lupus patients in electronic health records: Development and validation of machine learning algorithms and application of rule-based algorithms
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0049017218306516
https://dx.doi.org/10.1016/j.semarthrit.2019.01.002
https://www.ncbi.nlm.nih.gov/pubmed/30665626
https://www.proquest.com/docview/2179391923
https://pubmed.ncbi.nlm.nih.gov/PMC6609504
https://www.sciencedirect.com/science/article/am/pii/S0049017218306516
UnpaywallVersion publishedVersion
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1532-866X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011607
  issn: 0049-0172
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  customDbUrl:
  eissn: 1532-866X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011607
  issn: 0049-0172
  databaseCode: ACRLP
  dateStart: 19950801
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1532-866X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011607
  issn: 0049-0172
  databaseCode: AIKHN
  dateStart: 19950801
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1532-866X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011607
  issn: 0049-0172
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1532-866X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011607
  issn: 0049-0172
  databaseCode: AKRWK
  dateStart: 19710501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECWCBEh7KdKmi7sELNCrGi3UwuZkBA3cBjV6iIH0RFAUFauQZSOyUPTSH-nPZoakFBvpwUBPWkzKIGc0HGrevCHkg8rBLoZF7GVlEHkskCWcMemFaQYWs1BwYdg-p8lkxr5ex9d75LzPhUFYpbP91qYba-3unLrZPF1VFeb4Mm52MBlWPw-QdpuxFKsYfPwzwDwCJFCzUWbEBaU9msdivFq9gEfOYRuOIC9uCDzdB5Z_LFEPXdCHSMpHXbOSv3_Jut5Ypi6OyBPnX9KxHcJTsqebZ-Twm4ugH5O_NjPXZDfRult1LXXUqi2tGnpfFYfaDElqv-K0n-gGvIjKpqCgopUtyESXJV0YUKamrgrFDZX1zRJGPF-0pvVGoByb33a19nAFLTYaPiezi89X5xPPFWjwVBwlaw-JfXwdKZkzjlBZxlUZx3kiQRxBCa6a9DOd6KzQsK2L01ypMFMR3MkLzUPNoxdkv1k2-hXIRPml1HnGwjJmZV5wcOMicGXgH6SWIRuRtJeJUI69HIto1KKHqf0U99IUKE3hBwKkOSLB0HNlGTx26MN7sYs-QxVsqoBlZoe-Z0PfLU3esff7XssEvOgYvZGNXnatCNGUcnTIR-Sl1bphPBEG0GBrCrO0pY9DAyQR3_6lqeaGTDxBxkEf5jccNHfnaXr9X0N9Qx7jlUVTviX769tOvwMPb52fmFf4hByMv1xOpnCcTb-Pf9wBH_FZ-g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBa6Dlh3GfZe9tSAXb3asvzQdhqKFdnW9tQCvQmyLDcuHCeoYwy99I_sz46UZDdBdwiwW2JLCSTSFGl-_EjIJ12AXWRlEuRVFAc8UhV84ipgWQ4Ws9TwxbJ9nqTTM_7zPDnfIQdDLQzCKr3tdzbdWmt_Zd_v5v6yrrHGlwsbweTY_TxK75H7PGEZRmCfb0acR4QMai7NjMCgbIDzOJBXZ-bwmzOIwxHlJSyDp3_D8o8z6q4PehdKude3S3X9WzXN2jl1-Jg88g4m_ebW8ITsmPYpeXDsU-jPyB9XmmvLm2jTL_uOem7VjtYtvW2LQ12JJHWvcbovdA1fRFVbUtDR2nVkoouKzi0q01DfhuKCquZiASuezTs7ei1TjsOv-sYEeISWawOfk7PD76cH08B3aAh0EqerAJl9QhNrVXCBWFkudJUkRapAHlEFvpoKc5OavDQQ1yVZoTXLdQxXitIIZkT8guy2i9a8ApnosFKmyDmrEl4VpQA_LgZfBv5BGcX4hGSDTKT29OXYRaORA07tUt5KU6I0ZRhJkOaEROPMpaPw2GKOGMQuhxJVMKoSzpkt5n4d526o8pazPw5aJuFJx_SNas2i7yRDWyrQI5-Ql07rxvXEmEGD2BR2aUMfxwHIIr55p61nlk08RcrBEPaXjZq79Ta9_q-lfiB709PjI3n04-TXG_IQ7zho5Vuyu7rqzTtw91bFe_s4_wXMhlnf
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaWrgRcWN6UBWQkrtnm4bjxclohqhUSKw5UKifLdpw2S5pWm0YI_gp_dsePZFuWQwW3JvW08mQ8Hme--Qahd0qCX4zzNMiKKAlIJAr4REQQjzPwmLmCC8v2eUHPp-TTLJ0doElXC2Ngld73O59uvbW_M_LaHInlaF2WpsyXMHuIyUwD9IjeQYc0hZh8gA6nF1_Ovrn0sgEE2S5OsLph-VM685AeB_Rq9BJ-dwFncYP0YpbF079l-cs-dTsOvQ2nvNfWa_Hzh6iqrb1qcoTm3SwdROX7SbuRJ-rXHwSQ_6-Gh-iBD2fxmRv6CB3o-jG6-9kn7J-g364Q2BZT4apdtw32TK4NLmt804QHu4JM7F4aNad4C82ERZ1jWBGl6_-EVwVeWgyoxr7pxRyLar4C3S6WjR29lZc3w6_aSgdmw863Bj5F08nHrx_OA98PIlBpQjeB4REKdaKEJMwgcwlTRZpKKmDOUQGRoQgzTXWWazhFpmOpVJypBO7IXLNYs-QZGtSrWr-Ap6_CQmiZkbhISSFzBlFjApET_IPQIiZDNO6ePleeLN307Kh4h4q75Dd2w43d8DDiYDdDFPWSa0cYsocM6wyMdwWx4MI57Gp7yL7vZXcsZk_pt509c_ArJlkkar1qGx4bz81M_D9Ez5199_NJTL4OTsKgpR3L7wcYzvLdb-pyYbnLqSE4DEG_cb9G9lbTy38ROkb3zZXDbL5Cg81Vq19DHLmRb7yTuAbT_3lB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+lupus+patients+in+electronic+health+records%3A+Development+and+validation+of+machine+learning+algorithms+and+application+of+rule-based+algorithms&rft.jtitle=Seminars+in+arthritis+and+rheumatism&rft.au=Jorge%2C+April&rft.au=Castro%2C+Victor+M.&rft.au=Barnado%2C+April&rft.au=Gainer%2C+Vivian&rft.date=2019-08-01&rft.pub=Elsevier+Inc&rft.issn=0049-0172&rft.volume=49&rft.issue=1&rft.spage=84&rft.epage=90&rft_id=info:doi/10.1016%2Fj.semarthrit.2019.01.002&rft.externalDocID=S0049017218306516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-0172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-0172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-0172&client=summon