An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients

Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (i.e., MDS-UPDRS), or thr...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 4; p. 1766
Main Authors Kwon, Hyeokhyen, Clifford, Gari D., Genias, Imari, Bernhard, Doug, Esper, Christine D., Factor, Stewart A., McKay, J. Lucas
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23041766

Cover

Abstract Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (i.e., MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. A major innovation of our study is that it is the first study of its kind that uses the largest sample size (>30 h, N = 57) in order to apply explainable, multi-task deep learning models for quantifying FOG over the course of the medication cycle and at varying levels of parkinsonism severity. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N = 57 patients during levodopa challenge tests. The proposed model was able to explain how kinematic movements are associated with each FOG severity level that were highly consistent with the features, in which movement disorders specialists are trained to identify as characteristics of freezing. Overall, we demonstrate that deep learning models’ capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures.
AbstractList Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (i.e., MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. A major innovation of our study is that it is the first study of its kind that uses the largest sample size (>30 h, N = 57) in order to apply explainable, multi-task deep learning models for quantifying FOG over the course of the medication cycle and at varying levels of parkinsonism severity. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N = 57 patients during levodopa challenge tests. The proposed model was able to explain how kinematic movements are associated with each FOG severity level that were highly consistent with the features, in which movement disorders specialists are trained to identify as characteristics of freezing. Overall, we demonstrate that deep learning models’ capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures.
Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (i.e., MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. A major innovation of our study is that it is the first study of its kind that uses the largest sample size (>30 h, N = 57) in order to apply explainable, multi-task deep learning models for quantifying FOG over the course of the medication cycle and at varying levels of parkinsonism severity. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N = 57 patients during levodopa challenge tests. The proposed model was able to how kinematic movements are associated with each FOG severity level that were highly consistent with the features, in which movement disorders specialists are trained to identify as characteristics of freezing. Overall, we demonstrate that deep learning models' capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures.
Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (i.e., MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. A major innovation of our study is that it is the first study of its kind that uses the largest sample size (>30 h, N = 57) in order to apply explainable, multi-task deep learning models for quantifying FOG over the course of the medication cycle and at varying levels of parkinsonism severity. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N = 57 patients during levodopa challenge tests. The proposed model was able to explain how kinematic movements are associated with each FOG severity level that were highly consistent with the features, in which movement disorders specialists are trained to identify as characteristics of freezing. Overall, we demonstrate that deep learning models’ capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures.
Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (i.e., MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. A major innovation of our study is that it is the first study of its kind that uses the largest sample size (>30 h, N = 57) in order to apply explainable, multi-task deep learning models for quantifying FOG over the course of the medication cycle and at varying levels of parkinsonism severity. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N = 57 patients during levodopa challenge tests. The proposed model was able to explain how kinematic movements are associated with each FOG severity level that were highly consistent with the features, in which movement disorders specialists are trained to identify as characteristics of freezing. Overall, we demonstrate that deep learning models' capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures.Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (i.e., MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. A major innovation of our study is that it is the first study of its kind that uses the largest sample size (>30 h, N = 57) in order to apply explainable, multi-task deep learning models for quantifying FOG over the course of the medication cycle and at varying levels of parkinsonism severity. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N = 57 patients during levodopa challenge tests. The proposed model was able to explain how kinematic movements are associated with each FOG severity level that were highly consistent with the features, in which movement disorders specialists are trained to identify as characteristics of freezing. Overall, we demonstrate that deep learning models' capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures.
Audience Academic
Author McKay, J. Lucas
Factor, Stewart A.
Clifford, Gari D.
Bernhard, Doug
Esper, Christine D.
Genias, Imari
Kwon, Hyeokhyen
AuthorAffiliation 1 Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA
2 Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
3 Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA
AuthorAffiliation_xml – name: 2 Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
– name: 3 Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA
– name: 1 Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA
Author_xml – sequence: 1
  givenname: Hyeokhyen
  orcidid: 0000-0002-5693-3278
  surname: Kwon
  fullname: Kwon, Hyeokhyen
– sequence: 2
  givenname: Gari D.
  orcidid: 0000-0002-5709-201X
  surname: Clifford
  fullname: Clifford, Gari D.
– sequence: 3
  givenname: Imari
  orcidid: 0000-0003-2490-8817
  surname: Genias
  fullname: Genias, Imari
– sequence: 4
  givenname: Doug
  surname: Bernhard
  fullname: Bernhard, Doug
– sequence: 5
  givenname: Christine D.
  orcidid: 0000-0002-1093-6537
  surname: Esper
  fullname: Esper, Christine D.
– sequence: 6
  givenname: Stewart A.
  orcidid: 0000-0002-0449-973X
  surname: Factor
  fullname: Factor, Stewart A.
– sequence: 7
  givenname: J. Lucas
  orcidid: 0000-0002-8361-8943
  surname: McKay
  fullname: McKay, J. Lucas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36850363$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAUhSNURB-w4A-gSGxgkdaJHcfZII1G7VCpAqSWteX4MfU0sYPtlMev54ZpS6egKMq1_d3jHPscZnvOO51lr0t0jHGLTmKFESkbSp9lByWpSMGqCu09qvezwxg3CFUYY_Yi28eU1QhTfJCFhctPf4y9sE50vc4vR5Gs6IsrPYw-iD5fBTFeWwnV0rtb30_JegejTzp99-EmTz6_lD7o_Cxo_cu6de5NvhI25dblX0S4sS56Z8U8SFa7FF9mz43oo3519z3Kvp6dXi0_FhefV-fLxUUha0xTURlMGFIMdzVTFFFJwY5piWKGUSWR6mp4qW5Qy6oOq1pUnRS17FBNAGnxUXa-1VVebPgY7CDCT-6F5X8mfFhzEZKVveamkzVtMBLaEKLKrkVYgHiJtTaKkAa0Pmy1xqkbtJLgAw5nR3R3xdlrvva3vG0pK9v5Z97dCQT_bdIx8cFGqfteOO2nyKuGoYbiliJA3z5BN34KcOYz1bS0JjVq_lJrAQasMx72lbMoXzQEww1jRIE6_g8Fj9KDlZAiY2F-p-HNY6MPDu8TA8DJFpDBxxi04dImMYcClG3PS8TnTPKHTELH-ycd96L_sr8BMuPgAw
CitedBy_id crossref_primary_10_3389_frdem_2023_1215505
crossref_primary_10_1177_1877718X241301065
crossref_primary_10_1007_s00521_024_10832_9
crossref_primary_10_1007_s00521_025_11068_x
crossref_primary_10_1038_s41598_024_75445_7
crossref_primary_10_1145_3678577
crossref_primary_10_1109_TBME_2024_3402677
Cites_doi 10.1016/j.parkreldis.2014.12.020
10.1109/ICCPCT.2017.8074230
10.1016/S1474-4422(06)70549-X
10.1002/mds.10685
10.1001/archneur.59.11.1778
10.1016/j.gaitpost.2006.01.003
10.1038/s41531-019-0099-z
10.1080/09296174.2013.799918
10.1016/j.parkreldis.2015.10.006
10.1038/s41531-021-00247-x
10.1186/s12984-020-00774-3
10.3390/s21248337
10.1109/TITB.2009.2036165
10.3390/s16010115
10.3389/fneur.2017.00394
10.1002/jor.1100080310
10.1007/s00415-017-8424-0
10.1016/j.knosys.2017.10.017
10.1186/s12938-022-01050-2
10.1109/CVPR.2019.01230
10.1002/mds.25945
10.1109/TNSRE.2015.2457511
10.1093/ptj/77.8.812
10.1152/ajpheart.2000.278.6.H2039
10.1609/aaai.v32i1.12328
10.1109/TETCI.2021.3100641
10.1097/NPT.0b013e3181d070fe
10.1109/CVPR.2018.00813
10.3233/JPD-181474
10.1145/2750858.2807551
10.1111/jgs.15304
10.1109/ACPR.2015.7486569
10.3390/ijerph16122216
10.1136/jnnp.55.3.181
10.1148/radiol.2018180547
10.20944/preprints202103.0236.v1
10.3390/s20164474
10.1002/mdc3.12893
10.1016/j.apmr.2013.02.020
10.1109/EMBC.2017.8037455
10.1016/j.jneumeth.2007.08.023
10.1016/j.jobe.2022.105246
10.1080/01621459.1927.10502953
10.1002/mds.22340
10.1101/2020.12.16.20248342
10.3389/fneur.2021.795258
10.1109/TNSRE.2020.2969649
10.1109/JSEN.2022.3142750
10.1145/3267242.3267287
10.1016/S1474-4422(15)00041-1
10.1109/TNSRE.2019.2910165
10.1002/pri.1963
10.1371/journal.pone.0142874
10.1371/journal.pone.0171764
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23041766
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_fbc56730aef44d1b903a0db13eefd447
PMC9968199
A743368306
36850363
10_3390_s23041766
Genre Journal Article
GeographicLocations Georgia
GeographicLocations_xml – name: Georgia
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: K25 HD086276
– fundername: NIH
  grantid: K25HD086276
– fundername: McCamish Center for Parkinson’s Disease Innovation
– fundername: Curtis Family Fund
– fundername: Sartain Lanier Family Foundation
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c536t-2f3480d83b58d606c6142f94d8f86dc0db50db6e70982b3d5a2bca5cb0548f893
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:16:09 EDT 2025
Thu Aug 21 18:38:01 EDT 2025
Fri Sep 05 10:22:02 EDT 2025
Fri Jul 25 19:55:21 EDT 2025
Thu Jul 03 02:32:59 EDT 2025
Tue Jul 01 05:44:25 EDT 2025
Mon Jul 21 06:01:42 EDT 2025
Tue Jul 01 01:19:49 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep learning
multi-task learning
motion capture
Parkinson’s disease
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-2f3480d83b58d606c6142f94d8f86dc0db50db6e70982b3d5a2bca5cb0548f893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0449-973X
0000-0002-5693-3278
0000-0003-2490-8817
0000-0002-8361-8943
0000-0002-5709-201X
0000-0002-1093-6537
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23041766
PMID 36850363
PQID 2779654507
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_fbc56730aef44d1b903a0db13eefd447
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9968199
proquest_miscellaneous_2780763960
proquest_journals_2779654507
gale_infotracmisc_A743368306
gale_infotracacademiconefile_A743368306
pubmed_primary_36850363
crossref_citationtrail_10_3390_s23041766
crossref_primary_10_3390_s23041766
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Haddad (ref_6) 2019; 25
Zhang (ref_32) 2021; 5
ref_58
Yungher (ref_16) 2014; 2014
ref_11
ref_53
ref_52
ref_51
Cheng (ref_62) 2022; 21
ref_18
ref_17
Toth (ref_40) 2004; 19
Khobkhun (ref_56) 2022; 27
Wallis (ref_64) 2013; 20
ref_21
Yan (ref_14) 2022; 22
ref_63
Dorsey (ref_2) 2018; 8
Factor (ref_5) 2002; 59
Kadaba (ref_27) 1990; 8
Zhang (ref_13) 2020; 28
McKay (ref_23) 2021; 7
Wilson (ref_46) 1927; 22
Dobson (ref_60) 2007; 25
Nocera (ref_25) 2013; 94
Goldstein (ref_3) 2019; 5
Hughes (ref_24) 1992; 55
Yu (ref_28) 2022; 61
Djaldetti (ref_41) 2006; 5
Naghavi (ref_47) 2019; 27
Mancini (ref_22) 2021; 18
ref_36
ref_35
ref_34
ref_33
ref_31
ref_30
Imai (ref_59) 1993; 33
ref_39
ref_38
Reches (ref_19) 2020; 20
Nonnekes (ref_4) 2015; 14
Evers (ref_15) 2017; 264
Ferrari (ref_20) 2015; 24
Soffer (ref_29) 2019; 290
Hong (ref_57) 2010; 34
Moore (ref_49) 2008; 167
Pringsheim (ref_1) 2014; 29
Aschermann (ref_54) 2015; 21
ref_45
Baldwin (ref_26) 1997; 77
ref_44
ref_43
ref_42
Palmerini (ref_48) 2017; 8
Goetz (ref_9) 2008; 23
Bachlin (ref_37) 2009; 14
Camps (ref_55) 2018; 139
Florence (ref_7) 2018; 66
ref_8
Nunes (ref_61) 2022; 12
Richman (ref_50) 2000; 278
Hulzinga (ref_10) 2020; 7
Forsaa (ref_12) 2015; 21
36711809 - medRxiv. 2023 Jan 18
References_xml – volume: 21
  start-page: 254
  year: 2015
  ident: ref_12
  article-title: A 12-year population-based study of freezing of gait in Parkinson’s disease
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2014.12.020
– ident: ref_51
  doi: 10.1109/ICCPCT.2017.8074230
– volume: 5
  start-page: 796
  year: 2006
  ident: ref_41
  article-title: The mystery of motor asymmetry in Parkinson’s disease
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(06)70549-X
– volume: 19
  start-page: 151
  year: 2004
  ident: ref_40
  article-title: Anomalies of asymmetry of clinical signs in parkinsonism
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.10685
– volume: 59
  start-page: 1778
  year: 2002
  ident: ref_5
  article-title: The natural history of the syndrome of primary progressive freezing gait
  publication-title: Archiv. Neurol.
  doi: 10.1001/archneur.59.11.1778
– volume: 25
  start-page: 140
  year: 2007
  ident: ref_60
  article-title: Gait classification in children with cerebral palsy: A systematic review
  publication-title: Gait Post.
  doi: 10.1016/j.gaitpost.2006.01.003
– volume: 5
  start-page: 25
  year: 2019
  ident: ref_3
  article-title: Freezing of Gait can persist after an acute levodopa challenge in Parkinson’s disease
  publication-title: NPJ Parkinson’s Dis.
  doi: 10.1038/s41531-019-0099-z
– ident: ref_42
– volume: 20
  start-page: 178
  year: 2013
  ident: ref_64
  article-title: Binomial confidence intervals and contingency tests: Mathematical fundamentals and the evaluation of alternative methods
  publication-title: J. Quant. Linguist.
  doi: 10.1080/09296174.2013.799918
– volume: 21
  start-page: 1421
  year: 2015
  ident: ref_54
  article-title: Minimal clinically important difference on the Motor Examination part of MDS-UPDRS
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2015.10.006
– volume: 7
  start-page: 105
  year: 2021
  ident: ref_23
  article-title: Cerebrospinal fluid biomarkers in Parkinson’s disease with freezing of gait: An exploratory analysis
  publication-title: NPJ Parkinsons Dis.
  doi: 10.1038/s41531-021-00247-x
– volume: 18
  start-page: 1
  year: 2021
  ident: ref_22
  article-title: Measuring freezing of gait during daily-life: An open-source, wearable sensors approach
  publication-title: J. NeuroEng. Rehab.
  doi: 10.1186/s12984-020-00774-3
– ident: ref_31
– ident: ref_35
  doi: 10.3390/s21248337
– volume: 14
  start-page: 436
  year: 2009
  ident: ref_37
  article-title: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2036165
– ident: ref_30
  doi: 10.3390/s16010115
– volume: 8
  start-page: 394
  year: 2017
  ident: ref_48
  article-title: Identification of characteristic motor patterns preceding freezing of gait in Parkinson’s disease using wearable sensors
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2017.00394
– volume: 8
  start-page: 383
  year: 1990
  ident: ref_27
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100080310
– volume: 264
  start-page: 1642
  year: 2017
  ident: ref_15
  article-title: Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review
  publication-title: J. Neurol.
  doi: 10.1007/s00415-017-8424-0
– ident: ref_38
– volume: 139
  start-page: 119
  year: 2018
  ident: ref_55
  article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.017
– volume: 21
  start-page: 81
  year: 2022
  ident: ref_62
  article-title: Identifying and distinguishing of essential tremor and Parkinson’s disease with grouped stability analysis based on searchlight-based MVPA
  publication-title: BioMedical Eng. OnLine
  doi: 10.1186/s12938-022-01050-2
– ident: ref_34
  doi: 10.1109/CVPR.2019.01230
– volume: 29
  start-page: 1583
  year: 2014
  ident: ref_1
  article-title: The prevalence of Parkinson’s disease: A systematic review and meta-analysis
  publication-title: Mov. Disord.
  doi: 10.1002/mds.25945
– volume: 2014
  start-page: 606427
  year: 2014
  ident: ref_16
  article-title: Temporal characteristics of high-frequency lower-limb oscillation during freezing of gait in Parkinson’s disease
  publication-title: Parkinson’s Dis.
– volume: 24
  start-page: 764
  year: 2015
  ident: ref_20
  article-title: A mobile Kalman-filter based solution for the real-time estimation of spatio-temporal gait parameters
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2015.2457511
– volume: 77
  start-page: 812
  year: 1997
  ident: ref_26
  article-title: Predicting the probability for falls in community-dwelling older adults
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/77.8.812
– volume: 278
  start-page: H2039
  year: 2000
  ident: ref_50
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol.-Heart Circul. Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– ident: ref_53
  doi: 10.1609/aaai.v32i1.12328
– volume: 5
  start-page: 726
  year: 2021
  ident: ref_32
  article-title: A survey on neural network interpretability
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2021.3100641
– ident: ref_63
– ident: ref_44
– volume: 34
  start-page: 11
  year: 2010
  ident: ref_57
  article-title: Effects of medication on turning deficits in individuals with Parkinson’s disease
  publication-title: J. Neurol. Phys. Ther.
  doi: 10.1097/NPT.0b013e3181d070fe
– ident: ref_39
  doi: 10.1109/CVPR.2018.00813
– volume: 8
  start-page: S3
  year: 2018
  ident: ref_2
  article-title: The emerging evidence of the Parkinson pandemic
  publication-title: J. Parkinson’s Dis.
  doi: 10.3233/JPD-181474
– ident: ref_45
  doi: 10.1145/2750858.2807551
– volume: 66
  start-page: 693
  year: 2018
  ident: ref_7
  article-title: Medical costs of fatal and nonfatal falls in older adults
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/jgs.15304
– ident: ref_52
  doi: 10.1109/ACPR.2015.7486569
– ident: ref_8
  doi: 10.3390/ijerph16122216
– volume: 55
  start-page: 181
  year: 1992
  ident: ref_24
  article-title: Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases
  publication-title: J. Neurol. Neurosurg. Psychiatr.
  doi: 10.1136/jnnp.55.3.181
– volume: 290
  start-page: 590
  year: 2019
  ident: ref_29
  article-title: Convolutional neural networks for radiologic images: A radiologist’s guide
  publication-title: Radiology
  doi: 10.1148/radiol.2018180547
– volume: 33
  start-page: 1307
  year: 1993
  ident: ref_59
  article-title: Festination and freezing
  publication-title: Rinsho Shinkeigaku = Clin. Neurol.
– ident: ref_21
  doi: 10.20944/preprints202103.0236.v1
– volume: 20
  start-page: 4474
  year: 2020
  ident: ref_19
  article-title: Using wearable sensors and machine learning to automatically detect freezing of gait during a FOG-provoking test
  publication-title: Sensors
  doi: 10.3390/s20164474
– volume: 7
  start-page: 199
  year: 2020
  ident: ref_10
  article-title: The New Freezing of Gait Questionnaire: Unsuitable as an outcome in clinical trials?
  publication-title: Mov. Disord. Clin. Pract.
  doi: 10.1002/mdc3.12893
– volume: 94
  start-page: 1300
  year: 2013
  ident: ref_25
  article-title: Using the Timed Up & Go test in a clinical setting to predict falling in Parkinson’s disease
  publication-title: Archiv. Phys. Med. Rehab.
  doi: 10.1016/j.apmr.2013.02.020
– ident: ref_18
  doi: 10.1109/EMBC.2017.8037455
– volume: 167
  start-page: 340
  year: 2008
  ident: ref_49
  article-title: Ambulatory monitoring of freezing of gait in Parkinson’s disease
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.08.023
– volume: 61
  start-page: 105246
  year: 2022
  ident: ref_28
  article-title: Vision-based concrete crack detection using a hybrid framework considering noise effect
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.105246
– volume: 22
  start-page: 209
  year: 1927
  ident: ref_46
  article-title: Probable inference, the law of succession, and statistical inference
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1927.10502953
– volume: 23
  start-page: 2129
  year: 2008
  ident: ref_9
  article-title: Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.22340
– volume: 25
  start-page: E17
  year: 2019
  ident: ref_6
  article-title: Estimating the economic burden related to older adult falls by state
  publication-title: J. Public Health Manag. Pract. JPHMP
– ident: ref_36
– ident: ref_43
– ident: ref_11
  doi: 10.1101/2020.12.16.20248342
– volume: 12
  start-page: 2587
  year: 2022
  ident: ref_61
  article-title: Automatic Classification and Severity Estimation of Ataxia From Finger Tapping Videos
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2021.795258
– volume: 28
  start-page: 591
  year: 2020
  ident: ref_13
  article-title: Prediction of freezing of gait in patients with Parkinson’s disease by identifying impaired gait patterns
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2020.2969649
– volume: 22
  start-page: 4294
  year: 2022
  ident: ref_14
  article-title: Topological Descriptors of Gait Nonlinear Dynamics toward Freezing-of-Gait Episodes Recognition in Parkinson’s Disease
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3142750
– ident: ref_33
  doi: 10.1145/3267242.3267287
– volume: 14
  start-page: 768
  year: 2015
  ident: ref_4
  article-title: Freezing of gait: A practical approach to management
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(15)00041-1
– volume: 27
  start-page: 947
  year: 2019
  ident: ref_47
  article-title: Prediction of freezing of gait in Parkinson’s disease using statistical inference and lower–limb acceleration data
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2019.2910165
– volume: 27
  start-page: e1963
  year: 2022
  ident: ref_56
  article-title: Benefits of task-specific movement program on en bloc turning in Parkinson’s disease: A randomized controlled trial
  publication-title: Physiother. Res. Int.
  doi: 10.1002/pri.1963
– ident: ref_58
  doi: 10.1371/journal.pone.0142874
– ident: ref_17
  doi: 10.1371/journal.pone.0171764
– reference: 36711809 - medRxiv. 2023 Jan 18;:
SSID ssj0023338
Score 2.473508
Snippet Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1766
SubjectTerms Behavior
Clinical trials
Deep learning
Dopa
Drug dosages
Gait
Gait Disorders, Neurologic - diagnosis
Humans
Innovations
Kinematics
Levodopa - therapeutic use
Medical research
Medicine, Experimental
Motion capture
Movement
Movement disorders
multi-task learning
Parkinson Disease - diagnosis
Parkinson's disease
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp3Ko-qBtWopMhdReIrKx49jHLWJBSOUCSNwsv6KuhJJqN3Dg13cm9oaNWqmXHvaQ9ezGj288M8n4G0KOawAGk9LlytcmxxeGuRW1zWfCNUhwDp3H55A_rsTFLb-8q-62Sn1hTlikB44Td9JYVwmAoQkN535mVcFM4e2MhdB4zodz5GDGNsFUCrUYRF6RR4hBUH-yxkefiQrx2foMJP1_bsVbtmiaJ7lleBavyMvkMdJ57OlrshPaN2Rvi0fwLVnNW4rJdOkkFMU6w4Cr_CbyTt3Tc6SlxuWgp137mNAGV1cxCZz2Hb1GPku6WIXwBP9Ju4aem2VPly3Fg9HDGTFAElwMPKzrfXK7OLs5vchTMYXcVUz0edkwLgsvma2kh6jFgV0uG8W9bKTwDqa0go8IdaFkaZmvTGmdqZwFnw5EFHtHdtuuDR8I5eCj1WoWpPGBKyOME54pDjuD8soUMiPfNpOsXWIax4IX9xoiDlwPPa5HRr6Mor8ivcbfhL7jSo0CyIg9fAE40Qkn-l84ychXXGeNegudcSYdP4AhIQOWnoMrxYSECCojBxNJ0Dc3bd4gRSd9X-uyrpUAZ7SA-xyNzfhLzGFrQ_eAMrKA3RxCxoy8j8Aah4RlAPCVekbqCeQmY562tMufAxs4BKzg1amP_2OSPpEXJShPzEo_ILv96iF8Bqert4eDfv0GBX4sPA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCAkuERNYsePE1oqdiskeqGVerP8CqxUJWU35cCvZybxphuBOOwh69mVnXl4xp75hpB3EgSDKeVzHaTN8cIwd0K6vBS-QYBzmDyeQ349FSfn_MtFfZEO3LYprXJnEwdDHTqPZ-RHlZRawHZfyI9XP3PsGoW3q6mFxm1yp6xAkrBSfLmaAi4G8deIJsQgtD_a4gFoAkS82YMGqP6_DfLejjTPltzbfpYPyP3kN9LFyOiH5FZsH5F7e2iCj8lm0VJMqUv1UBS7DYN05Wcj-tQlXSE4NTKFHnftryRz8HQ6poLTvqPfENWSLjcx_ob_pF1DV3bd03VLsTx6qBQDeYKHAY11-4ScLz-fHZ_kqaVC7msm-rxqGFdFUMzVKkDs4mF3rhrNg2qUCL4IroaPiLLQqnIs1LZy3tbegWcHJJo9JQdt18bnhHLw1KQuo7Ihcm2F9SIwzcE-6KBtoTLyYfeSjU9449j24tJA3IH8MBM_MvJ2Ir0aQTb-RfQJOTURIC728EW3-W6SmpnG-VqA0bKx4TyUThfMwoJKFmMTOJcZeY98Nqi9MBlvUxECLAlxsMwCHComFMRRGTmcUYLW-fnwTlJM0vqtuZHRjLyZhvGXmMnWxu4aaVQBNh0Cx4w8GwVrWhI2A8CL9YzImcjN1jwfadc_BkxwCFvBt9Mv_j-tl-RuBWoxZp0fkoN-cx1fgVPVu9eD5vwBnMIirw
  priority: 102
  providerName: ProQuest
Title An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients
URI https://www.ncbi.nlm.nih.gov/pubmed/36850363
https://www.proquest.com/docview/2779654507
https://www.proquest.com/docview/2780763960
https://pubmed.ncbi.nlm.nih.gov/PMC9968199
https://doaj.org/article/fbc56730aef44d1b903a0db13eefd447
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cYED4k1gqQxCgksgjR0_Dgh1V9uukLZCsJV6i_wKVKoSaLMI-PXMJGnUiD1wSKTUkzSTGXtm7PE3hLySoBhMKRdrL02MC4axFdLGY-EKBDiHl8d5yMu5uFjwj8tseUB2NTa7D7i9MbTDelKLzfrtrx-_P0CHf48RJ4Ts77Y4sYlAh4fkGAxSisp9yfvFhJSxpqA17umKwR4mLcDQ8NaBWWrQ-_8do_eM1DCBcs8iTe-SO50rSSet7O-Rg1DeJ7f3AAYfkM2kpJhl122RoliAGBQuvmoBqdZ0hnjVKCd6VpU_OzWEq3mbHU7rin5BoEs63YTwB55Jq4LOzKqmq5Lijulm8xioGFw0AK3bh2QxPb86u4i7Kguxy5io47RgXCVeMZspD-GMA4OdFpp7VSjhXeJtBocIMtEqtcxnJrXOZM6Cswckmj0iR2VVhieEcnDepB4HZXzg2gjjhGeaw5ChvTaJisib3UfOXQdBjpUw1jmEIiiPvJdHRF72pN9b3I2biE5RUj0BQmU3P1Sbr3nX8_LCukzAOGZCwbkfW50wAwyNWQiF51xG5DXKOUcVg5dxptuXACwhNFY-AR-LCQWhVUROBpTQEd2weacp-U6P81RKLcBLTeB_XvTNeCcmt5WhukYalcAwD7FkRB63itWzhPUBcK09InKgcgOehy3l6lsDEw6RLLh7-ul_8_eM3Eqht7Q56SfkqN5ch-fgctV2RA7lUsJZTWcjcnx6Pv_0edRMX4yarvYXumAuWg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemcQAOiG8yBhgEgku0NHb8cUCoDLqObb3QSb0Fx3ZYpSkZbQaCP4q_kfeSNG0E4rZDD6lfKzt-n_Z7v0fISwmMwZSyoXbShHhhGGZCZuFA2BwBzmHyeA55MhHjU_5plsy2yO9VLQymVa50Yq2oXWnxjHwvllILMPeRfHfxLcSuUXi7umqh0bDFkf_5A0K25dvDD7C_r-J49HG6Pw7brgKhTZiowjhnXEVOsSxRDtx3CwYqzjV3KlfC2chlCXyEl5FWccZcYuLMmsRm4NwACYIvgcq_xlnEEatfztYBHoN4r0EvYkxHe0s8cG0BGNc2r24N8LcB2LCA_ezMDXM3uk1utX4qHTaMdYds-eIuubmBXniPLIYFxRS-tv6KYndj4OZw2qBdndMDBMNGJqD7ZfG95XF4mjSp57Qq6WdE0aSjhfe_4D9pmdMDM6_ovKBYjl1XpgH_wkON_rq8T06v5GU_INtFWfhHhHLwDKUeeGWc59oIY4VjmoM-0k6bSAXkzeolp7bFN8c2G-cpxDm4H2m3HwF50ZFeNKAe_yJ6jzvVESAOd_1FufiatmKd5plNBChJ43PO3SDTETOwoAHzPnecy4C8xn1OUVvAZKxpix5gSYi7lQ7BgWNCQdwWkN0eJUi57Q-vOCVttcwyXctEQJ53w_hLzJwrfHmJNCoCGwKBakAeNozVLQmbD-BFfkBkj-V6a-6PFPOzGoMcwmTwJfXO_6f1jFwfT0-O0-PDydFjciMGEWky3nfJdrW49E_Aoauyp7UUUfLlqsX2D01QX2s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRUJwQLwxFFgQCC5WHK-9jwNCoSVtKURItFJuZr27hkiVXRIXBD-NX8eM7TwsELcecnB2Eu1457k7-w3AM4mCwZWyoXbShHRgGOZC5uFQ2IIAznHytA_5YSIOTpJ303S6Bb-Xd2GorHJpExtD7SpLe-SDWEot0N1HclB0ZREf98avz76F1EGKTlqX7TRaETnyP39g-rZ4dbiHa_08jsdvj3cPwq7DQGhTLuowLniiIqd4niqHobxFZxUXOnGqUMLZyOUpfoSXkVZxzl1q4tya1OYY6CAJATGh-b8kObKFuiSn62SPY-7XIhlxrqPBgjZfOzDGtf9r2gT87Qw2vGG_UnPD9Y2vw7UuZmWjVshuwJYvb8LVDSTDWzAflYzK-bq7WIw6HaNkh8ct8tUp2ydgbBIItluV3zt5x6dJW4bO6op9IkRNNp57_wv_k1UF2zezms1KRlezm1tqKMv40CDBLm7DyYW87DuwXValvwcswShR6qFXxvlEG2GscFwnaJu00yZSAbxcvuTMdljn1HLjNMOch9YjW61HAE9XpGctwMe_iN7QSq0ICJO7-aKaf8k6Fc-K3KYCDabxRZK4Ya4jbpChIfe-cEkiA3hB65yR5cDJWNNdgECWCIMrG2Ewx4XCHC6AnR4larztDy8lJessziJb60cAT1bD9Euqoit9dU40KkJ_gklrAHdbwVqxRI0I6FA_ANkTuR7P_ZFy9rXBI8eUGeNKff__03oMl1Fhs_eHk6MHcCVGDWmL33dgu56f-4cY29X5o0aJGHy-aK39A6ZaY6Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Explainable+Spatial-Temporal+Graphical+Convolutional+Network+to+Score+Freezing+of+Gait+in+Parkinsonian+Patients&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kwon%2C+Hyeokhyen&rft.au=Clifford%2C+Gari+D&rft.au=Genias%2C+Imari&rft.au=Bernhard%2C+Doug&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=4&rft_id=info:doi/10.3390%2Fs23041766&rft.externalDocID=A743368306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon