Dependency criterion based brain pathological age estimation of Alzheimer’s disease patients with MR scans

Objectives Traditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to the accelerated brain aging. Methods This paper considers this deviation and o...

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering online Vol. 16; no. 1; pp. 50 - 20
Main Authors Li, Yongming, Liu, Yuchuan, Wang, Pin, Wang, Jie, Xu, Sha, Qiu, Mingguo
Format Journal Article
LanguageEnglish
Published London BioMed Central 24.04.2017
Springer Nature B.V
BMC
Subjects
Age
NMR
STD
Online AccessGet full text
ISSN1475-925X
1475-925X
DOI10.1186/s12938-017-0342-y

Cover

Abstract Objectives Traditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to the accelerated brain aging. Methods This paper considers this deviation and obtains it by maximizing the correlation between the estimated brain age and the class label rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to the prior knowledge. Secondly, use the support vector regression as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the correlation criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age. Results The experimental results showed that the separability of the samples was apparently improved. For normal control- Alzheimer’s disease (NC-AD), normal control- mild cognition impairment (NC-MCI), and mild cognition impairment—Alzheimer’s disease (MCI-AD), the average improvements were 0.164 (31.66%), 0.1284 (34.29%), and 0.0206 (7.1%), respectively. For NC-MCI-AD, the average improvement was 0.2002 (50.39%). The estimated brain pathological age could be not only more helpful for the classification of AD but also more precisely reflect the accelerated brain aging. Conclusion In conclusion, this paper proposes a new kind of brain age—brain pathological age and offers an estimation method for it that can distinguish different states of AD, thereby better reflecting accelerated brain aging. Besides, the brain pathological age is most helpful for feature reduction, thereby simplifying the relevant classification algorithm.
AbstractList Abstract Objectives Traditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to the accelerated brain aging. Methods This paper considers this deviation and obtains it by maximizing the correlation between the estimated brain age and the class label rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to the prior knowledge. Secondly, use the support vector regression as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the correlation criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age. Results The experimental results showed that the separability of the samples was apparently improved. For normal control- Alzheimer’s disease (NC-AD), normal control- mild cognition impairment (NC-MCI), and mild cognition impairment—Alzheimer’s disease (MCI-AD), the average improvements were 0.164 (31.66%), 0.1284 (34.29%), and 0.0206 (7.1%), respectively. For NC-MCI-AD, the average improvement was 0.2002 (50.39%). The estimated brain pathological age could be not only more helpful for the classification of AD but also more precisely reflect the accelerated brain aging. Conclusion In conclusion, this paper proposes a new kind of brain age—brain pathological age and offers an estimation method for it that can distinguish different states of AD, thereby better reflecting accelerated brain aging. Besides, the brain pathological age is most helpful for feature reduction, thereby simplifying the relevant classification algorithm.
Objectives Traditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to the accelerated brain aging. Methods This paper considers this deviation and obtains it by maximizing the correlation between the estimated brain age and the class label rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to the prior knowledge. Secondly, use the support vector regression as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the correlation criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age. Results The experimental results showed that the separability of the samples was apparently improved. For normal control- Alzheimer’s disease (NC-AD), normal control- mild cognition impairment (NC-MCI), and mild cognition impairment—Alzheimer’s disease (MCI-AD), the average improvements were 0.164 (31.66%), 0.1284 (34.29%), and 0.0206 (7.1%), respectively. For NC-MCI-AD, the average improvement was 0.2002 (50.39%). The estimated brain pathological age could be not only more helpful for the classification of AD but also more precisely reflect the accelerated brain aging. Conclusion In conclusion, this paper proposes a new kind of brain age—brain pathological age and offers an estimation method for it that can distinguish different states of AD, thereby better reflecting accelerated brain aging. Besides, the brain pathological age is most helpful for feature reduction, thereby simplifying the relevant classification algorithm.
Traditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to the accelerated brain aging. This paper considers this deviation and obtains it by maximizing the correlation between the estimated brain age and the class label rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to the prior knowledge. Secondly, use the support vector regression as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the correlation criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age. The experimental results showed that the separability of the samples was apparently improved. For normal control- Alzheimer's disease (NC-AD), normal control- mild cognition impairment (NC-MCI), and mild cognition impairment-Alzheimer's disease (MCI-AD), the average improvements were 0.164 (31.66%), 0.1284 (34.29%), and 0.0206 (7.1%), respectively. For NC-MCI-AD, the average improvement was 0.2002 (50.39%). The estimated brain pathological age could be not only more helpful for the classification of AD but also more precisely reflect the accelerated brain aging. In conclusion, this paper proposes a new kind of brain age-brain pathological age and offers an estimation method for it that can distinguish different states of AD, thereby better reflecting accelerated brain aging. Besides, the brain pathological age is most helpful for feature reduction, thereby simplifying the relevant classification algorithm.
Objectives Traditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to the accelerated brain aging. Methods This paper considers this deviation and obtains it by maximizing the correlation between the estimated brain age and the class label rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to the prior knowledge. Secondly, use the support vector regression as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the correlation criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age. Results The experimental results showed that the separability of the samples was apparently improved. For normal control- Alzheimer’s disease (NC-AD), normal control- mild cognition impairment (NC-MCI), and mild cognition impairment-Alzheimer’s disease (MCI-AD), the average improvements were 0.164 (31.66%), 0.1284 (34.29%), and 0.0206 (7.1%), respectively. For NC-MCI-AD, the average improvement was 0.2002 (50.39%). The estimated brain pathological age could be not only more helpful for the classification of AD but also more precisely reflect the accelerated brain aging. Conclusion In conclusion, this paper proposes a new kind of brain age-brain pathological age and offers an estimation method for it that can distinguish different states of AD, thereby better reflecting accelerated brain aging. Besides, the brain pathological age is most helpful for feature reduction, thereby simplifying the relevant classification algorithm.
Traditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to the accelerated brain aging.OBJECTIVESTraditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to the accelerated brain aging.This paper considers this deviation and obtains it by maximizing the correlation between the estimated brain age and the class label rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to the prior knowledge. Secondly, use the support vector regression as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the correlation criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age.METHODSThis paper considers this deviation and obtains it by maximizing the correlation between the estimated brain age and the class label rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to the prior knowledge. Secondly, use the support vector regression as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the correlation criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age.The experimental results showed that the separability of the samples was apparently improved. For normal control- Alzheimer's disease (NC-AD), normal control- mild cognition impairment (NC-MCI), and mild cognition impairment-Alzheimer's disease (MCI-AD), the average improvements were 0.164 (31.66%), 0.1284 (34.29%), and 0.0206 (7.1%), respectively. For NC-MCI-AD, the average improvement was 0.2002 (50.39%). The estimated brain pathological age could be not only more helpful for the classification of AD but also more precisely reflect the accelerated brain aging.RESULTSThe experimental results showed that the separability of the samples was apparently improved. For normal control- Alzheimer's disease (NC-AD), normal control- mild cognition impairment (NC-MCI), and mild cognition impairment-Alzheimer's disease (MCI-AD), the average improvements were 0.164 (31.66%), 0.1284 (34.29%), and 0.0206 (7.1%), respectively. For NC-MCI-AD, the average improvement was 0.2002 (50.39%). The estimated brain pathological age could be not only more helpful for the classification of AD but also more precisely reflect the accelerated brain aging.In conclusion, this paper proposes a new kind of brain age-brain pathological age and offers an estimation method for it that can distinguish different states of AD, thereby better reflecting accelerated brain aging. Besides, the brain pathological age is most helpful for feature reduction, thereby simplifying the relevant classification algorithm.CONCLUSIONIn conclusion, this paper proposes a new kind of brain age-brain pathological age and offers an estimation method for it that can distinguish different states of AD, thereby better reflecting accelerated brain aging. Besides, the brain pathological age is most helpful for feature reduction, thereby simplifying the relevant classification algorithm.
ArticleNumber 50
Author Li, Yongming
Liu, Yuchuan
Xu, Sha
Qiu, Mingguo
Wang, Pin
Wang, Jie
Author_xml – sequence: 1
  givenname: Yongming
  orcidid: 0000-0002-7542-4356
  surname: Li
  fullname: Li, Yongming
  email: yongmingli@cqu.edu.cn
  organization: College of Communication Engineering, Chongqing University, Department of Medical Image, College of Biomedical Engineering, Third Military Medical University, Collaborative Innovation Center for Brain Science, Chongqing University
– sequence: 2
  givenname: Yuchuan
  surname: Liu
  fullname: Liu, Yuchuan
  organization: College of Communication Engineering, Chongqing University
– sequence: 3
  givenname: Pin
  surname: Wang
  fullname: Wang, Pin
  organization: College of Communication Engineering, Chongqing University
– sequence: 4
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  organization: College of Communication Engineering, Chongqing University
– sequence: 5
  givenname: Sha
  surname: Xu
  fullname: Xu, Sha
  organization: College of Communication Engineering, Chongqing University
– sequence: 6
  givenname: Mingguo
  surname: Qiu
  fullname: Qiu, Mingguo
  organization: Department of Medical Image, College of Biomedical Engineering, Third Military Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28438167$$D View this record in MEDLINE/PubMed
BookMark eNqNUsuKFDEULWTEeegHuJECN25K86xKbYRhfA2MCKLgLtxKbndnSCdtUu3QrvwNf88vMTXdDj0DiquE5JyTc8_JcXUQYsCqekzJc0pV-yJT1nPVENo1hAvWbO5VR1R0sumZ_HKwtz-sjnO-JIQR0vYPqkOmBFe07Y4q_wpXGCwGs6lNciMmF0M9QEZbDwlcqFcwLqKPc2fA1zDHGvPoljBOuDirT_33Bbolpl8_fubauoyFO5EchjHXV25c1O8_1tlAyA-r-zPwGR_t1pPq85vXn87eNRcf3p6fnV40RvJ2bCgK7CUbOIV-xi0RHVHUMkOgg15aDtgJS2lrLZeKSwmES9tZy3plhh4sP6nOt7o2wqVepWI3bXQEp68PYpprSKMzHnWvBNhZa6QBJsQw6zuQyFQniGRiwLZosa3WOqxgcwXe3whSoqca9LYGXWrQUw16U0gvt6TVeliiNSWKBP6Wk9s3wS30PH7TUhDBqSwCz3YCKX5dl8T10mWD3kPAuM6aqp4q1bd8Mvj0DvQyrlMo-U4oIVrBGCuoJ_uObqz8-QkFQLcAk2LOCWf_NWZ3h2PceP0zylDO_5O5SzWXV8Ic057pv5J-A4Tn6lM
CitedBy_id crossref_primary_10_1109_JBHI_2019_2897020
crossref_primary_10_3389_fnagi_2022_832195
crossref_primary_10_1016_j_bbe_2021_02_006
crossref_primary_10_1038_s41598_024_63998_6
crossref_primary_10_1016_j_tins_2017_10_001
crossref_primary_10_1186_s12938_018_0489_1
Cites_doi 10.1016/j.neurobiolaging.2011.08.007
10.1016/j.exger.2015.07.004
10.1007/s00401-009-0485-4
10.1016/j.nbd.2012.03.005
10.1016/j.neurobiolaging.2009.02.008
10.1006/nimg.2001.0786
10.1016/j.forsciint.2014.05.008
10.1016/j.neuroscience.2012.11.038
10.1016/j.neuroimage.2015.04.036
10.1016/j.neurobiolaging.2011.05.018
10.1016/j.neuroimage.2010.04.033
10.1016/j.forsciint.2015.06.001
10.1371/journal.pone.0157514
10.1109/EMBC.2015.7318450
10.1109/EMBC.2015.7319340
10.1016/j.arr.2016.01.002
10.1016/j.jsbmb.2016.03.012
10.1016/j.neurobiolaging.2016.03.016
10.1212/WNL.41.12.1886
10.1016/j.jalz.2016.06.180
10.1126/science.1228541
10.1109/TNNLS.2014.2377245
10.1016/j.ejrad.2016.05.014
10.1016/j.bbadis.2015.11.009
10.1016/j.neuroimage.2016.04.007
10.1016/j.neuropsychologia.2008.09.016
10.1007/978-3-8348-2589-6
10.1016/j.neurobiolaging.2011.06.026
10.1016/j.nicl.2013.12.012
10.1088/0967-3334/36/11/2369
10.1371/journal.pone.0140945
10.1016/j.neurobiolaging.2014.07.046
10.1016/j.neuroimage.2014.06.029
10.1007/s10773-015-2849-y
10.1016/j.neurobiolaging.2006.11.010
10.1109/SMC.2015.397
10.1007/s11682-014-9321-0
10.1016/j.neuroimage.2014.10.002
10.1016/j.jns.2016.03.031
10.1001/archneur.1994.00540210046012
10.1016/j.bbr.2016.05.008
10.1016/j.patrec.2013.04.014
10.1016/j.neuroimage.2010.01.005
10.1016/j.jalz.2012.05.1429
10.1002/ana.24367
10.1016/j.forsciint.2015.12.006
ContentType Journal Article
Copyright The Author(s) 2017
Copyright BioMed Central 2017
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright BioMed Central 2017
CorporateAuthor For the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
CorporateAuthor_xml – name: For the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
– name: Alzheimer’s Disease Neuroimaging Initiative (ADNI)
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12938-017-0342-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database (ProQuest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
EndPage 20
ExternalDocumentID oai_doaj_org_article_984adf6c5ca244bf97a5e28740524be6
10.1186/s12938-017-0342-y
PMC5404315
28438167
10_1186_s12938_017_0342_y
Genre Evaluation Studies
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2013M532153
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: ;
  grantid: 2013M532153
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
2VQ
4.4
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c536t-1e4e952b31a9f3d047081d2c0a7a95d3ae74d116dd358355a035d7dd298cb9ad3
IEDL.DBID M48
ISSN 1475-925X
IngestDate Fri Oct 03 12:22:03 EDT 2025
Sun Oct 26 02:42:24 EDT 2025
Tue Sep 30 16:56:19 EDT 2025
Thu Sep 04 19:11:36 EDT 2025
Mon Oct 06 18:21:08 EDT 2025
Wed Feb 19 02:43:51 EST 2025
Thu Apr 24 23:01:37 EDT 2025
Wed Oct 01 00:48:13 EDT 2025
Sat Sep 06 07:30:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Alzheimer’s disease
Magnetic resonance imaging
Classification
Correlation criterion
Brain age estimation
Support vector regression
Brain pathological age
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-1e4e952b31a9f3d047081d2c0a7a95d3ae74d116dd358355a035d7dd298cb9ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-7542-4356
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-017-0342-y
PMID 28438167
PQID 1894464222
PQPubID 42562
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_984adf6c5ca244bf97a5e28740524be6
unpaywall_primary_10_1186_s12938_017_0342_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5404315
proquest_miscellaneous_1891889636
proquest_journals_1894464222
pubmed_primary_28438167
crossref_primary_10_1186_s12938_017_0342_y
crossref_citationtrail_10_1186_s12938_017_0342_y
springer_journals_10_1186_s12938_017_0342_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-24
PublicationDateYYYYMMDD 2017-04-24
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-24
  day: 24
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2017
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References Monika Bekiesińska-Figatowska (342_CR11) 2016; 85
R Hullinger (342_CR26) 2017; 322
Geert Jan Biessels (342_CR2) 2016; 1862
K Franke (342_CR38) 2013; 5
A Pepe (342_CR9) 2014; 100
D Hoyer (342_CR18) 2015; 36
AM Coppus (342_CR12) 2012; 33
BC Riedel (342_CR17) 2016; 160
LA Teverovskiy (342_CR39) 2008; 5
Q Zhang (342_CR47) 2015; 26
DJ Selkoe (342_CR1) 2012; 337
L Pini (342_CR27) 2016; 30
K Franke (342_CR36) 2010; 50
M Lorenzi (342_CR28) 2015; 36
E Capitani (342_CR15) 2009; 47
E Luders (342_CR44) 2016; 134
H Takao (342_CR10) 2013; 231
CD Good (342_CR20) 2001; 14
LC Loewe (342_CR43) 2016; 11
C Davatzikos (342_CR33) 2008; 29
JH Kim (342_CR14) 2012; 33
Andres Ortiz (342_CR6) 2013; 34
LG Apostolova (342_CR7) 2014; 24
Thomas A Runkler (342_CR49) 2012
D Terribilli (342_CR21) 2011; 32
Elaheh Moradi (342_CR46) 2015; 104
L Fratiglioni (342_CR25) 1991; 41
R Scherzer-Attali (342_CR13) 2012; 46
A Pfefferbaum (342_CR19) 1994; 51
R Tokuchi (342_CR16) 2016; 365
Duygu Tosun (342_CR4) 2010; 52
342_CR5
S Duchesne (342_CR24) 2016; 12
JH Cole (342_CR22) 2015; 77
P Rzezak (342_CR23) 2015; 10
S Hirano (342_CR35) 2012; 8
K Franke (342_CR37) 2015; 15
I Alafuzoff (342_CR8) 2009; 117
W Li (342_CR48) 2016; 55
M Tondelli (342_CR3) 2012; 33
A Rieckmann (342_CR29) 2016; 42
Pia Baumann (342_CR30) 2015; 253
LC Löwe (342_CR45) 2016; 11
A Irimia (342_CR40) 2015; 9
342_CR41
342_CR42
O Ekizoglu (342_CR32) 2016; 260
Catherine Bortolon (342_CR34) 2015; 70
Volker Vieth (342_CR31) 2014; 241
8080387 - Arch Neurol. 1994 Sep;51(9):874-87
27143434 - Neurobiol Aging. 2016 Jun;42:177-88
26176647 - Exp Gerontol. 2015 Oct;70:46-53
24381557 - Front Aging Neurosci. 2013 Dec 17;5:90
25376330 - Brain Imaging Behav. 2015 Dec;9(4):678-89
21782287 - Neurobiol Aging. 2012 Apr;33(4):825.e25-36
24634832 - Neuroimage Clin. 2014 Jan 04;4:461-72
26093127 - Forensic Sci Int. 2015 Aug;253:76-80
26969397 - J Steroid Biochem Mol Biol. 2016 Jun;160:134-47
27206864 - J Neurol Sci. 2016 Jun 15;365:3-8
20070949 - Neuroimage. 2010 Apr 15;50(3):883-92
25913700 - Neuroimage. 2015 Jul 15;115:1-6
27079530 - Neuroimage. 2016 Jul 1;134:508-13
21958962 - Neurobiol Aging. 2012 Sep;33(9):1988-94
24952229 - Neuroimage. 2014 Oct 15;100:444-59
26736350 - Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :666-9
27163751 - Behav Brain Res. 2017 Mar 30;322(Pt B):191-205
22449754 - Neurobiol Dis. 2012 Jun;46(3):663-72
26797254 - Forensic Sci Int. 2016 Mar;260:102.e1-7
26489779 - Physiol Meas. 2015 Nov;36(11):2369-78
20406691 - Neuroimage. 2010 Aug 1;52(1):186-97
25623048 - Ann Neurol. 2015 Apr;77(4):571-81
1745343 - Neurology. 1991 Dec;41(12):1886-92
26827786 - Ageing Res Rev. 2016 Sep;30:25-48
26737240 - Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :4278-81
22997326 - Science. 2012 Sep 21;337(6101):1488-92
17174012 - Neurobiol Aging. 2008 Apr;29(4):514-23
21907459 - Neurobiol Aging. 2012 Sep;33(9):1959-66
24908196 - Forensic Sci Int. 2014 Aug;241:118-22
25311276 - Neurobiol Aging. 2015 Jan;36 Suppl 1:S42-52
27410431 - PLoS One. 2016 Jul 13;11(7):e0157514
25532195 - IEEE Trans Neural Netw Learn Syst. 2015 Aug;26(8):1828-33
25312773 - Neuroimage. 2015 Jan 1;104:398-412
18929584 - Neuropsychologia. 2009 Jan;47(2):423-9
11525331 - Neuroimage. 2001 Jul;14(1 Pt 1):21-36
26612719 - Biochim Biophys Acta. 2016 May;1862(5):869-77
19282066 - Neurobiol Aging. 2011 Feb;32(2):354-68
23219841 - Neuroscience. 2013 Feb 12;231:1-12
26474472 - PLoS One. 2015 Oct 16;10(10):e0140945
19184666 - Acta Neuropathol. 2009 Mar;117(3):309-20
27423683 - Eur J Radiol. 2016 Aug;85(8):1427-31
References_xml – volume: 33
  start-page: 1988
  issue: 9
  year: 2012
  ident: 342_CR12
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2011.08.007
– volume: 70
  start-page: 46
  year: 2015
  ident: 342_CR34
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2015.07.004
– volume: 117
  start-page: 309
  year: 2009
  ident: 342_CR8
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-009-0485-4
– volume: 46
  start-page: 663
  issue: 3
  year: 2012
  ident: 342_CR13
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2012.03.005
– volume: 32
  start-page: 354
  issue: 2
  year: 2011
  ident: 342_CR21
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2009.02.008
– volume: 14
  start-page: 21
  issue: 1
  year: 2001
  ident: 342_CR20
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0786
– volume: 241
  start-page: 118
  year: 2014
  ident: 342_CR31
  publication-title: Forensic Sci Int
  doi: 10.1016/j.forsciint.2014.05.008
– volume: 231
  start-page: 1
  year: 2013
  ident: 342_CR10
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2012.11.038
– volume: 5
  start-page: 1509
  issue: 1
  year: 2008
  ident: 342_CR39
  publication-title: IEEE Int SympBiomed Imaging
– volume: 15
  start-page: 1
  issue: 115
  year: 2015
  ident: 342_CR37
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.036
– volume: 33
  start-page: 825
  issue: 4
  year: 2012
  ident: 342_CR3
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2011.05.018
– volume: 52
  start-page: 186
  issue: 1
  year: 2010
  ident: 342_CR4
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.033
– volume: 253
  start-page: 76
  year: 2015
  ident: 342_CR30
  publication-title: Forensic Sci Int
  doi: 10.1016/j.forsciint.2015.06.001
– volume: 5
  start-page: 90
  issue: 1
  year: 2013
  ident: 342_CR38
  publication-title: Front Aging Neurosci
– volume: 11
  start-page: 1
  issue: 7
  year: 2016
  ident: 342_CR43
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0157514
– ident: 342_CR41
  doi: 10.1109/EMBC.2015.7318450
– ident: 342_CR5
  doi: 10.1109/EMBC.2015.7319340
– volume: 30
  start-page: 25
  year: 2016
  ident: 342_CR27
  publication-title: Ageing Res Rev
  doi: 10.1016/j.arr.2016.01.002
– volume: 160
  start-page: 134
  year: 2016
  ident: 342_CR17
  publication-title: J Steroid Biochem Mol Biol
  doi: 10.1016/j.jsbmb.2016.03.012
– volume: 42
  start-page: 177
  year: 2016
  ident: 342_CR29
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2016.03.016
– volume: 41
  start-page: 1886
  issue: 12
  year: 1991
  ident: 342_CR25
  publication-title: Neurology
  doi: 10.1212/WNL.41.12.1886
– volume: 12
  start-page: 111
  issue: 7
  year: 2016
  ident: 342_CR24
  publication-title: Alzheimers Dementia
  doi: 10.1016/j.jalz.2016.06.180
– volume: 337
  start-page: 1488
  issue: 6101
  year: 2012
  ident: 342_CR1
  publication-title: Science
  doi: 10.1126/science.1228541
– volume: 26
  start-page: 1828
  issue: 8
  year: 2015
  ident: 342_CR47
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2377245
– volume: 85
  start-page: 1427
  issue: 8
  year: 2016
  ident: 342_CR11
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2016.05.014
– volume: 1862
  start-page: 869
  issue: 5
  year: 2016
  ident: 342_CR2
  publication-title: Biochimica Biophysica Acta
  doi: 10.1016/j.bbadis.2015.11.009
– volume: 134
  start-page: 508
  year: 2016
  ident: 342_CR44
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.007
– volume: 47
  start-page: 423
  issue: 2
  year: 2009
  ident: 342_CR15
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2008.09.016
– volume-title: Data analytics: models and algorithms for intelligent data analysis
  year: 2012
  ident: 342_CR49
  doi: 10.1007/978-3-8348-2589-6
– volume: 33
  start-page: 1959
  issue: 9
  year: 2012
  ident: 342_CR14
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2011.06.026
– volume: 24
  start-page: 461
  issue: 4
  year: 2014
  ident: 342_CR7
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2013.12.012
– volume: 36
  start-page: 2369
  issue: 11
  year: 2015
  ident: 342_CR18
  publication-title: Physiol Measurement
  doi: 10.1088/0967-3334/36/11/2369
– volume: 10
  start-page: e0140945
  issue: 10
  year: 2015
  ident: 342_CR23
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0140945
– volume: 36
  start-page: S42
  issue: Suppl 1
  year: 2015
  ident: 342_CR28
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2014.07.046
– volume: 100
  start-page: 444
  issue: 15
  year: 2014
  ident: 342_CR9
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.029
– volume: 55
  start-page: 2097
  issue: 4
  year: 2016
  ident: 342_CR48
  publication-title: Int J Theor Phys
  doi: 10.1007/s10773-015-2849-y
– volume: 29
  start-page: 514
  issue: 4
  year: 2008
  ident: 342_CR33
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2006.11.010
– ident: 342_CR42
  doi: 10.1109/SMC.2015.397
– volume: 9
  start-page: 678
  issue: 4
  year: 2015
  ident: 342_CR40
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-014-9321-0
– volume: 11
  start-page: e0157514
  issue: 7
  year: 2016
  ident: 342_CR45
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0157514
– volume: 104
  start-page: 398
  year: 2015
  ident: 342_CR46
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 365
  start-page: 3
  year: 2016
  ident: 342_CR16
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2016.03.031
– volume: 51
  start-page: 874
  issue: 9
  year: 1994
  ident: 342_CR19
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1994.00540210046012
– volume: 322
  start-page: 191
  issue: Part B
  year: 2017
  ident: 342_CR26
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2016.05.008
– volume: 34
  start-page: 1725
  issue: 14
  year: 2013
  ident: 342_CR6
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2013.04.014
– volume: 50
  start-page: 883
  issue: 3
  year: 2010
  ident: 342_CR36
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2010.01.005
– volume: 8
  start-page: 531
  issue: 4
  year: 2012
  ident: 342_CR35
  publication-title: Alzheimers Dementia
  doi: 10.1016/j.jalz.2012.05.1429
– volume: 77
  start-page: 571
  issue: 4
  year: 2015
  ident: 342_CR22
  publication-title: Ann Neurol
  doi: 10.1002/ana.24367
– volume: 260
  start-page: 102.e1
  year: 2016
  ident: 342_CR32
  publication-title: Forensic Sci Int
  doi: 10.1016/j.forsciint.2015.12.006
– reference: 26612719 - Biochim Biophys Acta. 2016 May;1862(5):869-77
– reference: 27206864 - J Neurol Sci. 2016 Jun 15;365:3-8
– reference: 8080387 - Arch Neurol. 1994 Sep;51(9):874-87
– reference: 20070949 - Neuroimage. 2010 Apr 15;50(3):883-92
– reference: 24381557 - Front Aging Neurosci. 2013 Dec 17;5:90
– reference: 26827786 - Ageing Res Rev. 2016 Sep;30:25-48
– reference: 22449754 - Neurobiol Dis. 2012 Jun;46(3):663-72
– reference: 1745343 - Neurology. 1991 Dec;41(12):1886-92
– reference: 25623048 - Ann Neurol. 2015 Apr;77(4):571-81
– reference: 27410431 - PLoS One. 2016 Jul 13;11(7):e0157514
– reference: 26093127 - Forensic Sci Int. 2015 Aug;253:76-80
– reference: 25376330 - Brain Imaging Behav. 2015 Dec;9(4):678-89
– reference: 22997326 - Science. 2012 Sep 21;337(6101):1488-92
– reference: 19282066 - Neurobiol Aging. 2011 Feb;32(2):354-68
– reference: 24952229 - Neuroimage. 2014 Oct 15;100:444-59
– reference: 24908196 - Forensic Sci Int. 2014 Aug;241:118-22
– reference: 23219841 - Neuroscience. 2013 Feb 12;231:1-12
– reference: 11525331 - Neuroimage. 2001 Jul;14(1 Pt 1):21-36
– reference: 21907459 - Neurobiol Aging. 2012 Sep;33(9):1959-66
– reference: 21958962 - Neurobiol Aging. 2012 Sep;33(9):1988-94
– reference: 26489779 - Physiol Meas. 2015 Nov;36(11):2369-78
– reference: 17174012 - Neurobiol Aging. 2008 Apr;29(4):514-23
– reference: 25311276 - Neurobiol Aging. 2015 Jan;36 Suppl 1:S42-52
– reference: 26736350 - Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :666-9
– reference: 24634832 - Neuroimage Clin. 2014 Jan 04;4:461-72
– reference: 27079530 - Neuroimage. 2016 Jul 1;134:508-13
– reference: 25312773 - Neuroimage. 2015 Jan 1;104:398-412
– reference: 26176647 - Exp Gerontol. 2015 Oct;70:46-53
– reference: 20406691 - Neuroimage. 2010 Aug 1;52(1):186-97
– reference: 27163751 - Behav Brain Res. 2017 Mar 30;322(Pt B):191-205
– reference: 27143434 - Neurobiol Aging. 2016 Jun;42:177-88
– reference: 27423683 - Eur J Radiol. 2016 Aug;85(8):1427-31
– reference: 21782287 - Neurobiol Aging. 2012 Apr;33(4):825.e25-36
– reference: 25532195 - IEEE Trans Neural Netw Learn Syst. 2015 Aug;26(8):1828-33
– reference: 26474472 - PLoS One. 2015 Oct 16;10(10):e0140945
– reference: 26797254 - Forensic Sci Int. 2016 Mar;260:102.e1-7
– reference: 19184666 - Acta Neuropathol. 2009 Mar;117(3):309-20
– reference: 26969397 - J Steroid Biochem Mol Biol. 2016 Jun;160:134-47
– reference: 25913700 - Neuroimage. 2015 Jul 15;115:1-6
– reference: 18929584 - Neuropsychologia. 2009 Jan;47(2):423-9
– reference: 26737240 - Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :4278-81
SSID ssj0020069
Score 2.1904078
Snippet Objectives Traditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore that...
Traditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore that there is a...
Objectives Traditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore that...
Abstract Objectives Traditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 50
SubjectTerms Acetylcholinesterase
Adults
Age
Age determination
Aged
Aged, 80 and over
Aging
Aging - pathology
Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Alzheimer's disease
Analytics
Anatomy
Apolipoprotein E
Asymmetry
Atrophy
Biomarkers
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biotechnology
Brain
Brain - diagnostic imaging
Brain - pathology
Brain age estimation
Brain pathological age
Brain research
Cerebrospinal fluid
Chronology
Classification
Cognitive ability
Conversion
Correlation criterion
Cortex
Cybernetics
Dementia
Dementia disorders
Diabetes mellitus
Diagnosis
Disease Progression
Engineering
Estimation
Feasibility studies
Female
High resolution
Humans
Image Interpretation, Computer-Assisted - methods
International conferences
Learning algorithms
Life span
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Mathematical models
Menstrual cycle
Mental disorders
Neurodegenerative diseases
Neuroimaging
NMR
Nuclear magnetic resonance
Pattern recognition
Physiology
Positron emission tomography
Principal components analysis
Radiology
Regression analysis
Reproducibility of Results
Resonance
Senescence
Sensitivity and Specificity
Severity of Illness Index
Sexually transmitted diseases
Statistical analysis
STD
Studies
Tissues
Training
Traumatic brain injury
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEIAt1EOhB1TKK1CQkThRRXX8iJ1jW6gqpOWAqNSb5VfUSmm2anaFlhN_g7_HL8GTONGuePTCNXEiZ2bsGXucbxB6WxaWMy9JHmMhgGozmltnWB5dEw1KKMcc_I08-1SenfOPF-JirdQXnAkb8MCD4A4rxY2vSyeciZ7I1pU0IgCknQjKbehh20RV42IqLbUAwJtymIUqDzvwanBoS-aAvMtXG16oh_X_KcL8_aDklC3dQfeX7Y1ZfTVNs-aQTnfRwxRJ4qPhCx6he6HdQztrfME9tD1LmfPHqHmfqt26FY4TBRCa5y0GH-axhTIRGGoTjzMhjrMMBv7G8GMjntf4qPl2Ga6uw-3P7z86nPI6OGFZOwz7uXj2GXdRVd0TdH764cvJWZ4qLeROsHKRF4GHSlDLClPVzBMuY6TgqSNGmkp4ZoLkvihK75mIIZswhAkvvaeVcrYynj1FW-28Dc8RNp5Chkwp4NYbS5SrC2FrEjytHS1lhsgoee0ShhyqYTS6X46oUg_K0lFZGpSlVxl6Nz1yMzA4_tX4GNQ5NQR8dn8hGpVORqXvMqoM7Y_GoNOY7nShqrh2hi2zDL2ZbsfRCCkW04b5sm9TKBUntfiKZ4PtTD2JgQBkaaME5IZVbXR18057ddkTv0XPQBIZOhjtb61bf5fEwWSid8vtxf-Q20v0gPaDjOeU76Otxe0yvIpB28K-7sfnL8UcPno
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ta9QwGH-YN1D3QXS-VadE8JOjrE2aNv0gsunGEO6Q4WDfQt7qDo723N0h519vnjatd6jza5OWNM9r8iS_H8DbPNUZs0US-1wIQbUZjbVRLPahiTrBhWEGbyOPJ_n5Zfb5il_twKS_C4PHKnuf2Dpq2xjcIz9KRelXLrhh8WH-PUbWKKyu9hQaKlAr2PctxNgd2KWIjDWC3ZPTyZeLYQmGwLyhtpmK_GiB0Q4PcxUxQuHF663o1IL4_y3z_PMA5VBF3YN7q3qu1j_UbLYRqM4ewoOQYZLjTiUewY6r92FvA3dwH-6OQ0X9MUw_BRZcsybegSByc1MTjG2WaKSPIMhZ3HtI4r0PQVyO7sIjaSpyPPt57aa4-01CsYcErNYFwU1eMr4gCy-_xRO4PDv9-vE8DvQLseEsX8apy1zJqWapKitmk6zw6YOlJlGFKrllyhWZTdPcWsZ9HsdVwrgtrKWlMLpUlj2FUd3U7jkQZSmWzYRAMHulE2GqlOsqcZZWhuZFBEk_7dIEbHKkyJjJdo0ictlJSnpJSZSUXEfwbnhl3gFz3Nb5BGU5dERM7fZBc_NNBhOVpciUrXLDjfI5j67KQnGHdAAJp5l2eQQHvSbIYOgL-VstI3gzNHsTxbqLql2zavukQnhP5z_xrFOcYSQ-O8DSrZ-BYkultoa63VJPr1sYcN4CI_EIDnvl2xjWv2ficNDP_8_bi9t_-SXcp63tZDHNDmC0vFm5Vz5HW-rXwfB-AYSYOlE
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL2CIgFdICiPphRkJFZUEYkdO86yLVQV0rBAVOrO8itqpTRTNTNC01V_o7_Hl-CbeKIZUUBs44cs36dz7HMB3ovcFMyVWRpyISTVZjQ1VrM0hCbqJZeWWXyNPPkqjk-KL6f8NJJF41uYVfw-l-Jjh_EIr1uVKZLVpYv78CDEKNHjsuJwPFsh424ELe8cthZ2enb-u1LK329GjvDoJjyat5d68UM3zUoEOnoKT2LqSPYHWT-De77dgs0VQsEteDiJUPlzaD7F8rZ2QYJnQErmaUswaDlisC4EwWLES9dHglshSLgxvGQk05rsN9dn_vzCX_28ue1IBHJI5GHtCP7AJZNvpAuy6V7AydHn74fHaSytkFrOxCzNfeErTg3LdVUzlxVlSA0ctZkudcUd074sXJ4L5xgPORrXGeOudI5W0ppKO_YSNtpp67eBaEcREpMSieq1yaStc27qzDtaWyrKBLLlzisbecex_EWj-vOHFGoQlgrCUigstUjgwzjkciDd-FvnAxTn2BH5svsPQY1UND9VyUK7WlhudchnTF2Vmnuk-s84LYwXCewulUFFI-5ULqtwWMZ_ZAm8G5uD-SGmols_nfd9cimDFwtTvBp0Z1xJiPwIy4YdKNe0am2p6y3t-VlP8c170iOewN5S_1aW9eed2BtV9N_7tvNfc7-Gx7S3piKlxS5szK7m_k1Ix2bmbW-IvwBmxi7F
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAJ64FFegYIWiRPVpvau114fw6OqkFIhRKQgDta-TKsaJ4oToVQc-Bv8PX4JO_baJFBAHLhZ9tpaj8fffPbsfIPQkzhUETNJQBwXAlFtRonSkhEXmqgVXGimoRp5dBwfjaNXEz7ZQu_bWpim6BzmR-wPQT7SyEYM1kvSixrH3YY-O5iZvHn9RXxQQQSDBVoJAXk7srqEtmPuiHoPbY-PXw_f1fVGCScp5ROf57zwvI1IVQv6X8RCf11M2WVUd9CVZTmTq0-yKNaC1uF19Lm93WatytlguVADff6TEuR_sscNdM2TXTxsvPMm2rLlLtpZk0DcRZdHPrl_CxUvfENevcIOy0BEelpiCLMGK-hkgaF9cgvW2AEhBomQpvYST3M8LM5P7OlHO__25WuFfeoJe-XYCsMvZzx6gyvnTdVtND58-fb5EfHNIIjmLF6Q0EY25VSxUKY5M0GUODJjqA5kIlNumLRJZMIwNoZxxyq5DBg3iTE0FVql0rA7qFdOS3sPYWkoJPGEAGl9qQKh85CrPLCG5prGSR8F7YPPtFdKh4YdRVZ_MYk4a2yaOZtmYNNs1UdPu1NmjUzInwY_A2_qBoLCd71jOv-QecDIUhFJk8eaa-kYmMrTRHILzQkCTiNl4z7aa30x87BTZaFI3ec9_NXro8fdYQcYkAWSpZ0u6zGhEA533SXuNq7bzcRxFUgkOwskG069MdXNI-XpSS1KzmuZJt5H-637r03r95bY796Qv9vt_j-NfoCu0trpI0KjPdRbzJf2oSOQC_XIA8F35ylumg
  priority: 102
  providerName: Unpaywall
Title Dependency criterion based brain pathological age estimation of Alzheimer’s disease patients with MR scans
URI https://link.springer.com/article/10.1186/s12938-017-0342-y
https://www.ncbi.nlm.nih.gov/pubmed/28438167
https://www.proquest.com/docview/1894464222
https://www.proquest.com/docview/1891889636
https://pubmed.ncbi.nlm.nih.gov/PMC5404315
https://biomedical-engineering-online.biomedcentral.com/track/pdf/10.1186/s12938-017-0342-y
https://doaj.org/article/984adf6c5ca244bf97a5e28740524be6
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ADMLS
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RPM
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M48
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: AAJSJ
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: C6C
  dateStart: 20020112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aRQL2gGDcCqMyEk9MYYkdx84DQl1ZmZBaTROVxlPk2A6bFNLRtILyxN_g7_FL8EmTqBUFxEukxE5knYvPsY_zfQDPoyANmRG-53IhBNVm1Eu1Yp4LTdRKLjXT-DfycBSdjsN3F_xiCxp6q1qA5calHfJJjaf5y6-fF6-dw7-qHF5GRyXGLDySJTwEtPMW27DrAlWMTA7DsC0q4OI5rgubG19bC00Vgv-mtPP305NtCXUPbs6La7X4ovJ8JUoN7sDtOr0kvaU93IUtW-zD3gro4D7cGNbl9HuQv6kpcPWCuNkDYZsnBcHAZkiK3BEECYub6ZG4qYcgKMfyb0cyyUgv_3Zprz7Z6c_vP0pSF3tIjdVaEtzkJcNzUjr9lfdhPDh53z_1avoFT3MWzbzAhjbmNGWBijNm_FC49MFQ7SuhYm6YsiI0QRAZw7jL47jyGTfCGBpLncbKsAewU0wK-wiIMhTLZlIimL1KfamzgKeZbw3NNI1EB_xG8omuscmRIiNPqjWKjJKlshKnrASVlSw68KJ95XoJzPG3zseozrYjYmpXDybTj0ntokksQ2WySHOtXM6TZrFQ3CIdgM9pmNqoAweNMSSNnSaBjN2CGvfROvCsbXYuinUXVdjJvOoTSOlmOveJh0vbaUfisgMs3ToJiDWrWhvqektxdVnBgPMKGIl34LCxv5Vh_VkSh62J_ltuj__r20_gFq28KfRoeAA7s-ncPnUp2yztwra4EO4qB2-7sHt8Mjo7d3f9qN-tNkG6laO6lvHorPfhF9KiRDk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlF6QFC-FgoYCS5UURM7TpwDQoVSbWm3B9RKezOO7dCVVsnS7KoKP4rfiCdf3RVQTr1unMjrGb8Ze-z3AN5EQRoyE_uey4WQVJtRL9WKeS40USu40EzjbeTRSTQ8C7-M-XgNfnV3YfBYZYeJNVCbQuMe-W4gErdywQ2LD7MfHqpGYXW1k9Bo3OLIVpduyVa-P9x39n1L6cHn009Dr1UV8DRn0dwLbGgTTlMWqCRjxg9jFxUN1b6KVcINUzYOTRBExjDu0hOufMZNbAxNhE4TZZj77i24HTKHJW7-xOOrBR7S_raV00BEuyXGUjwqFntItOdVK7Gvlgj4W1775_HMvka7CRuLfKaqSzWdLoXBg_twr81fyV7jcA9gzeZbsLnEargFd0Ztvf4hTPZbjV1dEQdPyAtd5AQjpyEpilMQVETu8Jc4bCPI-tFcpyRFRvamP8_tBPfWSVtKIi0TbElwC5mMvpLSeUf5CM5uxAyPYT0vcvsUiDIUi3JCIFW-Sn2hs4CnmW8NzTSN4gH43bBL3TKfowDHVNYrIBHJxlLSWUqipWQ1gHf9K7OG9uO6xh_Rln1DZOyufyguvssWAGQiQmWySHOtXEaVZkmsuEWxAZ_TMLXRALY7T5AtjJTyyukH8Lp_7AAAqzoqt8WibhMI4XDUfeJJ4zh9T1zugYVhNwLxikutdHX1ST45r0nGeU27xAew0znfUrf-PRI7vX_-f9yeXf-XX8HG8HR0LI8PT46ew11az6PQo-E2rM8vFvaFywbn6ct6ChL4dtNz_jcflnBW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgSIUuEBQKAwWMxIoqamLHjrMsU0blMRVCVOrO8iu0UkhGkxmhYcVv8Ht8Cb6JE82IAmIbP2Tdh-91jn0uQi94olNqszjyuRCQalMSaaNo5EMTcYIJQw28Rp6e8pOz9O05Ow91Tpv-tnsPSXZvGoClqVoczmzRubjghw1EKbiElUVAYRetrqMbqQ9uUMJgzMfDiQt4eAOUeeWwjWDUcvZflWj-fl9yAE130M1lNVOrr6os1-LS5A66HRJKfNRZwF10zVW7aGeNZnAXbU8DgH4Plceh6K1ZYb9fAFFzXWEIZRZrqBaBoURxvyFiv9lgoOHo3jfiusBH5bcLd_nFzX9-_9HgAO_gwM7aYPiti6cfceM11txHZ5PXn8YnUSi4EBlG-SJKXOpyRjRNVF5QG6eZl6klJlaZypmlymWpTRJuLWU-c2Mqpsxm1pJcGJ0rS_fQVlVX7iHCyhIAyoQA-nqlY2GKhOkidpYUhvBshOJe8tIENnIoilHK9lQiuOyUJb2yJChLrkbo5TBk1lFx_K3zK1Dn0BFYtNsP9fyzDE4pc5EqW3DDjPJZji7yTDEHBQBiRlLt-Ajt98Ygg2s3MhG5P0LDn7MRej40e6cEpEVVrl62fRIh_N7mp3jQ2c6wEp8PAFjrJZBtWNXGUjdbqsuLlvibtVRIbIQOevtbW9afJXEwmOi_5fbov-Z-hrY_HE_k-zen7x6jW6R1rDQi6T7aWsyX7onP1xb6aeuTvwDFlzn7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAJ64FFegYIWiRPVpvau114fw6OqkFIhRKQgDta-TKsaJ4oToVQc-Bv8PX4JO_baJFBAHLhZ9tpaj8fffPbsfIPQkzhUETNJQBwXAlFtRonSkhEXmqgVXGimoRp5dBwfjaNXEz7ZQu_bWpim6BzmR-wPQT7SyEYM1kvSixrH3YY-O5iZvHn9RXxQQQSDBVoJAXk7srqEtmPuiHoPbY-PXw_f1fVGCScp5ROf57zwvI1IVQv6X8RCf11M2WVUd9CVZTmTq0-yKNaC1uF19Lm93WatytlguVADff6TEuR_sscNdM2TXTxsvPMm2rLlLtpZk0DcRZdHPrl_CxUvfENevcIOy0BEelpiCLMGK-hkgaF9cgvW2AEhBomQpvYST3M8LM5P7OlHO__25WuFfeoJe-XYCsMvZzx6gyvnTdVtND58-fb5EfHNIIjmLF6Q0EY25VSxUKY5M0GUODJjqA5kIlNumLRJZMIwNoZxxyq5DBg3iTE0FVql0rA7qFdOS3sPYWkoJPGEAGl9qQKh85CrPLCG5prGSR8F7YPPtFdKh4YdRVZ_MYk4a2yaOZtmYNNs1UdPu1NmjUzInwY_A2_qBoLCd71jOv-QecDIUhFJk8eaa-kYmMrTRHILzQkCTiNl4z7aa30x87BTZaFI3ec9_NXro8fdYQcYkAWSpZ0u6zGhEA533SXuNq7bzcRxFUgkOwskG069MdXNI-XpSS1KzmuZJt5H-637r03r95bY796Qv9vt_j-NfoCu0trpI0KjPdRbzJf2oSOQC_XIA8F35ylumg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dependency+criterion+based+brain+pathological+age+estimation+of+Alzheimer%E2%80%99s+disease+patients+with+MR+scans&rft.jtitle=Biomedical+engineering+online&rft.au=Li%2C+Yongming&rft.au=Liu%2C+Yuchuan&rft.au=Wang%2C+Pin&rft.au=Wang%2C+Jie&rft.date=2017-04-24&rft.pub=BioMed+Central&rft.eissn=1475-925X&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12938-017-0342-y&rft.externalDocID=10_1186_s12938_017_0342_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon