Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum
Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots–beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roo...
Saved in:
Published in | Horticulture research Vol. 6; no. 1; pp. 5 - 15 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2019
Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 2052-7276 2052-7276 |
DOI | 10.1038/s41438-018-0079-1 |
Cover
Abstract | Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots–beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus
Trichoderma harzianum
T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between
Trichoderma
-interacting and control roots and 83
T. harzianum
transcripts that were differentially expressed between the three experimental time points. Interaction with
Trichoderma
triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside,
T. harzianum
-induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant–
Trichoderma
interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs.
Symbiosis: the genetics of beneficial tomato root–fungus interaction
The fungus
Trichoderma harzianum
induces differentiated protein production in tomato roots that benefits plant nutrition and survivability. Microorganisms advantageous to plants have long been exploited in agriculture; however, with limited studies into the interface of
Trichoderma
fungus and plants—the roots. Italian researchers, led by the Research Centre for Vegetable and Ornamental Crops' Nunzio D'Agostino and the National Research Council’s Marina Tucci, inoculated tomato plant roots with
T. harzianum
over 72 h, finding over 1200 examples of differential gene expression and post-expression modification that resulted in improved plant growth and immune system regulation. The interaction also induces a root change that likely promotes further interaction with the fungus and increased stress tolerance via promoting antioxidation and defensive activity. The team’s work provides early evidence of the molecular mechanisms behind root–fungus symbiosis and may help to inform crop breeding and fertilisation strategies. |
---|---|
AbstractList | Symbiosis: the genetics of beneficial tomato root–fungus interaction The fungus Trichoderma harzianum induces differentiated protein production in tomato roots that benefits plant nutrition and survivability. Microorganisms advantageous to plants have long been exploited in agriculture; however, with limited studies into the interface of Trichoderma fungus and plants—the roots. Italian researchers, led by the Research Centre for Vegetable and Ornamental Crops' Nunzio D'Agostino and the National Research Council’s Marina Tucci, inoculated tomato plant roots with T. harzianum over 72 h, finding over 1200 examples of differential gene expression and post-expression modification that resulted in improved plant growth and immune system regulation. The interaction also induces a root change that likely promotes further interaction with the fungus and increased stress tolerance via promoting antioxidation and defensive activity. The team’s work provides early evidence of the molecular mechanisms behind root–fungus symbiosis and may help to inform crop breeding and fertilisation strategies. Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots-beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between -interacting and control roots and 83 transcripts that were differentially expressed between the three experimental time points. Interaction with triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, -induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant- interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs. Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots–beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus Trichoderma harzianum T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between Trichoderma -interacting and control roots and 83 T. harzianum transcripts that were differentially expressed between the three experimental time points. Interaction with Trichoderma triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, T. harzianum -induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant– Trichoderma interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs. The fungus Trichoderma harzianum induces differentiated protein production in tomato roots that benefits plant nutrition and survivability. Microorganisms advantageous to plants have long been exploited in agriculture; however, with limited studies into the interface of Trichoderma fungus and plants—the roots. Italian researchers, led by the Research Centre for Vegetable and Ornamental Crops' Nunzio D'Agostino and the National Research Council’s Marina Tucci, inoculated tomato plant roots with T. harzianum over 72 h, finding over 1200 examples of differential gene expression and post-expression modification that resulted in improved plant growth and immune system regulation. The interaction also induces a root change that likely promotes further interaction with the fungus and increased stress tolerance via promoting antioxidation and defensive activity. The team’s work provides early evidence of the molecular mechanisms behind root–fungus symbiosis and may help to inform crop breeding and fertilisation strategies. Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots–beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus Trichoderma harzianum T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between Trichoderma -interacting and control roots and 83 T. harzianum transcripts that were differentially expressed between the three experimental time points. Interaction with Trichoderma triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, T. harzianum -induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant– Trichoderma interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs. Symbiosis: the genetics of beneficial tomato root–fungus interaction The fungus Trichoderma harzianum induces differentiated protein production in tomato roots that benefits plant nutrition and survivability. Microorganisms advantageous to plants have long been exploited in agriculture; however, with limited studies into the interface of Trichoderma fungus and plants—the roots. Italian researchers, led by the Research Centre for Vegetable and Ornamental Crops' Nunzio D'Agostino and the National Research Council’s Marina Tucci, inoculated tomato plant roots with T. harzianum over 72 h, finding over 1200 examples of differential gene expression and post-expression modification that resulted in improved plant growth and immune system regulation. The interaction also induces a root change that likely promotes further interaction with the fungus and increased stress tolerance via promoting antioxidation and defensive activity. The team’s work provides early evidence of the molecular mechanisms behind root–fungus symbiosis and may help to inform crop breeding and fertilisation strategies. Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots–beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus Trichoderma harzianum T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between Trichoderma-interacting and control roots and 83 T. harzianum transcripts that were differentially expressed between the three experimental time points. Interaction with Trichoderma triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, T. harzianum-induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant–Trichoderma interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs. |
ArticleNumber | 5 |
Author | Aversano, Riccardo Ruocco, Michelina De Palma, Monica Lorito, Matteo Piccinelli, Anna Lisa Docimo, Teresa D’Agostino, Nunzio Salzano, Maria Villano, Clizia Tucci, Marina |
Author_xml | – sequence: 1 givenname: Monica surname: De Palma fullname: De Palma, Monica organization: Institute of Biosciences and BioResources, Research Division Portici, National Research Council – sequence: 2 givenname: Maria surname: Salzano fullname: Salzano, Maria organization: Institute of Biosciences and BioResources, Research Division Portici, National Research Council – sequence: 3 givenname: Clizia surname: Villano fullname: Villano, Clizia organization: Department of Agricultural Sciences, University of Naples Federico II – sequence: 4 givenname: Riccardo surname: Aversano fullname: Aversano, Riccardo organization: Department of Agricultural Sciences, University of Naples Federico II – sequence: 5 givenname: Matteo surname: Lorito fullname: Lorito, Matteo organization: Department of Agricultural Sciences, University of Naples Federico II – sequence: 6 givenname: Michelina surname: Ruocco fullname: Ruocco, Michelina organization: Institute for Sustainable Plant Protection, National Research Council – sequence: 7 givenname: Teresa surname: Docimo fullname: Docimo, Teresa organization: Institute of Biosciences and BioResources, Research Division Portici, National Research Council – sequence: 8 givenname: Anna Lisa surname: Piccinelli fullname: Piccinelli, Anna Lisa organization: Department of Pharmacy, University of Salerno – sequence: 9 givenname: Nunzio orcidid: 0000-0001-9840-3817 surname: D’Agostino fullname: D’Agostino, Nunzio email: nunzio.dagostino@crea.gov.it organization: CREA, Research Centre for Vegetable and Ornamental Crops – sequence: 10 givenname: Marina orcidid: 0000-0003-0410-5865 surname: Tucci fullname: Tucci, Marina email: mtucci@unina.it organization: Institute of Biosciences and BioResources, Research Division Portici, National Research Council |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30603091$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkFv1TAMxys0xMbYB-CCInFdwWnTpr0goYnBpElc3j1yU7cvT21SknQSfBw-KXnvjbEhwcFKZPv_s2X7ZXZinaUse83hHYeyeR8EF2WTA08Gss35s-ysgKrIZSHrk0f_0-wihB0A8EoUZSVfZKcl1FBCy8-ynxuPNmhvluhmYp4W70aP82zseMloMSNZikaz2fVmMBqjcTYwtD3DKZK3yXFHLCyT0UnCnNdbCtFjJBa3ydyM0THvXEzwsCTx3nmIdQmdkAYnNqx2XAPbeKO3ric_I9ui_2HQrvOr7PmAU6CL-_c821x_2lx9yW-_fr65-nib66qsY86hrhsOfVNVXYNV11coG40DAXIBkgOnptWaeoShK6AWJReaoCs6GGRXlufZzRHbO9ypxZsZ_Xfl0KiDw_lRoU-TmEhVQLIRQlS6IUEtdLyWmrcoQdPQYZdYH46sZe1m6jXZNJHpCfRpxJqtGt2dqkteVAIS4O09wLtvaxqo2rk1DXsKquA1b3nbFDJlvXlc5oH_e70pgR8TtHcheBoeUjio_RWp4xWpdEVqf0Vqr5F_abSJh7WnTs30X2VxVIZUxY7k_zT9b9EvLT7g3Q |
CitedBy_id | crossref_primary_10_3389_fphys_2019_00745 crossref_primary_10_3389_fpls_2020_582267 crossref_primary_10_3389_fgene_2021_583888 crossref_primary_10_1016_j_biotechadv_2019_107503 crossref_primary_10_1093_femsre_fuac028 crossref_primary_10_3389_fmicb_2022_898356 crossref_primary_10_3390_horticulturae8121181 crossref_primary_10_1007_s13199_021_00791_3 crossref_primary_10_3390_biology13040244 crossref_primary_10_1016_j_biocontrol_2023_105213 crossref_primary_10_1094_MPMI_34_5 crossref_primary_10_1002_csc2_20473 crossref_primary_10_1016_j_plaphy_2024_108953 crossref_primary_10_1021_acs_jafc_0c01438 crossref_primary_10_1094_MPMI_04_20_0081_R crossref_primary_10_1186_s12870_024_04785_3 crossref_primary_10_3389_fmicb_2020_01364 crossref_primary_10_1016_j_bbagen_2024_130580 crossref_primary_10_3389_fmicb_2020_00992 crossref_primary_10_1016_j_fbr_2025_100414 crossref_primary_10_55230_mabjournal_v51i6_2198 crossref_primary_10_1007_s13199_019_00611_9 crossref_primary_10_1016_j_rhisph_2021_100330 crossref_primary_10_3389_fmicb_2022_996054 crossref_primary_10_3390_plants9121777 crossref_primary_10_1371_journal_pone_0241914 crossref_primary_10_1186_s12915_024_02014_9 crossref_primary_10_3389_fmicb_2021_655165 crossref_primary_10_1186_s12870_023_04502_6 crossref_primary_10_1073_pnas_2216922120 crossref_primary_10_3389_fpls_2021_700200 crossref_primary_10_3390_plants12112197 crossref_primary_10_1007_s13205_024_04040_4 crossref_primary_10_3389_fpls_2021_697702 crossref_primary_10_3390_ijms21249429 crossref_primary_10_1016_j_scienta_2023_112188 crossref_primary_10_1016_j_stress_2021_100052 crossref_primary_10_1038_s41598_022_14570_7 crossref_primary_10_1111_pce_14014 crossref_primary_10_3390_plants11202672 crossref_primary_10_1111_ppl_13570 crossref_primary_10_1080_03235408_2021_1957412 crossref_primary_10_1093_jxb_erac518 crossref_primary_10_3390_plants11243449 crossref_primary_10_1038_s41598_023_48332_w crossref_primary_10_1016_j_crmicr_2022_100139 crossref_primary_10_1146_annurev_phyto_121423_041908 crossref_primary_10_3389_fpls_2019_00911 crossref_primary_10_1016_S2095_3119_20_63415_3 crossref_primary_10_37442_fme_2024_1_44 crossref_primary_10_1016_j_rhisph_2022_100613 crossref_primary_10_1038_s41598_020_59998_x crossref_primary_10_1186_s12870_024_05602_7 crossref_primary_10_3389_ffunb_2021_768648 crossref_primary_10_3389_fmicb_2021_579920 crossref_primary_10_3390_ijms22137118 crossref_primary_10_1007_s00344_022_10669_3 crossref_primary_10_3390_ijms232214202 crossref_primary_10_3390_microorganisms11040835 crossref_primary_10_3390_plants10081739 crossref_primary_10_1007_s00425_022_04053_4 crossref_primary_10_1016_j_ygeno_2020_07_022 crossref_primary_10_3390_plants11233287 crossref_primary_10_3389_fmicb_2019_01697 crossref_primary_10_3389_fpls_2023_1158965 crossref_primary_10_3389_fpls_2023_1309747 crossref_primary_10_1007_s00425_019_03325_w crossref_primary_10_1016_j_envexpbot_2021_104588 |
Cites_doi | 10.1038/nrmicro797 10.1093/nar/gkx382 10.1016/j.pbi.2012.08.007 10.1111/nph.12879 10.1105/tpc.107.052126 10.1111/mpp.12141 10.3389/fpls.2017.00131 10.1186/s12864-016-2368-0 10.1099/mic.0.052274-0 10.1111/nph.14251 10.1093/bioinformatics/btu638 10.1111/mpp.12189 10.1016/j.pbi.2011.07.014 10.1007/s00438-007-0315-0 10.1094/PHYTO-95-0076 10.4161/psb.6.10.17443 10.1080/15592324.2017.1345404 10.1016/j.jplph.2015.11.005 10.1002/pmic.200700173 10.1007/978-3-642-35227-0_4 10.1371/journal.ppat.1003221 10.1094/PHYTO-97-4-0429 10.1105/tpc.114.126763 10.1104/pp.107.113829 10.1016/j.plaphy.2011.09.013 10.1093/bioinformatics/btp616 10.1111/j.1365-313X.2004.02016.x 10.1094/MPMI-07-14-0194-R 10.1093/nar/gks047 10.1007/s00294-008-0226-6 10.1146/annurev-phyto-080614-120132 10.1186/1471-2229-7-41 10.1093/bioinformatics/17.2.126 10.3835/plantgenome2012.06.0007 10.1006/geno.1997.4995 10.1371/journal.pone.0179617 10.1016/j.plantsci.2017.07.008 10.1094/MPMI-09-11-0240 10.3390/ijms150610424 10.1146/annurev-phyto-073009-114450 10.1104/pp.108.123810 10.1111/j.1438-8677.2008.00162.x 10.1146/annurev.phyto.050908.135202 10.1186/s12864-015-2128-6 10.1038/nplants.2016.166 10.3389/fbioe.2015.00033 10.1186/gb-2010-11-10-r106 10.1186/gb-2013-14-4-r36 10.1371/journal.pone.0074183 10.1146/annurev-phyto-082712-102340 10.1007/s10658-011-9782-6 10.1105/tpc.16.00947 10.1111/j.1364-3703.2010.00674.x 10.1093/bioinformatics/btl140 10.1093/bioinformatics/btu170 10.1093/nar/29.9.e45 10.1111/1758-2229.12221 10.1128/AEM.65.3.1061-1070.1999 10.1016/j.scienta.2015.08.043 10.1016/j.soilbio.2007.07.002 10.3390/ijms18020432 10.1093/nar/gkt1056 10.1104/pp.108.130369 10.1016/j.jplph.2011.12.016 10.3389/fpls.2012.00108 10.1038/nbt.1621 10.1038/415977a 10.1093/jxb/erj201 10.1371/journal.pone.0021800 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X2 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 5PM DOA |
DOI | 10.1038/s41438-018-0079-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | PubMed Agricultural Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology |
EISSN | 2052-7276 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_50e784445c8e4e90b167c19a70cefbab PMC6312540 30603091 10_1038_s41438_018_0079_1 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 5VS 7X2 7X7 8FE 8FH 8FI 8FJ AAHBH AAPXW AAVAP ABEJV ABGNP ABPTD ABUWG ABXVV ACGFS ACSMW ADBBV ADRAZ AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMNDL AOIJS ATCPS BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0K M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT ROX RPM SNYQT TOX UKHRP AAYXX CITATION PHGZM PHGZT IAG IAO IEP ITC NPM TCJ TGD 7XB 8FK AZQEC DWQXO EBLON GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS PUEGO 5PM |
ID | FETCH-LOGICAL-c536t-1066810d855b8a5bd5a78cafe0a1407101e89cceda0fb2064314ce0b2b0f7b33 |
IEDL.DBID | M48 |
ISSN | 2052-7276 |
IngestDate | Wed Aug 27 01:29:26 EDT 2025 Thu Aug 21 18:34:44 EDT 2025 Fri Sep 19 20:51:30 EDT 2025 Wed Feb 19 02:31:48 EST 2025 Tue Jul 01 03:40:26 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Fri Feb 21 02:37:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-1066810d855b8a5bd5a78cafe0a1407101e89cceda0fb2064314ce0b2b0f7b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9840-3817 0000-0003-0410-5865 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41438-018-0079-1 |
PMID | 30603091 |
PQID | 2161919827 |
PQPubID | 2041956 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_50e784445c8e4e90b167c19a70cefbab pubmedcentral_primary_oai_pubmedcentral_nih_gov_6312540 proquest_journals_2161919827 pubmed_primary_30603091 crossref_primary_10_1038_s41438_018_0079_1 crossref_citationtrail_10_1038_s41438_018_0079_1 springer_journals_10_1038_s41438_018_0079_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Horticulture research |
PublicationTitleAbbrev | Hortic Res |
PublicationTitleAlternate | Hortic Res |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Oxford University Press |
Publisher_xml | – name: Nature Publishing Group UK – name: Oxford University Press |
References | CarolRJDolanLThe role of reactive oxygen species in cell growth: lessons from root hairsJ. Exp. Bot.200657182918341:CAS:528:DC%2BD28XmsVaqsbw%3D10.1093/jxb/erj201 HermosaRThe contribution of Trichoderma to balancing the costs of plant growth and defenseInt Microbiol20131669801:CAS:528:DC%2BC3sXhs1SmsbfI24400524 Lopez-Bucio, J., Pelagio-Flores, R. & Herrera-Estrella, A. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic.196 109–123 (2015). Salas-MarinaMAColonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathwaysEur. J. Plant Pathol.201113115261:CAS:528:DC%2BC3MXpsFKnt7c%3D10.1007/s10658-011-9782-6 Ruzicka, D. et al. Inside arbuscular mycorrhizal roots - molecular probes to understand the symbiosis. Plant Genome6, https://doi.org/10.3835/plantgenome2012.06.0007 (2013). AlexaARahnenfuhrerJLengauerTImproved scoring of functional groups from gene expression data by decorrelating GO graph structureBioinformatics200622160016071:CAS:528:DC%2BD28XmsVentro%3D10.1093/bioinformatics/btl140 Martinez-MedinaAShifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognitaNew Phytol.2017213136313771:CAS:528:DC%2BC2sXoslaluw%3D%3D10.1111/nph.14251 MathysJGenome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infectionFront. Plant Sci.2012310810.3389/fpls.2012.00108 SatgéCReprogramming of DNA methylation is critical for nodule development in Medicago truncatulaNat. Plants201621616610.1038/nplants.2016.166 KimuraSWaszczakCHunterKWrzaczekMBound by fate: the role of reactive oxygen species in receptor-like kinase signalingPlant Cell2017296386541:CAS:528:DC%2BC2sXhvFygtbjE10.1105/tpc.16.00947 EspinasNASazeHSaijoYEpigeneticFront. Plant Sci.201671201275633044980392 MittalVKMcDonaldJFR-SAP: a multi-threading computational pipeline for the characterization of high-throughput RNA-sequencing dataNucleic Acids Res.201240e671:CAS:528:DC%2BC38XmvF2mtLs%3D10.1093/nar/gks047 YedidiaIIBenhamouNChetIIInduction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianumAppl. Environ. Microbiol.199965106110701:CAS:528:DyaK1MXhslWktLg%3D1004986491145 GutzatRMittelsten ScheidOEpigenetic responses to stress: triple defense?Curr. Opin. Plant Biol.2012155685731:CAS:528:DC%2BC38XhtlWksb3P10.1016/j.pbi.2012.08.007 TrapnellCTranscript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiationNat. Biotechnol.2010285115151:CAS:528:DC%2BC3cXlsVyitLY%3D10.1038/nbt.1621 TianTagriGOv2.0: a GO analysis toolkit for the agricultural community, 2017 updateNucleic Acids Res.201745W122W1291:CAS:528:DC%2BC1cXhs1amurg%3D10.1093/nar/gkx382 VosCMDe CremerKCammueBPDe ConinckBThe toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea diseaseMol. Plant Pathol.20151640041210.1111/mpp.12189 SchenkSTN-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathwayPlant Cell201426270827231:CAS:528:DC%2BC2cXhsVChsrbO10.1105/tpc.114.126763 GibbsDJAtMYB93 is a novel negative regulator of lateral root development in ArabidopsisNew Phytol.2014203119412071:CAS:528:DC%2BC2cXht1KmtrfP10.1111/nph.12879 ChamalaSFengGChavarroCBarbazukWBGenome-wide identification of evolutionarily conserved alternative splicing events in flowering plantsFront Bioeng. Biotechnol.201533310.3389/fbioe.2015.00033 TucciMRuoccoMDe MasiLDe PalmaMLoritoMThe beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotypeMol. Plant Pathol.2011123413541:CAS:528:DC%2BC3MXmt1Gkt7k%3D10.1111/j.1364-3703.2010.00674.x HarmanGEHowellCRViterboAChetILoritoMTrichoderma species—opportunistic, avirulent plant symbiontsNat. Rev. Microbiol2004243561:CAS:528:DC%2BD2cXht1Krsbo%3D10.1038/nrmicro797 DingBWangGLChromatin versus pathogens: the function of epigenetics in plant immunityFront. Plant Sci.20156675263888824557108 ShoreshMHarmanGEThe molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approachPlant Physiol.2008147214721631:CAS:528:DC%2BD1cXhtVSrtrvI10.1104/pp.108.123810 SchermBSchmollMBalmasVKubicekCPMigheliQIdentification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approachCurr. Genet.20095581911:CAS:528:DC%2BD1MXhtF2iu78%3D10.1007/s00294-008-0226-6 AndersSPylPTHuberWHTSeq-a Python framework to work with high-throughput sequencing dataBioinformatics2015311661691:CAS:528:DC%2BC28Xht1Sjt7vL10.1093/bioinformatics/btu638 DaKNowakJFlinnBPotato cytosine methylation and gene expression changes induced by a beneficial bacterial endophyte, Burkholderia phytofirmans strain PsJNPlant Physiol. Biochem.20125024341:CAS:528:DC%2BC3MXhsFSlurfM10.1016/j.plaphy.2011.09.013 ChaconMRMicroscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianumInt. Microbiol.20071019271:CAS:528:DC%2BD2sXpvFSlsbk%3D17407057 HoCLDe novo transcriptome analyses of host–fungal interactions in oil palm (Elaeis guineensis Jacq.)BMC Genom.20161710.1186/s12864-016-2368-0 SegarraGVan der EntSTrillasIPieterseCMMYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbePlant Biol. (Stuttg.)20091190961:CAS:528:DC%2BD1MXntFWrur4%3D10.1111/j.1438-8677.2008.00162.x AndersSHuberWDifferential expression analysis for sequence count dataGenome Biol.2010111:CAS:528:DC%2BC3cXhsVahs7bI10.1186/gb-2010-11-10-r106 PieterseCMInduced systemic resistance by beneficial microbesAnnu. Rev. Phytopathol.2014523473751:CAS:528:DC%2BC2cXhsl2ms77L10.1146/annurev-phyto-082712-102340 BolgerAMLohseMUsadelBTrimmomatic: a flexible trimmer for Illumina sequence dataBioinformatics201430211421201:CAS:528:DC%2BC2cXht1Sqt7nP10.1093/bioinformatics/btu170 AhmadPRole of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense systemFront. Plant Sci.20156868265283244604702 Contreras-CornejoHAMacias-RodriguezLCortes-PenagosCLopez-BucioJTrichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in ArabidopsisPlant Physiol.2009149157915921:CAS:528:DC%2BD1MXlsFCiu7w%3D10.1104/pp.108.130369 MastouriFBjorkmanTHarmanGETrichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficitMol. Plant Microbe Interact.201225126412711:CAS:528:DC%2BC38Xht1Olur%2FL10.1094/MPMI-09-11-0240 RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO10.1093/bioinformatics/btp616 ZhangSWGanYTXuBLApplication of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expressionFront. Plant Sci.201671405276954755023664 Shang, X., Cao, Y. & Ma, L. Alternative splicing in plant genes: a means of regulating the environmental fitness of plants. Int. J. Mol. Sci. 18, 432 (2017). https://doi.org/10.3390/ijms18020432 YangSTangFZhuHAlternative splicing in plant immunityInt J. Mol. Sci.201415104241044510.3390/ijms150610424 BrotmanYTrichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerancePLoS Pathog.20139e10032211:CAS:528:DC%2BC3sXmtVeltbg%3D10.1371/journal.ppat.1003221 RuoccoMMultiple roles and effects of a novel Trichoderma hydrophobinMol. Plant–Microbe Interact.2015281671791:CAS:528:DC%2BC2MXit1yntL8%3D10.1094/MPMI-07-14-0194-R RouphaelYCardarelliMBoniniPCollaGSynergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinityFront Plant Sci.2017813110.3389/fpls.2017.00131 NavazioLCalcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atrovirideBMC Plant Biol.2007710.1186/1471-2229-7-41 RamsakZGoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontologyNucleic Acids Res.201442D1167D11751:CAS:528:DC%2BC2cXos1Wi10.1093/nar/gkt1056 Alonso-RamirezASalicylic acid prevents Trichoderma harzianum from entering the vascular system of rootsMol. Plant Pathol.2014158238311:CAS:528:DC%2BC2cXhsFCjtbrJ10.1111/mpp.12141 HigashiKModulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thalianaMol. Genet. Genom.20082793033121:CAS:528:DC%2BD1cXhvFyrsLk%3D10.1007/s00438-007-0315-0 ConrathUBeckersGJLangenbachCJJaskiewiczMRPriming for enhanced defenseAnnu. Rev. Phytopathol.201553971191:CAS:528:DC%2BC2MXhsFWrsbzI10.1146/annurev-phyto-080614-120132 ThimmOMAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processesPlant J.2004379149391:CAS:528:DC%2BD2cXjtFChu78%3D10.1111/j.1365-313X.2004.02016.x Shoresh, M., Harman, G.E. & Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol.48, 21–43 (2010). De PalmaMSuppression subtractive hybridization analysis provides new insights into the tomato (Solanum lycopersicum L.) response to the plant probiotic microorganism Trichoderma longibrachiatum MK1J. Plant Physiol.2016190799410.1016/j.jplph.2015.11.005 VinaleFTrichoderma-plant-pathogen interactionsSoil Biol. Biochem.2008401101:CAS:528:DC%2BD2sXhtF2iu7jN10.1016/j.soilbio.2007.07.002 KimDTopHat2: accurate alignment of transcriptomes in the N Suzuki (79_CR38) 2011; 14 VK Mittal (79_CR73) 2012; 40 J Herrero (79_CR70) 2001; 17 A Martinez-Medina (79_CR33) 2017; 12 L Navazio (79_CR40) 2007; 7 AM Bolger (79_CR62) 2014; 30 M Palma De (79_CR14) 2016; 190 GX Tan (79_CR25) 2015; 6 B Scherm (79_CR72) 2009; 55 II Yedidia (79_CR28) 1999; 65 K Higashi (79_CR43) 2008; 279 C Satgé (79_CR56) 2016; 2 BE Howard (79_CR20) 2013; 8 P Ahmad (79_CR34) 2015; 6 79_CR53 S Anders (79_CR64) 2015; 31 A Alexa (79_CR67) 2006; 22 CM Pieterse (79_CR6) 2014; 52 A Martinez-Medina (79_CR7) 2017; 213 K Ruzicka (79_CR48) 2007; 19 79_CR26 C Trapnell (79_CR74) 2010; 28 R Gutzat (79_CR57) 2012; 15 HA Contreras-Cornejo (79_CR19) 2009; 149 CM Vos (79_CR17) 2015; 16 T Asai (79_CR42) 2002; 415 G Alfano (79_CR11) 2007; 97 MR Chacon (79_CR29) 2007; 10 F Vinale (79_CR36) 2008; 40 RJ Carol (79_CR50) 2006; 57 ST Schenk (79_CR77) 2014; 26 79_CR60 CL Ho (79_CR31) 2016; 17 S Yang (79_CR24) 2014; 15 D Kim (79_CR63) 2013; 14 O Thimm (79_CR68) 2004; 37 HA Contreras-Cornejo (79_CR41) 2011; 6 AC Vlot (79_CR45) 2009; 47 SW Zhang (79_CR9) 2016; 7 Y Brotman (79_CR8) 2013; 9 R Hermosa (79_CR15) 2013; 16 MA Salas-Marina (79_CR30) 2011; 131 B Lace (79_CR18) 2015; 7 GE Harman (79_CR49) 2004; 2 A Alonso-Ramirez (79_CR32) 2014; 15 M Shoresh (79_CR12) 2008; 147 MD Robinson (79_CR65) 2010; 26 J Fu (79_CR10) 2017; 12 T Tian (79_CR75) 2017; 45 79_CR71 M Ruocco (79_CR16) 2015; 28 S Ent Van der (79_CR46) 2008; 146 P Zogli (79_CR21) 2017; 263 F Mastouri (79_CR35) 2012; 25 F Supek (79_CR76) 2011; 6 S Anders (79_CR66) 2010; 11 J Mathys (79_CR13) 2012; 3 S Chamala (79_CR23) 2015; 3 DJ Gibbs (79_CR51) 2014; 203 R Hermosa (79_CR5) 2012; 158 B Ding (79_CR54) 2015; 6 U Conrath (79_CR58) 2015; 53 K Da (79_CR22) 2012; 50 M Tucci (79_CR4) 2011; 12 E Moran-Diez (79_CR37) 2012; 169 Z Ramsak (79_CR69) 2014; 42 79_CR1 79_CR3 W Gassmann (79_CR59) 2008; 326 G Segarra (79_CR47) 2009; 11 M Shoresh (79_CR44) 2005; 95 NA Espinas (79_CR55) 2016; 7 WR Pearson (79_CR61) 1997; 46 Y Rouphael (79_CR2) 2017; 8 Y Sun (79_CR27) 2015; 16 G Segarra (79_CR52) 2007; 7 S Kimura (79_CR39) 2017; 29 |
References_xml | – reference: KimDTopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusionsGenome Biol.20131410.1186/gb-2013-14-4-r36 – reference: Contreras-CornejoHAMacias-RodriguezLBeltran-PenaEHerrera-EstrellaALopez-BucioJTrichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinereaPlant Signal Behav.20116155415631:CAS:528:DC%2BC38XjsVGhsLg%3D10.4161/psb.6.10.17443 – reference: MittalVKMcDonaldJFR-SAP: a multi-threading computational pipeline for the characterization of high-throughput RNA-sequencing dataNucleic Acids Res.201240e671:CAS:528:DC%2BC38XmvF2mtLs%3D10.1093/nar/gks047 – reference: TianTagriGOv2.0: a GO analysis toolkit for the agricultural community, 2017 updateNucleic Acids Res.201745W122W1291:CAS:528:DC%2BC1cXhs1amurg%3D10.1093/nar/gkx382 – reference: Van der EntSMYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in ArabidopsisPlant Physiol.20081461293130410.1104/pp.107.113829 – reference: Shoresh, M., Harman, G.E. & Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol.48, 21–43 (2010). – reference: RuzickaKEthylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distributionPlant Cell200719219722121:CAS:528:DC%2BD2sXhtValur%2FF10.1105/tpc.107.052126 – reference: AlfanoGSystemic modulation of gene expression in tomato by Trichoderma hamatum 382Phytopathology2007974294371:CAS:528:DC%2BD2sXks1altLs%3D10.1094/PHYTO-97-4-0429 – reference: Martinez-MedinaAAppelsFVWvan WeesSCMImpact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78Plant Signal Behav.201712e134540410.1080/15592324.2017.1345404 – reference: VinaleFTrichoderma-plant-pathogen interactionsSoil Biol. Biochem.2008401101:CAS:528:DC%2BD2sXhtF2iu7jN10.1016/j.soilbio.2007.07.002 – reference: BolgerAMLohseMUsadelBTrimmomatic: a flexible trimmer for Illumina sequence dataBioinformatics201430211421201:CAS:528:DC%2BC2cXht1Sqt7nP10.1093/bioinformatics/btu170 – reference: DingBWangGLChromatin versus pathogens: the function of epigenetics in plant immunityFront. Plant Sci.20156675263888824557108 – reference: ThimmOMAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processesPlant J.2004379149391:CAS:528:DC%2BD2cXjtFChu78%3D10.1111/j.1365-313X.2004.02016.x – reference: HowardBEHigh-throughput RNA sequencing of pseudomonas-infected Arabidopsis reveals hidden transcriptome complexity and novel splice variantsPLoS One20138e741831:CAS:528:DC%2BC3sXhsFOrt77N10.1371/journal.pone.0074183 – reference: EspinasNASazeHSaijoYEpigeneticFront. Plant Sci.201671201275633044980392 – reference: AndersSHuberWDifferential expression analysis for sequence count dataGenome Biol.2010111:CAS:528:DC%2BC3cXhsVahs7bI10.1186/gb-2010-11-10-r106 – reference: LaceBGate crashing arbuscular mycorrhizas: in vivo imaging shows the extensive colonization of both symbionts by Trichoderma atrovirideEnviron. Microbiol. Rep.2015764771:CAS:528:DC%2BC2MXjsVGis7o%3D10.1111/1758-2229.12221 – reference: ConrathUBeckersGJLangenbachCJJaskiewiczMRPriming for enhanced defenseAnnu. Rev. Phytopathol.201553971191:CAS:528:DC%2BC2MXhsFWrsbzI10.1146/annurev-phyto-080614-120132 – reference: Pfaffl, M.W. A new mathematical model for relative quantification in real-time PCR. Nucleic Acids Res.29, e45 (2001) – reference: FuJLiuZLiZWangYYangKAlleviation of the effects of saline-alkaline stress on maize seedlings by regulation of active oxygen metabolism by Trichoderma asperellumPLoS One201712e017961710.1371/journal.pone.0179617 – reference: HerreroJValenciaADopazoJA hierarchical unsupervised growing neural network for clustering gene expression patternsBioinformatics2001171261361:CAS:528:DC%2BD3MXisFymsbg%3D10.1093/bioinformatics/17.2.126 – reference: NavazioLCalcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atrovirideBMC Plant Biol.2007710.1186/1471-2229-7-41 – reference: SegarraGProteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34Proteomics20077394339521:CAS:528:DC%2BD2sXhtlOgurvI10.1002/pmic.200700173 – reference: AsaiTMAP kinase signalling cascade in Arabidopsis innate immunityNature20024159779831:CAS:528:DC%2BD38Xhsl2lu7c%3D10.1038/415977a – reference: TanGXTranscriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencingFront. Plant Sci.20156428261064044458571 – reference: RamsakZGoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontologyNucleic Acids Res.201442D1167D11751:CAS:528:DC%2BC2cXos1Wi10.1093/nar/gkt1056 – reference: RouphaelYCardarelliMBoniniPCollaGSynergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinityFront Plant Sci.2017813110.3389/fpls.2017.00131 – reference: Martinez-MedinaAShifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognitaNew Phytol.2017213136313771:CAS:528:DC%2BC2sXoslaluw%3D%3D10.1111/nph.14251 – reference: YangSTangFZhuHAlternative splicing in plant immunityInt J. Mol. Sci.201415104241044510.3390/ijms150610424 – reference: SegarraGVan der EntSTrillasIPieterseCMMYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbePlant Biol. (Stuttg.)20091190961:CAS:528:DC%2BD1MXntFWrur4%3D10.1111/j.1438-8677.2008.00162.x – reference: Saijo, Y. & Reimer-Michalski, E.-M. in Epigenetic Memory and Control in Plants (eds Gideon Grafi & Nir Ohad) 57–76 (Springer, Berlin, Heidelberg, 2013). – reference: HermosaRViterboAChetIMonteEPlant-beneficial effects of Trichoderma and of its genesMicrobiology201215817251:CAS:528:DC%2BC38XitVKnu7k%3D10.1099/mic.0.052274-0 – reference: ShoreshMHarmanGEThe molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approachPlant Physiol.2008147214721631:CAS:528:DC%2BD1cXhtVSrtrvI10.1104/pp.108.123810 – reference: Contreras-CornejoHAMacias-RodriguezLCortes-PenagosCLopez-BucioJTrichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in ArabidopsisPlant Physiol.2009149157915921:CAS:528:DC%2BD1MXlsFCiu7w%3D10.1104/pp.108.130369 – reference: SchenkSTN-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathwayPlant Cell201426270827231:CAS:528:DC%2BC2cXhsVChsrbO10.1105/tpc.114.126763 – reference: HermosaRThe contribution of Trichoderma to balancing the costs of plant growth and defenseInt Microbiol20131669801:CAS:528:DC%2BC3sXhs1SmsbfI24400524 – reference: ChaconMRMicroscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianumInt. Microbiol.20071019271:CAS:528:DC%2BD2sXpvFSlsbk%3D17407057 – reference: SunYXiaoHIdentification of alternative splicing events by RNA sequencing in early growth tomato fruitsBMC Genom.20151610.1186/s12864-015-2128-6 – reference: HoCLDe novo transcriptome analyses of host–fungal interactions in oil palm (Elaeis guineensis Jacq.)BMC Genom.20161710.1186/s12864-016-2368-0 – reference: Ruzicka, D. et al. Inside arbuscular mycorrhizal roots - molecular probes to understand the symbiosis. Plant Genome6, https://doi.org/10.3835/plantgenome2012.06.0007 (2013). – reference: PieterseCMInduced systemic resistance by beneficial microbesAnnu. Rev. Phytopathol.2014523473751:CAS:528:DC%2BC2cXhsl2ms77L10.1146/annurev-phyto-082712-102340 – reference: HigashiKModulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thalianaMol. Genet. Genom.20082793033121:CAS:528:DC%2BD1cXhvFyrsLk%3D10.1007/s00438-007-0315-0 – reference: Moran-DiezETranscriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianumJ. Plant Physiol.20121696146201:CAS:528:DC%2BC38XhvVyitL4%3D10.1016/j.jplph.2011.12.016 – reference: DaKNowakJFlinnBPotato cytosine methylation and gene expression changes induced by a beneficial bacterial endophyte, Burkholderia phytofirmans strain PsJNPlant Physiol. Biochem.20125024341:CAS:528:DC%2BC3MXhsFSlurfM10.1016/j.plaphy.2011.09.013 – reference: SatgéCReprogramming of DNA methylation is critical for nodule development in Medicago truncatulaNat. Plants201621616610.1038/nplants.2016.166 – reference: YedidiaIIBenhamouNChetIIInduction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianumAppl. Environ. Microbiol.199965106110701:CAS:528:DyaK1MXhslWktLg%3D1004986491145 – reference: Salas-MarinaMAColonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathwaysEur. J. Plant Pathol.201113115261:CAS:528:DC%2BC3MXpsFKnt7c%3D10.1007/s10658-011-9782-6 – reference: VlotACDempseyDAKlessigDFSalicylic acid, a multifaceted hormone to combat diseaseAnnu Rev. Phytopathol.2009471772061:CAS:528:DC%2BD1MXht1Gjt73P10.1146/annurev.phyto.050908.135202 – reference: AhmadPRole of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense systemFront. Plant Sci.20156868265283244604702 – reference: ZhangSWGanYTXuBLApplication of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expressionFront. Plant Sci.201671405276954755023664 – reference: ShoreshMYedidiaIChetIInvolvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203Phytopathology20059576841:CAS:528:DC%2BD2MXnslWmuw%3D%3D10.1094/PHYTO-95-0076 – reference: SupekFBosnjakMSkuncaNSmucTREVIGO summarizes and visualizes long lists of gene ontology termsPLoS One20116e218001:CAS:528:DC%2BC3MXhtVeht7zI10.1371/journal.pone.0021800 – reference: Shang, X., Cao, Y. & Ma, L. Alternative splicing in plant genes: a means of regulating the environmental fitness of plants. Int. J. Mol. Sci. 18, 432 (2017). https://doi.org/10.3390/ijms18020432 – reference: ZogliPLibaultMPlant response to biotic stress: Is there a common epigenetic response during plant–pathogenic and symbiotic interactions?Plant Sci.201726389931:CAS:528:DC%2BC2sXht1Cks7nP10.1016/j.plantsci.2017.07.008 – reference: AlexaARahnenfuhrerJLengauerTImproved scoring of functional groups from gene expression data by decorrelating GO graph structureBioinformatics200622160016071:CAS:528:DC%2BD28XmsVentro%3D10.1093/bioinformatics/btl140 – reference: HarmanGEHowellCRViterboAChetILoritoMTrichoderma species—opportunistic, avirulent plant symbiontsNat. Rev. Microbiol2004243561:CAS:528:DC%2BD2cXht1Krsbo%3D10.1038/nrmicro797 – reference: Lopez-Bucio, J., Pelagio-Flores, R. & Herrera-Estrella, A. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic.196 109–123 (2015). – reference: ChamalaSFengGChavarroCBarbazukWBGenome-wide identification of evolutionarily conserved alternative splicing events in flowering plantsFront Bioeng. Biotechnol.201533310.3389/fbioe.2015.00033 – reference: De PalmaMSuppression subtractive hybridization analysis provides new insights into the tomato (Solanum lycopersicum L.) response to the plant probiotic microorganism Trichoderma longibrachiatum MK1J. Plant Physiol.2016190799410.1016/j.jplph.2015.11.005 – reference: KimuraSWaszczakCHunterKWrzaczekMBound by fate: the role of reactive oxygen species in receptor-like kinase signalingPlant Cell2017296386541:CAS:528:DC%2BC2sXhvFygtbjE10.1105/tpc.16.00947 – reference: RuoccoMMultiple roles and effects of a novel Trichoderma hydrophobinMol. Plant–Microbe Interact.2015281671791:CAS:528:DC%2BC2MXit1yntL8%3D10.1094/MPMI-07-14-0194-R – reference: CarolRJDolanLThe role of reactive oxygen species in cell growth: lessons from root hairsJ. Exp. Bot.200657182918341:CAS:528:DC%2BD28XmsVaqsbw%3D10.1093/jxb/erj201 – reference: GibbsDJAtMYB93 is a novel negative regulator of lateral root development in ArabidopsisNew Phytol.2014203119412071:CAS:528:DC%2BC2cXht1KmtrfP10.1111/nph.12879 – reference: RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO10.1093/bioinformatics/btp616 – reference: SuzukiNRespiratory burst oxidases: the engines of ROS signalingCurr. Opin. Plant Biol.2011146916991:CAS:528:DC%2BC3MXhsFygu7vJ10.1016/j.pbi.2011.07.014 – reference: Alonso-RamirezASalicylic acid prevents Trichoderma harzianum from entering the vascular system of rootsMol. Plant Pathol.2014158238311:CAS:528:DC%2BC2cXhsFCjtbrJ10.1111/mpp.12141 – reference: SchermBSchmollMBalmasVKubicekCPMigheliQIdentification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approachCurr. Genet.20095581911:CAS:528:DC%2BD1MXhtF2iu78%3D10.1007/s00294-008-0226-6 – reference: MastouriFBjorkmanTHarmanGETrichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficitMol. Plant Microbe Interact.201225126412711:CAS:528:DC%2BC38Xht1Olur%2FL10.1094/MPMI-09-11-0240 – reference: PearsonWRWoodTZhangZMillerWComparison of DNA sequences with protein sequencesGenomics19974624361:CAS:528:DyaK2sXnvVCkur8%3D10.1006/geno.1997.4995 – reference: AndersSPylPTHuberWHTSeq-a Python framework to work with high-throughput sequencing dataBioinformatics2015311661691:CAS:528:DC%2BC28Xht1Sjt7vL10.1093/bioinformatics/btu638 – reference: VosCMDe CremerKCammueBPDe ConinckBThe toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea diseaseMol. Plant Pathol.20151640041210.1111/mpp.12189 – reference: TrapnellCTranscript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiationNat. Biotechnol.2010285115151:CAS:528:DC%2BC3cXlsVyitLY%3D10.1038/nbt.1621 – reference: GassmannWAlternative splicing in plant defenseCurr. Top. Microbiol. Immunol.20083262192331:CAS:528:DC%2BD1MXmtValuw%3D%3D18630755 – reference: TucciMRuoccoMDe MasiLDe PalmaMLoritoMThe beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotypeMol. Plant Pathol.2011123413541:CAS:528:DC%2BC3MXmt1Gkt7k%3D10.1111/j.1364-3703.2010.00674.x – reference: MathysJGenome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infectionFront. Plant Sci.2012310810.3389/fpls.2012.00108 – reference: GutzatRMittelsten ScheidOEpigenetic responses to stress: triple defense?Curr. Opin. Plant Biol.2012155685731:CAS:528:DC%2BC38XhtlWksb3P10.1016/j.pbi.2012.08.007 – reference: BrotmanYTrichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerancePLoS Pathog.20139e10032211:CAS:528:DC%2BC3sXmtVeltbg%3D10.1371/journal.ppat.1003221 – volume: 2 start-page: 43 year: 2004 ident: 79_CR49 publication-title: Nat. Rev. Microbiol doi: 10.1038/nrmicro797 – volume: 326 start-page: 219 year: 2008 ident: 79_CR59 publication-title: Curr. Top. Microbiol. Immunol. – volume: 45 start-page: W122 year: 2017 ident: 79_CR75 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx382 – volume: 15 start-page: 568 year: 2012 ident: 79_CR57 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2012.08.007 – volume: 203 start-page: 1194 year: 2014 ident: 79_CR51 publication-title: New Phytol. doi: 10.1111/nph.12879 – volume: 19 start-page: 2197 year: 2007 ident: 79_CR48 publication-title: Plant Cell doi: 10.1105/tpc.107.052126 – volume: 15 start-page: 823 year: 2014 ident: 79_CR32 publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12141 – volume: 8 start-page: 131 year: 2017 ident: 79_CR2 publication-title: Front Plant Sci. doi: 10.3389/fpls.2017.00131 – volume: 17 year: 2016 ident: 79_CR31 publication-title: BMC Genom. doi: 10.1186/s12864-016-2368-0 – volume: 158 start-page: 17 year: 2012 ident: 79_CR5 publication-title: Microbiology doi: 10.1099/mic.0.052274-0 – volume: 213 start-page: 1363 year: 2017 ident: 79_CR7 publication-title: New Phytol. doi: 10.1111/nph.14251 – volume: 31 start-page: 166 year: 2015 ident: 79_CR64 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 16 start-page: 400 year: 2015 ident: 79_CR17 publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12189 – volume: 14 start-page: 691 year: 2011 ident: 79_CR38 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2011.07.014 – volume: 279 start-page: 303 year: 2008 ident: 79_CR43 publication-title: Mol. Genet. Genom. doi: 10.1007/s00438-007-0315-0 – volume: 95 start-page: 76 year: 2005 ident: 79_CR44 publication-title: Phytopathology doi: 10.1094/PHYTO-95-0076 – volume: 6 start-page: 1554 year: 2011 ident: 79_CR41 publication-title: Plant Signal Behav. doi: 10.4161/psb.6.10.17443 – volume: 12 start-page: e1345404 year: 2017 ident: 79_CR33 publication-title: Plant Signal Behav. doi: 10.1080/15592324.2017.1345404 – volume: 190 start-page: 79 year: 2016 ident: 79_CR14 publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2015.11.005 – volume: 6 start-page: 428 year: 2015 ident: 79_CR25 publication-title: Front. Plant Sci. – volume: 7 start-page: 3943 year: 2007 ident: 79_CR52 publication-title: Proteomics doi: 10.1002/pmic.200700173 – ident: 79_CR53 doi: 10.1007/978-3-642-35227-0_4 – volume: 9 start-page: e1003221 year: 2013 ident: 79_CR8 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003221 – volume: 97 start-page: 429 year: 2007 ident: 79_CR11 publication-title: Phytopathology doi: 10.1094/PHYTO-97-4-0429 – volume: 26 start-page: 2708 year: 2014 ident: 79_CR77 publication-title: Plant Cell doi: 10.1105/tpc.114.126763 – volume: 146 start-page: 1293 year: 2008 ident: 79_CR46 publication-title: Plant Physiol. doi: 10.1104/pp.107.113829 – volume: 50 start-page: 24 year: 2012 ident: 79_CR22 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2011.09.013 – volume: 26 start-page: 139 year: 2010 ident: 79_CR65 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 7 start-page: 1201 year: 2016 ident: 79_CR55 publication-title: Front. Plant Sci. – volume: 37 start-page: 914 year: 2004 ident: 79_CR68 publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02016.x – volume: 28 start-page: 167 year: 2015 ident: 79_CR16 publication-title: Mol. Plant–Microbe Interact. doi: 10.1094/MPMI-07-14-0194-R – volume: 6 start-page: 868 year: 2015 ident: 79_CR34 publication-title: Front. Plant Sci. – volume: 40 start-page: e67 year: 2012 ident: 79_CR73 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks047 – volume: 55 start-page: 81 year: 2009 ident: 79_CR72 publication-title: Curr. Genet. doi: 10.1007/s00294-008-0226-6 – volume: 53 start-page: 97 year: 2015 ident: 79_CR58 publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-080614-120132 – volume: 7 year: 2007 ident: 79_CR40 publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-7-41 – volume: 17 start-page: 126 year: 2001 ident: 79_CR70 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.2.126 – ident: 79_CR26 doi: 10.3835/plantgenome2012.06.0007 – volume: 46 start-page: 24 year: 1997 ident: 79_CR61 publication-title: Genomics doi: 10.1006/geno.1997.4995 – volume: 12 start-page: e0179617 year: 2017 ident: 79_CR10 publication-title: PLoS One doi: 10.1371/journal.pone.0179617 – volume: 263 start-page: 89 year: 2017 ident: 79_CR21 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2017.07.008 – volume: 25 start-page: 1264 year: 2012 ident: 79_CR35 publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-09-11-0240 – volume: 15 start-page: 10424 year: 2014 ident: 79_CR24 publication-title: Int J. Mol. Sci. doi: 10.3390/ijms150610424 – ident: 79_CR3 doi: 10.1146/annurev-phyto-073009-114450 – volume: 147 start-page: 2147 year: 2008 ident: 79_CR12 publication-title: Plant Physiol. doi: 10.1104/pp.108.123810 – volume: 11 start-page: 90 year: 2009 ident: 79_CR47 publication-title: Plant Biol. (Stuttg.) doi: 10.1111/j.1438-8677.2008.00162.x – volume: 47 start-page: 177 year: 2009 ident: 79_CR45 publication-title: Annu Rev. Phytopathol. doi: 10.1146/annurev.phyto.050908.135202 – volume: 16 year: 2015 ident: 79_CR27 publication-title: BMC Genom. doi: 10.1186/s12864-015-2128-6 – volume: 7 start-page: 1405 year: 2016 ident: 79_CR9 publication-title: Front. Plant Sci. – volume: 2 start-page: 16166 year: 2016 ident: 79_CR56 publication-title: Nat. Plants doi: 10.1038/nplants.2016.166 – volume: 3 start-page: 33 year: 2015 ident: 79_CR23 publication-title: Front Bioeng. Biotechnol. doi: 10.3389/fbioe.2015.00033 – volume: 11 year: 2010 ident: 79_CR66 publication-title: Genome Biol. doi: 10.1186/gb-2010-11-10-r106 – volume: 14 year: 2013 ident: 79_CR63 publication-title: Genome Biol. doi: 10.1186/gb-2013-14-4-r36 – volume: 8 start-page: e74183 year: 2013 ident: 79_CR20 publication-title: PLoS One doi: 10.1371/journal.pone.0074183 – volume: 52 start-page: 347 year: 2014 ident: 79_CR6 publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-082712-102340 – volume: 131 start-page: 15 year: 2011 ident: 79_CR30 publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-011-9782-6 – volume: 29 start-page: 638 year: 2017 ident: 79_CR39 publication-title: Plant Cell doi: 10.1105/tpc.16.00947 – volume: 12 start-page: 341 year: 2011 ident: 79_CR4 publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2010.00674.x – volume: 6 start-page: 675 year: 2015 ident: 79_CR54 publication-title: Front. Plant Sci. – volume: 22 start-page: 1600 year: 2006 ident: 79_CR67 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl140 – volume: 30 start-page: 2114 year: 2014 ident: 79_CR62 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – ident: 79_CR71 doi: 10.1093/nar/29.9.e45 – volume: 7 start-page: 64 year: 2015 ident: 79_CR18 publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12221 – volume: 65 start-page: 1061 year: 1999 ident: 79_CR28 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.3.1061-1070.1999 – ident: 79_CR1 doi: 10.1016/j.scienta.2015.08.043 – volume: 40 start-page: 1 year: 2008 ident: 79_CR36 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.07.002 – ident: 79_CR60 doi: 10.3390/ijms18020432 – volume: 42 start-page: D1167 year: 2014 ident: 79_CR69 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1056 – volume: 149 start-page: 1579 year: 2009 ident: 79_CR19 publication-title: Plant Physiol. doi: 10.1104/pp.108.130369 – volume: 169 start-page: 614 year: 2012 ident: 79_CR37 publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2011.12.016 – volume: 3 start-page: 108 year: 2012 ident: 79_CR13 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2012.00108 – volume: 28 start-page: 511 year: 2010 ident: 79_CR74 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 – volume: 16 start-page: 69 year: 2013 ident: 79_CR15 publication-title: Int Microbiol – volume: 10 start-page: 19 year: 2007 ident: 79_CR29 publication-title: Int. Microbiol. – volume: 415 start-page: 977 year: 2002 ident: 79_CR42 publication-title: Nature doi: 10.1038/415977a – volume: 57 start-page: 1829 year: 2006 ident: 79_CR50 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj201 – volume: 6 start-page: e21800 year: 2011 ident: 79_CR76 publication-title: PLoS One doi: 10.1371/journal.pone.0021800 |
SSID | ssj0001542357 |
Score | 2.3949208 |
Snippet | Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To... Symbiosis: the genetics of beneficial tomato root–fungus interaction The fungus Trichoderma harzianum induces differentiated protein production in tomato roots... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5 |
SubjectTerms | 631/449/2491 631/449/2661/2666 631/449/2676 Acetic acid Agriculture Alternative splicing Biofertilizers Biomedical and Life Sciences Cellular stress response Cytosine Detoxification Ecology Epigenetics Fungi Gene expression Gene regulation Genes Indoleacetic acid Inoculation Jasmonic acid Life Sciences Methylation Microorganisms Nutrition Plant Breeding/Biotechnology Plant Genetics and Genomics Plant nutrition Plant Sciences Priming Probiotics Reactive oxygen species Rhizosphere Rhizosphere microorganisms Roots Salicylic acid Signal transduction Splicing Strain Tomatoes Transcription Trichoderma harzianum |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQVVAg3gQO5IIKiM5O7MQuD8TphATVIl1n-TF7i0Syp300_Bx-KTN2drnl2VCkSRzbyUzG32TG3zD2IkVrU9f5ugWVauWVrgOqSt36JGNsAohcvu3Dx-78k3p_oS-ulfqinLBCD1xe3IkW0BullI4GFFgRZNdHaX0vIsyDD2R9hRXXnKmyP1gRj8sujNmak7WiQt_oOeMhelvLg4Uo8_X_DmT-miv5U8A0r0Nnd9jtCUDy0zLxu-wGjPfYrdPL1USiAffZt7wAZXOwHIATb2VOwhqww9ccroiAk_Yu8mGZKFOo_LTjfkw8B8_HTAbO1xTaxlv4cpWrahGpBEe8yLFXdNU5Yu4Ndp5zbOlkvhaw60JKwXHJvNyu-QxntqCKa4PnC7_6ivq4HR6w2dm72dvzeqrFUEfddhu01h0xlyWjdTBeh6R9b6Kfg_CSfEIhwdgYIXkxDw3hHKkiiNAEMe9D2z5kR-NyhMeMS6-S9BS9jUTsk3xCHy7ZBGh8FFrbiomdXFyceMqpXMYXl-PlrXFFlA5F6UiUTlbs5f6Wq0LS8bfGb0jY-4bEr51PoNa5Sevcv7SuYsc7VXHTR792DaJnK61p-oo9KlqzHwU9Mwpm4ej9gT4dTOPwyvh5kem-uxZBqBIVe7XTvB9D_vEpn_yPp3zKbiI-tOWP0zE72qy28Awx2CY8z5_bd8q1MwI priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgucBhxZvsLsgHTkC0dmLHyQktiNUKCU5F6s3yqy0SSUrSXvbn7C_dGSdpVR576CUP29GMx988-g0hb72rKl8UJs2D8KkwQqYWVCXNjefOZTaw2L7t2_fi6of4OpfzMeDWj2WVk02Mhtq3DmPk5xlAkwo85Ex9XP9OsWsUZlfHFhr3yQMOSARbN6i52sdYpEA2lymZmZfnvcB23-A_w4-pKuUHx1Fk7f8X1Py7YvKPtGk8jS4fk-MRRtKLQe5PyL3QPCWPLpbdSKURnpGbeAxFo9DWgSJ7ZSzFqmHADzSskYYT_8FI69ZjvdAQuqOm8TSm0JtICU57THDDK7TtYm8tpJaggBopjAoOOwXkvYHBY6UtXoz3LAw9UFNQODiX257OYGUr7LtWG7oy3TVo5bZ-TmaXX2afr9KxI0PqZF5swGYXyF_mSyltaaT10qjSmUVghqNnyHgoK-eCN2xhM0Q7XLjAbGbZQtk8f0GOmrYJrwjlRnhuMIfrkN7HGw_i9ZUPYIIE2NyEsEku2o1s5dg045eOWfO81IMoNYhSoyg1T8i73Svrgarjroc_obB3DyLLdrzQdks9blotWVClEEK6MohQMcsL5XhlFHNhYY1NyNmkKnrc-r3eK2pCXg5as5sF_DNMacHs6kCfDpZxeKf5uYqk30UOUFSwhLyfNG8_5X-_8uTuBZ6Sh4D_qiGidEaONt02vAaMtbFv4ka6Ba46Kgg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiQ4ICiPBgrygRMQYSd2Yh_LqlWFBKdF6s3ya3eRSFJldw_05_SXMuMkWy0FJA65JH5FMxl_45l8Q8jb4LUOVWXzMoqQCytk7kBV8tIG7n3hIkvl2758rS6-ic-X8vKA8OlfmJS0nygtk5messM-rgXW6QbHFy5W6xwcnnuqLiUq9aya3R6rSIEELlP8slR3e-7tQImo_0_o8m6S5G-R0rQBnT8mj0bkSE-HtT4hB7E9Ig9Pl_3InhGPyP2zxEH98ym5SXtQsghdEylSV6Y8rAaG_kDjFXJw4u-LtOkCJgsN53bUtoGm-Hmb-MDpGqPb0IV2fSqshbwSFCAjhVHBW6cAuzcweEqzxZvpmYOhB14KCrvmcrumc1jjCouuNZaubH8NKrltnpH5-dl8dpGP5RhyL8tqAwa7QvKyoKR0ykoXpK2Vt4vILEe3kPGotPcxWLZwBUIdLnxkrnBsUbuyfE4O266Nx4RyKwK3GMD1yO0TbAA3LugQwf4IMLgZYZOEjB-pyrFixg-TQualMoNQDQjVoFANz8i7XZergafjX40_odh3DZFiO93o-qUZVc5IFmslhJBeRRE1c7yqPde2Zj4unHUZOZmUxozf_doUAKA116qoM_Ji0J_dLOCcYTwLZq_3NGtvGftP2u-rxPhdlYBDBcvI-0kHb6f861u-_K_Wr8gDwIJ6OF06IYebfhtfA97auDfpC_sFEikqUA priority: 102 providerName: Springer Nature |
Title | Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum |
URI | https://link.springer.com/article/10.1038/s41438-018-0079-1 https://www.ncbi.nlm.nih.gov/pubmed/30603091 https://www.proquest.com/docview/2161919827 https://pubmed.ncbi.nlm.nih.gov/PMC6312540 https://doaj.org/article/50e784445c8e4e90b167c19a70cefbab |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKe4ED4k1KWfnACQjYifPwAaF21apCokJoK-3N8mt3kZqkZHelws_hlzLjJIsWFk4ccsjDdpIZ2994xt8Q8sJZKV2e6zj1wsVCiyw2oCpxqh23NjGehfRtHy_y80vxYZpN98iQ3qr_gcudph3mk7psr97cfP32Hjr8u27LePl2KTCHNxjFcLBCxmAMHQR3EUby9Wi_2zQskNxl8G3uKrk1OwUS_13I888Ayt-8qGFyOrtH7vaokh53anCf7Pn6AblzPG97Zg3_kPwIs1IYI5rKUySzDJFZFVT4mvprZOXEDY20ahyGD3UreVTXjgaPeh0YwukS_d1QhDZtSLWFTBMUQCSFWsF-pwDEV1B5CLzFi-Gegao7pgoK8-h8vaQTeLMFpmGrNF3o9jso6bp6RCZnp5PxedwnaIhtluYrGMJzpDNzZZaZUmfGZboorZ55pjkaioz7UlrrnWYzkyD44cJ6ZhLDZoVJ08dkv25q_5RQroXjGl26Ftl-nHZg2DnpPIxIAobgiLBBLsr25OWYQ-NKBSd6WqpOlApEqVCUikfk5abIdcfc8a-HT1DYmweRdDtcaNq56vuwypgvSiFEZksvvGSG54XlUhfM-pnRJiJHg6qoQZFVApBaclkmRUSedFqzaQXMNfRwQevFlj5tvcb2nfrLInCA5ykgU8Ei8mrQvF9N_vUrD__HVz4jtwE0ym4Z6ojsr9q1fw7AbGVG5FYxLUbk4OT04tNnOBvn41FY5BiFjvgTzH8-iw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5V6QE4IHZcCswBLoDVsT3eDhVqoVVK2wihIPU2mi0JErZTOxGCn8P_4L_x3thOFJbeevDFy8xY783b53uEvDA6z02SSD-y3Phc8thXwCp-JE2gdagsc-3bzkfJ8DP_cBFfbJFf_VkYLKvsZaIT1KbSGCPfC8E0ycFDDtO380sfu0ZhdrVvoSG71gpm30GMdQc7Tu33b-DCNfsn74HeL8Pw-Gj8buh3XQZ8HUfJAuRQgphcJotjlclYmVimmZYTy2SA3g4LbJZrbY1kExWiBg-4tkyFik1ShfFQ0ADbHOMnA7J9eDT6-Gkd5Ik5wsn02dQo22s49hsHBx4uluZ-sKEPXduAf9m6f5ds_pG3derw-A653dmx9KBlvLtky5b3yK2Dad1hedj75KfTg04qVYWlCJ_pasEKGPANtXPEAcUjlLSoDBYstbFDKktDXQ6_dJjktMEMO3xCq9o190JsCwpmK4VR5aKiYPovYHBX6os33TMFQ7fYGBQ093TZ0DGsbIaN3wpJZ7L-AdtiWTwg4-sg1kMyKKvSPiY0kNwEEpPIGvGFjDTAXyY3FmQgB6HvEdbTRegOLh27dnwVLm0fZaIlpQBSCiSlCDzyavXJvMUKuerlQyT26kWE-XY3qnoqOqkhYmbTjHMe68xymzMVJKkOcpkybSdKKo_s9qwiOtnTiPVO8cijlmtWs4CDiDk1mD3d4KeNZWw-Kb_MHOp4EoEtzJlHXvect57yv3-5c_UCn5Mbw_H5mTg7GZ0-ITfBGM3b8NYuGSzqpX0KBt9CPeu2FSXimjfyb6w8bPA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqVkJwQOwECvgAFyCqkzjboUIt7ailMKrQIPVmecsMEkmGZEYIfg7_hn_Fe04yo2HprYdcstiO3vPb_T1Cnhud5yZJpB9ZbnwueewrYBU_kibQOlSWufZtH8bJySf-7iK-2CK_hrMwWFY5yEQnqE2tMUa-F4JpkoOHDK560ZdFnB-N3sy_-thBCjOtQzsN2bdZMPsObqw_5HFmv38Dd67dPz0C2r8Iw9Hx5O2J33cc8HUcJQuQSQnic5ksjlUmY2VimWZaFpbJAD0fFtgs19oayQoVojYPuLZMhYoVqcLYKGiDnRSUPviBO4fH4_OP64BPzBFaZsisRtley7H3ODjzcLE094MN3ehaCPzL7v27fPOPHK5TjaNb5GZv09KDjglvky1b3SE3DqZNj-th75KfTic6CVWXliKUpqsLK2HA19TOERMUj1PSsjZYvNTFEamsDHX5_Mrhk9MWs-3wCa0b1-gLcS4omLAURpWLmoIbsIDBXdkv3nTPFAzd4WRQ0OLTZUsnsLIZNoErJZ3J5gdskWV5j0yuglj3yXZVV_YhoYHkJpCYUNaINWSkAV4zubEgDzkoAI-wgS5C99Dp2MHji3Ap_CgTHSkFkFIgKUXgkZerT-YdbshlLx8isVcvIuS3u1E3U9FLEBEzm2ac81hnltucqSBJdZDLlGlbKKk8sjuwiujlUCvWu8YjDzquWc0CziLm12D2dIOfNpax-aT6PHMI5EkEdjFnHnk1cN56yv_-5aPLF_iMXIMNLd6fjs8ek-tgl-ZdpGuXbC-apX0Ctt9CPe13FSXiivfxb7kHcTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+reprogramming%2C+epigenetic+modifications+and+alternative+splicing+orchestrate+the+tomato+root+response+to+the+beneficial+fungus+Trichoderma+harzianum&rft.jtitle=Horticulture+research&rft.au=Monica+De+Palma&rft.au=Maria+Salzano&rft.au=Clizia+Villano&rft.au=Riccardo+Aversano&rft.date=2019-01-01&rft.pub=Oxford+University+Press&rft.eissn=2052-7276&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1038%2Fs41438-018-0079-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_50e784445c8e4e90b167c19a70cefbab |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-7276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-7276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-7276&client=summon |