Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum

Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots–beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roo...

Full description

Saved in:
Bibliographic Details
Published inHorticulture research Vol. 6; no. 1; pp. 5 - 15
Main Authors De Palma, Monica, Salzano, Maria, Villano, Clizia, Aversano, Riccardo, Lorito, Matteo, Ruocco, Michelina, Docimo, Teresa, Piccinelli, Anna Lisa, D’Agostino, Nunzio, Tucci, Marina
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2019
Oxford University Press
Subjects
Online AccessGet full text
ISSN2052-7276
2052-7276
DOI10.1038/s41438-018-0079-1

Cover

Abstract Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots–beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus Trichoderma harzianum T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between Trichoderma -interacting and control roots and 83 T. harzianum transcripts that were differentially expressed between the three experimental time points. Interaction with Trichoderma triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, T. harzianum -induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant– Trichoderma interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs. Symbiosis: the genetics of beneficial tomato root–fungus interaction The fungus Trichoderma harzianum induces differentiated protein production in tomato roots that benefits plant nutrition and survivability. Microorganisms advantageous to plants have long been exploited in agriculture; however, with limited studies into the interface of Trichoderma fungus and plants—the roots. Italian researchers, led by the Research Centre for Vegetable and Ornamental Crops' Nunzio D'Agostino and the National Research Council’s Marina Tucci, inoculated tomato plant roots with T. harzianum over 72 h, finding over 1200 examples of differential gene expression and post-expression modification that resulted in improved plant growth and immune system regulation. The interaction also induces a root change that likely promotes further interaction with the fungus and increased stress tolerance via promoting antioxidation and defensive activity. The team’s work provides early evidence of the molecular mechanisms behind root–fungus symbiosis and may help to inform crop breeding and fertilisation strategies.
AbstractList Symbiosis: the genetics of beneficial tomato root–fungus interaction The fungus Trichoderma harzianum induces differentiated protein production in tomato roots that benefits plant nutrition and survivability. Microorganisms advantageous to plants have long been exploited in agriculture; however, with limited studies into the interface of Trichoderma fungus and plants—the roots. Italian researchers, led by the Research Centre for Vegetable and Ornamental Crops' Nunzio D'Agostino and the National Research Council’s Marina Tucci, inoculated tomato plant roots with T. harzianum over 72 h, finding over 1200 examples of differential gene expression and post-expression modification that resulted in improved plant growth and immune system regulation. The interaction also induces a root change that likely promotes further interaction with the fungus and increased stress tolerance via promoting antioxidation and defensive activity. The team’s work provides early evidence of the molecular mechanisms behind root–fungus symbiosis and may help to inform crop breeding and fertilisation strategies.
Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots-beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between -interacting and control roots and 83 transcripts that were differentially expressed between the three experimental time points. Interaction with triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, -induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant- interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs.
Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots–beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus Trichoderma harzianum T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between Trichoderma -interacting and control roots and 83 T. harzianum transcripts that were differentially expressed between the three experimental time points. Interaction with Trichoderma triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, T. harzianum -induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant– Trichoderma interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs. The fungus Trichoderma harzianum induces differentiated protein production in tomato roots that benefits plant nutrition and survivability. Microorganisms advantageous to plants have long been exploited in agriculture; however, with limited studies into the interface of Trichoderma fungus and plants—the roots. Italian researchers, led by the Research Centre for Vegetable and Ornamental Crops' Nunzio D'Agostino and the National Research Council’s Marina Tucci, inoculated tomato plant roots with T. harzianum over 72 h, finding over 1200 examples of differential gene expression and post-expression modification that resulted in improved plant growth and immune system regulation. The interaction also induces a root change that likely promotes further interaction with the fungus and increased stress tolerance via promoting antioxidation and defensive activity. The team’s work provides early evidence of the molecular mechanisms behind root–fungus symbiosis and may help to inform crop breeding and fertilisation strategies.
Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots–beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus Trichoderma harzianum T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between Trichoderma -interacting and control roots and 83 T. harzianum transcripts that were differentially expressed between the three experimental time points. Interaction with Trichoderma triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, T. harzianum -induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant– Trichoderma interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs. Symbiosis: the genetics of beneficial tomato root–fungus interaction The fungus Trichoderma harzianum induces differentiated protein production in tomato roots that benefits plant nutrition and survivability. Microorganisms advantageous to plants have long been exploited in agriculture; however, with limited studies into the interface of Trichoderma fungus and plants—the roots. Italian researchers, led by the Research Centre for Vegetable and Ornamental Crops' Nunzio D'Agostino and the National Research Council’s Marina Tucci, inoculated tomato plant roots with T. harzianum over 72 h, finding over 1200 examples of differential gene expression and post-expression modification that resulted in improved plant growth and immune system regulation. The interaction also induces a root change that likely promotes further interaction with the fungus and increased stress tolerance via promoting antioxidation and defensive activity. The team’s work provides early evidence of the molecular mechanisms behind root–fungus symbiosis and may help to inform crop breeding and fertilisation strategies.
Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots–beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus Trichoderma harzianum T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between Trichoderma-interacting and control roots and 83 T. harzianum transcripts that were differentially expressed between the three experimental time points. Interaction with Trichoderma triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, T. harzianum-induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant–Trichoderma interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs.
ArticleNumber 5
Author Aversano, Riccardo
Ruocco, Michelina
De Palma, Monica
Lorito, Matteo
Piccinelli, Anna Lisa
Docimo, Teresa
D’Agostino, Nunzio
Salzano, Maria
Villano, Clizia
Tucci, Marina
Author_xml – sequence: 1
  givenname: Monica
  surname: De Palma
  fullname: De Palma, Monica
  organization: Institute of Biosciences and BioResources, Research Division Portici, National Research Council
– sequence: 2
  givenname: Maria
  surname: Salzano
  fullname: Salzano, Maria
  organization: Institute of Biosciences and BioResources, Research Division Portici, National Research Council
– sequence: 3
  givenname: Clizia
  surname: Villano
  fullname: Villano, Clizia
  organization: Department of Agricultural Sciences, University of Naples Federico II
– sequence: 4
  givenname: Riccardo
  surname: Aversano
  fullname: Aversano, Riccardo
  organization: Department of Agricultural Sciences, University of Naples Federico II
– sequence: 5
  givenname: Matteo
  surname: Lorito
  fullname: Lorito, Matteo
  organization: Department of Agricultural Sciences, University of Naples Federico II
– sequence: 6
  givenname: Michelina
  surname: Ruocco
  fullname: Ruocco, Michelina
  organization: Institute for Sustainable Plant Protection, National Research Council
– sequence: 7
  givenname: Teresa
  surname: Docimo
  fullname: Docimo, Teresa
  organization: Institute of Biosciences and BioResources, Research Division Portici, National Research Council
– sequence: 8
  givenname: Anna Lisa
  surname: Piccinelli
  fullname: Piccinelli, Anna Lisa
  organization: Department of Pharmacy, University of Salerno
– sequence: 9
  givenname: Nunzio
  orcidid: 0000-0001-9840-3817
  surname: D’Agostino
  fullname: D’Agostino, Nunzio
  email: nunzio.dagostino@crea.gov.it
  organization: CREA, Research Centre for Vegetable and Ornamental Crops
– sequence: 10
  givenname: Marina
  orcidid: 0000-0003-0410-5865
  surname: Tucci
  fullname: Tucci, Marina
  email: mtucci@unina.it
  organization: Institute of Biosciences and BioResources, Research Division Portici, National Research Council
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30603091$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFv1TAMxys0xMbYB-CCInFdwWnTpr0goYnBpElc3j1yU7cvT21SknQSfBw-KXnvjbEhwcFKZPv_s2X7ZXZinaUse83hHYeyeR8EF2WTA08Gss35s-ysgKrIZSHrk0f_0-wihB0A8EoUZSVfZKcl1FBCy8-ynxuPNmhvluhmYp4W70aP82zseMloMSNZikaz2fVmMBqjcTYwtD3DKZK3yXFHLCyT0UnCnNdbCtFjJBa3ydyM0THvXEzwsCTx3nmIdQmdkAYnNqx2XAPbeKO3ric_I9ui_2HQrvOr7PmAU6CL-_c821x_2lx9yW-_fr65-nib66qsY86hrhsOfVNVXYNV11coG40DAXIBkgOnptWaeoShK6AWJReaoCs6GGRXlufZzRHbO9ypxZsZ_Xfl0KiDw_lRoU-TmEhVQLIRQlS6IUEtdLyWmrcoQdPQYZdYH46sZe1m6jXZNJHpCfRpxJqtGt2dqkteVAIS4O09wLtvaxqo2rk1DXsKquA1b3nbFDJlvXlc5oH_e70pgR8TtHcheBoeUjio_RWp4xWpdEVqf0Vqr5F_abSJh7WnTs30X2VxVIZUxY7k_zT9b9EvLT7g3Q
CitedBy_id crossref_primary_10_3389_fphys_2019_00745
crossref_primary_10_3389_fpls_2020_582267
crossref_primary_10_3389_fgene_2021_583888
crossref_primary_10_1016_j_biotechadv_2019_107503
crossref_primary_10_1093_femsre_fuac028
crossref_primary_10_3389_fmicb_2022_898356
crossref_primary_10_3390_horticulturae8121181
crossref_primary_10_1007_s13199_021_00791_3
crossref_primary_10_3390_biology13040244
crossref_primary_10_1016_j_biocontrol_2023_105213
crossref_primary_10_1094_MPMI_34_5
crossref_primary_10_1002_csc2_20473
crossref_primary_10_1016_j_plaphy_2024_108953
crossref_primary_10_1021_acs_jafc_0c01438
crossref_primary_10_1094_MPMI_04_20_0081_R
crossref_primary_10_1186_s12870_024_04785_3
crossref_primary_10_3389_fmicb_2020_01364
crossref_primary_10_1016_j_bbagen_2024_130580
crossref_primary_10_3389_fmicb_2020_00992
crossref_primary_10_1016_j_fbr_2025_100414
crossref_primary_10_55230_mabjournal_v51i6_2198
crossref_primary_10_1007_s13199_019_00611_9
crossref_primary_10_1016_j_rhisph_2021_100330
crossref_primary_10_3389_fmicb_2022_996054
crossref_primary_10_3390_plants9121777
crossref_primary_10_1371_journal_pone_0241914
crossref_primary_10_1186_s12915_024_02014_9
crossref_primary_10_3389_fmicb_2021_655165
crossref_primary_10_1186_s12870_023_04502_6
crossref_primary_10_1073_pnas_2216922120
crossref_primary_10_3389_fpls_2021_700200
crossref_primary_10_3390_plants12112197
crossref_primary_10_1007_s13205_024_04040_4
crossref_primary_10_3389_fpls_2021_697702
crossref_primary_10_3390_ijms21249429
crossref_primary_10_1016_j_scienta_2023_112188
crossref_primary_10_1016_j_stress_2021_100052
crossref_primary_10_1038_s41598_022_14570_7
crossref_primary_10_1111_pce_14014
crossref_primary_10_3390_plants11202672
crossref_primary_10_1111_ppl_13570
crossref_primary_10_1080_03235408_2021_1957412
crossref_primary_10_1093_jxb_erac518
crossref_primary_10_3390_plants11243449
crossref_primary_10_1038_s41598_023_48332_w
crossref_primary_10_1016_j_crmicr_2022_100139
crossref_primary_10_1146_annurev_phyto_121423_041908
crossref_primary_10_3389_fpls_2019_00911
crossref_primary_10_1016_S2095_3119_20_63415_3
crossref_primary_10_37442_fme_2024_1_44
crossref_primary_10_1016_j_rhisph_2022_100613
crossref_primary_10_1038_s41598_020_59998_x
crossref_primary_10_1186_s12870_024_05602_7
crossref_primary_10_3389_ffunb_2021_768648
crossref_primary_10_3389_fmicb_2021_579920
crossref_primary_10_3390_ijms22137118
crossref_primary_10_1007_s00344_022_10669_3
crossref_primary_10_3390_ijms232214202
crossref_primary_10_3390_microorganisms11040835
crossref_primary_10_3390_plants10081739
crossref_primary_10_1007_s00425_022_04053_4
crossref_primary_10_1016_j_ygeno_2020_07_022
crossref_primary_10_3390_plants11233287
crossref_primary_10_3389_fmicb_2019_01697
crossref_primary_10_3389_fpls_2023_1158965
crossref_primary_10_3389_fpls_2023_1309747
crossref_primary_10_1007_s00425_019_03325_w
crossref_primary_10_1016_j_envexpbot_2021_104588
Cites_doi 10.1038/nrmicro797
10.1093/nar/gkx382
10.1016/j.pbi.2012.08.007
10.1111/nph.12879
10.1105/tpc.107.052126
10.1111/mpp.12141
10.3389/fpls.2017.00131
10.1186/s12864-016-2368-0
10.1099/mic.0.052274-0
10.1111/nph.14251
10.1093/bioinformatics/btu638
10.1111/mpp.12189
10.1016/j.pbi.2011.07.014
10.1007/s00438-007-0315-0
10.1094/PHYTO-95-0076
10.4161/psb.6.10.17443
10.1080/15592324.2017.1345404
10.1016/j.jplph.2015.11.005
10.1002/pmic.200700173
10.1007/978-3-642-35227-0_4
10.1371/journal.ppat.1003221
10.1094/PHYTO-97-4-0429
10.1105/tpc.114.126763
10.1104/pp.107.113829
10.1016/j.plaphy.2011.09.013
10.1093/bioinformatics/btp616
10.1111/j.1365-313X.2004.02016.x
10.1094/MPMI-07-14-0194-R
10.1093/nar/gks047
10.1007/s00294-008-0226-6
10.1146/annurev-phyto-080614-120132
10.1186/1471-2229-7-41
10.1093/bioinformatics/17.2.126
10.3835/plantgenome2012.06.0007
10.1006/geno.1997.4995
10.1371/journal.pone.0179617
10.1016/j.plantsci.2017.07.008
10.1094/MPMI-09-11-0240
10.3390/ijms150610424
10.1146/annurev-phyto-073009-114450
10.1104/pp.108.123810
10.1111/j.1438-8677.2008.00162.x
10.1146/annurev.phyto.050908.135202
10.1186/s12864-015-2128-6
10.1038/nplants.2016.166
10.3389/fbioe.2015.00033
10.1186/gb-2010-11-10-r106
10.1186/gb-2013-14-4-r36
10.1371/journal.pone.0074183
10.1146/annurev-phyto-082712-102340
10.1007/s10658-011-9782-6
10.1105/tpc.16.00947
10.1111/j.1364-3703.2010.00674.x
10.1093/bioinformatics/btl140
10.1093/bioinformatics/btu170
10.1093/nar/29.9.e45
10.1111/1758-2229.12221
10.1128/AEM.65.3.1061-1070.1999
10.1016/j.scienta.2015.08.043
10.1016/j.soilbio.2007.07.002
10.3390/ijms18020432
10.1093/nar/gkt1056
10.1104/pp.108.130369
10.1016/j.jplph.2011.12.016
10.3389/fpls.2012.00108
10.1038/nbt.1621
10.1038/415977a
10.1093/jxb/erj201
10.1371/journal.pone.0021800
ContentType Journal Article
Copyright The Author(s) 2019
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X2
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
5PM
DOA
DOI 10.1038/s41438-018-0079-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
PubMed


Agricultural Science Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
EISSN 2052-7276
EndPage 15
ExternalDocumentID oai_doaj_org_article_50e784445c8e4e90b167c19a70cefbab
PMC6312540
30603091
10_1038_s41438_018_0079_1
Genre Journal Article
GroupedDBID 0R~
3V.
5VS
7X2
7X7
8FE
8FH
8FI
8FJ
AAHBH
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABUWG
ABXVV
ACGFS
ACSMW
ADBBV
ADRAZ
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AOIJS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M0K
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RNTTT
ROX
RPM
SNYQT
TOX
UKHRP
AAYXX
CITATION
PHGZM
PHGZT
IAG
IAO
IEP
ITC
NPM
TCJ
TGD
7XB
8FK
AZQEC
DWQXO
EBLON
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
5PM
ID FETCH-LOGICAL-c536t-1066810d855b8a5bd5a78cafe0a1407101e89cceda0fb2064314ce0b2b0f7b33
IEDL.DBID M48
ISSN 2052-7276
IngestDate Wed Aug 27 01:29:26 EDT 2025
Thu Aug 21 18:34:44 EDT 2025
Fri Sep 19 20:51:30 EDT 2025
Wed Feb 19 02:31:48 EST 2025
Tue Jul 01 03:40:26 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Fri Feb 21 02:37:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-1066810d855b8a5bd5a78cafe0a1407101e89cceda0fb2064314ce0b2b0f7b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9840-3817
0000-0003-0410-5865
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41438-018-0079-1
PMID 30603091
PQID 2161919827
PQPubID 2041956
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_50e784445c8e4e90b167c19a70cefbab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6312540
proquest_journals_2161919827
pubmed_primary_30603091
crossref_primary_10_1038_s41438_018_0079_1
crossref_citationtrail_10_1038_s41438_018_0079_1
springer_journals_10_1038_s41438_018_0079_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Horticulture research
PublicationTitleAbbrev Hortic Res
PublicationTitleAlternate Hortic Res
PublicationYear 2019
Publisher Nature Publishing Group UK
Oxford University Press
Publisher_xml – name: Nature Publishing Group UK
– name: Oxford University Press
References CarolRJDolanLThe role of reactive oxygen species in cell growth: lessons from root hairsJ. Exp. Bot.200657182918341:CAS:528:DC%2BD28XmsVaqsbw%3D10.1093/jxb/erj201
HermosaRThe contribution of Trichoderma to balancing the costs of plant growth and defenseInt Microbiol20131669801:CAS:528:DC%2BC3sXhs1SmsbfI24400524
Lopez-Bucio, J., Pelagio-Flores, R. & Herrera-Estrella, A. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic.196 109–123 (2015).
Salas-MarinaMAColonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathwaysEur. J. Plant Pathol.201113115261:CAS:528:DC%2BC3MXpsFKnt7c%3D10.1007/s10658-011-9782-6
Ruzicka, D. et al. Inside arbuscular mycorrhizal roots - molecular probes to understand the symbiosis. Plant Genome6, https://doi.org/10.3835/plantgenome2012.06.0007 (2013).
AlexaARahnenfuhrerJLengauerTImproved scoring of functional groups from gene expression data by decorrelating GO graph structureBioinformatics200622160016071:CAS:528:DC%2BD28XmsVentro%3D10.1093/bioinformatics/btl140
Martinez-MedinaAShifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognitaNew Phytol.2017213136313771:CAS:528:DC%2BC2sXoslaluw%3D%3D10.1111/nph.14251
MathysJGenome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infectionFront. Plant Sci.2012310810.3389/fpls.2012.00108
SatgéCReprogramming of DNA methylation is critical for nodule development in Medicago truncatulaNat. Plants201621616610.1038/nplants.2016.166
KimuraSWaszczakCHunterKWrzaczekMBound by fate: the role of reactive oxygen species in receptor-like kinase signalingPlant Cell2017296386541:CAS:528:DC%2BC2sXhvFygtbjE10.1105/tpc.16.00947
EspinasNASazeHSaijoYEpigeneticFront. Plant Sci.201671201275633044980392
MittalVKMcDonaldJFR-SAP: a multi-threading computational pipeline for the characterization of high-throughput RNA-sequencing dataNucleic Acids Res.201240e671:CAS:528:DC%2BC38XmvF2mtLs%3D10.1093/nar/gks047
YedidiaIIBenhamouNChetIIInduction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianumAppl. Environ. Microbiol.199965106110701:CAS:528:DyaK1MXhslWktLg%3D1004986491145
GutzatRMittelsten ScheidOEpigenetic responses to stress: triple defense?Curr. Opin. Plant Biol.2012155685731:CAS:528:DC%2BC38XhtlWksb3P10.1016/j.pbi.2012.08.007
TrapnellCTranscript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiationNat. Biotechnol.2010285115151:CAS:528:DC%2BC3cXlsVyitLY%3D10.1038/nbt.1621
TianTagriGOv2.0: a GO analysis toolkit for the agricultural community, 2017 updateNucleic Acids Res.201745W122W1291:CAS:528:DC%2BC1cXhs1amurg%3D10.1093/nar/gkx382
VosCMDe CremerKCammueBPDe ConinckBThe toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea diseaseMol. Plant Pathol.20151640041210.1111/mpp.12189
SchenkSTN-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathwayPlant Cell201426270827231:CAS:528:DC%2BC2cXhsVChsrbO10.1105/tpc.114.126763
GibbsDJAtMYB93 is a novel negative regulator of lateral root development in ArabidopsisNew Phytol.2014203119412071:CAS:528:DC%2BC2cXht1KmtrfP10.1111/nph.12879
ChamalaSFengGChavarroCBarbazukWBGenome-wide identification of evolutionarily conserved alternative splicing events in flowering plantsFront Bioeng. Biotechnol.201533310.3389/fbioe.2015.00033
TucciMRuoccoMDe MasiLDe PalmaMLoritoMThe beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotypeMol. Plant Pathol.2011123413541:CAS:528:DC%2BC3MXmt1Gkt7k%3D10.1111/j.1364-3703.2010.00674.x
HarmanGEHowellCRViterboAChetILoritoMTrichoderma species—opportunistic, avirulent plant symbiontsNat. Rev. Microbiol2004243561:CAS:528:DC%2BD2cXht1Krsbo%3D10.1038/nrmicro797
DingBWangGLChromatin versus pathogens: the function of epigenetics in plant immunityFront. Plant Sci.20156675263888824557108
ShoreshMHarmanGEThe molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approachPlant Physiol.2008147214721631:CAS:528:DC%2BD1cXhtVSrtrvI10.1104/pp.108.123810
SchermBSchmollMBalmasVKubicekCPMigheliQIdentification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approachCurr. Genet.20095581911:CAS:528:DC%2BD1MXhtF2iu78%3D10.1007/s00294-008-0226-6
AndersSPylPTHuberWHTSeq-a Python framework to work with high-throughput sequencing dataBioinformatics2015311661691:CAS:528:DC%2BC28Xht1Sjt7vL10.1093/bioinformatics/btu638
DaKNowakJFlinnBPotato cytosine methylation and gene expression changes induced by a beneficial bacterial endophyte, Burkholderia phytofirmans strain PsJNPlant Physiol. Biochem.20125024341:CAS:528:DC%2BC3MXhsFSlurfM10.1016/j.plaphy.2011.09.013
ChaconMRMicroscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianumInt. Microbiol.20071019271:CAS:528:DC%2BD2sXpvFSlsbk%3D17407057
HoCLDe novo transcriptome analyses of host–fungal interactions in oil palm (Elaeis guineensis Jacq.)BMC Genom.20161710.1186/s12864-016-2368-0
SegarraGVan der EntSTrillasIPieterseCMMYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbePlant Biol. (Stuttg.)20091190961:CAS:528:DC%2BD1MXntFWrur4%3D10.1111/j.1438-8677.2008.00162.x
AndersSHuberWDifferential expression analysis for sequence count dataGenome Biol.2010111:CAS:528:DC%2BC3cXhsVahs7bI10.1186/gb-2010-11-10-r106
PieterseCMInduced systemic resistance by beneficial microbesAnnu. Rev. Phytopathol.2014523473751:CAS:528:DC%2BC2cXhsl2ms77L10.1146/annurev-phyto-082712-102340
BolgerAMLohseMUsadelBTrimmomatic: a flexible trimmer for Illumina sequence dataBioinformatics201430211421201:CAS:528:DC%2BC2cXht1Sqt7nP10.1093/bioinformatics/btu170
AhmadPRole of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense systemFront. Plant Sci.20156868265283244604702
Contreras-CornejoHAMacias-RodriguezLCortes-PenagosCLopez-BucioJTrichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in ArabidopsisPlant Physiol.2009149157915921:CAS:528:DC%2BD1MXlsFCiu7w%3D10.1104/pp.108.130369
MastouriFBjorkmanTHarmanGETrichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficitMol. Plant Microbe Interact.201225126412711:CAS:528:DC%2BC38Xht1Olur%2FL10.1094/MPMI-09-11-0240
RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO10.1093/bioinformatics/btp616
ZhangSWGanYTXuBLApplication of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expressionFront. Plant Sci.201671405276954755023664
Shang, X., Cao, Y. & Ma, L. Alternative splicing in plant genes: a means of regulating the environmental fitness of plants. Int. J. Mol. Sci. 18, 432 (2017). https://doi.org/10.3390/ijms18020432
YangSTangFZhuHAlternative splicing in plant immunityInt J. Mol. Sci.201415104241044510.3390/ijms150610424
BrotmanYTrichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerancePLoS Pathog.20139e10032211:CAS:528:DC%2BC3sXmtVeltbg%3D10.1371/journal.ppat.1003221
RuoccoMMultiple roles and effects of a novel Trichoderma hydrophobinMol. Plant–Microbe Interact.2015281671791:CAS:528:DC%2BC2MXit1yntL8%3D10.1094/MPMI-07-14-0194-R
RouphaelYCardarelliMBoniniPCollaGSynergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinityFront Plant Sci.2017813110.3389/fpls.2017.00131
NavazioLCalcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atrovirideBMC Plant Biol.2007710.1186/1471-2229-7-41
RamsakZGoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontologyNucleic Acids Res.201442D1167D11751:CAS:528:DC%2BC2cXos1Wi10.1093/nar/gkt1056
Alonso-RamirezASalicylic acid prevents Trichoderma harzianum from entering the vascular system of rootsMol. Plant Pathol.2014158238311:CAS:528:DC%2BC2cXhsFCjtbrJ10.1111/mpp.12141
HigashiKModulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thalianaMol. Genet. Genom.20082793033121:CAS:528:DC%2BD1cXhvFyrsLk%3D10.1007/s00438-007-0315-0
ConrathUBeckersGJLangenbachCJJaskiewiczMRPriming for enhanced defenseAnnu. Rev. Phytopathol.201553971191:CAS:528:DC%2BC2MXhsFWrsbzI10.1146/annurev-phyto-080614-120132
ThimmOMAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processesPlant J.2004379149391:CAS:528:DC%2BD2cXjtFChu78%3D10.1111/j.1365-313X.2004.02016.x
Shoresh, M., Harman, G.E. & Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol.48, 21–43 (2010).
De PalmaMSuppression subtractive hybridization analysis provides new insights into the tomato (Solanum lycopersicum L.) response to the plant probiotic microorganism Trichoderma longibrachiatum MK1J. Plant Physiol.2016190799410.1016/j.jplph.2015.11.005
VinaleFTrichoderma-plant-pathogen interactionsSoil Biol. Biochem.2008401101:CAS:528:DC%2BD2sXhtF2iu7jN10.1016/j.soilbio.2007.07.002
KimDTopHat2: accurate alignment of transcriptomes in the
N Suzuki (79_CR38) 2011; 14
VK Mittal (79_CR73) 2012; 40
J Herrero (79_CR70) 2001; 17
A Martinez-Medina (79_CR33) 2017; 12
L Navazio (79_CR40) 2007; 7
AM Bolger (79_CR62) 2014; 30
M Palma De (79_CR14) 2016; 190
GX Tan (79_CR25) 2015; 6
B Scherm (79_CR72) 2009; 55
II Yedidia (79_CR28) 1999; 65
K Higashi (79_CR43) 2008; 279
C Satgé (79_CR56) 2016; 2
BE Howard (79_CR20) 2013; 8
P Ahmad (79_CR34) 2015; 6
79_CR53
S Anders (79_CR64) 2015; 31
A Alexa (79_CR67) 2006; 22
CM Pieterse (79_CR6) 2014; 52
A Martinez-Medina (79_CR7) 2017; 213
K Ruzicka (79_CR48) 2007; 19
79_CR26
C Trapnell (79_CR74) 2010; 28
R Gutzat (79_CR57) 2012; 15
HA Contreras-Cornejo (79_CR19) 2009; 149
CM Vos (79_CR17) 2015; 16
T Asai (79_CR42) 2002; 415
G Alfano (79_CR11) 2007; 97
MR Chacon (79_CR29) 2007; 10
F Vinale (79_CR36) 2008; 40
RJ Carol (79_CR50) 2006; 57
ST Schenk (79_CR77) 2014; 26
79_CR60
CL Ho (79_CR31) 2016; 17
S Yang (79_CR24) 2014; 15
D Kim (79_CR63) 2013; 14
O Thimm (79_CR68) 2004; 37
HA Contreras-Cornejo (79_CR41) 2011; 6
AC Vlot (79_CR45) 2009; 47
SW Zhang (79_CR9) 2016; 7
Y Brotman (79_CR8) 2013; 9
R Hermosa (79_CR15) 2013; 16
MA Salas-Marina (79_CR30) 2011; 131
B Lace (79_CR18) 2015; 7
GE Harman (79_CR49) 2004; 2
A Alonso-Ramirez (79_CR32) 2014; 15
M Shoresh (79_CR12) 2008; 147
MD Robinson (79_CR65) 2010; 26
J Fu (79_CR10) 2017; 12
T Tian (79_CR75) 2017; 45
79_CR71
M Ruocco (79_CR16) 2015; 28
S Ent Van der (79_CR46) 2008; 146
P Zogli (79_CR21) 2017; 263
F Mastouri (79_CR35) 2012; 25
F Supek (79_CR76) 2011; 6
S Anders (79_CR66) 2010; 11
J Mathys (79_CR13) 2012; 3
S Chamala (79_CR23) 2015; 3
DJ Gibbs (79_CR51) 2014; 203
R Hermosa (79_CR5) 2012; 158
B Ding (79_CR54) 2015; 6
U Conrath (79_CR58) 2015; 53
K Da (79_CR22) 2012; 50
M Tucci (79_CR4) 2011; 12
E Moran-Diez (79_CR37) 2012; 169
Z Ramsak (79_CR69) 2014; 42
79_CR1
79_CR3
W Gassmann (79_CR59) 2008; 326
G Segarra (79_CR47) 2009; 11
M Shoresh (79_CR44) 2005; 95
NA Espinas (79_CR55) 2016; 7
WR Pearson (79_CR61) 1997; 46
Y Rouphael (79_CR2) 2017; 8
Y Sun (79_CR27) 2015; 16
G Segarra (79_CR52) 2007; 7
S Kimura (79_CR39) 2017; 29
References_xml – reference: KimDTopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusionsGenome Biol.20131410.1186/gb-2013-14-4-r36
– reference: Contreras-CornejoHAMacias-RodriguezLBeltran-PenaEHerrera-EstrellaALopez-BucioJTrichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinereaPlant Signal Behav.20116155415631:CAS:528:DC%2BC38XjsVGhsLg%3D10.4161/psb.6.10.17443
– reference: MittalVKMcDonaldJFR-SAP: a multi-threading computational pipeline for the characterization of high-throughput RNA-sequencing dataNucleic Acids Res.201240e671:CAS:528:DC%2BC38XmvF2mtLs%3D10.1093/nar/gks047
– reference: TianTagriGOv2.0: a GO analysis toolkit for the agricultural community, 2017 updateNucleic Acids Res.201745W122W1291:CAS:528:DC%2BC1cXhs1amurg%3D10.1093/nar/gkx382
– reference: Van der EntSMYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in ArabidopsisPlant Physiol.20081461293130410.1104/pp.107.113829
– reference: Shoresh, M., Harman, G.E. & Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol.48, 21–43 (2010).
– reference: RuzickaKEthylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distributionPlant Cell200719219722121:CAS:528:DC%2BD2sXhtValur%2FF10.1105/tpc.107.052126
– reference: AlfanoGSystemic modulation of gene expression in tomato by Trichoderma hamatum 382Phytopathology2007974294371:CAS:528:DC%2BD2sXks1altLs%3D10.1094/PHYTO-97-4-0429
– reference: Martinez-MedinaAAppelsFVWvan WeesSCMImpact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78Plant Signal Behav.201712e134540410.1080/15592324.2017.1345404
– reference: VinaleFTrichoderma-plant-pathogen interactionsSoil Biol. Biochem.2008401101:CAS:528:DC%2BD2sXhtF2iu7jN10.1016/j.soilbio.2007.07.002
– reference: BolgerAMLohseMUsadelBTrimmomatic: a flexible trimmer for Illumina sequence dataBioinformatics201430211421201:CAS:528:DC%2BC2cXht1Sqt7nP10.1093/bioinformatics/btu170
– reference: DingBWangGLChromatin versus pathogens: the function of epigenetics in plant immunityFront. Plant Sci.20156675263888824557108
– reference: ThimmOMAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processesPlant J.2004379149391:CAS:528:DC%2BD2cXjtFChu78%3D10.1111/j.1365-313X.2004.02016.x
– reference: HowardBEHigh-throughput RNA sequencing of pseudomonas-infected Arabidopsis reveals hidden transcriptome complexity and novel splice variantsPLoS One20138e741831:CAS:528:DC%2BC3sXhsFOrt77N10.1371/journal.pone.0074183
– reference: EspinasNASazeHSaijoYEpigeneticFront. Plant Sci.201671201275633044980392
– reference: AndersSHuberWDifferential expression analysis for sequence count dataGenome Biol.2010111:CAS:528:DC%2BC3cXhsVahs7bI10.1186/gb-2010-11-10-r106
– reference: LaceBGate crashing arbuscular mycorrhizas: in vivo imaging shows the extensive colonization of both symbionts by Trichoderma atrovirideEnviron. Microbiol. Rep.2015764771:CAS:528:DC%2BC2MXjsVGis7o%3D10.1111/1758-2229.12221
– reference: ConrathUBeckersGJLangenbachCJJaskiewiczMRPriming for enhanced defenseAnnu. Rev. Phytopathol.201553971191:CAS:528:DC%2BC2MXhsFWrsbzI10.1146/annurev-phyto-080614-120132
– reference: Pfaffl, M.W. A new mathematical model for relative quantification in real-time PCR. Nucleic Acids Res.29, e45 (2001)
– reference: FuJLiuZLiZWangYYangKAlleviation of the effects of saline-alkaline stress on maize seedlings by regulation of active oxygen metabolism by Trichoderma asperellumPLoS One201712e017961710.1371/journal.pone.0179617
– reference: HerreroJValenciaADopazoJA hierarchical unsupervised growing neural network for clustering gene expression patternsBioinformatics2001171261361:CAS:528:DC%2BD3MXisFymsbg%3D10.1093/bioinformatics/17.2.126
– reference: NavazioLCalcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atrovirideBMC Plant Biol.2007710.1186/1471-2229-7-41
– reference: SegarraGProteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34Proteomics20077394339521:CAS:528:DC%2BD2sXhtlOgurvI10.1002/pmic.200700173
– reference: AsaiTMAP kinase signalling cascade in Arabidopsis innate immunityNature20024159779831:CAS:528:DC%2BD38Xhsl2lu7c%3D10.1038/415977a
– reference: TanGXTranscriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencingFront. Plant Sci.20156428261064044458571
– reference: RamsakZGoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontologyNucleic Acids Res.201442D1167D11751:CAS:528:DC%2BC2cXos1Wi10.1093/nar/gkt1056
– reference: RouphaelYCardarelliMBoniniPCollaGSynergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinityFront Plant Sci.2017813110.3389/fpls.2017.00131
– reference: Martinez-MedinaAShifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognitaNew Phytol.2017213136313771:CAS:528:DC%2BC2sXoslaluw%3D%3D10.1111/nph.14251
– reference: YangSTangFZhuHAlternative splicing in plant immunityInt J. Mol. Sci.201415104241044510.3390/ijms150610424
– reference: SegarraGVan der EntSTrillasIPieterseCMMYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbePlant Biol. (Stuttg.)20091190961:CAS:528:DC%2BD1MXntFWrur4%3D10.1111/j.1438-8677.2008.00162.x
– reference: Saijo, Y. & Reimer-Michalski, E.-M. in Epigenetic Memory and Control in Plants (eds Gideon Grafi & Nir Ohad) 57–76 (Springer, Berlin, Heidelberg, 2013).
– reference: HermosaRViterboAChetIMonteEPlant-beneficial effects of Trichoderma and of its genesMicrobiology201215817251:CAS:528:DC%2BC38XitVKnu7k%3D10.1099/mic.0.052274-0
– reference: ShoreshMHarmanGEThe molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approachPlant Physiol.2008147214721631:CAS:528:DC%2BD1cXhtVSrtrvI10.1104/pp.108.123810
– reference: Contreras-CornejoHAMacias-RodriguezLCortes-PenagosCLopez-BucioJTrichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in ArabidopsisPlant Physiol.2009149157915921:CAS:528:DC%2BD1MXlsFCiu7w%3D10.1104/pp.108.130369
– reference: SchenkSTN-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathwayPlant Cell201426270827231:CAS:528:DC%2BC2cXhsVChsrbO10.1105/tpc.114.126763
– reference: HermosaRThe contribution of Trichoderma to balancing the costs of plant growth and defenseInt Microbiol20131669801:CAS:528:DC%2BC3sXhs1SmsbfI24400524
– reference: ChaconMRMicroscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianumInt. Microbiol.20071019271:CAS:528:DC%2BD2sXpvFSlsbk%3D17407057
– reference: SunYXiaoHIdentification of alternative splicing events by RNA sequencing in early growth tomato fruitsBMC Genom.20151610.1186/s12864-015-2128-6
– reference: HoCLDe novo transcriptome analyses of host–fungal interactions in oil palm (Elaeis guineensis Jacq.)BMC Genom.20161710.1186/s12864-016-2368-0
– reference: Ruzicka, D. et al. Inside arbuscular mycorrhizal roots - molecular probes to understand the symbiosis. Plant Genome6, https://doi.org/10.3835/plantgenome2012.06.0007 (2013).
– reference: PieterseCMInduced systemic resistance by beneficial microbesAnnu. Rev. Phytopathol.2014523473751:CAS:528:DC%2BC2cXhsl2ms77L10.1146/annurev-phyto-082712-102340
– reference: HigashiKModulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thalianaMol. Genet. Genom.20082793033121:CAS:528:DC%2BD1cXhvFyrsLk%3D10.1007/s00438-007-0315-0
– reference: Moran-DiezETranscriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianumJ. Plant Physiol.20121696146201:CAS:528:DC%2BC38XhvVyitL4%3D10.1016/j.jplph.2011.12.016
– reference: DaKNowakJFlinnBPotato cytosine methylation and gene expression changes induced by a beneficial bacterial endophyte, Burkholderia phytofirmans strain PsJNPlant Physiol. Biochem.20125024341:CAS:528:DC%2BC3MXhsFSlurfM10.1016/j.plaphy.2011.09.013
– reference: SatgéCReprogramming of DNA methylation is critical for nodule development in Medicago truncatulaNat. Plants201621616610.1038/nplants.2016.166
– reference: YedidiaIIBenhamouNChetIIInduction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianumAppl. Environ. Microbiol.199965106110701:CAS:528:DyaK1MXhslWktLg%3D1004986491145
– reference: Salas-MarinaMAColonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathwaysEur. J. Plant Pathol.201113115261:CAS:528:DC%2BC3MXpsFKnt7c%3D10.1007/s10658-011-9782-6
– reference: VlotACDempseyDAKlessigDFSalicylic acid, a multifaceted hormone to combat diseaseAnnu Rev. Phytopathol.2009471772061:CAS:528:DC%2BD1MXht1Gjt73P10.1146/annurev.phyto.050908.135202
– reference: AhmadPRole of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense systemFront. Plant Sci.20156868265283244604702
– reference: ZhangSWGanYTXuBLApplication of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expressionFront. Plant Sci.201671405276954755023664
– reference: ShoreshMYedidiaIChetIInvolvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203Phytopathology20059576841:CAS:528:DC%2BD2MXnslWmuw%3D%3D10.1094/PHYTO-95-0076
– reference: SupekFBosnjakMSkuncaNSmucTREVIGO summarizes and visualizes long lists of gene ontology termsPLoS One20116e218001:CAS:528:DC%2BC3MXhtVeht7zI10.1371/journal.pone.0021800
– reference: Shang, X., Cao, Y. & Ma, L. Alternative splicing in plant genes: a means of regulating the environmental fitness of plants. Int. J. Mol. Sci. 18, 432 (2017). https://doi.org/10.3390/ijms18020432
– reference: ZogliPLibaultMPlant response to biotic stress: Is there a common epigenetic response during plant–pathogenic and symbiotic interactions?Plant Sci.201726389931:CAS:528:DC%2BC2sXht1Cks7nP10.1016/j.plantsci.2017.07.008
– reference: AlexaARahnenfuhrerJLengauerTImproved scoring of functional groups from gene expression data by decorrelating GO graph structureBioinformatics200622160016071:CAS:528:DC%2BD28XmsVentro%3D10.1093/bioinformatics/btl140
– reference: HarmanGEHowellCRViterboAChetILoritoMTrichoderma species—opportunistic, avirulent plant symbiontsNat. Rev. Microbiol2004243561:CAS:528:DC%2BD2cXht1Krsbo%3D10.1038/nrmicro797
– reference: Lopez-Bucio, J., Pelagio-Flores, R. & Herrera-Estrella, A. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic.196 109–123 (2015).
– reference: ChamalaSFengGChavarroCBarbazukWBGenome-wide identification of evolutionarily conserved alternative splicing events in flowering plantsFront Bioeng. Biotechnol.201533310.3389/fbioe.2015.00033
– reference: De PalmaMSuppression subtractive hybridization analysis provides new insights into the tomato (Solanum lycopersicum L.) response to the plant probiotic microorganism Trichoderma longibrachiatum MK1J. Plant Physiol.2016190799410.1016/j.jplph.2015.11.005
– reference: KimuraSWaszczakCHunterKWrzaczekMBound by fate: the role of reactive oxygen species in receptor-like kinase signalingPlant Cell2017296386541:CAS:528:DC%2BC2sXhvFygtbjE10.1105/tpc.16.00947
– reference: RuoccoMMultiple roles and effects of a novel Trichoderma hydrophobinMol. Plant–Microbe Interact.2015281671791:CAS:528:DC%2BC2MXit1yntL8%3D10.1094/MPMI-07-14-0194-R
– reference: CarolRJDolanLThe role of reactive oxygen species in cell growth: lessons from root hairsJ. Exp. Bot.200657182918341:CAS:528:DC%2BD28XmsVaqsbw%3D10.1093/jxb/erj201
– reference: GibbsDJAtMYB93 is a novel negative regulator of lateral root development in ArabidopsisNew Phytol.2014203119412071:CAS:528:DC%2BC2cXht1KmtrfP10.1111/nph.12879
– reference: RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO10.1093/bioinformatics/btp616
– reference: SuzukiNRespiratory burst oxidases: the engines of ROS signalingCurr. Opin. Plant Biol.2011146916991:CAS:528:DC%2BC3MXhsFygu7vJ10.1016/j.pbi.2011.07.014
– reference: Alonso-RamirezASalicylic acid prevents Trichoderma harzianum from entering the vascular system of rootsMol. Plant Pathol.2014158238311:CAS:528:DC%2BC2cXhsFCjtbrJ10.1111/mpp.12141
– reference: SchermBSchmollMBalmasVKubicekCPMigheliQIdentification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approachCurr. Genet.20095581911:CAS:528:DC%2BD1MXhtF2iu78%3D10.1007/s00294-008-0226-6
– reference: MastouriFBjorkmanTHarmanGETrichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficitMol. Plant Microbe Interact.201225126412711:CAS:528:DC%2BC38Xht1Olur%2FL10.1094/MPMI-09-11-0240
– reference: PearsonWRWoodTZhangZMillerWComparison of DNA sequences with protein sequencesGenomics19974624361:CAS:528:DyaK2sXnvVCkur8%3D10.1006/geno.1997.4995
– reference: AndersSPylPTHuberWHTSeq-a Python framework to work with high-throughput sequencing dataBioinformatics2015311661691:CAS:528:DC%2BC28Xht1Sjt7vL10.1093/bioinformatics/btu638
– reference: VosCMDe CremerKCammueBPDe ConinckBThe toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea diseaseMol. Plant Pathol.20151640041210.1111/mpp.12189
– reference: TrapnellCTranscript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiationNat. Biotechnol.2010285115151:CAS:528:DC%2BC3cXlsVyitLY%3D10.1038/nbt.1621
– reference: GassmannWAlternative splicing in plant defenseCurr. Top. Microbiol. Immunol.20083262192331:CAS:528:DC%2BD1MXmtValuw%3D%3D18630755
– reference: TucciMRuoccoMDe MasiLDe PalmaMLoritoMThe beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotypeMol. Plant Pathol.2011123413541:CAS:528:DC%2BC3MXmt1Gkt7k%3D10.1111/j.1364-3703.2010.00674.x
– reference: MathysJGenome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infectionFront. Plant Sci.2012310810.3389/fpls.2012.00108
– reference: GutzatRMittelsten ScheidOEpigenetic responses to stress: triple defense?Curr. Opin. Plant Biol.2012155685731:CAS:528:DC%2BC38XhtlWksb3P10.1016/j.pbi.2012.08.007
– reference: BrotmanYTrichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerancePLoS Pathog.20139e10032211:CAS:528:DC%2BC3sXmtVeltbg%3D10.1371/journal.ppat.1003221
– volume: 2
  start-page: 43
  year: 2004
  ident: 79_CR49
  publication-title: Nat. Rev. Microbiol
  doi: 10.1038/nrmicro797
– volume: 326
  start-page: 219
  year: 2008
  ident: 79_CR59
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 45
  start-page: W122
  year: 2017
  ident: 79_CR75
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx382
– volume: 15
  start-page: 568
  year: 2012
  ident: 79_CR57
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2012.08.007
– volume: 203
  start-page: 1194
  year: 2014
  ident: 79_CR51
  publication-title: New Phytol.
  doi: 10.1111/nph.12879
– volume: 19
  start-page: 2197
  year: 2007
  ident: 79_CR48
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.052126
– volume: 15
  start-page: 823
  year: 2014
  ident: 79_CR32
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12141
– volume: 8
  start-page: 131
  year: 2017
  ident: 79_CR2
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2017.00131
– volume: 17
  year: 2016
  ident: 79_CR31
  publication-title: BMC Genom.
  doi: 10.1186/s12864-016-2368-0
– volume: 158
  start-page: 17
  year: 2012
  ident: 79_CR5
  publication-title: Microbiology
  doi: 10.1099/mic.0.052274-0
– volume: 213
  start-page: 1363
  year: 2017
  ident: 79_CR7
  publication-title: New Phytol.
  doi: 10.1111/nph.14251
– volume: 31
  start-page: 166
  year: 2015
  ident: 79_CR64
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 16
  start-page: 400
  year: 2015
  ident: 79_CR17
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12189
– volume: 14
  start-page: 691
  year: 2011
  ident: 79_CR38
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2011.07.014
– volume: 279
  start-page: 303
  year: 2008
  ident: 79_CR43
  publication-title: Mol. Genet. Genom.
  doi: 10.1007/s00438-007-0315-0
– volume: 95
  start-page: 76
  year: 2005
  ident: 79_CR44
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-95-0076
– volume: 6
  start-page: 1554
  year: 2011
  ident: 79_CR41
  publication-title: Plant Signal Behav.
  doi: 10.4161/psb.6.10.17443
– volume: 12
  start-page: e1345404
  year: 2017
  ident: 79_CR33
  publication-title: Plant Signal Behav.
  doi: 10.1080/15592324.2017.1345404
– volume: 190
  start-page: 79
  year: 2016
  ident: 79_CR14
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2015.11.005
– volume: 6
  start-page: 428
  year: 2015
  ident: 79_CR25
  publication-title: Front. Plant Sci.
– volume: 7
  start-page: 3943
  year: 2007
  ident: 79_CR52
  publication-title: Proteomics
  doi: 10.1002/pmic.200700173
– ident: 79_CR53
  doi: 10.1007/978-3-642-35227-0_4
– volume: 9
  start-page: e1003221
  year: 2013
  ident: 79_CR8
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003221
– volume: 97
  start-page: 429
  year: 2007
  ident: 79_CR11
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-97-4-0429
– volume: 26
  start-page: 2708
  year: 2014
  ident: 79_CR77
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.126763
– volume: 146
  start-page: 1293
  year: 2008
  ident: 79_CR46
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.113829
– volume: 50
  start-page: 24
  year: 2012
  ident: 79_CR22
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2011.09.013
– volume: 26
  start-page: 139
  year: 2010
  ident: 79_CR65
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 7
  start-page: 1201
  year: 2016
  ident: 79_CR55
  publication-title: Front. Plant Sci.
– volume: 37
  start-page: 914
  year: 2004
  ident: 79_CR68
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02016.x
– volume: 28
  start-page: 167
  year: 2015
  ident: 79_CR16
  publication-title: Mol. Plant–Microbe Interact.
  doi: 10.1094/MPMI-07-14-0194-R
– volume: 6
  start-page: 868
  year: 2015
  ident: 79_CR34
  publication-title: Front. Plant Sci.
– volume: 40
  start-page: e67
  year: 2012
  ident: 79_CR73
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks047
– volume: 55
  start-page: 81
  year: 2009
  ident: 79_CR72
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-008-0226-6
– volume: 53
  start-page: 97
  year: 2015
  ident: 79_CR58
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-080614-120132
– volume: 7
  year: 2007
  ident: 79_CR40
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-7-41
– volume: 17
  start-page: 126
  year: 2001
  ident: 79_CR70
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.2.126
– ident: 79_CR26
  doi: 10.3835/plantgenome2012.06.0007
– volume: 46
  start-page: 24
  year: 1997
  ident: 79_CR61
  publication-title: Genomics
  doi: 10.1006/geno.1997.4995
– volume: 12
  start-page: e0179617
  year: 2017
  ident: 79_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0179617
– volume: 263
  start-page: 89
  year: 2017
  ident: 79_CR21
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2017.07.008
– volume: 25
  start-page: 1264
  year: 2012
  ident: 79_CR35
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-09-11-0240
– volume: 15
  start-page: 10424
  year: 2014
  ident: 79_CR24
  publication-title: Int J. Mol. Sci.
  doi: 10.3390/ijms150610424
– ident: 79_CR3
  doi: 10.1146/annurev-phyto-073009-114450
– volume: 147
  start-page: 2147
  year: 2008
  ident: 79_CR12
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.123810
– volume: 11
  start-page: 90
  year: 2009
  ident: 79_CR47
  publication-title: Plant Biol. (Stuttg.)
  doi: 10.1111/j.1438-8677.2008.00162.x
– volume: 47
  start-page: 177
  year: 2009
  ident: 79_CR45
  publication-title: Annu Rev. Phytopathol.
  doi: 10.1146/annurev.phyto.050908.135202
– volume: 16
  year: 2015
  ident: 79_CR27
  publication-title: BMC Genom.
  doi: 10.1186/s12864-015-2128-6
– volume: 7
  start-page: 1405
  year: 2016
  ident: 79_CR9
  publication-title: Front. Plant Sci.
– volume: 2
  start-page: 16166
  year: 2016
  ident: 79_CR56
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2016.166
– volume: 3
  start-page: 33
  year: 2015
  ident: 79_CR23
  publication-title: Front Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2015.00033
– volume: 11
  year: 2010
  ident: 79_CR66
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-10-r106
– volume: 14
  year: 2013
  ident: 79_CR63
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-4-r36
– volume: 8
  start-page: e74183
  year: 2013
  ident: 79_CR20
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0074183
– volume: 52
  start-page: 347
  year: 2014
  ident: 79_CR6
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-082712-102340
– volume: 131
  start-page: 15
  year: 2011
  ident: 79_CR30
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-011-9782-6
– volume: 29
  start-page: 638
  year: 2017
  ident: 79_CR39
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00947
– volume: 12
  start-page: 341
  year: 2011
  ident: 79_CR4
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2010.00674.x
– volume: 6
  start-page: 675
  year: 2015
  ident: 79_CR54
  publication-title: Front. Plant Sci.
– volume: 22
  start-page: 1600
  year: 2006
  ident: 79_CR67
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl140
– volume: 30
  start-page: 2114
  year: 2014
  ident: 79_CR62
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– ident: 79_CR71
  doi: 10.1093/nar/29.9.e45
– volume: 7
  start-page: 64
  year: 2015
  ident: 79_CR18
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12221
– volume: 65
  start-page: 1061
  year: 1999
  ident: 79_CR28
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.3.1061-1070.1999
– ident: 79_CR1
  doi: 10.1016/j.scienta.2015.08.043
– volume: 40
  start-page: 1
  year: 2008
  ident: 79_CR36
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.07.002
– ident: 79_CR60
  doi: 10.3390/ijms18020432
– volume: 42
  start-page: D1167
  year: 2014
  ident: 79_CR69
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1056
– volume: 149
  start-page: 1579
  year: 2009
  ident: 79_CR19
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.130369
– volume: 169
  start-page: 614
  year: 2012
  ident: 79_CR37
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2011.12.016
– volume: 3
  start-page: 108
  year: 2012
  ident: 79_CR13
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2012.00108
– volume: 28
  start-page: 511
  year: 2010
  ident: 79_CR74
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1621
– volume: 16
  start-page: 69
  year: 2013
  ident: 79_CR15
  publication-title: Int Microbiol
– volume: 10
  start-page: 19
  year: 2007
  ident: 79_CR29
  publication-title: Int. Microbiol.
– volume: 415
  start-page: 977
  year: 2002
  ident: 79_CR42
  publication-title: Nature
  doi: 10.1038/415977a
– volume: 57
  start-page: 1829
  year: 2006
  ident: 79_CR50
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj201
– volume: 6
  start-page: e21800
  year: 2011
  ident: 79_CR76
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021800
SSID ssj0001542357
Score 2.3949208
Snippet Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To...
Symbiosis: the genetics of beneficial tomato root–fungus interaction The fungus Trichoderma harzianum induces differentiated protein production in tomato roots...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5
SubjectTerms 631/449/2491
631/449/2661/2666
631/449/2676
Acetic acid
Agriculture
Alternative splicing
Biofertilizers
Biomedical and Life Sciences
Cellular stress response
Cytosine
Detoxification
Ecology
Epigenetics
Fungi
Gene expression
Gene regulation
Genes
Indoleacetic acid
Inoculation
Jasmonic acid
Life Sciences
Methylation
Microorganisms
Nutrition
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plant nutrition
Plant Sciences
Priming
Probiotics
Reactive oxygen species
Rhizosphere
Rhizosphere microorganisms
Roots
Salicylic acid
Signal transduction
Splicing
Strain
Tomatoes
Transcription
Trichoderma harzianum
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQVVAg3gQO5IIKiM5O7MQuD8TphATVIl1n-TF7i0Syp300_Bx-KTN2drnl2VCkSRzbyUzG32TG3zD2IkVrU9f5ugWVauWVrgOqSt36JGNsAohcvu3Dx-78k3p_oS-ulfqinLBCD1xe3IkW0BullI4GFFgRZNdHaX0vIsyDD2R9hRXXnKmyP1gRj8sujNmak7WiQt_oOeMhelvLg4Uo8_X_DmT-miv5U8A0r0Nnd9jtCUDy0zLxu-wGjPfYrdPL1USiAffZt7wAZXOwHIATb2VOwhqww9ccroiAk_Yu8mGZKFOo_LTjfkw8B8_HTAbO1xTaxlv4cpWrahGpBEe8yLFXdNU5Yu4Ndp5zbOlkvhaw60JKwXHJvNyu-QxntqCKa4PnC7_6ivq4HR6w2dm72dvzeqrFUEfddhu01h0xlyWjdTBeh6R9b6Kfg_CSfEIhwdgYIXkxDw3hHKkiiNAEMe9D2z5kR-NyhMeMS6-S9BS9jUTsk3xCHy7ZBGh8FFrbiomdXFyceMqpXMYXl-PlrXFFlA5F6UiUTlbs5f6Wq0LS8bfGb0jY-4bEr51PoNa5Sevcv7SuYsc7VXHTR792DaJnK61p-oo9KlqzHwU9Mwpm4ej9gT4dTOPwyvh5kem-uxZBqBIVe7XTvB9D_vEpn_yPp3zKbiI-tOWP0zE72qy28Awx2CY8z5_bd8q1MwI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgucBhxZvsLsgHTkC0dmLHyQktiNUKCU5F6s3yqy0SSUrSXvbn7C_dGSdpVR576CUP29GMx988-g0hb72rKl8UJs2D8KkwQqYWVCXNjefOZTaw2L7t2_fi6of4OpfzMeDWj2WVk02Mhtq3DmPk5xlAkwo85Ex9XP9OsWsUZlfHFhr3yQMOSARbN6i52sdYpEA2lymZmZfnvcB23-A_w4-pKuUHx1Fk7f8X1Py7YvKPtGk8jS4fk-MRRtKLQe5PyL3QPCWPLpbdSKURnpGbeAxFo9DWgSJ7ZSzFqmHADzSskYYT_8FI69ZjvdAQuqOm8TSm0JtICU57THDDK7TtYm8tpJaggBopjAoOOwXkvYHBY6UtXoz3LAw9UFNQODiX257OYGUr7LtWG7oy3TVo5bZ-TmaXX2afr9KxI0PqZF5swGYXyF_mSyltaaT10qjSmUVghqNnyHgoK-eCN2xhM0Q7XLjAbGbZQtk8f0GOmrYJrwjlRnhuMIfrkN7HGw_i9ZUPYIIE2NyEsEku2o1s5dg045eOWfO81IMoNYhSoyg1T8i73Svrgarjroc_obB3DyLLdrzQdks9blotWVClEEK6MohQMcsL5XhlFHNhYY1NyNmkKnrc-r3eK2pCXg5as5sF_DNMacHs6kCfDpZxeKf5uYqk30UOUFSwhLyfNG8_5X-_8uTuBZ6Sh4D_qiGidEaONt02vAaMtbFv4ka6Ba46Kgg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiQ4ICiPBgrygRMQYSd2Yh_LqlWFBKdF6s3ya3eRSFJldw_05_SXMuMkWy0FJA65JH5FMxl_45l8Q8jb4LUOVWXzMoqQCytk7kBV8tIG7n3hIkvl2758rS6-ic-X8vKA8OlfmJS0nygtk5messM-rgXW6QbHFy5W6xwcnnuqLiUq9aya3R6rSIEELlP8slR3e-7tQImo_0_o8m6S5G-R0rQBnT8mj0bkSE-HtT4hB7E9Ig9Pl_3InhGPyP2zxEH98ym5SXtQsghdEylSV6Y8rAaG_kDjFXJw4u-LtOkCJgsN53bUtoGm-Hmb-MDpGqPb0IV2fSqshbwSFCAjhVHBW6cAuzcweEqzxZvpmYOhB14KCrvmcrumc1jjCouuNZaubH8NKrltnpH5-dl8dpGP5RhyL8tqAwa7QvKyoKR0ykoXpK2Vt4vILEe3kPGotPcxWLZwBUIdLnxkrnBsUbuyfE4O266Nx4RyKwK3GMD1yO0TbAA3LugQwf4IMLgZYZOEjB-pyrFixg-TQualMoNQDQjVoFANz8i7XZergafjX40_odh3DZFiO93o-qUZVc5IFmslhJBeRRE1c7yqPde2Zj4unHUZOZmUxozf_doUAKA116qoM_Ji0J_dLOCcYTwLZq_3NGtvGftP2u-rxPhdlYBDBcvI-0kHb6f861u-_K_Wr8gDwIJ6OF06IYebfhtfA97auDfpC_sFEikqUA
  priority: 102
  providerName: Springer Nature
Title Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum
URI https://link.springer.com/article/10.1038/s41438-018-0079-1
https://www.ncbi.nlm.nih.gov/pubmed/30603091
https://www.proquest.com/docview/2161919827
https://pubmed.ncbi.nlm.nih.gov/PMC6312540
https://doaj.org/article/50e784445c8e4e90b167c19a70cefbab
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKe4ED4k1KWfnACQjYifPwAaF21apCokJoK-3N8mt3kZqkZHelws_hlzLjJIsWFk4ccsjDdpIZ2994xt8Q8sJZKV2e6zj1wsVCiyw2oCpxqh23NjGehfRtHy_y80vxYZpN98iQ3qr_gcudph3mk7psr97cfP32Hjr8u27LePl2KTCHNxjFcLBCxmAMHQR3EUby9Wi_2zQskNxl8G3uKrk1OwUS_13I888Ayt-8qGFyOrtH7vaokh53anCf7Pn6AblzPG97Zg3_kPwIs1IYI5rKUySzDJFZFVT4mvprZOXEDY20ahyGD3UreVTXjgaPeh0YwukS_d1QhDZtSLWFTBMUQCSFWsF-pwDEV1B5CLzFi-Gegao7pgoK8-h8vaQTeLMFpmGrNF3o9jso6bp6RCZnp5PxedwnaIhtluYrGMJzpDNzZZaZUmfGZboorZ55pjkaioz7UlrrnWYzkyD44cJ6ZhLDZoVJ08dkv25q_5RQroXjGl26Ftl-nHZg2DnpPIxIAobgiLBBLsr25OWYQ-NKBSd6WqpOlApEqVCUikfk5abIdcfc8a-HT1DYmweRdDtcaNq56vuwypgvSiFEZksvvGSG54XlUhfM-pnRJiJHg6qoQZFVApBaclkmRUSedFqzaQXMNfRwQevFlj5tvcb2nfrLInCA5ykgU8Ei8mrQvF9N_vUrD__HVz4jtwE0ym4Z6ojsr9q1fw7AbGVG5FYxLUbk4OT04tNnOBvn41FY5BiFjvgTzH8-iw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5V6QE4IHZcCswBLoDVsT3eDhVqoVVK2wihIPU2mi0JErZTOxGCn8P_4L_x3thOFJbeevDFy8xY783b53uEvDA6z02SSD-y3Phc8thXwCp-JE2gdagsc-3bzkfJ8DP_cBFfbJFf_VkYLKvsZaIT1KbSGCPfC8E0ycFDDtO380sfu0ZhdrVvoSG71gpm30GMdQc7Tu33b-DCNfsn74HeL8Pw-Gj8buh3XQZ8HUfJAuRQgphcJotjlclYmVimmZYTy2SA3g4LbJZrbY1kExWiBg-4tkyFik1ShfFQ0ADbHOMnA7J9eDT6-Gkd5Ik5wsn02dQo22s49hsHBx4uluZ-sKEPXduAf9m6f5ds_pG3derw-A653dmx9KBlvLtky5b3yK2Dad1hedj75KfTg04qVYWlCJ_pasEKGPANtXPEAcUjlLSoDBYstbFDKktDXQ6_dJjktMEMO3xCq9o190JsCwpmK4VR5aKiYPovYHBX6os33TMFQ7fYGBQ093TZ0DGsbIaN3wpJZ7L-AdtiWTwg4-sg1kMyKKvSPiY0kNwEEpPIGvGFjDTAXyY3FmQgB6HvEdbTRegOLh27dnwVLm0fZaIlpQBSCiSlCDzyavXJvMUKuerlQyT26kWE-XY3qnoqOqkhYmbTjHMe68xymzMVJKkOcpkybSdKKo_s9qwiOtnTiPVO8cijlmtWs4CDiDk1mD3d4KeNZWw-Kb_MHOp4EoEtzJlHXvect57yv3-5c_UCn5Mbw_H5mTg7GZ0-ITfBGM3b8NYuGSzqpX0KBt9CPeu2FSXimjfyb6w8bPA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqVkJwQOwECvgAFyCqkzjboUIt7ailMKrQIPVmecsMEkmGZEYIfg7_hn_Fe04yo2HprYdcstiO3vPb_T1Cnhud5yZJpB9ZbnwueewrYBU_kibQOlSWufZtH8bJySf-7iK-2CK_hrMwWFY5yEQnqE2tMUa-F4JpkoOHDK560ZdFnB-N3sy_-thBCjOtQzsN2bdZMPsObqw_5HFmv38Dd67dPz0C2r8Iw9Hx5O2J33cc8HUcJQuQSQnic5ksjlUmY2VimWZaFpbJAD0fFtgs19oayQoVojYPuLZMhYoVqcLYKGiDnRSUPviBO4fH4_OP64BPzBFaZsisRtley7H3ODjzcLE094MN3ehaCPzL7v27fPOPHK5TjaNb5GZv09KDjglvky1b3SE3DqZNj-th75KfTic6CVWXliKUpqsLK2HA19TOERMUj1PSsjZYvNTFEamsDHX5_Mrhk9MWs-3wCa0b1-gLcS4omLAURpWLmoIbsIDBXdkv3nTPFAzd4WRQ0OLTZUsnsLIZNoErJZ3J5gdskWV5j0yuglj3yXZVV_YhoYHkJpCYUNaINWSkAV4zubEgDzkoAI-wgS5C99Dp2MHji3Ap_CgTHSkFkFIgKUXgkZerT-YdbshlLx8isVcvIuS3u1E3U9FLEBEzm2ac81hnltucqSBJdZDLlGlbKKk8sjuwiujlUCvWu8YjDzquWc0CziLm12D2dIOfNpax-aT6PHMI5EkEdjFnHnk1cN56yv_-5aPLF_iMXIMNLd6fjs8ek-tgl-ZdpGuXbC-apX0Ctt9CPe13FSXiivfxb7kHcTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+reprogramming%2C+epigenetic+modifications+and+alternative+splicing+orchestrate+the+tomato+root+response+to+the+beneficial+fungus+Trichoderma+harzianum&rft.jtitle=Horticulture+research&rft.au=Monica+De+Palma&rft.au=Maria+Salzano&rft.au=Clizia+Villano&rft.au=Riccardo+Aversano&rft.date=2019-01-01&rft.pub=Oxford+University+Press&rft.eissn=2052-7276&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1038%2Fs41438-018-0079-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_50e784445c8e4e90b167c19a70cefbab
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-7276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-7276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-7276&client=summon