An imputation–regularized optimization algorithm for high dimensional missing data problems and beyond

Missing data are frequently encountered in high dimensional problems, but they are usually difficult to deal with by using standard algorithms, such as the expectation–maximization algorithm and its variants. To tackle this difficulty, some problem-specific algorithms have been developed in the lite...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society. Series B, Statistical methodology Vol. 80; no. 5; pp. 899 - 926
Main Authors Liang, Faming, Jia, Bochao, Xue, Jingnan, Li, Qizhai, Luo, Ye
Format Journal Article
LanguageEnglish
Published England Wiley 01.11.2018
Oxford University Press
Subjects
Online AccessGet full text
ISSN1369-7412
1467-9868
1467-9868
DOI10.1111/rssb.12279

Cover

More Information
Summary:Missing data are frequently encountered in high dimensional problems, but they are usually difficult to deal with by using standard algorithms, such as the expectation–maximization algorithm and its variants. To tackle this difficulty, some problem-specific algorithms have been developed in the literature, but there still lacks a general algorithm. This work is to fill the gap:we propose a general algorithm for high dimensional missing data problems. The algorithm works by iterating between an imputation step and a regularized optimization step. At the imputation step, the missing data are imputed conditionally on the observed data and the current estimates of parameters and, at the regularized optimization step, a consistent estimate is found via the regularization approach for the minimizer of a Kullback–Leibler divergence defined on the pseudocomplete data. For high dimensional problems, the consistent estimate can be found under sparsity constraints. The consistency of the averaged estimate for the true parameter can be established under quite general conditions. The algorithm is illustrated by using high dimensional Gaussian graphical models, high dimensional variable selection and a random-coefficient model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1369-7412
1467-9868
1467-9868
DOI:10.1111/rssb.12279