Galvanic Replacement Reactions in Metal Oxide Nanocrystals

Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replac...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 340; no. 6135; pp. 964 - 968
Main Authors Oh, Myoung Hwan, Yu, Taekyung, Yu, Seung-Ho, Lim, Byungkwon, Ko, Kyung-Tae, Willinger, Marc-Georg, Seo, Dong-Hwa, Kim, Byung Hyo, Cho, Min Gee, Park, Jae-Hoon, Kang, Kisuk, Sung, Yung-Eun, Pinna, Nicola, Hyeon, Taeghwan
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 24.05.2013
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.1234751

Cover

Abstract Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn₃O₄) nanocrystals were reacted with iron(ll) perchlorate, hollow box-shaped nanocrystals of Mn₃O₄/γ-Fw₂O₃ ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe₂O₃ ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co₃O₄/SnO₂ and Mn₃O₄/SnO₂.
AbstractList Hollowing Out Metal Oxide Nanoparticles Corrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles, whereby the reduction of one metal species in solution drives the dissolution of the core of the particle. Oh et al. (p. 964; see the Perspective by Ibáñez and Cabot) adapted this approach to metal oxide nanoparticles by placing Mn ₃O ₄ nanocrystals in solution with Fe ²⁺ ions, which replaces the nanocrystal exterior with γ-Fe ₂O ₃. At sufficiently high Fe ²⁺ concentrations, hollow γ-Fe ₂O ₃ nanocages formed. These hollow structures could be used as anode materials for lithium ion batteries.
Hollowing Out Metal Oxide NanoparticlesCorrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles, whereby the reduction of one metal species in solution drives the dissolution of the core of the particle. Oh et al. (p. 964; see the Perspective by Ibanez and Cabot) adapted this approach to metal oxide nanoparticles by placing Mn3O4 nanocrystals in solution with Fe2+ ions, which replaces the nanocrystal exterior with gamma -Fe2O3. At sufficiently high Fe2+ concentrations, hollow gamma -Fe2O3 nanocages formed. These hollow structures could be used as anode materials for lithium ion batteries.
Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn3O4) nanocrystals were reacted with iron(II) perchlorate, hollow box-shaped nanocrystals of Mn3O4/γ-Fe2O3 ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe2O3 ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co3O4/SnO2 and Mn3O4/SnO2.Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn3O4) nanocrystals were reacted with iron(II) perchlorate, hollow box-shaped nanocrystals of Mn3O4/γ-Fe2O3 ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe2O3 ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co3O4/SnO2 and Mn3O4/SnO2.
Corrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles, whereby the reduction of one metal species in solution drives the dissolution of the core of the particle. Oh et al. (p. 964; see the Perspective by Ibáñez and Cabot ) adapted this approach to metal oxide nanoparticles by placing Mn3O4 nanocrystals in solution with Fe2+ ions, which replaces the nanocrystal exterior with γ-Fe2O3. At sufficiently high Fe2+ concentrations, hollow γ-Fe2O3 nanocages formed. These hollow structures could be used as anode materials for lithium ion batteries. [PUBLICATION ABSTRACT] Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn3O4) nanocrystals were reacted with iron(II) perchlorate, hollow box-shaped nanocrystals of Mn3O4/γ-Fe2O3 ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe2O3 ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co3O4/SnO2 and Mn3O4/SnO2. [PUBLICATION ABSTRACT]
Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn3O4) nanocrystals were reacted with iron(II) perchlorate, hollow box-shaped nanocrystals of Mn3O4/γ-Fe2O3 ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe2O3 ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co3O4/SnO2 and Mn3O4/SnO2.
Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn₃O₄) nanocrystals were reacted with iron(ll) perchlorate, hollow box-shaped nanocrystals of Mn₃O₄/γ-Fw₂O₃ ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe₂O₃ ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co₃O₄/SnO₂ and Mn₃O₄/SnO₂.
Corrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles, whereby the reduction of one metal species in solution drives the dissolution of the core of the particle. Oh et al. (p. 964 ; see the Perspective by Ibáñez and Cabot ) adapted this approach to metal oxide nanoparticles by placing Mn 3 O 4 nanocrystals in solution with Fe 2+ ions, which replaces the nanocrystal exterior with γ-Fe 2 O 3 . At sufficiently high Fe 2+ concentrations, hollow γ-Fe 2 O 3 nanocages formed. These hollow structures could be used as anode materials for lithium ion batteries. Hollow mixed-metal oxide nanoparticles can be made by replacing the metal cations through redox reactions in solution. [Also see Perspective by Ibáñez and Cabot ] Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn 3 O 4 ) nanocrystals were reacted with iron(II) perchlorate, hollow box-shaped nanocrystals of Mn 3 O 4 /γ-Fe 2 O 3 (“nanoboxes”) were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe 2 O 3 (“nanocages”). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co 3 O 4 /SnO 2 and Mn 3 O 4 /SnO 2 .
Author Ko, Kyung-Tae
Pinna, Nicola
Kim, Byung Hyo
Cho, Min Gee
Lim, Byungkwon
Oh, Myoung Hwan
Yu, Taekyung
Willinger, Marc-Georg
Yu, Seung-Ho
Seo, Dong-Hwa
Hyeon, Taeghwan
Kang, Kisuk
Sung, Yung-Eun
Park, Jae-Hoon
Author_xml – sequence: 1
  givenname: Myoung Hwan
  surname: Oh
  fullname: Oh, Myoung Hwan
– sequence: 2
  givenname: Taekyung
  surname: Yu
  fullname: Yu, Taekyung
– sequence: 3
  givenname: Seung-Ho
  surname: Yu
  fullname: Yu, Seung-Ho
– sequence: 4
  givenname: Byungkwon
  surname: Lim
  fullname: Lim, Byungkwon
– sequence: 5
  givenname: Kyung-Tae
  surname: Ko
  fullname: Ko, Kyung-Tae
– sequence: 6
  givenname: Marc-Georg
  surname: Willinger
  fullname: Willinger, Marc-Georg
– sequence: 7
  givenname: Dong-Hwa
  surname: Seo
  fullname: Seo, Dong-Hwa
– sequence: 8
  givenname: Byung Hyo
  surname: Kim
  fullname: Kim, Byung Hyo
– sequence: 9
  givenname: Min Gee
  surname: Cho
  fullname: Cho, Min Gee
– sequence: 10
  givenname: Jae-Hoon
  surname: Park
  fullname: Park, Jae-Hoon
– sequence: 11
  givenname: Kisuk
  surname: Kang
  fullname: Kang, Kisuk
– sequence: 12
  givenname: Yung-Eun
  surname: Sung
  fullname: Sung, Yung-Eun
– sequence: 13
  givenname: Nicola
  surname: Pinna
  fullname: Pinna, Nicola
– sequence: 14
  givenname: Taeghwan
  surname: Hyeon
  fullname: Hyeon, Taeghwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27400786$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23704569$$D View this record in MEDLINE/PubMed
BookMark eNqF0UFrFTEQAOAgFftaPXtSFkTwsm2SSbLZ3qTUKlQLoudlNpmFPPZln8k-sf--eby1Qg_2NCHzTcLMnLCjOEVi7LXgZ0JIc55doOjoTEhQjRbP2ErwVtet5HDEVpyDqS1v9DE7yXnNecm18IIdS2i40qZdsYtrHH9jDK76TtsRHW0ozuWMbg5TzFWI1Veacaxu_wRP1TeMk0t3udzkl-z5UAK9WuIp-_np6sfl5_rm9vrL5ceb2mnQc-0RCFzfAPakvCIPvSU1GPS8JOTQouMGwXuJVlojNYLyRra9dNoITnDKPhze3abp147y3G1CdjSOGGna5U6WvkBLJdWTVGjdGtvI1j5NQWtlpdS80HeP6HrapVh63itVhs1VU9TbRe36Dflum8IG0133d9YFvF8AZofjkDC6kP-5RnHeWFPc-cG5NOWcaHgggnf7rXfL1rtl66VCP6pwYcb9AueEYfxP3ZtD3TrPU3r4RonWajAA99GOuVk
CODEN SCIEAS
CitedBy_id crossref_primary_10_1142_S1793292018500042
crossref_primary_10_1016_j_ccr_2022_214731
crossref_primary_10_1002_advs_202104183
crossref_primary_10_1002_anie_201400226
crossref_primary_10_1021_acs_jpclett_1c01327
crossref_primary_10_1021_acs_energyfuels_0c01968
crossref_primary_10_1002_chem_201403992
crossref_primary_10_1016_j_electacta_2017_09_024
crossref_primary_10_1021_nl404412w
crossref_primary_10_1002_anie_201309307
crossref_primary_10_1016_j_cplett_2015_11_043
crossref_primary_10_1039_C9RA03865E
crossref_primary_10_1039_C3DT53213E
crossref_primary_10_1021_acs_chemmater_2c01381
crossref_primary_10_1039_C7TA03302H
crossref_primary_10_1021_acsanm_8b00060
crossref_primary_10_1016_j_jelechem_2021_115199
crossref_primary_10_1038_ncomms7694
crossref_primary_10_1039_C7TA01028A
crossref_primary_10_1039_C3TA13982D
crossref_primary_10_1002_tcr_201600028
crossref_primary_10_1039_C9CC02240F
crossref_primary_10_1016_j_nantod_2014_09_003
crossref_primary_10_1007_s11244_018_0951_0
crossref_primary_10_1039_C4NR03395G
crossref_primary_10_1002_anie_201706182
crossref_primary_10_1039_C9TA03498F
crossref_primary_10_1002_ppsc_201600150
crossref_primary_10_1021_acsanm_1c00819
crossref_primary_10_1039_D0RA07482A
crossref_primary_10_1038_s41586_019_1899_3
crossref_primary_10_1021_acsami_5b07075
crossref_primary_10_1002_adma_202305437
crossref_primary_10_1016_j_jallcom_2018_04_207
crossref_primary_10_20964_2018_12_51
crossref_primary_10_1038_ncomms7668
crossref_primary_10_1002_cplu_201300293
crossref_primary_10_1002_asia_202001113
crossref_primary_10_1038_s44160_024_00715_1
crossref_primary_10_1016_j_jlumin_2022_119390
crossref_primary_10_3390_nano8100756
crossref_primary_10_1002_adma_201504024
crossref_primary_10_1016_j_electacta_2018_04_069
crossref_primary_10_1016_j_jelechem_2020_114844
crossref_primary_10_1021_acs_jpcc_5b00153
crossref_primary_10_1021_acs_inorgchem_7b02425
crossref_primary_10_1002_ppsc_201600021
crossref_primary_10_1021_acs_inorgchem_5b01352
crossref_primary_10_1002_ange_202418925
crossref_primary_10_1039_C5RA13426A
crossref_primary_10_1002_anie_201611804
crossref_primary_10_1021_jacs_0c09458
crossref_primary_10_1039_C5CE00112A
crossref_primary_10_1021_acsnano_2c07256
crossref_primary_10_1016_j_pmatsci_2022_100946
crossref_primary_10_1021_acs_jpcc_9b06298
crossref_primary_10_1002_anie_201505442
crossref_primary_10_1002_ente_201900314
crossref_primary_10_1007_s12274_021_3836_7
crossref_primary_10_1039_C4NR05135A
crossref_primary_10_1039_C5TA01108F
crossref_primary_10_1021_acs_chemmater_6b04388
crossref_primary_10_1039_D0MA00695E
crossref_primary_10_1039_D0TA06428A
crossref_primary_10_1039_C4RA10045J
crossref_primary_10_1126_science_1239221
crossref_primary_10_1021_acs_jpcc_4c01130
crossref_primary_10_1016_j_jmst_2023_10_065
crossref_primary_10_1002_aenm_202201134
crossref_primary_10_1002_smll_202106511
crossref_primary_10_1021_acsami_3c10733
crossref_primary_10_1021_acsnano_2c07306
crossref_primary_10_1016_j_chemphys_2018_10_022
crossref_primary_10_1021_acs_nanolett_3c02575
crossref_primary_10_1039_C7TA00148G
crossref_primary_10_1039_C5TA01229E
crossref_primary_10_1002_adma_201502262
crossref_primary_10_1039_C8TA02438C
crossref_primary_10_1016_j_solidstatesciences_2015_02_011
crossref_primary_10_1016_S1872_2067_21_63940_2
crossref_primary_10_1016_j_ijhydene_2018_02_197
crossref_primary_10_1021_acs_nanolett_9b03783
crossref_primary_10_1039_C4SC01882F
crossref_primary_10_1002_anie_201610413
crossref_primary_10_1016_j_cej_2019_122613
crossref_primary_10_1007_s12274_016_1081_2
crossref_primary_10_1021_acs_jpcc_6b06393
crossref_primary_10_1002_smll_201302006
crossref_primary_10_1021_acs_nanolett_6b02577
crossref_primary_10_1002_adma_201302400
crossref_primary_10_1039_C9NR02248A
crossref_primary_10_1039_C5EE03456F
crossref_primary_10_1002_aenm_202001059
crossref_primary_10_1039_C6TA08042A
crossref_primary_10_1021_acs_accounts_7b00487
crossref_primary_10_1021_jacs_4c05367
crossref_primary_10_1002_adma_201703798
crossref_primary_10_1021_acs_iecr_1c02725
crossref_primary_10_1002_adma_201703316
crossref_primary_10_1007_s13204_023_02932_0
crossref_primary_10_1016_j_electacta_2016_10_058
crossref_primary_10_1016_j_solmat_2021_111411
crossref_primary_10_1149_2_0571410jes
crossref_primary_10_1002_ange_202205238
crossref_primary_10_1021_jacs_7b05246
crossref_primary_10_1039_C9NR02016K
crossref_primary_10_1002_smll_202205313
crossref_primary_10_1515_nanoph_2016_0124
crossref_primary_10_1021_nn500942k
crossref_primary_10_1038_srep16061
crossref_primary_10_1016_j_jelechem_2016_12_028
crossref_primary_10_1016_S1452_3981_23_11154_0
crossref_primary_10_1021_acsnano_2c07694
crossref_primary_10_1038_ncomms5327
crossref_primary_10_1002_adma_201704416
crossref_primary_10_1016_j_electacta_2020_136056
crossref_primary_10_1002_admi_201900516
crossref_primary_10_1007_s11581_015_1420_4
crossref_primary_10_1021_nl500593j
crossref_primary_10_3389_fonc_2024_1344852
crossref_primary_10_1002_cplu_201402236
crossref_primary_10_1002_smll_202300751
crossref_primary_10_1002_cssc_202200704
crossref_primary_10_1021_acs_cgd_6b01373
crossref_primary_10_1021_acs_chemrev_6b00374
crossref_primary_10_1021_acsmaterialslett_0c00271
crossref_primary_10_1021_acsanm_7b00380
crossref_primary_10_1002_anie_202418925
crossref_primary_10_1039_C7CC02352A
crossref_primary_10_1126_science_1249061
crossref_primary_10_1016_j_biomaterials_2020_119835
crossref_primary_10_1016_j_colsurfa_2020_125902
crossref_primary_10_1039_C5NR04488J
crossref_primary_10_1021_cm5024508
crossref_primary_10_1039_C9CC09573J
crossref_primary_10_1039_C6NR01024E
crossref_primary_10_1016_j_cej_2017_01_111
crossref_primary_10_1016_j_snb_2017_11_067
crossref_primary_10_1039_C7TA02048A
crossref_primary_10_1021_jacs_1c12880
crossref_primary_10_1002_adfm_201901000
crossref_primary_10_1002_adma_201605902
crossref_primary_10_1021_acs_chemrev_1c00637
crossref_primary_10_1039_C9CP00280D
crossref_primary_10_1039_C7CE00110J
crossref_primary_10_1002_adma_201402296
crossref_primary_10_1021_acs_iecr_6b01227
crossref_primary_10_1021_acsnano_4c09312
crossref_primary_10_1039_D3TA03791F
crossref_primary_10_1021_jacs_6b05957
crossref_primary_10_1002_cssc_201500306
crossref_primary_10_1039_C4TA05278A
crossref_primary_10_1002_ange_201406476
crossref_primary_10_1016_j_materresbull_2025_113367
crossref_primary_10_1088_0957_4484_27_48_485601
crossref_primary_10_1038_nenergy_2016_208
crossref_primary_10_1039_C4NR02025A
crossref_primary_10_1021_acsanm_0c00803
crossref_primary_10_1039_D4YA00141A
crossref_primary_10_1016_j_micromeso_2019_04_062
crossref_primary_10_1002_bkcs_12638
crossref_primary_10_1016_j_micromeso_2021_111151
crossref_primary_10_1016_j_cattod_2015_11_017
crossref_primary_10_1016_j_jpowsour_2015_01_092
crossref_primary_10_1016_j_ccr_2016_01_014
crossref_primary_10_1016_j_jpowsour_2018_11_055
crossref_primary_10_1039_C5EE03772G
crossref_primary_10_1016_j_ccr_2022_214429
crossref_primary_10_1021_jacs_6b00179
crossref_primary_10_1021_acscatal_6b01534
crossref_primary_10_1007_s12274_014_0474_3
crossref_primary_10_1021_acs_accounts_6b00480
crossref_primary_10_3390_ijms23147944
crossref_primary_10_1016_j_apcatb_2017_10_051
crossref_primary_10_1021_jacs_5b02465
crossref_primary_10_1039_C9TA06727B
crossref_primary_10_1007_s12274_016_1334_0
crossref_primary_10_3390_cancers16152663
crossref_primary_10_1016_j_biomaterials_2020_119923
crossref_primary_10_1039_C3CC45336G
crossref_primary_10_1002_cplu_201300324
crossref_primary_10_1021_jacs_6b06706
crossref_primary_10_1016_j_jallcom_2018_11_107
crossref_primary_10_1038_ncomms5526
crossref_primary_10_1021_acs_nanolett_7b00758
crossref_primary_10_1039_C5NR08701E
crossref_primary_10_1021_jacs_6b01254
crossref_primary_10_1007_s40843_019_9431_4
crossref_primary_10_1039_C8SC01520A
crossref_primary_10_1002_adma_201800592
crossref_primary_10_1016_j_apcatb_2023_122530
crossref_primary_10_1021_acscatal_0c04091
crossref_primary_10_1021_acs_accounts_7b00429
crossref_primary_10_1021_acsami_5b08383
crossref_primary_10_1021_acsami_3c08922
crossref_primary_10_1039_D0NJ02222E
crossref_primary_10_1002_adma_201800426
crossref_primary_10_1039_C4RA13688H
crossref_primary_10_1007_s10904_019_01331_9
crossref_primary_10_1002_advs_201600162
crossref_primary_10_1002_ange_201611804
crossref_primary_10_1016_j_cej_2021_131175
crossref_primary_10_1039_C5QI00184F
crossref_primary_10_1002_adma_201801993
crossref_primary_10_1039_C6TA03915D
crossref_primary_10_1063_5_0144742
crossref_primary_10_1016_j_ceramint_2019_03_086
crossref_primary_10_1002_ange_201706182
crossref_primary_10_1002_anie_202411260
crossref_primary_10_1002_adfm_201402320
crossref_primary_10_1002_adfm_201402560
crossref_primary_10_1039_C6RA25863H
crossref_primary_10_4491_eer_2022_323
crossref_primary_10_1007_s40843_016_5112_0
crossref_primary_10_1039_C6TA06339J
crossref_primary_10_1016_j_coche_2013_11_006
crossref_primary_10_1021_acs_cgd_6b01555
crossref_primary_10_1021_jacs_5b02051
crossref_primary_10_1002_aenm_201900328
crossref_primary_10_1039_C6TA05432C
crossref_primary_10_1039_D0RA01528H
crossref_primary_10_1021_am508246m
crossref_primary_10_1039_C4NJ02313G
crossref_primary_10_1002_cctc_202201478
crossref_primary_10_1039_C9QM00544G
crossref_primary_10_1016_j_ssi_2015_01_014
crossref_primary_10_1039_D0TA09346G
crossref_primary_10_1016_j_mtsust_2022_100140
crossref_primary_10_1039_C6NR01321J
crossref_primary_10_1038_ncomms4870
crossref_primary_10_1039_C5EE00101C
crossref_primary_10_1002_anie_201404604
crossref_primary_10_1039_D3SC05644A
crossref_primary_10_1021_jacs_7b06724
crossref_primary_10_1021_jp408322g
crossref_primary_10_1002_ange_201409776
crossref_primary_10_1021_acs_accounts_0c00802
crossref_primary_10_1021_jp5017664
crossref_primary_10_1002_slct_201701597
crossref_primary_10_1039_C5CS00033E
crossref_primary_10_1039_D2TA06552E
crossref_primary_10_1016_j_ceramint_2014_01_014
crossref_primary_10_3390_nano14201685
crossref_primary_10_1021_acs_langmuir_8b02023
crossref_primary_10_1002_celc_201700323
crossref_primary_10_1021_acs_jpcc_7b01540
crossref_primary_10_1021_acsnano_8b03572
crossref_primary_10_1039_C5CC00094G
crossref_primary_10_1021_acs_chemmater_6b04097
crossref_primary_10_1021_acs_chemmater_8b04194
crossref_primary_10_1016_j_ijhydene_2018_06_117
crossref_primary_10_1002_anie_201505242
crossref_primary_10_1021_acs_nanolett_5b02404
crossref_primary_10_1039_D1NR06634J
crossref_primary_10_1002_smll_201500799
crossref_primary_10_1002_adma_201302820
crossref_primary_10_1021_acs_chemmater_0c03017
crossref_primary_10_1002_aenm_201902773
crossref_primary_10_1021_nl403715h
crossref_primary_10_1002_aenm_202003734
crossref_primary_10_1016_j_jcat_2014_11_012
crossref_primary_10_1038_ncomms4851
crossref_primary_10_1016_j_snb_2016_05_104
crossref_primary_10_1016_j_enchem_2022_100088
crossref_primary_10_1016_j_ica_2024_122399
crossref_primary_10_1016_j_cej_2019_03_244
crossref_primary_10_1039_c3ce42251h
crossref_primary_10_1016_j_snb_2017_10_081
crossref_primary_10_1021_acs_nanolett_4c02764
crossref_primary_10_1021_jacs_7b02953
crossref_primary_10_1002_adfm_202300143
crossref_primary_10_1039_c4ra00624k
crossref_primary_10_1039_C4RA05945J
crossref_primary_10_1002_cnma_202000289
crossref_primary_10_1039_C5SC04668H
crossref_primary_10_1039_D0TB02858D
crossref_primary_10_1016_j_jcat_2017_01_007
crossref_primary_10_1039_C6RA23071G
crossref_primary_10_1021_acs_chemrev_9b00234
crossref_primary_10_1002_smll_201303818
crossref_primary_10_1016_j_matt_2020_07_027
crossref_primary_10_1016_j_addr_2018_12_008
crossref_primary_10_1016_j_ijhydene_2017_09_171
crossref_primary_10_1039_C6DT01791F
crossref_primary_10_1039_C8CE02164C
crossref_primary_10_1007_s12274_023_6049_4
crossref_primary_10_1039_C5CE01173F
crossref_primary_10_1016_j_watres_2022_118864
crossref_primary_10_1002_adfm_202408986
crossref_primary_10_1002_smll_202203628
crossref_primary_10_1021_acs_chemmater_6b00486
crossref_primary_10_1021_acs_chemmater_0c00573
crossref_primary_10_1039_C9NR05750A
crossref_primary_10_1016_j_cej_2022_140798
crossref_primary_10_1002_aisy_202300162
crossref_primary_10_1016_j_ijhydene_2024_08_353
crossref_primary_10_1021_acs_chemmater_8b01792
crossref_primary_10_1021_acsnano_5b05610
crossref_primary_10_1016_j_apsusc_2022_152569
crossref_primary_10_3390_catal14110771
crossref_primary_10_1039_D1NR05767G
crossref_primary_10_1039_C7CE01503H
crossref_primary_10_1039_C6RA20104K
crossref_primary_10_1002_ijch_202200103
crossref_primary_10_1021_nn506223h
crossref_primary_10_1002_ppsc_201700486
crossref_primary_10_1039_C6NR08614D
crossref_primary_10_1039_C4TA00759J
crossref_primary_10_1039_C6TA03070J
crossref_primary_10_1016_j_snb_2015_06_099
crossref_primary_10_1021_cm402131n
crossref_primary_10_1021_acs_chemmater_6b03765
crossref_primary_10_1002_aenm_201501333
crossref_primary_10_1016_j_surfin_2024_105570
crossref_primary_10_1016_j_coelec_2018_03_014
crossref_primary_10_1002_adfm_201903012
crossref_primary_10_1039_C7TA09082J
crossref_primary_10_1007_s10853_017_1461_3
crossref_primary_10_1021_nl401952h
crossref_primary_10_1126_sciadv_aaz5961
crossref_primary_10_1016_j_cej_2020_126820
crossref_primary_10_1021_acs_chemrev_6b00211
crossref_primary_10_1016_j_apsusc_2023_157161
crossref_primary_10_1016_j_cej_2021_131697
crossref_primary_10_1021_acs_accounts_3c00067
crossref_primary_10_1016_j_electacta_2018_07_177
crossref_primary_10_1016_j_ceramint_2019_11_077
crossref_primary_10_1021_nn501783n
crossref_primary_10_1039_D1TA07778C
crossref_primary_10_1002_anie_202205238
crossref_primary_10_1016_j_snb_2021_130876
crossref_primary_10_1557_s43577_021_00218_w
crossref_primary_10_1039_C8CS00336J
crossref_primary_10_1016_j_apsusc_2017_05_154
crossref_primary_10_1021_nn4058227
crossref_primary_10_1002_adma_202008024
crossref_primary_10_1039_C8CC10127B
crossref_primary_10_1016_S1872_2067_21_63902_5
crossref_primary_10_1007_s12598_017_0899_4
crossref_primary_10_1007_s10562_018_2600_4
crossref_primary_10_1016_j_nanoen_2020_104935
crossref_primary_10_1039_c3nj01489d
crossref_primary_10_1021_nn503985s
crossref_primary_10_1039_C6RA01939K
crossref_primary_10_1016_j_carbon_2014_10_071
crossref_primary_10_1021_acs_jpclett_0c01551
crossref_primary_10_1038_s41598_022_26877_6
crossref_primary_10_1149_2_1551706jes
crossref_primary_10_1002_adma_201800939
crossref_primary_10_1016_j_apcatb_2020_118642
crossref_primary_10_1016_j_electacta_2014_09_072
crossref_primary_10_1039_C9SE00166B
crossref_primary_10_1039_C7CE00235A
crossref_primary_10_1039_D0NR09164B
crossref_primary_10_1007_s11814_025_00391_7
crossref_primary_10_1016_j_jnucmat_2024_155309
crossref_primary_10_1021_jacs_4c10252
crossref_primary_10_1021_acsami_6b03866
crossref_primary_10_1039_C4CC04581E
crossref_primary_10_3390_catal7030080
crossref_primary_10_1039_C7CP00509A
crossref_primary_10_1016_j_jcis_2021_06_149
crossref_primary_10_1080_09593330_2022_2145913
crossref_primary_10_1016_j_cej_2023_142057
crossref_primary_10_1016_j_jelechem_2018_12_055
crossref_primary_10_1039_C4CP03888F
crossref_primary_10_1002_ange_201610413
crossref_primary_10_1016_j_electacta_2014_09_038
crossref_primary_10_1039_C7NR00917H
crossref_primary_10_1016_j_nantod_2014_06_006
crossref_primary_10_3389_fchem_2021_699284
crossref_primary_10_1016_j_elecom_2016_10_018
crossref_primary_10_1002_smll_201500044
crossref_primary_10_1016_j_chempr_2019_04_013
crossref_primary_10_1038_s41467_020_16830_4
crossref_primary_10_1039_C6SC04903F
crossref_primary_10_1039_D2TA05338A
crossref_primary_10_1002_adma_201604563
crossref_primary_10_1021_accountsmr_3c00206
crossref_primary_10_1039_C8NJ05842C
crossref_primary_10_1021_jacs_4c01219
crossref_primary_10_1115_1_4062642
crossref_primary_10_1002_adma_201701820
crossref_primary_10_1016_j_pmatsci_2022_101033
crossref_primary_10_1021_acsami_6b00216
crossref_primary_10_1021_acs_chemmater_9b04462
crossref_primary_10_1063_5_0144695
crossref_primary_10_1021_ja5032634
crossref_primary_10_1039_c3cc44126a
crossref_primary_10_1021_acs_nanolett_0c03639
crossref_primary_10_1021_acsestwater_2c00080
crossref_primary_10_1039_C6TA06945B
crossref_primary_10_1002_EXP_20210237
crossref_primary_10_1002_ppsc_201700175
crossref_primary_10_1007_s00339_024_07940_7
crossref_primary_10_1002_adma_201501130
crossref_primary_10_1016_j_mattod_2024_10_010
crossref_primary_10_1016_j_electacta_2014_03_182
crossref_primary_10_1021_acsnano_9b07781
crossref_primary_10_1002_ange_201505442
crossref_primary_10_1002_ange_201404604
crossref_primary_10_1021_acsnano_5b02601
crossref_primary_10_1039_C5NR08004E
crossref_primary_10_1039_C6CC00752J
crossref_primary_10_1039_D1NR01674A
crossref_primary_10_1002_adfm_202302172
crossref_primary_10_1039_C5NH00023H
crossref_primary_10_1186_s11671_021_03472_8
crossref_primary_10_1039_D2NR01600A
crossref_primary_10_1039_C9TA02462J
crossref_primary_10_1007_s10853_019_03416_9
crossref_primary_10_1002_ente_201600212
crossref_primary_10_1039_C5RA03645C
crossref_primary_10_1016_j_cej_2020_128026
crossref_primary_10_1002_adfm_201804361
crossref_primary_10_1016_j_jpowsour_2014_09_040
crossref_primary_10_1016_j_matt_2020_10_013
crossref_primary_10_1021_acs_chemmater_7b02274
crossref_primary_10_1021_acs_chemrev_7b00208
crossref_primary_10_1016_j_electacta_2014_09_114
crossref_primary_10_1039_C4NR02625J
crossref_primary_10_1021_jacs_8b09487
crossref_primary_10_1021_acsami_5b06818
crossref_primary_10_1039_C6CC01779G
crossref_primary_10_1021_acs_chemrev_5b00731
crossref_primary_10_1021_cm502426y
crossref_primary_10_1039_C6NR02293F
crossref_primary_10_1002_ange_201400226
crossref_primary_10_1039_D0CP03779F
crossref_primary_10_1039_D1RA02459K
crossref_primary_10_1039_C9TC01079C
crossref_primary_10_1016_j_jcis_2021_10_078
crossref_primary_10_1021_acs_jpcc_6b06405
crossref_primary_10_1007_s10934_022_01220_6
crossref_primary_10_1002_adma_201702958
crossref_primary_10_1021_nl504746b
crossref_primary_10_1039_C4NR03822C
crossref_primary_10_1039_C9TA05790K
crossref_primary_10_1039_D4EE00058G
crossref_primary_10_1038_srep08401
crossref_primary_10_1021_acsnano_0c04483
crossref_primary_10_1002_adma_202314211
crossref_primary_10_1016_j_ensm_2018_01_010
crossref_primary_10_1002_aenm_201601582
crossref_primary_10_1016_j_cej_2019_123890
crossref_primary_10_1021_acs_accounts_8b00193
crossref_primary_10_1039_C3CC49090D
crossref_primary_10_1021_acsanm_1c04569
crossref_primary_10_1021_acs_chemmater_4c00608
crossref_primary_10_1002_smll_202006623
crossref_primary_10_1039_C8FD00136G
crossref_primary_10_1142_S1793292019500450
crossref_primary_10_1002_smll_201402502
crossref_primary_10_33961_jecst_2024_00927
crossref_primary_10_1002_ange_201505242
crossref_primary_10_1021_acsanm_4c06900
crossref_primary_10_1039_C9CS00379G
crossref_primary_10_1002_chem_202100768
crossref_primary_10_1038_npjcompumats_2016_2
crossref_primary_10_1007_s12274_016_1295_3
crossref_primary_10_1016_j_apsusc_2018_12_188
crossref_primary_10_1039_D0NA00828A
crossref_primary_10_1002_anie_201409776
crossref_primary_10_1021_acs_accounts_0c00698
crossref_primary_10_1016_j_cej_2022_138668
crossref_primary_10_20964_2019_11_53
crossref_primary_10_1002_adts_201800127
crossref_primary_10_1002_ange_202411260
crossref_primary_10_1016_j_cep_2018_10_016
crossref_primary_10_1016_j_nantod_2018_12_002
crossref_primary_10_1021_acs_chemmater_6b01256
crossref_primary_10_1007_s11468_021_01400_1
crossref_primary_10_1002_anie_201406476
crossref_primary_10_1021_acs_jpcc_4c02753
crossref_primary_10_1021_jp4088018
crossref_primary_10_1021_cm5045144
crossref_primary_10_1016_j_ceramint_2020_05_230
crossref_primary_10_1021_acssuschemeng_7b00119
crossref_primary_10_1021_jacs_2c05792
crossref_primary_10_1002_adma_202001566
crossref_primary_10_1016_j_jallcom_2019_153107
crossref_primary_10_1039_C9NR01359H
crossref_primary_10_1021_cs501571e
crossref_primary_10_1021_acsnano_6b01604
crossref_primary_10_1038_s44160_023_00289_4
crossref_primary_10_1002_ange_201309307
crossref_primary_10_1021_acsanm_0c02485
crossref_primary_10_1002_smll_201502299
Cites_doi 10.1016/j.elecom.2009.12.040
10.1039/c1cc15322f
10.1002/anie.200700677
10.1016/j.nantod.2011.02.006
10.1002/anie.201108098
10.1149/1.1801451
10.1021/ja305539r
10.1021/ja903751p
10.1021/jp203056n
10.1103/PhysRevB.73.195107
10.1126/science.1212822
10.1103/PhysRevB.57.1505
10.1126/science.1103755
10.1016/j.nantod.2009.10.008
10.1016/j.electacta.2009.05.058
10.1007/s10008-007-0269-5
10.1038/nmat2118
10.1021/nl3004286
10.1038/nmat2848
10.1021/es001356d
10.1002/adma.201200469
10.1021/ja072574a
10.1103/PhysRevLett.77.3865
10.1021/ja073032w
10.1063/1.1329672
10.1021/ja905732q
10.1021/cm801105p
10.1021/ja105296a
10.1021/nl100559y
10.1103/PhysRevB.84.045115
10.1126/science.1096566
10.1063/1.3687007
10.1038/nnano.2007.411
10.1038/ncomms2185
10.1021/cm900431b
10.1103/PhysRevB.83.205127
10.1126/science.1077229
10.1021/nl034097+
10.1103/PhysRevB.77.035121
10.1021/ja039734c
10.1021/ar800018v
10.1016/0927-0256(96)00008-0
ContentType Journal Article
Copyright Copyright © 2013 American Association for the Advancement of Science
2014 INIST-CNRS
Copyright © 2013, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2013 American Association for the Advancement of Science
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013, American Association for the Advancement of Science
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1126/science.1234751
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database
MEDLINE - Academic
Materials Research Database
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Physics
EISSN 1095-9203
EndPage 968
ExternalDocumentID 2978529991
23704569
27400786
10_1126_science_1234751
41985363
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
AAYXX
AGFXO
ALIPV
ALSLI
CITATION
.GJ
.GO
0-V
186
3EH
41~
42X
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
AAYOK
ABDPE
ABJCF
ABTAH
ABUWG
ACQAM
ACTDY
ADBBV
ADZCM
AEUYN
AFKRA
AFQQW
AJUXI
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
GX1
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZT
PQEDU
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UIG
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YCJ
YJ6
YXB
ZCG
ZGI
ZKG
ZVL
ZVM
ZXP
ZY4
~G0
~H1
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c535t-da3e3cb73abe4d4ed3b8e4f6ad03e32f9ac06a3dd2a828625a34d629b2c5610e3
ISSN 0036-8075
1095-9203
IngestDate Thu Sep 04 22:31:41 EDT 2025
Fri Sep 05 06:51:47 EDT 2025
Thu Sep 04 21:13:12 EDT 2025
Fri Jul 25 19:29:38 EDT 2025
Mon Jul 21 05:55:35 EDT 2025
Wed Apr 02 07:15:05 EDT 2025
Tue Jul 01 00:47:14 EDT 2025
Thu Apr 24 23:02:09 EDT 2025
Sun Sep 21 12:11:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6135
Keywords Iron oxide
Stability
Electrochemical method
Nanocage
Electrode material
Perchlorates
Lithium battery
Hollow shape
Manganese oxides
Transmission electron microscopy
Morphology
Nanobox
Nanocrystal
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c535t-da3e3cb73abe4d4ed3b8e4f6ad03e32f9ac06a3dd2a828625a34d629b2c5610e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10773/20381
PMID 23704569
PQID 1354920047
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_2000352424
proquest_miscellaneous_1559687298
proquest_miscellaneous_1355482250
proquest_journals_1354920047
pubmed_primary_23704569
pascalfrancis_primary_27400786
crossref_primary_10_1126_science_1234751
crossref_citationtrail_10_1126_science_1234751
jstor_primary_41985363
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-24
PublicationDateYYYYMMDD 2013-05-24
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-24
  day: 24
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2013
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
23704562 - Science. 2013 May 24;340(6135):935-6
References_xml – ident: e_1_3_2_27_2
  doi: 10.1016/j.elecom.2009.12.040
– ident: e_1_3_2_30_2
  doi: 10.1039/c1cc15322f
– ident: e_1_3_2_15_2
  doi: 10.1002/anie.200700677
– ident: e_1_3_2_19_2
  doi: 10.1016/j.nantod.2011.02.006
– ident: e_1_3_2_24_2
  doi: 10.1002/anie.201108098
– ident: e_1_3_2_39_2
  doi: 10.1149/1.1801451
– ident: e_1_3_2_44_2
  doi: 10.1021/ja305539r
– ident: e_1_3_2_17_2
  doi: 10.1021/ja903751p
– ident: e_1_3_2_40_2
  doi: 10.1021/jp203056n
– ident: e_1_3_2_35_2
  doi: 10.1103/PhysRevB.73.195107
– ident: e_1_3_2_8_2
  doi: 10.1126/science.1212822
– ident: e_1_3_2_34_2
  doi: 10.1103/PhysRevB.57.1505
– ident: e_1_3_2_13_2
  doi: 10.1126/science.1103755
– ident: e_1_3_2_18_2
  doi: 10.1016/j.nantod.2009.10.008
– ident: e_1_3_2_31_2
  doi: 10.1016/j.electacta.2009.05.058
– ident: e_1_3_2_25_2
  doi: 10.1007/s10008-007-0269-5
– ident: e_1_3_2_11_2
  doi: 10.1038/nmat2118
– ident: e_1_3_2_29_2
  doi: 10.1021/nl3004286
– ident: e_1_3_2_6_2
  doi: 10.1038/nmat2848
– ident: e_1_3_2_22_2
  doi: 10.1021/es001356d
– ident: e_1_3_2_10_2
  doi: 10.1002/adma.201200469
– ident: e_1_3_2_16_2
  doi: 10.1021/ja072574a
– ident: e_1_3_2_32_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_3_2_9_2
  doi: 10.1021/ja073032w
– ident: e_1_3_2_36_2
  doi: 10.1063/1.1329672
– ident: e_1_3_2_14_2
  doi: 10.1021/ja905732q
– ident: e_1_3_2_43_2
  doi: 10.1021/cm801105p
– ident: e_1_3_2_26_2
  doi: 10.1021/ja105296a
– ident: e_1_3_2_7_2
  doi: 10.1021/nl100559y
– ident: e_1_3_2_41_2
  doi: 10.1103/PhysRevB.84.045115
– ident: e_1_3_2_12_2
  doi: 10.1126/science.1096566
– ident: e_1_3_2_38_2
  doi: 10.1063/1.3687007
– ident: e_1_3_2_28_2
  doi: 10.1038/nnano.2007.411
– ident: e_1_3_2_42_2
  doi: 10.1038/ncomms2185
– ident: e_1_3_2_20_2
  doi: 10.1021/cm900431b
– ident: e_1_3_2_37_2
  doi: 10.1103/PhysRevB.83.205127
– ident: e_1_3_2_2_2
  doi: 10.1126/science.1077229
– ident: e_1_3_2_3_2
  doi: 10.1021/nl034097+
– ident: e_1_3_2_23_2
  doi: 10.1103/PhysRevB.77.035121
– ident: e_1_3_2_4_2
  doi: 10.1021/ja039734c
– ident: e_1_3_2_5_2
  doi: 10.1021/ar800018v
– ident: e_1_3_2_33_2
  doi: 10.1016/0927-0256(96)00008-0
– reference: 23704562 - Science. 2013 May 24;340(6135):935-6
SSID ssj0009593
Score 2.596277
Snippet Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions....
Corrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles, whereby the reduction of one metal...
Hollowing Out Metal Oxide NanoparticlesCorrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles,...
Hollowing Out Metal Oxide Nanoparticles Corrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles,...
SourceID proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 964
SubjectTerms Anodes
batteries
Chemical composition
Chemical reactions
CMOS
Cobalt - chemistry
corrosion
Cross-disciplinary physics: materials science; rheology
Dissolution
Exact sciences and technology
Exteriors
Ferric Compounds - chemistry
Ions
iron
Lithium
Lithium batteries
Manganese
Manganese Compounds - chemistry
Manganese oxides
Materials science
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Metal oxides
Metals
Methods of nanofabrication
Microscopy, Electron, Transmission
Nanocrystalline materials
Nanocrystals
Nanoparticles
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanostructures
Oxides
Oxides - chemistry
Perchlorate
Perchlorates
Perchlorates - chemistry
Physics
Placing
Replacement reactions
Research universities
Tin Compounds - chemistry
Title Galvanic Replacement Reactions in Metal Oxide Nanocrystals
URI https://www.jstor.org/stable/41985363
https://www.ncbi.nlm.nih.gov/pubmed/23704569
https://www.proquest.com/docview/1354920047
https://www.proquest.com/docview/1355482250
https://www.proquest.com/docview/1559687298
https://www.proquest.com/docview/2000352424
Volume 340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxpBEF-sodCX0qRNY5OGK_QhJZzo7t6e2zdtY6VoAq2CfTr2SwgRDVFJ7F_f2Y87T1pL2pdDdme9Y-e3szO784HQe9xSpKkljhtMiZhKTmPJFIuNkoKKFuxoLhPT4JL1RvTrOBlXKpOS19JqKevq5x_jSv6Hq9AGfLVRsv_A2eJPoQF-A3_hCRyG56N4_EVMQRF2rvDOt8pd7H8zPlbBOboOjA12vHq41sYK0rm6W4M6OF2UddJ8eYOuWdzflLhWOCK2vbtA7j0QhpUPat0RzWBtBch5736Dux8rBwthbtarsFMWrd8NNMW9ed7a9-WdO5by5j6AJhxLNJ0ToI-GzkVtyHRcFrXEp2YKmAJNIjm_rXNGY-5r6wQpyn1i87Ahh77fZX2pOqWpww5M05C7diur9uVV1h31-9nwYjx8gvZwCjpWFe21O5873Z3pmUMSqFJ4Vf6CLf3Fu7Baf1qxgCU18bVQdhsrTmkZvkDPg7URtT109lHFzA7QU19_dH2A9gMPF9FZSD_-4SX6mKMqKqEqKlAVXc8ih6rIoSoqo-oVGnUvhp96caiwEauEJMtYC2KIkikR0lBNjSayZeiECd2ADjzhQjWYIFpjYdMN4EQQqhnmEiurdxtyiKqz-cwcoYi0FJOEmFQ0JjSV9uQBG5jWRAuMuU5rqJ7PW6ZC-nlbBWWaOTMUsyxMdBYmuobOigG3PvPKbtJDx4iCjjY5qKGM1NDpFmcKApxSqxyzGjrJWZWFhb3IAJaUWzkDH_2u6Aaxa-_SxMzMV44GbH3YDBt_oQFrnYGs463dNNjd5dsYrRp67aGy-UiSWoOLv3nE6GP0bLMKT1B1ebcyb0FdXsrTgPVfW4i_Xg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Galvanic+Replacement+Reactions+in+Metal+Oxide+Nanocrystals&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Oh%2C+Myoung+Hwan&rft.au=Yu%2C+Taekyung&rft.au=Yu%2C+Seung-Ho&rft.au=Lim%2C+Byungkwon&rft.date=2013-05-24&rft.issn=0036-8075&rft.volume=340&rft.issue=6135+p.964-968&rft.spage=964&rft.epage=968&rft_id=info:doi/10.1126%2Fscience.1234751&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon