Galvanic Replacement Reactions in Metal Oxide Nanocrystals
Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replac...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 340; no. 6135; pp. 964 - 968 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
24.05.2013
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.1234751 |
Cover
Abstract | Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn₃O₄) nanocrystals were reacted with iron(ll) perchlorate, hollow box-shaped nanocrystals of Mn₃O₄/γ-Fw₂O₃ ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe₂O₃ ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co₃O₄/SnO₂ and Mn₃O₄/SnO₂. |
---|---|
AbstractList | Hollowing Out Metal Oxide Nanoparticles Corrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles, whereby the reduction of one metal species in solution drives the dissolution of the core of the particle. Oh et al. (p. 964; see the Perspective by Ibáñez and Cabot) adapted this approach to metal oxide nanoparticles by placing Mn ₃O ₄ nanocrystals in solution with Fe ²⁺ ions, which replaces the nanocrystal exterior with γ-Fe ₂O ₃. At sufficiently high Fe ²⁺ concentrations, hollow γ-Fe ₂O ₃ nanocages formed. These hollow structures could be used as anode materials for lithium ion batteries. Hollowing Out Metal Oxide NanoparticlesCorrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles, whereby the reduction of one metal species in solution drives the dissolution of the core of the particle. Oh et al. (p. 964; see the Perspective by Ibanez and Cabot) adapted this approach to metal oxide nanoparticles by placing Mn3O4 nanocrystals in solution with Fe2+ ions, which replaces the nanocrystal exterior with gamma -Fe2O3. At sufficiently high Fe2+ concentrations, hollow gamma -Fe2O3 nanocages formed. These hollow structures could be used as anode materials for lithium ion batteries. Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn3O4) nanocrystals were reacted with iron(II) perchlorate, hollow box-shaped nanocrystals of Mn3O4/γ-Fe2O3 ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe2O3 ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co3O4/SnO2 and Mn3O4/SnO2.Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn3O4) nanocrystals were reacted with iron(II) perchlorate, hollow box-shaped nanocrystals of Mn3O4/γ-Fe2O3 ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe2O3 ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co3O4/SnO2 and Mn3O4/SnO2. Corrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles, whereby the reduction of one metal species in solution drives the dissolution of the core of the particle. Oh et al. (p. 964; see the Perspective by Ibáñez and Cabot ) adapted this approach to metal oxide nanoparticles by placing Mn3O4 nanocrystals in solution with Fe2+ ions, which replaces the nanocrystal exterior with γ-Fe2O3. At sufficiently high Fe2+ concentrations, hollow γ-Fe2O3 nanocages formed. These hollow structures could be used as anode materials for lithium ion batteries. [PUBLICATION ABSTRACT] Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn3O4) nanocrystals were reacted with iron(II) perchlorate, hollow box-shaped nanocrystals of Mn3O4/γ-Fe2O3 ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe2O3 ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co3O4/SnO2 and Mn3O4/SnO2. [PUBLICATION ABSTRACT] Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn3O4) nanocrystals were reacted with iron(II) perchlorate, hollow box-shaped nanocrystals of Mn3O4/γ-Fe2O3 ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe2O3 ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co3O4/SnO2 and Mn3O4/SnO2. Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn₃O₄) nanocrystals were reacted with iron(ll) perchlorate, hollow box-shaped nanocrystals of Mn₃O₄/γ-Fw₂O₃ ("nanoboxes") were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe₂O₃ ("nanocages"). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co₃O₄/SnO₂ and Mn₃O₄/SnO₂. Corrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles, whereby the reduction of one metal species in solution drives the dissolution of the core of the particle. Oh et al. (p. 964 ; see the Perspective by Ibáñez and Cabot ) adapted this approach to metal oxide nanoparticles by placing Mn 3 O 4 nanocrystals in solution with Fe 2+ ions, which replaces the nanocrystal exterior with γ-Fe 2 O 3 . At sufficiently high Fe 2+ concentrations, hollow γ-Fe 2 O 3 nanocages formed. These hollow structures could be used as anode materials for lithium ion batteries. Hollow mixed-metal oxide nanoparticles can be made by replacing the metal cations through redox reactions in solution. [Also see Perspective by Ibáñez and Cabot ] Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions. However, these reactions have previously been limited to the chemical transformation of metallic nanostructures. We demonstrated galvanic replacement reactions in metal oxide nanocrystals as well. When manganese oxide (Mn 3 O 4 ) nanocrystals were reacted with iron(II) perchlorate, hollow box-shaped nanocrystals of Mn 3 O 4 /γ-Fe 2 O 3 (“nanoboxes”) were produced. These nanoboxes ultimately transformed into hollow cagelike nanocrystals of γ-Fe 2 O 3 (“nanocages”). Because of their nonequilibrium compositions and hollow structures, these nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. The generality of this approach was demonstrated with other metal pairs, including Co 3 O 4 /SnO 2 and Mn 3 O 4 /SnO 2 . |
Author | Ko, Kyung-Tae Pinna, Nicola Kim, Byung Hyo Cho, Min Gee Lim, Byungkwon Oh, Myoung Hwan Yu, Taekyung Willinger, Marc-Georg Yu, Seung-Ho Seo, Dong-Hwa Hyeon, Taeghwan Kang, Kisuk Sung, Yung-Eun Park, Jae-Hoon |
Author_xml | – sequence: 1 givenname: Myoung Hwan surname: Oh fullname: Oh, Myoung Hwan – sequence: 2 givenname: Taekyung surname: Yu fullname: Yu, Taekyung – sequence: 3 givenname: Seung-Ho surname: Yu fullname: Yu, Seung-Ho – sequence: 4 givenname: Byungkwon surname: Lim fullname: Lim, Byungkwon – sequence: 5 givenname: Kyung-Tae surname: Ko fullname: Ko, Kyung-Tae – sequence: 6 givenname: Marc-Georg surname: Willinger fullname: Willinger, Marc-Georg – sequence: 7 givenname: Dong-Hwa surname: Seo fullname: Seo, Dong-Hwa – sequence: 8 givenname: Byung Hyo surname: Kim fullname: Kim, Byung Hyo – sequence: 9 givenname: Min Gee surname: Cho fullname: Cho, Min Gee – sequence: 10 givenname: Jae-Hoon surname: Park fullname: Park, Jae-Hoon – sequence: 11 givenname: Kisuk surname: Kang fullname: Kang, Kisuk – sequence: 12 givenname: Yung-Eun surname: Sung fullname: Sung, Yung-Eun – sequence: 13 givenname: Nicola surname: Pinna fullname: Pinna, Nicola – sequence: 14 givenname: Taeghwan surname: Hyeon fullname: Hyeon, Taeghwan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27400786$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23704569$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UFrFTEQAOAgFftaPXtSFkTwsm2SSbLZ3qTUKlQLoudlNpmFPPZln8k-sf--eby1Qg_2NCHzTcLMnLCjOEVi7LXgZ0JIc55doOjoTEhQjRbP2ErwVtet5HDEVpyDqS1v9DE7yXnNecm18IIdS2i40qZdsYtrHH9jDK76TtsRHW0ozuWMbg5TzFWI1Veacaxu_wRP1TeMk0t3udzkl-z5UAK9WuIp-_np6sfl5_rm9vrL5ceb2mnQc-0RCFzfAPakvCIPvSU1GPS8JOTQouMGwXuJVlojNYLyRra9dNoITnDKPhze3abp147y3G1CdjSOGGna5U6WvkBLJdWTVGjdGtvI1j5NQWtlpdS80HeP6HrapVh63itVhs1VU9TbRe36Dflum8IG0133d9YFvF8AZofjkDC6kP-5RnHeWFPc-cG5NOWcaHgggnf7rXfL1rtl66VCP6pwYcb9AueEYfxP3ZtD3TrPU3r4RonWajAA99GOuVk |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1142_S1793292018500042 crossref_primary_10_1016_j_ccr_2022_214731 crossref_primary_10_1002_advs_202104183 crossref_primary_10_1002_anie_201400226 crossref_primary_10_1021_acs_jpclett_1c01327 crossref_primary_10_1021_acs_energyfuels_0c01968 crossref_primary_10_1002_chem_201403992 crossref_primary_10_1016_j_electacta_2017_09_024 crossref_primary_10_1021_nl404412w crossref_primary_10_1002_anie_201309307 crossref_primary_10_1016_j_cplett_2015_11_043 crossref_primary_10_1039_C9RA03865E crossref_primary_10_1039_C3DT53213E crossref_primary_10_1021_acs_chemmater_2c01381 crossref_primary_10_1039_C7TA03302H crossref_primary_10_1021_acsanm_8b00060 crossref_primary_10_1016_j_jelechem_2021_115199 crossref_primary_10_1038_ncomms7694 crossref_primary_10_1039_C7TA01028A crossref_primary_10_1039_C3TA13982D crossref_primary_10_1002_tcr_201600028 crossref_primary_10_1039_C9CC02240F crossref_primary_10_1016_j_nantod_2014_09_003 crossref_primary_10_1007_s11244_018_0951_0 crossref_primary_10_1039_C4NR03395G crossref_primary_10_1002_anie_201706182 crossref_primary_10_1039_C9TA03498F crossref_primary_10_1002_ppsc_201600150 crossref_primary_10_1021_acsanm_1c00819 crossref_primary_10_1039_D0RA07482A crossref_primary_10_1038_s41586_019_1899_3 crossref_primary_10_1021_acsami_5b07075 crossref_primary_10_1002_adma_202305437 crossref_primary_10_1016_j_jallcom_2018_04_207 crossref_primary_10_20964_2018_12_51 crossref_primary_10_1038_ncomms7668 crossref_primary_10_1002_cplu_201300293 crossref_primary_10_1002_asia_202001113 crossref_primary_10_1038_s44160_024_00715_1 crossref_primary_10_1016_j_jlumin_2022_119390 crossref_primary_10_3390_nano8100756 crossref_primary_10_1002_adma_201504024 crossref_primary_10_1016_j_electacta_2018_04_069 crossref_primary_10_1016_j_jelechem_2020_114844 crossref_primary_10_1021_acs_jpcc_5b00153 crossref_primary_10_1021_acs_inorgchem_7b02425 crossref_primary_10_1002_ppsc_201600021 crossref_primary_10_1021_acs_inorgchem_5b01352 crossref_primary_10_1002_ange_202418925 crossref_primary_10_1039_C5RA13426A crossref_primary_10_1002_anie_201611804 crossref_primary_10_1021_jacs_0c09458 crossref_primary_10_1039_C5CE00112A crossref_primary_10_1021_acsnano_2c07256 crossref_primary_10_1016_j_pmatsci_2022_100946 crossref_primary_10_1021_acs_jpcc_9b06298 crossref_primary_10_1002_anie_201505442 crossref_primary_10_1002_ente_201900314 crossref_primary_10_1007_s12274_021_3836_7 crossref_primary_10_1039_C4NR05135A crossref_primary_10_1039_C5TA01108F crossref_primary_10_1021_acs_chemmater_6b04388 crossref_primary_10_1039_D0MA00695E crossref_primary_10_1039_D0TA06428A crossref_primary_10_1039_C4RA10045J crossref_primary_10_1126_science_1239221 crossref_primary_10_1021_acs_jpcc_4c01130 crossref_primary_10_1016_j_jmst_2023_10_065 crossref_primary_10_1002_aenm_202201134 crossref_primary_10_1002_smll_202106511 crossref_primary_10_1021_acsami_3c10733 crossref_primary_10_1021_acsnano_2c07306 crossref_primary_10_1016_j_chemphys_2018_10_022 crossref_primary_10_1021_acs_nanolett_3c02575 crossref_primary_10_1039_C7TA00148G crossref_primary_10_1039_C5TA01229E crossref_primary_10_1002_adma_201502262 crossref_primary_10_1039_C8TA02438C crossref_primary_10_1016_j_solidstatesciences_2015_02_011 crossref_primary_10_1016_S1872_2067_21_63940_2 crossref_primary_10_1016_j_ijhydene_2018_02_197 crossref_primary_10_1021_acs_nanolett_9b03783 crossref_primary_10_1039_C4SC01882F crossref_primary_10_1002_anie_201610413 crossref_primary_10_1016_j_cej_2019_122613 crossref_primary_10_1007_s12274_016_1081_2 crossref_primary_10_1021_acs_jpcc_6b06393 crossref_primary_10_1002_smll_201302006 crossref_primary_10_1021_acs_nanolett_6b02577 crossref_primary_10_1002_adma_201302400 crossref_primary_10_1039_C9NR02248A crossref_primary_10_1039_C5EE03456F crossref_primary_10_1002_aenm_202001059 crossref_primary_10_1039_C6TA08042A crossref_primary_10_1021_acs_accounts_7b00487 crossref_primary_10_1021_jacs_4c05367 crossref_primary_10_1002_adma_201703798 crossref_primary_10_1021_acs_iecr_1c02725 crossref_primary_10_1002_adma_201703316 crossref_primary_10_1007_s13204_023_02932_0 crossref_primary_10_1016_j_electacta_2016_10_058 crossref_primary_10_1016_j_solmat_2021_111411 crossref_primary_10_1149_2_0571410jes crossref_primary_10_1002_ange_202205238 crossref_primary_10_1021_jacs_7b05246 crossref_primary_10_1039_C9NR02016K crossref_primary_10_1002_smll_202205313 crossref_primary_10_1515_nanoph_2016_0124 crossref_primary_10_1021_nn500942k crossref_primary_10_1038_srep16061 crossref_primary_10_1016_j_jelechem_2016_12_028 crossref_primary_10_1016_S1452_3981_23_11154_0 crossref_primary_10_1021_acsnano_2c07694 crossref_primary_10_1038_ncomms5327 crossref_primary_10_1002_adma_201704416 crossref_primary_10_1016_j_electacta_2020_136056 crossref_primary_10_1002_admi_201900516 crossref_primary_10_1007_s11581_015_1420_4 crossref_primary_10_1021_nl500593j crossref_primary_10_3389_fonc_2024_1344852 crossref_primary_10_1002_cplu_201402236 crossref_primary_10_1002_smll_202300751 crossref_primary_10_1002_cssc_202200704 crossref_primary_10_1021_acs_cgd_6b01373 crossref_primary_10_1021_acs_chemrev_6b00374 crossref_primary_10_1021_acsmaterialslett_0c00271 crossref_primary_10_1021_acsanm_7b00380 crossref_primary_10_1002_anie_202418925 crossref_primary_10_1039_C7CC02352A crossref_primary_10_1126_science_1249061 crossref_primary_10_1016_j_biomaterials_2020_119835 crossref_primary_10_1016_j_colsurfa_2020_125902 crossref_primary_10_1039_C5NR04488J crossref_primary_10_1021_cm5024508 crossref_primary_10_1039_C9CC09573J crossref_primary_10_1039_C6NR01024E crossref_primary_10_1016_j_cej_2017_01_111 crossref_primary_10_1016_j_snb_2017_11_067 crossref_primary_10_1039_C7TA02048A crossref_primary_10_1021_jacs_1c12880 crossref_primary_10_1002_adfm_201901000 crossref_primary_10_1002_adma_201605902 crossref_primary_10_1021_acs_chemrev_1c00637 crossref_primary_10_1039_C9CP00280D crossref_primary_10_1039_C7CE00110J crossref_primary_10_1002_adma_201402296 crossref_primary_10_1021_acs_iecr_6b01227 crossref_primary_10_1021_acsnano_4c09312 crossref_primary_10_1039_D3TA03791F crossref_primary_10_1021_jacs_6b05957 crossref_primary_10_1002_cssc_201500306 crossref_primary_10_1039_C4TA05278A crossref_primary_10_1002_ange_201406476 crossref_primary_10_1016_j_materresbull_2025_113367 crossref_primary_10_1088_0957_4484_27_48_485601 crossref_primary_10_1038_nenergy_2016_208 crossref_primary_10_1039_C4NR02025A crossref_primary_10_1021_acsanm_0c00803 crossref_primary_10_1039_D4YA00141A crossref_primary_10_1016_j_micromeso_2019_04_062 crossref_primary_10_1002_bkcs_12638 crossref_primary_10_1016_j_micromeso_2021_111151 crossref_primary_10_1016_j_cattod_2015_11_017 crossref_primary_10_1016_j_jpowsour_2015_01_092 crossref_primary_10_1016_j_ccr_2016_01_014 crossref_primary_10_1016_j_jpowsour_2018_11_055 crossref_primary_10_1039_C5EE03772G crossref_primary_10_1016_j_ccr_2022_214429 crossref_primary_10_1021_jacs_6b00179 crossref_primary_10_1021_acscatal_6b01534 crossref_primary_10_1007_s12274_014_0474_3 crossref_primary_10_1021_acs_accounts_6b00480 crossref_primary_10_3390_ijms23147944 crossref_primary_10_1016_j_apcatb_2017_10_051 crossref_primary_10_1021_jacs_5b02465 crossref_primary_10_1039_C9TA06727B crossref_primary_10_1007_s12274_016_1334_0 crossref_primary_10_3390_cancers16152663 crossref_primary_10_1016_j_biomaterials_2020_119923 crossref_primary_10_1039_C3CC45336G crossref_primary_10_1002_cplu_201300324 crossref_primary_10_1021_jacs_6b06706 crossref_primary_10_1016_j_jallcom_2018_11_107 crossref_primary_10_1038_ncomms5526 crossref_primary_10_1021_acs_nanolett_7b00758 crossref_primary_10_1039_C5NR08701E crossref_primary_10_1021_jacs_6b01254 crossref_primary_10_1007_s40843_019_9431_4 crossref_primary_10_1039_C8SC01520A crossref_primary_10_1002_adma_201800592 crossref_primary_10_1016_j_apcatb_2023_122530 crossref_primary_10_1021_acscatal_0c04091 crossref_primary_10_1021_acs_accounts_7b00429 crossref_primary_10_1021_acsami_5b08383 crossref_primary_10_1021_acsami_3c08922 crossref_primary_10_1039_D0NJ02222E crossref_primary_10_1002_adma_201800426 crossref_primary_10_1039_C4RA13688H crossref_primary_10_1007_s10904_019_01331_9 crossref_primary_10_1002_advs_201600162 crossref_primary_10_1002_ange_201611804 crossref_primary_10_1016_j_cej_2021_131175 crossref_primary_10_1039_C5QI00184F crossref_primary_10_1002_adma_201801993 crossref_primary_10_1039_C6TA03915D crossref_primary_10_1063_5_0144742 crossref_primary_10_1016_j_ceramint_2019_03_086 crossref_primary_10_1002_ange_201706182 crossref_primary_10_1002_anie_202411260 crossref_primary_10_1002_adfm_201402320 crossref_primary_10_1002_adfm_201402560 crossref_primary_10_1039_C6RA25863H crossref_primary_10_4491_eer_2022_323 crossref_primary_10_1007_s40843_016_5112_0 crossref_primary_10_1039_C6TA06339J crossref_primary_10_1016_j_coche_2013_11_006 crossref_primary_10_1021_acs_cgd_6b01555 crossref_primary_10_1021_jacs_5b02051 crossref_primary_10_1002_aenm_201900328 crossref_primary_10_1039_C6TA05432C crossref_primary_10_1039_D0RA01528H crossref_primary_10_1021_am508246m crossref_primary_10_1039_C4NJ02313G crossref_primary_10_1002_cctc_202201478 crossref_primary_10_1039_C9QM00544G crossref_primary_10_1016_j_ssi_2015_01_014 crossref_primary_10_1039_D0TA09346G crossref_primary_10_1016_j_mtsust_2022_100140 crossref_primary_10_1039_C6NR01321J crossref_primary_10_1038_ncomms4870 crossref_primary_10_1039_C5EE00101C crossref_primary_10_1002_anie_201404604 crossref_primary_10_1039_D3SC05644A crossref_primary_10_1021_jacs_7b06724 crossref_primary_10_1021_jp408322g crossref_primary_10_1002_ange_201409776 crossref_primary_10_1021_acs_accounts_0c00802 crossref_primary_10_1021_jp5017664 crossref_primary_10_1002_slct_201701597 crossref_primary_10_1039_C5CS00033E crossref_primary_10_1039_D2TA06552E crossref_primary_10_1016_j_ceramint_2014_01_014 crossref_primary_10_3390_nano14201685 crossref_primary_10_1021_acs_langmuir_8b02023 crossref_primary_10_1002_celc_201700323 crossref_primary_10_1021_acs_jpcc_7b01540 crossref_primary_10_1021_acsnano_8b03572 crossref_primary_10_1039_C5CC00094G crossref_primary_10_1021_acs_chemmater_6b04097 crossref_primary_10_1021_acs_chemmater_8b04194 crossref_primary_10_1016_j_ijhydene_2018_06_117 crossref_primary_10_1002_anie_201505242 crossref_primary_10_1021_acs_nanolett_5b02404 crossref_primary_10_1039_D1NR06634J crossref_primary_10_1002_smll_201500799 crossref_primary_10_1002_adma_201302820 crossref_primary_10_1021_acs_chemmater_0c03017 crossref_primary_10_1002_aenm_201902773 crossref_primary_10_1021_nl403715h crossref_primary_10_1002_aenm_202003734 crossref_primary_10_1016_j_jcat_2014_11_012 crossref_primary_10_1038_ncomms4851 crossref_primary_10_1016_j_snb_2016_05_104 crossref_primary_10_1016_j_enchem_2022_100088 crossref_primary_10_1016_j_ica_2024_122399 crossref_primary_10_1016_j_cej_2019_03_244 crossref_primary_10_1039_c3ce42251h crossref_primary_10_1016_j_snb_2017_10_081 crossref_primary_10_1021_acs_nanolett_4c02764 crossref_primary_10_1021_jacs_7b02953 crossref_primary_10_1002_adfm_202300143 crossref_primary_10_1039_c4ra00624k crossref_primary_10_1039_C4RA05945J crossref_primary_10_1002_cnma_202000289 crossref_primary_10_1039_C5SC04668H crossref_primary_10_1039_D0TB02858D crossref_primary_10_1016_j_jcat_2017_01_007 crossref_primary_10_1039_C6RA23071G crossref_primary_10_1021_acs_chemrev_9b00234 crossref_primary_10_1002_smll_201303818 crossref_primary_10_1016_j_matt_2020_07_027 crossref_primary_10_1016_j_addr_2018_12_008 crossref_primary_10_1016_j_ijhydene_2017_09_171 crossref_primary_10_1039_C6DT01791F crossref_primary_10_1039_C8CE02164C crossref_primary_10_1007_s12274_023_6049_4 crossref_primary_10_1039_C5CE01173F crossref_primary_10_1016_j_watres_2022_118864 crossref_primary_10_1002_adfm_202408986 crossref_primary_10_1002_smll_202203628 crossref_primary_10_1021_acs_chemmater_6b00486 crossref_primary_10_1021_acs_chemmater_0c00573 crossref_primary_10_1039_C9NR05750A crossref_primary_10_1016_j_cej_2022_140798 crossref_primary_10_1002_aisy_202300162 crossref_primary_10_1016_j_ijhydene_2024_08_353 crossref_primary_10_1021_acs_chemmater_8b01792 crossref_primary_10_1021_acsnano_5b05610 crossref_primary_10_1016_j_apsusc_2022_152569 crossref_primary_10_3390_catal14110771 crossref_primary_10_1039_D1NR05767G crossref_primary_10_1039_C7CE01503H crossref_primary_10_1039_C6RA20104K crossref_primary_10_1002_ijch_202200103 crossref_primary_10_1021_nn506223h crossref_primary_10_1002_ppsc_201700486 crossref_primary_10_1039_C6NR08614D crossref_primary_10_1039_C4TA00759J crossref_primary_10_1039_C6TA03070J crossref_primary_10_1016_j_snb_2015_06_099 crossref_primary_10_1021_cm402131n crossref_primary_10_1021_acs_chemmater_6b03765 crossref_primary_10_1002_aenm_201501333 crossref_primary_10_1016_j_surfin_2024_105570 crossref_primary_10_1016_j_coelec_2018_03_014 crossref_primary_10_1002_adfm_201903012 crossref_primary_10_1039_C7TA09082J crossref_primary_10_1007_s10853_017_1461_3 crossref_primary_10_1021_nl401952h crossref_primary_10_1126_sciadv_aaz5961 crossref_primary_10_1016_j_cej_2020_126820 crossref_primary_10_1021_acs_chemrev_6b00211 crossref_primary_10_1016_j_apsusc_2023_157161 crossref_primary_10_1016_j_cej_2021_131697 crossref_primary_10_1021_acs_accounts_3c00067 crossref_primary_10_1016_j_electacta_2018_07_177 crossref_primary_10_1016_j_ceramint_2019_11_077 crossref_primary_10_1021_nn501783n crossref_primary_10_1039_D1TA07778C crossref_primary_10_1002_anie_202205238 crossref_primary_10_1016_j_snb_2021_130876 crossref_primary_10_1557_s43577_021_00218_w crossref_primary_10_1039_C8CS00336J crossref_primary_10_1016_j_apsusc_2017_05_154 crossref_primary_10_1021_nn4058227 crossref_primary_10_1002_adma_202008024 crossref_primary_10_1039_C8CC10127B crossref_primary_10_1016_S1872_2067_21_63902_5 crossref_primary_10_1007_s12598_017_0899_4 crossref_primary_10_1007_s10562_018_2600_4 crossref_primary_10_1016_j_nanoen_2020_104935 crossref_primary_10_1039_c3nj01489d crossref_primary_10_1021_nn503985s crossref_primary_10_1039_C6RA01939K crossref_primary_10_1016_j_carbon_2014_10_071 crossref_primary_10_1021_acs_jpclett_0c01551 crossref_primary_10_1038_s41598_022_26877_6 crossref_primary_10_1149_2_1551706jes crossref_primary_10_1002_adma_201800939 crossref_primary_10_1016_j_apcatb_2020_118642 crossref_primary_10_1016_j_electacta_2014_09_072 crossref_primary_10_1039_C9SE00166B crossref_primary_10_1039_C7CE00235A crossref_primary_10_1039_D0NR09164B crossref_primary_10_1007_s11814_025_00391_7 crossref_primary_10_1016_j_jnucmat_2024_155309 crossref_primary_10_1021_jacs_4c10252 crossref_primary_10_1021_acsami_6b03866 crossref_primary_10_1039_C4CC04581E crossref_primary_10_3390_catal7030080 crossref_primary_10_1039_C7CP00509A crossref_primary_10_1016_j_jcis_2021_06_149 crossref_primary_10_1080_09593330_2022_2145913 crossref_primary_10_1016_j_cej_2023_142057 crossref_primary_10_1016_j_jelechem_2018_12_055 crossref_primary_10_1039_C4CP03888F crossref_primary_10_1002_ange_201610413 crossref_primary_10_1016_j_electacta_2014_09_038 crossref_primary_10_1039_C7NR00917H crossref_primary_10_1016_j_nantod_2014_06_006 crossref_primary_10_3389_fchem_2021_699284 crossref_primary_10_1016_j_elecom_2016_10_018 crossref_primary_10_1002_smll_201500044 crossref_primary_10_1016_j_chempr_2019_04_013 crossref_primary_10_1038_s41467_020_16830_4 crossref_primary_10_1039_C6SC04903F crossref_primary_10_1039_D2TA05338A crossref_primary_10_1002_adma_201604563 crossref_primary_10_1021_accountsmr_3c00206 crossref_primary_10_1039_C8NJ05842C crossref_primary_10_1021_jacs_4c01219 crossref_primary_10_1115_1_4062642 crossref_primary_10_1002_adma_201701820 crossref_primary_10_1016_j_pmatsci_2022_101033 crossref_primary_10_1021_acsami_6b00216 crossref_primary_10_1021_acs_chemmater_9b04462 crossref_primary_10_1063_5_0144695 crossref_primary_10_1021_ja5032634 crossref_primary_10_1039_c3cc44126a crossref_primary_10_1021_acs_nanolett_0c03639 crossref_primary_10_1021_acsestwater_2c00080 crossref_primary_10_1039_C6TA06945B crossref_primary_10_1002_EXP_20210237 crossref_primary_10_1002_ppsc_201700175 crossref_primary_10_1007_s00339_024_07940_7 crossref_primary_10_1002_adma_201501130 crossref_primary_10_1016_j_mattod_2024_10_010 crossref_primary_10_1016_j_electacta_2014_03_182 crossref_primary_10_1021_acsnano_9b07781 crossref_primary_10_1002_ange_201505442 crossref_primary_10_1002_ange_201404604 crossref_primary_10_1021_acsnano_5b02601 crossref_primary_10_1039_C5NR08004E crossref_primary_10_1039_C6CC00752J crossref_primary_10_1039_D1NR01674A crossref_primary_10_1002_adfm_202302172 crossref_primary_10_1039_C5NH00023H crossref_primary_10_1186_s11671_021_03472_8 crossref_primary_10_1039_D2NR01600A crossref_primary_10_1039_C9TA02462J crossref_primary_10_1007_s10853_019_03416_9 crossref_primary_10_1002_ente_201600212 crossref_primary_10_1039_C5RA03645C crossref_primary_10_1016_j_cej_2020_128026 crossref_primary_10_1002_adfm_201804361 crossref_primary_10_1016_j_jpowsour_2014_09_040 crossref_primary_10_1016_j_matt_2020_10_013 crossref_primary_10_1021_acs_chemmater_7b02274 crossref_primary_10_1021_acs_chemrev_7b00208 crossref_primary_10_1016_j_electacta_2014_09_114 crossref_primary_10_1039_C4NR02625J crossref_primary_10_1021_jacs_8b09487 crossref_primary_10_1021_acsami_5b06818 crossref_primary_10_1039_C6CC01779G crossref_primary_10_1021_acs_chemrev_5b00731 crossref_primary_10_1021_cm502426y crossref_primary_10_1039_C6NR02293F crossref_primary_10_1002_ange_201400226 crossref_primary_10_1039_D0CP03779F crossref_primary_10_1039_D1RA02459K crossref_primary_10_1039_C9TC01079C crossref_primary_10_1016_j_jcis_2021_10_078 crossref_primary_10_1021_acs_jpcc_6b06405 crossref_primary_10_1007_s10934_022_01220_6 crossref_primary_10_1002_adma_201702958 crossref_primary_10_1021_nl504746b crossref_primary_10_1039_C4NR03822C crossref_primary_10_1039_C9TA05790K crossref_primary_10_1039_D4EE00058G crossref_primary_10_1038_srep08401 crossref_primary_10_1021_acsnano_0c04483 crossref_primary_10_1002_adma_202314211 crossref_primary_10_1016_j_ensm_2018_01_010 crossref_primary_10_1002_aenm_201601582 crossref_primary_10_1016_j_cej_2019_123890 crossref_primary_10_1021_acs_accounts_8b00193 crossref_primary_10_1039_C3CC49090D crossref_primary_10_1021_acsanm_1c04569 crossref_primary_10_1021_acs_chemmater_4c00608 crossref_primary_10_1002_smll_202006623 crossref_primary_10_1039_C8FD00136G crossref_primary_10_1142_S1793292019500450 crossref_primary_10_1002_smll_201402502 crossref_primary_10_33961_jecst_2024_00927 crossref_primary_10_1002_ange_201505242 crossref_primary_10_1021_acsanm_4c06900 crossref_primary_10_1039_C9CS00379G crossref_primary_10_1002_chem_202100768 crossref_primary_10_1038_npjcompumats_2016_2 crossref_primary_10_1007_s12274_016_1295_3 crossref_primary_10_1016_j_apsusc_2018_12_188 crossref_primary_10_1039_D0NA00828A crossref_primary_10_1002_anie_201409776 crossref_primary_10_1021_acs_accounts_0c00698 crossref_primary_10_1016_j_cej_2022_138668 crossref_primary_10_20964_2019_11_53 crossref_primary_10_1002_adts_201800127 crossref_primary_10_1002_ange_202411260 crossref_primary_10_1016_j_cep_2018_10_016 crossref_primary_10_1016_j_nantod_2018_12_002 crossref_primary_10_1021_acs_chemmater_6b01256 crossref_primary_10_1007_s11468_021_01400_1 crossref_primary_10_1002_anie_201406476 crossref_primary_10_1021_acs_jpcc_4c02753 crossref_primary_10_1021_jp4088018 crossref_primary_10_1021_cm5045144 crossref_primary_10_1016_j_ceramint_2020_05_230 crossref_primary_10_1021_acssuschemeng_7b00119 crossref_primary_10_1021_jacs_2c05792 crossref_primary_10_1002_adma_202001566 crossref_primary_10_1016_j_jallcom_2019_153107 crossref_primary_10_1039_C9NR01359H crossref_primary_10_1021_cs501571e crossref_primary_10_1021_acsnano_6b01604 crossref_primary_10_1038_s44160_023_00289_4 crossref_primary_10_1002_ange_201309307 crossref_primary_10_1021_acsanm_0c02485 crossref_primary_10_1002_smll_201502299 |
Cites_doi | 10.1016/j.elecom.2009.12.040 10.1039/c1cc15322f 10.1002/anie.200700677 10.1016/j.nantod.2011.02.006 10.1002/anie.201108098 10.1149/1.1801451 10.1021/ja305539r 10.1021/ja903751p 10.1021/jp203056n 10.1103/PhysRevB.73.195107 10.1126/science.1212822 10.1103/PhysRevB.57.1505 10.1126/science.1103755 10.1016/j.nantod.2009.10.008 10.1016/j.electacta.2009.05.058 10.1007/s10008-007-0269-5 10.1038/nmat2118 10.1021/nl3004286 10.1038/nmat2848 10.1021/es001356d 10.1002/adma.201200469 10.1021/ja072574a 10.1103/PhysRevLett.77.3865 10.1021/ja073032w 10.1063/1.1329672 10.1021/ja905732q 10.1021/cm801105p 10.1021/ja105296a 10.1021/nl100559y 10.1103/PhysRevB.84.045115 10.1126/science.1096566 10.1063/1.3687007 10.1038/nnano.2007.411 10.1038/ncomms2185 10.1021/cm900431b 10.1103/PhysRevB.83.205127 10.1126/science.1077229 10.1021/nl034097+ 10.1103/PhysRevB.77.035121 10.1021/ja039734c 10.1021/ar800018v 10.1016/0927-0256(96)00008-0 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Association for the Advancement of Science 2014 INIST-CNRS Copyright © 2013, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2013 American Association for the Advancement of Science – notice: 2014 INIST-CNRS – notice: Copyright © 2013, American Association for the Advancement of Science |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1126/science.1234751 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database MEDLINE - Academic Materials Research Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Physics |
EISSN | 1095-9203 |
EndPage | 968 |
ExternalDocumentID | 2978529991 23704569 27400786 10_1126_science_1234751 41985363 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALMA_UNASSIGNED_HOLDINGS AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ AAYXX AGFXO ALIPV ALSLI CITATION .GJ .GO 0-V 186 3EH 41~ 42X 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAKAS AAYOK ABDPE ABJCF ABTAH ABUWG ACQAM ACTDY ADBBV ADZCM AEUYN AFKRA AFQQW AJUXI ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C2- CCPQU CJNVE D0S D1I D1J D1K DWQXO D~A EAU EGS EWM EX3 FYUFA GICCO GNUQQ GUQSH GX1 HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IQODW ISN ITC J5H K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZT PQEDU PROAC PSQYO PTHSS PV9 PYCSY QS- R05 RNS RZL SJFOW SKT UBY UHU UIG UKHRP VOH WOQ WOW X7L XIH XKJ XOL YCJ YJ6 YXB ZCG ZGI ZKG ZVL ZVM ZXP ZY4 ~G0 ~H1 CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c535t-da3e3cb73abe4d4ed3b8e4f6ad03e32f9ac06a3dd2a828625a34d629b2c5610e3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Sep 04 22:31:41 EDT 2025 Fri Sep 05 06:51:47 EDT 2025 Thu Sep 04 21:13:12 EDT 2025 Fri Jul 25 19:29:38 EDT 2025 Mon Jul 21 05:55:35 EDT 2025 Wed Apr 02 07:15:05 EDT 2025 Tue Jul 01 00:47:14 EDT 2025 Thu Apr 24 23:02:09 EDT 2025 Sun Sep 21 12:11:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6135 |
Keywords | Iron oxide Stability Electrochemical method Nanocage Electrode material Perchlorates Lithium battery Hollow shape Manganese oxides Transmission electron microscopy Morphology Nanobox Nanocrystal |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c535t-da3e3cb73abe4d4ed3b8e4f6ad03e32f9ac06a3dd2a828625a34d629b2c5610e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10773/20381 |
PMID | 23704569 |
PQID | 1354920047 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2000352424 proquest_miscellaneous_1559687298 proquest_miscellaneous_1355482250 proquest_journals_1354920047 pubmed_primary_23704569 pascalfrancis_primary_27400786 crossref_primary_10_1126_science_1234751 crossref_citationtrail_10_1126_science_1234751 jstor_primary_41985363 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-24 |
PublicationDateYYYYMMDD | 2013-05-24 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2013 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 23704562 - Science. 2013 May 24;340(6135):935-6 |
References_xml | – ident: e_1_3_2_27_2 doi: 10.1016/j.elecom.2009.12.040 – ident: e_1_3_2_30_2 doi: 10.1039/c1cc15322f – ident: e_1_3_2_15_2 doi: 10.1002/anie.200700677 – ident: e_1_3_2_19_2 doi: 10.1016/j.nantod.2011.02.006 – ident: e_1_3_2_24_2 doi: 10.1002/anie.201108098 – ident: e_1_3_2_39_2 doi: 10.1149/1.1801451 – ident: e_1_3_2_44_2 doi: 10.1021/ja305539r – ident: e_1_3_2_17_2 doi: 10.1021/ja903751p – ident: e_1_3_2_40_2 doi: 10.1021/jp203056n – ident: e_1_3_2_35_2 doi: 10.1103/PhysRevB.73.195107 – ident: e_1_3_2_8_2 doi: 10.1126/science.1212822 – ident: e_1_3_2_34_2 doi: 10.1103/PhysRevB.57.1505 – ident: e_1_3_2_13_2 doi: 10.1126/science.1103755 – ident: e_1_3_2_18_2 doi: 10.1016/j.nantod.2009.10.008 – ident: e_1_3_2_31_2 doi: 10.1016/j.electacta.2009.05.058 – ident: e_1_3_2_25_2 doi: 10.1007/s10008-007-0269-5 – ident: e_1_3_2_11_2 doi: 10.1038/nmat2118 – ident: e_1_3_2_29_2 doi: 10.1021/nl3004286 – ident: e_1_3_2_6_2 doi: 10.1038/nmat2848 – ident: e_1_3_2_22_2 doi: 10.1021/es001356d – ident: e_1_3_2_10_2 doi: 10.1002/adma.201200469 – ident: e_1_3_2_16_2 doi: 10.1021/ja072574a – ident: e_1_3_2_32_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_3_2_9_2 doi: 10.1021/ja073032w – ident: e_1_3_2_36_2 doi: 10.1063/1.1329672 – ident: e_1_3_2_14_2 doi: 10.1021/ja905732q – ident: e_1_3_2_43_2 doi: 10.1021/cm801105p – ident: e_1_3_2_26_2 doi: 10.1021/ja105296a – ident: e_1_3_2_7_2 doi: 10.1021/nl100559y – ident: e_1_3_2_41_2 doi: 10.1103/PhysRevB.84.045115 – ident: e_1_3_2_12_2 doi: 10.1126/science.1096566 – ident: e_1_3_2_38_2 doi: 10.1063/1.3687007 – ident: e_1_3_2_28_2 doi: 10.1038/nnano.2007.411 – ident: e_1_3_2_42_2 doi: 10.1038/ncomms2185 – ident: e_1_3_2_20_2 doi: 10.1021/cm900431b – ident: e_1_3_2_37_2 doi: 10.1103/PhysRevB.83.205127 – ident: e_1_3_2_2_2 doi: 10.1126/science.1077229 – ident: e_1_3_2_3_2 doi: 10.1021/nl034097+ – ident: e_1_3_2_23_2 doi: 10.1103/PhysRevB.77.035121 – ident: e_1_3_2_4_2 doi: 10.1021/ja039734c – ident: e_1_3_2_5_2 doi: 10.1021/ar800018v – ident: e_1_3_2_33_2 doi: 10.1016/0927-0256(96)00008-0 – reference: 23704562 - Science. 2013 May 24;340(6135):935-6 |
SSID | ssj0009593 |
Score | 2.596277 |
Snippet | Galvanic replacement reactions provide a simple and versatile route for producing hollow nanostructures with controllable pore structures and compositions.... Corrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles, whereby the reduction of one metal... Hollowing Out Metal Oxide NanoparticlesCorrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles,... Hollowing Out Metal Oxide Nanoparticles Corrosion is normally a problem, but it can be useful, for example, when you wish to create hollow metal nanoparticles,... |
SourceID | proquest pubmed pascalfrancis crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 964 |
SubjectTerms | Anodes batteries Chemical composition Chemical reactions CMOS Cobalt - chemistry corrosion Cross-disciplinary physics: materials science; rheology Dissolution Exact sciences and technology Exteriors Ferric Compounds - chemistry Ions iron Lithium Lithium batteries Manganese Manganese Compounds - chemistry Manganese oxides Materials science Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Metal oxides Metals Methods of nanofabrication Microscopy, Electron, Transmission Nanocrystalline materials Nanocrystals Nanoparticles Nanoscale materials and structures: fabrication and characterization Nanostructure Nanostructures Oxides Oxides - chemistry Perchlorate Perchlorates Perchlorates - chemistry Physics Placing Replacement reactions Research universities Tin Compounds - chemistry |
Title | Galvanic Replacement Reactions in Metal Oxide Nanocrystals |
URI | https://www.jstor.org/stable/41985363 https://www.ncbi.nlm.nih.gov/pubmed/23704569 https://www.proquest.com/docview/1354920047 https://www.proquest.com/docview/1355482250 https://www.proquest.com/docview/1559687298 https://www.proquest.com/docview/2000352424 |
Volume | 340 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxpBEF-sodCX0qRNY5OGK_QhJZzo7t6e2zdtY6VoAq2CfTr2SwgRDVFJ7F_f2Y87T1pL2pdDdme9Y-e3szO784HQe9xSpKkljhtMiZhKTmPJFIuNkoKKFuxoLhPT4JL1RvTrOBlXKpOS19JqKevq5x_jSv6Hq9AGfLVRsv_A2eJPoQF-A3_hCRyG56N4_EVMQRF2rvDOt8pd7H8zPlbBOboOjA12vHq41sYK0rm6W4M6OF2UddJ8eYOuWdzflLhWOCK2vbtA7j0QhpUPat0RzWBtBch5736Dux8rBwthbtarsFMWrd8NNMW9ed7a9-WdO5by5j6AJhxLNJ0ToI-GzkVtyHRcFrXEp2YKmAJNIjm_rXNGY-5r6wQpyn1i87Ahh77fZX2pOqWpww5M05C7diur9uVV1h31-9nwYjx8gvZwCjpWFe21O5873Z3pmUMSqFJ4Vf6CLf3Fu7Baf1qxgCU18bVQdhsrTmkZvkDPg7URtT109lHFzA7QU19_dH2A9gMPF9FZSD_-4SX6mKMqKqEqKlAVXc8ih6rIoSoqo-oVGnUvhp96caiwEauEJMtYC2KIkikR0lBNjSayZeiECd2ADjzhQjWYIFpjYdMN4EQQqhnmEiurdxtyiKqz-cwcoYi0FJOEmFQ0JjSV9uQBG5jWRAuMuU5rqJ7PW6ZC-nlbBWWaOTMUsyxMdBYmuobOigG3PvPKbtJDx4iCjjY5qKGM1NDpFmcKApxSqxyzGjrJWZWFhb3IAJaUWzkDH_2u6Aaxa-_SxMzMV44GbH3YDBt_oQFrnYGs463dNNjd5dsYrRp67aGy-UiSWoOLv3nE6GP0bLMKT1B1ebcyb0FdXsrTgPVfW4i_Xg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Galvanic+Replacement+Reactions+in+Metal+Oxide+Nanocrystals&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Oh%2C+Myoung+Hwan&rft.au=Yu%2C+Taekyung&rft.au=Yu%2C+Seung-Ho&rft.au=Lim%2C+Byungkwon&rft.date=2013-05-24&rft.issn=0036-8075&rft.volume=340&rft.issue=6135+p.964-968&rft.spage=964&rft.epage=968&rft_id=info:doi/10.1126%2Fscience.1234751&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |