Differential aggregation properties of alpha-synuclein isoforms

Pathologic aggregation of α-synuclein is a central process in the pathogenesis of Parkinson's disease. The α-synuclein gene (SNCA) encodes at least 4 different α-synuclein isoforms through alternative splicing (SNCA140, SNCA126, SNCA112, SNCA98). Differential expression of α-synuclein isoforms...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of aging Vol. 35; no. 8; pp. 1913 - 1919
Main Authors Bungeroth, May, Appenzeller, Silke, Regulin, Annika, Völker, Wolfgang, Lorenzen, Inken, Grötzinger, Joachim, Pendziwiat, Manuela, Kuhlenbäumer, Gregor
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2014
Subjects
Online AccessGet full text
ISSN0197-4580
1558-1497
1558-1497
DOI10.1016/j.neurobiolaging.2014.02.009

Cover

More Information
Summary:Pathologic aggregation of α-synuclein is a central process in the pathogenesis of Parkinson's disease. The α-synuclein gene (SNCA) encodes at least 4 different α-synuclein isoforms through alternative splicing (SNCA140, SNCA126, SNCA112, SNCA98). Differential expression of α-synuclein isoforms has been shown in Lewy body diseases. In contrast to the canonical α-synuclein isoform of 140 amino acid residues (SNCA140), which has been investigated in detail, little is known about the properties of the 3 alternative isoforms. We have investigated the aggregation properties of all 4 isoforms in cultured cells and analyzed fibril-formation of 3 isoforms (SNCA140, SNCA126, and SNCA98) in vitro by electron microscopy. Each of the 3 alternative isoforms aggregates significantly less than the canonical isoform SNCA140. Electron microscopy showed that SNCA140 formed the well-known relatively straight fibrils while SNCA126 formed shorter fibrils, which were arranged in parallel fibril bundles and SNCA98 formed annular structures. Expression analysis of α-synuclein isoforms in different human brain regions demonstrated low expression levels of the alternative isoforms in comparison to the canonical SNCA140 isoform. These findings demonstrate that α-synuclein isoforms differ qualitatively and quantitatively in their aggregation properties. The biological consequences of these findings remain to be explored in vitro and in vivo.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0197-4580
1558-1497
1558-1497
DOI:10.1016/j.neurobiolaging.2014.02.009