Human Gait Activity Recognition Machine Learning Methods

Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive applications includes monitoring of gait disorder patients, tracking their disease progression and the modification/evaluation of drugs. This paper p...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 2; p. 745
Main Authors Slemenšek, Jan, Fister, Iztok, Geršak, Jelka, Bratina, Božidar, van Midden, Vesna Marija, Pirtošek, Zvezdan, Šafarič, Riko
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 09.01.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23020745

Cover

Abstract Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive applications includes monitoring of gait disorder patients, tracking their disease progression and the modification/evaluation of drugs. This paper proposes a robust, wearable gait motion data acquisition system that allows either the classification of recorded gait data into desirable activities or the identification of common risk factors, thus enhancing the subject’s quality of life. Gait motion information was acquired using accelerometers and gyroscopes mounted on the lower limbs, where the sensors were exposed to inertial forces during gait. Additionally, leg muscle activity was measured using strain gauge sensors. As a matter of fact, we wanted to identify different gait activities within each gait recording by utilizing Machine Learning algorithms. In line with this, various Machine Learning methods were tested and compared to establish the best-performing algorithm for the classification of the recorded gait information. The combination of attention-based convolutional and recurrent neural networks algorithms outperformed the other tested algorithms and was individually tested further on the datasets of five subjects and delivered the following averaged results of classification: 98.9% accuracy, 96.8% precision, 97.8% sensitivity, 99.1% specificity and 97.3% F1-score. Moreover, the algorithm’s robustness was also verified with the successful detection of freezing gait episodes in a Parkinson’s disease patient. The results of this study indicate a feasible gait event classification method capable of complete algorithm personalization.
AbstractList Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive applications includes monitoring of gait disorder patients, tracking their disease progression and the modification/evaluation of drugs. This paper proposes a robust, wearable gait motion data acquisition system that allows either the classification of recorded gait data into desirable activities or the identification of common risk factors, thus enhancing the subject's quality of life. Gait motion information was acquired using accelerometers and gyroscopes mounted on the lower limbs, where the sensors were exposed to inertial forces during gait. Additionally, leg muscle activity was measured using strain gauge sensors. As a matter of fact, we wanted to identify different gait activities within each gait recording by utilizing Machine Learning algorithms. In line with this, various Machine Learning methods were tested and compared to establish the best-performing algorithm for the classification of the recorded gait information. The combination of attention-based convolutional and recurrent neural networks algorithms outperformed the other tested algorithms and was individually tested further on the datasets of five subjects and delivered the following averaged results of classification: 98.9% accuracy, 96.8% precision, 97.8% sensitivity, 99.1% specificity and 97.3% F1-score. Moreover, the algorithm's robustness was also verified with the successful detection of freezing gait episodes in a Parkinson's disease patient. The results of this study indicate a feasible gait event classification method capable of complete algorithm personalization.
Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive applications includes monitoring of gait disorder patients, tracking their disease progression and the modification/evaluation of drugs. This paper proposes a robust, wearable gait motion data acquisition system that allows either the classification of recorded gait data into desirable activities or the identification of common risk factors, thus enhancing the subject's quality of life. Gait motion information was acquired using accelerometers and gyroscopes mounted on the lower limbs, where the sensors were exposed to inertial forces during gait. Additionally, leg muscle activity was measured using strain gauge sensors. As a matter of fact, we wanted to identify different gait activities within each gait recording by utilizing Machine Learning algorithms. In line with this, various Machine Learning methods were tested and compared to establish the best-performing algorithm for the classification of the recorded gait information. The combination of attention-based convolutional and recurrent neural networks algorithms outperformed the other tested algorithms and was individually tested further on the datasets of five subjects and delivered the following averaged results of classification: 98.9% accuracy, 96.8% precision, 97.8% sensitivity, 99.1% specificity and 97.3% F1-score. Moreover, the algorithm's robustness was also verified with the successful detection of freezing gait episodes in a Parkinson's disease patient. The results of this study indicate a feasible gait event classification method capable of complete algorithm personalization.Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive applications includes monitoring of gait disorder patients, tracking their disease progression and the modification/evaluation of drugs. This paper proposes a robust, wearable gait motion data acquisition system that allows either the classification of recorded gait data into desirable activities or the identification of common risk factors, thus enhancing the subject's quality of life. Gait motion information was acquired using accelerometers and gyroscopes mounted on the lower limbs, where the sensors were exposed to inertial forces during gait. Additionally, leg muscle activity was measured using strain gauge sensors. As a matter of fact, we wanted to identify different gait activities within each gait recording by utilizing Machine Learning algorithms. In line with this, various Machine Learning methods were tested and compared to establish the best-performing algorithm for the classification of the recorded gait information. The combination of attention-based convolutional and recurrent neural networks algorithms outperformed the other tested algorithms and was individually tested further on the datasets of five subjects and delivered the following averaged results of classification: 98.9% accuracy, 96.8% precision, 97.8% sensitivity, 99.1% specificity and 97.3% F1-score. Moreover, the algorithm's robustness was also verified with the successful detection of freezing gait episodes in a Parkinson's disease patient. The results of this study indicate a feasible gait event classification method capable of complete algorithm personalization.
Author Šafarič, Riko
Bratina, Božidar
Pirtošek, Zvezdan
Geršak, Jelka
Slemenšek, Jan
van Midden, Vesna Marija
Fister, Iztok
AuthorAffiliation 3 Department of Neurology, University Clinical Centre, 1000 Ljubljana, Slovenia
2 Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
1 Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
AuthorAffiliation_xml – name: 3 Department of Neurology, University Clinical Centre, 1000 Ljubljana, Slovenia
– name: 2 Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
– name: 1 Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
Author_xml – sequence: 1
  givenname: Jan
  surname: Slemenšek
  fullname: Slemenšek, Jan
– sequence: 2
  givenname: Iztok
  surname: Fister
  fullname: Fister, Iztok
– sequence: 3
  givenname: Jelka
  orcidid: 0000-0001-8693-3247
  surname: Geršak
  fullname: Geršak, Jelka
– sequence: 4
  givenname: Božidar
  surname: Bratina
  fullname: Bratina, Božidar
– sequence: 5
  givenname: Vesna Marija
  orcidid: 0000-0003-4653-8503
  surname: van Midden
  fullname: van Midden, Vesna Marija
– sequence: 6
  givenname: Zvezdan
  surname: Pirtošek
  fullname: Pirtošek, Zvezdan
– sequence: 7
  givenname: Riko
  orcidid: 0000-0001-6856-7992
  surname: Šafarič
  fullname: Šafarič, Riko
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36679546$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rFDEUxYNU7B998AvIgC8qrM0kmcnMi1CKtoUtguhzuEnu7GaZTdYkU9lvb9atS1vEp3vJ_eVw7j2n5MgHj4S8rulHznt6nhinjErRPCMntWBi1jFGjx70x-Q0pRWljHPevSDHvG1l34j2hHTX0xp8dQUuVxcmuzuXt9U3NGHhXXbBV7dgls5jNUeI3vlFdYt5GWx6SZ4PMCZ8dV_PyI8vn79fXs_mX69uLi_mM9PwJs9ASwCuhQAsBaXg1ggttUDOmzLkFnAoTnpJbSeRN7QdgJte6s7qTht-Rm72ujbASm2iW0PcqgBO_XkIcaEgZmdGVLXWbWPAisH2otYIom6pMEM3GDE0ti5aH_Zak9_A9heM40Gwpmp3SnU4ZYE_7eHNpNdoDfocYXzk4PHEu6VahDvVd21De1EE3t0LxPBzwpTV2iWD4wgew5QUk23Jpmdyh759gq7CFH25646SrG9ZJwv15qGjg5W_aRbg_R4wMaQUcfjveudPWOMy7CIvy7jxHz9-A9F0vgg
CitedBy_id crossref_primary_10_4274_tnd_2023_73658
crossref_primary_10_12677_AIRR_2023_122012
crossref_primary_10_3390_medicines10080045
crossref_primary_10_1038_s41598_024_75445_7
crossref_primary_10_1038_s41598_024_63934_8
crossref_primary_10_3390_bioengineering11020105
crossref_primary_10_1038_s41598_023_50481_x
crossref_primary_10_3390_bioengineering10070785
crossref_primary_10_32604_cmc_2023_043061
crossref_primary_10_1016_j_sna_2024_116194
crossref_primary_10_1109_JSEN_2024_3400296
crossref_primary_10_3390_app13095444
crossref_primary_10_3390_s23136217
crossref_primary_10_3390_s23052754
crossref_primary_10_3390_s24227280
crossref_primary_10_1016_j_neucom_2024_128313
crossref_primary_10_3389_fbioe_2024_1370101
crossref_primary_10_3390_bioengineering11101048
Cites_doi 10.1016/j.gaitpost.2018.04.047
10.1016/j.specom.2017.02.009
10.1007/s13042-017-0677-5
10.1007/978-1-4842-4470-8
10.1109/7333.928571
10.1080/02640414.2013.805884
10.3390/s21061937
10.1109/TIFS.2015.2415753
10.2106/00004623-195335030-00003
10.3390/s150922089
10.1016/j.ymssp.2020.107398
10.1016/j.neucom.2020.07.103
10.3390/s140916212
10.1016/j.jbiomech.2019.109490
10.1016/j.comcom.2016.03.006
10.1142/9097
10.1016/j.automatica.2004.01.014
10.1016/j.mechatronics.2011.03.003
10.3390/s140202776
10.3390/computers9040096
10.1109/TMI.2016.2535302
10.1109/JSEN.2019.2928777
10.3390/proceedings2019031060
10.1109/CCWC54503.2022.9720821
10.1016/j.ijleo.2017.12.038
10.3390/s19040948
10.1371/journal.pone.0176816
10.3390/s16010066
10.1016/j.neures.2021.06.007
10.1016/j.envsoft.2019.104600
10.3390/s16010115
10.4085/1062-6050-0520.19
10.1109/TNSRE.2014.2337914
10.1109/JIOT.2019.2949715
10.1371/journal.pone.0206049
10.1177/0165551516677946
10.3390/bios10090109
10.3390/s22051722
10.3390/s140406891
10.1111/joes.12012
10.1016/j.humov.2015.07.009
10.3390/s18041279
10.1109/TSMCB.2008.927722
10.1016/j.jbiomech.2009.07.016
10.1016/j.eswa.2016.10.065
10.3934/mbe.2019311
10.1016/S0021-9290(02)00008-8
10.3390/s19163462
10.5121/ijdkp.2015.5201
10.1109/JSEN.2019.2917225
10.1016/j.pmr.2018.12.007
10.1109/TBME.2018.2876068
10.3390/s19071483
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s23020745
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1bb65cad4fd941bea41604cf8fc4f5d1
10.3390/s23020745
PMC9865094
36679546
10_3390_s23020745
Genre Journal Article
GrantInformation_xml – fundername: Slovenian Research Agency
  grantid: 1000-2022-0552
– fundername: Slovenian Research Agency
  grantid: P2-0123
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c535t-ab7aa3b44aea3be743dc4b7b4e335ab73daef546970d87e3506fa3c97b8db8bc3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:38:03 EDT 2025
Sun Oct 26 04:14:34 EDT 2025
Tue Sep 30 17:16:30 EDT 2025
Wed Oct 01 17:26:47 EDT 2025
Tue Oct 07 07:20:58 EDT 2025
Wed Feb 19 02:26:16 EST 2025
Thu Oct 16 04:31:55 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords wearable
recurrent neural network
attention mechanism
convolutional neural network
human gait
machine learning
activity recognition
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-ab7aa3b44aea3be743dc4b7b4e335ab73daef546970d87e3506fa3c97b8db8bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4653-8503
0000-0001-8693-3247
0000-0001-6856-7992
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/23/2/745/pdf?version=1673318313
PMID 36679546
PQID 2767296287
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_1bb65cad4fd941bea41604cf8fc4f5d1
unpaywall_primary_10_3390_s23020745
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9865094
proquest_miscellaneous_2768229274
proquest_journals_2767296287
pubmed_primary_36679546
crossref_primary_10_3390_s23020745
crossref_citationtrail_10_3390_s23020745
PublicationCentury 2000
PublicationDate 20230109
PublicationDateYYYYMMDD 2023-01-09
PublicationDate_xml – month: 1
  year: 2023
  text: 20230109
  day: 9
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sun (ref_46) 2004; 40
Chen (ref_50) 2017; 72
Urakami (ref_57) 2021; 173
ref_13
Prado (ref_22) 2019; 30
Wang (ref_41) 2019; 19
ref_12
Kawabata (ref_24) 2013; 31
Salyers (ref_42) 2019; 66
Ogawa (ref_52) 2017; 89
ref_10
Xu (ref_28) 2018; 44
ref_19
Saunders (ref_1) 1953; 35
Aminian (ref_16) 2002; 35
Bae (ref_30) 2011; 21
Tajbakhsh (ref_35) 2016; 35
Zhang (ref_54) 2020; 124
Bejarano (ref_9) 2015; 23
Weston (ref_32) 2009; 609
Sprager (ref_33) 2015; 10
ref_20
Alharthi (ref_36) 2019; 19
ref_29
ref_27
ref_26
Moustakidis (ref_14) 2008; 38
Kiranyaz (ref_37) 2020; 151
Zhang (ref_55) 2019; 7
Seel (ref_11) 2014; 14
Yang (ref_53) 2018; 9
DeJong (ref_6) 2020; 55
ref_34
Takeda (ref_21) 2009; 42
ref_31
Chen (ref_49) 2020; 418
Benson (ref_7) 2018; 63
ref_38
Zhao (ref_51) 2017; 158
Kamnik (ref_8) 2014; 14
Woznowski (ref_15) 2016; 89–90
ref_47
ref_45
ref_44
ref_43
Mo (ref_5) 2019; 16
Sprager (ref_18) 2015; 15
ref_40
ref_3
ref_2
Hossin (ref_56) 2015; 5
Pappas (ref_25) 2001; 9
Soares (ref_48) 2014; 28
Lempereur (ref_39) 2020; 98
Hebenstreit (ref_23) 2015; 43
Taborri (ref_17) 2014; 14
ref_4
References_xml – volume: 63
  start-page: 124
  year: 2018
  ident: ref_7
  article-title: The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.04.047
– volume: 89
  start-page: 70
  year: 2017
  ident: ref_52
  article-title: Error detection and accuracy estimation in automatic speech recognition using deep bidirectional recurrent neural networks
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2017.02.009
– volume: 9
  start-page: 1733
  year: 2018
  ident: ref_53
  article-title: A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-017-0677-5
– ident: ref_38
  doi: 10.1007/978-1-4842-4470-8
– volume: 9
  start-page: 113
  year: 2001
  ident: ref_25
  article-title: A reliable gait phase detection system
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/7333.928571
– volume: 31
  start-page: 1841
  year: 2013
  ident: ref_24
  article-title: Acceleration patterns in the lower and upper trunk during running
  publication-title: J. Sports Sci.
  doi: 10.1080/02640414.2013.805884
– ident: ref_47
  doi: 10.3390/s21061937
– volume: 10
  start-page: 1486
  year: 2015
  ident: ref_33
  article-title: An Efficient HOS-Based Gait Authentication of Accelerometer Data
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2015.2415753
– volume: 35
  start-page: 543
  year: 1953
  ident: ref_1
  article-title: The Major Determinants in Normal and Pathological Gait
  publication-title: J. Bone Jt. Surg.
  doi: 10.2106/00004623-195335030-00003
– volume: 15
  start-page: 22089
  year: 2015
  ident: ref_18
  article-title: Inertial Sensor-Based Gait Recognition: A Review
  publication-title: Sensors
  doi: 10.3390/s150922089
– volume: 151
  start-page: 107398
  year: 2020
  ident: ref_37
  article-title: 1D convolutional neural networks and applications: A survey
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2020.107398
– ident: ref_31
– volume: 418
  start-page: 200
  year: 2020
  ident: ref_49
  article-title: Topographic property of backpropagation artificial neural network: From human functional connectivity network to artificial neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.103
– volume: 14
  start-page: 16212
  year: 2014
  ident: ref_17
  article-title: A Novel HMM Distributed Classifier for the Detection of Gait Phases by Means of a Wearable Inertial Sensor Network
  publication-title: Sensors
  doi: 10.3390/s140916212
– volume: 98
  start-page: 109490
  year: 2020
  ident: ref_39
  article-title: A new deep learning-based method for the detection of gait events in children with gait disorders: Proof-of-concept and concurrent validity
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.109490
– volume: 89–90
  start-page: 34
  year: 2016
  ident: ref_15
  article-title: Classification and suitability of sensing technologies for activity recognition
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2016.03.006
– ident: ref_27
  doi: 10.1142/9097
– volume: 40
  start-page: 1017
  year: 2004
  ident: ref_46
  article-title: Multi-sensor optimal information fusion Kalman filter
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.01.014
– volume: 21
  start-page: 961
  year: 2011
  ident: ref_30
  article-title: Gait phase analysis based on a Hidden Markov Model
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2011.03.003
– volume: 14
  start-page: 2776
  year: 2014
  ident: ref_8
  article-title: Online Phase Detection Using Wearable Sensors for Walking with a Robotic Prosthesis
  publication-title: Sensors
  doi: 10.3390/s140202776
– ident: ref_26
  doi: 10.3390/computers9040096
– ident: ref_45
– volume: 35
  start-page: 1299
  year: 2016
  ident: ref_35
  article-title: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 19
  start-page: 9575
  year: 2019
  ident: ref_36
  article-title: Deep Learning for Monitoring of Human Gait: A Review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2928777
– ident: ref_20
  doi: 10.3390/proceedings2019031060
– ident: ref_44
  doi: 10.1109/CCWC54503.2022.9720821
– volume: 158
  start-page: 266
  year: 2017
  ident: ref_51
  article-title: Applying deep bidirectional LSTM and mixture density network for basketball trajectory prediction
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.12.038
– ident: ref_3
  doi: 10.3390/s19040948
– ident: ref_2
  doi: 10.1371/journal.pone.0176816
– ident: ref_4
  doi: 10.3390/s16010066
– volume: 173
  start-page: 80
  year: 2021
  ident: ref_57
  article-title: Forward gait instability in patients with Parkinson’s disease with freezing of gait
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2021.06.007
– volume: 124
  start-page: 104600
  year: 2020
  ident: ref_54
  article-title: Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.104600
– ident: ref_29
  doi: 10.3390/s16010115
– ident: ref_34
– volume: 55
  start-page: 1307
  year: 2020
  ident: ref_6
  article-title: Validation of Foot-Strike Assessment Using Wearable Sensors During Running
  publication-title: J. Athl. Train.
  doi: 10.4085/1062-6050-0520.19
– volume: 23
  start-page: 413
  year: 2015
  ident: ref_9
  article-title: A Novel Adaptive, Real-Time Algorithm to Detect Gait Events from Wearable Sensors
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2337914
– volume: 7
  start-page: 1072
  year: 2019
  ident: ref_55
  article-title: A Novel IoT-Perceptive Human Activity Recognition (HAR) Approach Using Multihead Convolutional Attention
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2949715
– ident: ref_40
  doi: 10.1371/journal.pone.0206049
– volume: 44
  start-page: 48
  year: 2018
  ident: ref_28
  article-title: Bayesian Naïve Bayes classifiers to text classification
  publication-title: J. Inf. Sci.
  doi: 10.1177/0165551516677946
– ident: ref_13
  doi: 10.3390/bios10090109
– ident: ref_19
  doi: 10.3390/s22051722
– volume: 609
  start-page: 223
  year: 2009
  ident: ref_32
  article-title: A User’s Guide to Support Vector Machines
  publication-title: Methods Mol. Biol.
– volume: 14
  start-page: 6891
  year: 2014
  ident: ref_11
  article-title: IMU-Based Joint Angle Measurement for Gait Analysis
  publication-title: Sensors
  doi: 10.3390/s140406891
– volume: 28
  start-page: 344
  year: 2014
  ident: ref_48
  article-title: The continuous wavelet transform: Moving beyond uni-and bivariate analysis
  publication-title: J. Econ. Surv.
  doi: 10.1111/joes.12012
– volume: 43
  start-page: 118
  year: 2015
  ident: ref_23
  article-title: Effect of walking speed on gait sub phase durations
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2015.07.009
– ident: ref_10
  doi: 10.3390/s18041279
– volume: 38
  start-page: 1476
  year: 2008
  ident: ref_14
  article-title: Subject Recognition Based on Ground Reaction Force Measurements of Gait Signals
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybernetics)
  doi: 10.1109/TSMCB.2008.927722
– volume: 42
  start-page: 2486
  year: 2009
  ident: ref_21
  article-title: Gait posture estimation using wearable acceleration and gyro sensors
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.07.016
– volume: 72
  start-page: 221
  year: 2017
  ident: ref_50
  article-title: Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.065
– volume: 16
  start-page: 6242
  year: 2019
  ident: ref_5
  article-title: Running gait pattern recognition based on cross-correlation analysis of single acceleration sensor
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2019311
– volume: 35
  start-page: 689
  year: 2002
  ident: ref_16
  article-title: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00008-8
– ident: ref_43
  doi: 10.3390/s19163462
– volume: 5
  start-page: 01
  year: 2015
  ident: ref_56
  article-title: A Review on Evaluation Metrics for Data Classification Evaluations
  publication-title: Int. J. Data Min. Knowl. Manag. Process
  doi: 10.5121/ijdkp.2015.5201
– volume: 19
  start-page: 7598
  year: 2019
  ident: ref_41
  article-title: Attention-Based Convolutional Neural Network for Weakly Labeled Human Activities’ Recognition with Wearable Sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2917225
– volume: 30
  start-page: 355
  year: 2019
  ident: ref_22
  article-title: Gait Segmentation of Data Collected by Instrumented Shoes Using a Recurrent Neural Network Classifier
  publication-title: Phys. Med. Rehabil. Clin. N. Am.
  doi: 10.1016/j.pmr.2018.12.007
– volume: 66
  start-page: 1588
  year: 2019
  ident: ref_42
  article-title: Continuous Wavelet Transform for Decoding Finger Movements from Single-Channel EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2876068
– ident: ref_12
  doi: 10.3390/s19071483
SSID ssj0023338
Score 2.525055
Snippet Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 745
SubjectTerms activity recognition
Algorithms
Ankle
Classification
convolutional neural network
Data acquisition systems
Data collection
Datasets
Discriminant analysis
Gait
human gait
Humans
Kinematics
Machine Learning
Neural networks
Prostheses
Quality of Life
recurrent neural network
Sensors
Wavelet transforms
wearable
Wearable Electronic Devices
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VXGgPCOgD85LbcuBikXifPgKCRpXSAyISN2t2vVuQIiciiRD_ntm1YyUqFRdOljxzGH3j8cxnr74BOOmj0ai4zXwuXRYU5jJURZ5hjobemJpKKhDF4R85GPHfd-JuZdVXOBPWyAM3wJ31jZHCYsV9VfC-cUgTRI9br73lXlSR-PR0sSRTLdVixLwaHSFGpP5sRoN2Ts1SrHWfKNL_2mT57wHJzUU9xecnHI9Xus_1Nmy1Y2N63oS7Ax9cvQufVsQEP4OO3-PTX_gwT89tsxQivVmeD5rU6TCem3RpK6n6Nx3G7dGzLzC6vrq9HGTtXoTMCibmGRqFyAzn6OjiaAaoLDfKcMeYICOr0HlBvFf1Kq0cEz3pkdlCGV0ZbSz7Chv1pHZ7kDopPRk8dXXDg5S-lNrLXNvCKCFym8DpEq_StqLhYXfFuCTyEKAtO2gT-NG5ThuljNecLgLonUMQt443KOVlm_LyrZQncLhMWdlW3KzMlSSeQKGrBL53ZqqV8AMEazdZRJ-gb09EPIFvTYa7SJiUqiDQElBruV8Ldd1SP9xHPe5CRxnCBH52T8n_Edh_DwQO4GNYex8_BRWHsDF_XLgjGo7m5jjWwQuCyA8b
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLbK9gA9IN4NFBQeBy5RdzPPHBBqUUuFtCtUUam3yDOZKZVWydLdFeLf45k82lULp0ixDyN7PP48cT4DfJig0ai4zXwuXRYY5jJURZ5hjoZOTE0hFQrF6UyenPFv5-J8C2b9vzChrbI_E-NBXTU23JHv50oSDpQE8D8vfmVhalT4utqP0MButEL1KVKM3YPtPDBjjWD78Gj2_XQowRhVZC2_EKNif39JADynJCo2slIk778Lcd5unLy_rhf45zfO5zey0vEjeNjByfSg9f9j2HL1E9i5QTL4FHS8p0-_4uUqPbDtsIj0tO8baup0GvspXdpRrV6k0zhVevkMzo6Pfnw5ybp5CZkVTKwyNAqRGc7R0cMRNqgsN8pwx5ggIavQeUH1sBpXWjkmxtIjs4UyujLaWPYcRnVTu11InZSeBJ6yveGBYl9K7cn4tjBKiNwm8LG3V2k7MvEw02JeUlERTFsOpk3g3aC6aBk07lI6DEYfFALpdXzRXF2UXQyVE2OksFhxXxV8YhwSmBxz67W33ItqksBe77Kyi8Rleb1vEng7iCmGwocRrF2zjjqB954K9ARetB4eVsKkVAUZLQG14fuNpW5K6sufkae70JGeMIH3wy75twVe_n_xr-BBGHQfL3-KPRitrtbuNcGhlXnT7fG_WcQLsg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6h7gE48GYJLCg8DlyyaeJnTqgglhVSVwhRaTlFtmMvFVVabVMQ_HrGjhttYZEQp0jxRJrYM5lvnPE3AC8KpaUS1GSu5DbzDHOZElWZqVJp_GJKdCmfKE5P-PGMvj9lp3HDbR3LKjEVn4ePtD-FlWEEG-clyctcUJavGvfqW9xJKrhvOCiJb1q7xxli8RHszU4-TD6HI0Xx2Z5OiGBun68Rb5cYM9lOEApc_ZcBzD_rJK9u2pX68V0tFheC0NFNqLfq97UnXw83nT40P39jdvz_97sFNyI-TSe9Qd2GK7a9A9cvsBbeBRk2_tN3at6lE9N3n0g_bguRlm06DQWaNo3crWfpNLSpXt-D2dHbT2-Os9iAITOMsC5TWihFNKXK4sUi2GgM1UJTSwjDQdIo6xgm2GLcSGEJG3OniKmElo2W2pD7MGqXrX0AqeXc4YBD-KCp5-znXDpeSlNpwVhpEni5XZHaRHZy3yRjUWOW4hevHhYvgWeD6Kqn5LhM6LVf1kHAs2iHG8vzszo6ZV1ozZlRDXVNRQttFaLTMTVOOkMda4oEDrZGUUfXXtel4JiQoOoigafDMDql_9OiWrvcBBlPpI8ZfwL7vQ0NmhDORYWTloDYsa4dVXdH2vmXQPxdycB3mMDzwQ7_PgMP_0nqEVwrEbaFTaXqAEbd-cY-RpjV6SfRl34B0bsiSw
  priority: 102
  providerName: Unpaywall
Title Human Gait Activity Recognition Machine Learning Methods
URI https://www.ncbi.nlm.nih.gov/pubmed/36679546
https://www.proquest.com/docview/2767296287
https://www.proquest.com/docview/2768229274
https://pubmed.ncbi.nlm.nih.gov/PMC9865094
https://www.mdpi.com/1424-8220/23/2/745/pdf?version=1673318313
https://doaj.org/article/1bb65cad4fd941bea41604cf8fc4f5d1
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zi9swEB72eGj7UHrX7Ta4B6UvbhPr9EMp2bLZpZCwLA2kT0aSpe1CcLI5aPffdyQfrGkKfbHBGsww0nhmpPH3AbwbKC2VoCZxKbeJR5hLlMjSRKVK4xdTokv5QnE84WdT-m3GZnvQtDXXBlzvLO08n9R0Nf_4-_rmCzr8Z19xYsn-aY1pdIqhkL1fXieeT8qfu9bkGvtwiDEr86QOY9qeL6SEBI5r_5tXgiGyX2EOdd_WiVQB0H9XFvp3M-WdbblUN7_UfH4rUo0ewP06xYyH1Zp4CHu2fAT3bgEPPgYZ9u7jU3W1iYemIpCIL5peokUZj0OPpY1r-NXLeByYptdPYDo6-f71LKk5FBLDCNskSguliKZUWbxZzBcKQ7XQ1BLCcJAUyjqGNbLoF1JYwvrcKWIyoWWhpTbkKRyUi9I-h9hy7nDAYQagqYfd51w6nkqTacFYaiL40NgrNzXAuOe5mOdYaHjT5q1pI3jTii4rVI1dQsfe6K2AB8IODxary7z2q3ygNWdGFdQVGR1oqzDB7FPjpDPUsWIQwVEzZXmzuPJUcKwpUHURwet2GP3KH5ao0i62QcZj4WPRHsGzaoZbTQjnIkOjRSA6c99RtTtSXv0M2N2ZDJCFEbxtV8m_LfDiP7R7CXdTXM9hVyg7goPNamtfYZ600T3YFzOBVzk67cHh8cnk_KIX9hx6wRnw2XRyPvzxB4qzF-s
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeqtJnKLTuS-olYjd-JYcK0QddCsuhAmlvwXZsirRKFnZXiD_V39ix84BVaW-cIsWjyJr32JNvAN73lU6VZCZ2ibCxR5iLlcySWCVKo8dM0aR8oTg8FINj9mPER0vwu_0XxrdVtj4xOOqiMv6MfCuRAvNAgQn-9uQ89lOj_O1qO0KjVot9e3WJJdv0095XlO-HJNn9dvRlEDdTBWLDKZ_FSkulqGZMWXxYjKCFYVpqZinluEgLZR3HqlH2ilRaynvCKWoyqdNCp9pQ_O49WGEUfQnajxxdF3gU670avYjSrLc1xfQ-wRDNF2JeGA1wWz77d1vm6rycqKtLNR7fiHm7j-Bhk6ySnVq71mDJlo_hwQ0IwyeQhlsA8l2dzciOqUdRkJ9tV1JVkmHo1rSkAXI9JcMws3r6FI7vhG_PYLmsSvsCiBXC4YLDXEIzD-AvROpQtCbTkvPERPCx5VduGqhyPzFjnGPJ4lmbd6yN4G1HOqnxOW4j-uyZ3hF4SO3woro4zRsLzftaC25UwVyRsb62ClPVHjMudYY5XvQj2GhFljd2Ps2vtTKCN90yWqi_dlGlreaBxqPqY_kfwfNawt1OqBAyQ6ZFIBdkv7DVxZXy7FdAAc_SAH4YwbtOS_7NgfX_b_41rA6Ohgf5wd7h_ku4n6Aqh2OmbAOWZxdzu4mJ10y_CtpO4OSuzesPI3xEWw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VInE8VNwECoRL6ku0uz6ThwoVytJStkKISvsWbMculVbJ0t1V1b_WX9exc7QrCm99ipQZRdYcnhl78g3Au4HSqZLMJI4Im3iEuUTJjCSKKI07Zoou5QvF0b7YOWBfx3y8AmftvzC-rbLdE8NGXVTGn5H3iBSYBwpM8HuuaYv4vj38MP2T-AlS_qa1HadRm8iePT3B8m22ubuNun5PyPDzz087STNhIDGc8nmitFSKasaUxYfFaFoYpqVmllKORFoo6zhWkLJfpNJS3hdOUZNJnRY61Ybid2_ATUlp5tsJ5fii2KNY-9VIRkjs92aY6hMM13wp_oUxAVfltn-3aN5elFN1eqImk0vxb3gP1prENd6qLe0-rNjyAdy9BGf4ENJwIxB_UUfzeMvUYyniH22HUlXGo9C5aeMG1PUwHoX51bNHcHAtcnsMq2VV2qcQWyEcEhzmFZp5MH8hUodqNpmWnBMTwUYrr9w0sOV-esYkx_LFizbvRBvBm451WmN1XMX00Qu9Y_Dw2uFFdXyYN96aD7QW3KiCuSJjA20Vpq19ZlzqDHO8GESw3qosb3x-ll9YaASvOzJ6q7-CUaWtFoHHI-wTySJ4Umu4WwkVQmYotAjkku6XlrpMKY9-B0TwLA1AiBG87azk3xJ49v_Fv4Jb6Fj5t939vedwh6AlhxOnbB1W58cL-wJzsLl-GYw9hl_X7V3nJYFIng
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6h7gE48GYJLCg8DlyyaeJnTqgglhVSVwhRaTlFtmMvFVVabVMQ_HrGjhttYZEQp0jxRJrYM5lvnPE3AC8KpaUS1GSu5DbzDHOZElWZqVJp_GJKdCmfKE5P-PGMvj9lp3HDbR3LKjEVn4ePtD-FlWEEG-clyctcUJavGvfqW9xJKrhvOCiJb1q7xxli8RHszU4-TD6HI0Xx2Z5OiGBun68Rb5cYM9lOEApc_ZcBzD_rJK9u2pX68V0tFheC0NFNqLfq97UnXw83nT40P39jdvz_97sFNyI-TSe9Qd2GK7a9A9cvsBbeBRk2_tN3at6lE9N3n0g_bguRlm06DQWaNo3crWfpNLSpXt-D2dHbT2-Os9iAITOMsC5TWihFNKXK4sUi2GgM1UJTSwjDQdIo6xgm2GLcSGEJG3OniKmElo2W2pD7MGqXrX0AqeXc4YBD-KCp5-znXDpeSlNpwVhpEni5XZHaRHZy3yRjUWOW4hevHhYvgWeD6Kqn5LhM6LVf1kHAs2iHG8vzszo6ZV1ozZlRDXVNRQttFaLTMTVOOkMda4oEDrZGUUfXXtel4JiQoOoigafDMDql_9OiWrvcBBlPpI8ZfwL7vQ0NmhDORYWTloDYsa4dVXdH2vmXQPxdycB3mMDzwQ7_PgMP_0nqEVwrEbaFTaXqAEbd-cY-RpjV6SfRl34B0bsiSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Gait+Activity+Recognition+Machine+Learning+Methods&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Slemen%C5%A1ek%2C+Jan&rft.au=Fister%2C+Iztok&rft.au=Ger%C5%A1ak%2C+Jelka&rft.au=Bratina%2C+Bo%C5%BEidar&rft.date=2023-01-09&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft_id=info:doi/10.3390%2Fs23020745&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon