Human Gait Activity Recognition Machine Learning Methods
Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive applications includes monitoring of gait disorder patients, tracking their disease progression and the modification/evaluation of drugs. This paper p...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 23; no. 2; p. 745 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
09.01.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23020745 |
Cover
| Abstract | Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive applications includes monitoring of gait disorder patients, tracking their disease progression and the modification/evaluation of drugs. This paper proposes a robust, wearable gait motion data acquisition system that allows either the classification of recorded gait data into desirable activities or the identification of common risk factors, thus enhancing the subject’s quality of life. Gait motion information was acquired using accelerometers and gyroscopes mounted on the lower limbs, where the sensors were exposed to inertial forces during gait. Additionally, leg muscle activity was measured using strain gauge sensors. As a matter of fact, we wanted to identify different gait activities within each gait recording by utilizing Machine Learning algorithms. In line with this, various Machine Learning methods were tested and compared to establish the best-performing algorithm for the classification of the recorded gait information. The combination of attention-based convolutional and recurrent neural networks algorithms outperformed the other tested algorithms and was individually tested further on the datasets of five subjects and delivered the following averaged results of classification: 98.9% accuracy, 96.8% precision, 97.8% sensitivity, 99.1% specificity and 97.3% F1-score. Moreover, the algorithm’s robustness was also verified with the successful detection of freezing gait episodes in a Parkinson’s disease patient. The results of this study indicate a feasible gait event classification method capable of complete algorithm personalization. |
|---|---|
| AbstractList | Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive applications includes monitoring of gait disorder patients, tracking their disease progression and the modification/evaluation of drugs. This paper proposes a robust, wearable gait motion data acquisition system that allows either the classification of recorded gait data into desirable activities or the identification of common risk factors, thus enhancing the subject's quality of life. Gait motion information was acquired using accelerometers and gyroscopes mounted on the lower limbs, where the sensors were exposed to inertial forces during gait. Additionally, leg muscle activity was measured using strain gauge sensors. As a matter of fact, we wanted to identify different gait activities within each gait recording by utilizing Machine Learning algorithms. In line with this, various Machine Learning methods were tested and compared to establish the best-performing algorithm for the classification of the recorded gait information. The combination of attention-based convolutional and recurrent neural networks algorithms outperformed the other tested algorithms and was individually tested further on the datasets of five subjects and delivered the following averaged results of classification: 98.9% accuracy, 96.8% precision, 97.8% sensitivity, 99.1% specificity and 97.3% F1-score. Moreover, the algorithm's robustness was also verified with the successful detection of freezing gait episodes in a Parkinson's disease patient. The results of this study indicate a feasible gait event classification method capable of complete algorithm personalization. Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive applications includes monitoring of gait disorder patients, tracking their disease progression and the modification/evaluation of drugs. This paper proposes a robust, wearable gait motion data acquisition system that allows either the classification of recorded gait data into desirable activities or the identification of common risk factors, thus enhancing the subject's quality of life. Gait motion information was acquired using accelerometers and gyroscopes mounted on the lower limbs, where the sensors were exposed to inertial forces during gait. Additionally, leg muscle activity was measured using strain gauge sensors. As a matter of fact, we wanted to identify different gait activities within each gait recording by utilizing Machine Learning algorithms. In line with this, various Machine Learning methods were tested and compared to establish the best-performing algorithm for the classification of the recorded gait information. The combination of attention-based convolutional and recurrent neural networks algorithms outperformed the other tested algorithms and was individually tested further on the datasets of five subjects and delivered the following averaged results of classification: 98.9% accuracy, 96.8% precision, 97.8% sensitivity, 99.1% specificity and 97.3% F1-score. Moreover, the algorithm's robustness was also verified with the successful detection of freezing gait episodes in a Parkinson's disease patient. The results of this study indicate a feasible gait event classification method capable of complete algorithm personalization.Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive applications includes monitoring of gait disorder patients, tracking their disease progression and the modification/evaluation of drugs. This paper proposes a robust, wearable gait motion data acquisition system that allows either the classification of recorded gait data into desirable activities or the identification of common risk factors, thus enhancing the subject's quality of life. Gait motion information was acquired using accelerometers and gyroscopes mounted on the lower limbs, where the sensors were exposed to inertial forces during gait. Additionally, leg muscle activity was measured using strain gauge sensors. As a matter of fact, we wanted to identify different gait activities within each gait recording by utilizing Machine Learning algorithms. In line with this, various Machine Learning methods were tested and compared to establish the best-performing algorithm for the classification of the recorded gait information. The combination of attention-based convolutional and recurrent neural networks algorithms outperformed the other tested algorithms and was individually tested further on the datasets of five subjects and delivered the following averaged results of classification: 98.9% accuracy, 96.8% precision, 97.8% sensitivity, 99.1% specificity and 97.3% F1-score. Moreover, the algorithm's robustness was also verified with the successful detection of freezing gait episodes in a Parkinson's disease patient. The results of this study indicate a feasible gait event classification method capable of complete algorithm personalization. |
| Author | Šafarič, Riko Bratina, Božidar Pirtošek, Zvezdan Geršak, Jelka Slemenšek, Jan van Midden, Vesna Marija Fister, Iztok |
| AuthorAffiliation | 3 Department of Neurology, University Clinical Centre, 1000 Ljubljana, Slovenia 2 Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia 1 Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia |
| AuthorAffiliation_xml | – name: 3 Department of Neurology, University Clinical Centre, 1000 Ljubljana, Slovenia – name: 2 Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia – name: 1 Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia |
| Author_xml | – sequence: 1 givenname: Jan surname: Slemenšek fullname: Slemenšek, Jan – sequence: 2 givenname: Iztok surname: Fister fullname: Fister, Iztok – sequence: 3 givenname: Jelka orcidid: 0000-0001-8693-3247 surname: Geršak fullname: Geršak, Jelka – sequence: 4 givenname: Božidar surname: Bratina fullname: Bratina, Božidar – sequence: 5 givenname: Vesna Marija orcidid: 0000-0003-4653-8503 surname: van Midden fullname: van Midden, Vesna Marija – sequence: 6 givenname: Zvezdan surname: Pirtošek fullname: Pirtošek, Zvezdan – sequence: 7 givenname: Riko orcidid: 0000-0001-6856-7992 surname: Šafarič fullname: Šafarič, Riko |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36679546$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV9rFDEUxYNU7B998AvIgC8qrM0kmcnMi1CKtoUtguhzuEnu7GaZTdYkU9lvb9atS1vEp3vJ_eVw7j2n5MgHj4S8rulHznt6nhinjErRPCMntWBi1jFGjx70x-Q0pRWljHPevSDHvG1l34j2hHTX0xp8dQUuVxcmuzuXt9U3NGHhXXbBV7dgls5jNUeI3vlFdYt5GWx6SZ4PMCZ8dV_PyI8vn79fXs_mX69uLi_mM9PwJs9ASwCuhQAsBaXg1ggttUDOmzLkFnAoTnpJbSeRN7QdgJte6s7qTht-Rm72ujbASm2iW0PcqgBO_XkIcaEgZmdGVLXWbWPAisH2otYIom6pMEM3GDE0ti5aH_Zak9_A9heM40Gwpmp3SnU4ZYE_7eHNpNdoDfocYXzk4PHEu6VahDvVd21De1EE3t0LxPBzwpTV2iWD4wgew5QUk23Jpmdyh759gq7CFH25646SrG9ZJwv15qGjg5W_aRbg_R4wMaQUcfjveudPWOMy7CIvy7jxHz9-A9F0vgg |
| CitedBy_id | crossref_primary_10_4274_tnd_2023_73658 crossref_primary_10_12677_AIRR_2023_122012 crossref_primary_10_3390_medicines10080045 crossref_primary_10_1038_s41598_024_75445_7 crossref_primary_10_1038_s41598_024_63934_8 crossref_primary_10_3390_bioengineering11020105 crossref_primary_10_1038_s41598_023_50481_x crossref_primary_10_3390_bioengineering10070785 crossref_primary_10_32604_cmc_2023_043061 crossref_primary_10_1016_j_sna_2024_116194 crossref_primary_10_1109_JSEN_2024_3400296 crossref_primary_10_3390_app13095444 crossref_primary_10_3390_s23136217 crossref_primary_10_3390_s23052754 crossref_primary_10_3390_s24227280 crossref_primary_10_1016_j_neucom_2024_128313 crossref_primary_10_3389_fbioe_2024_1370101 crossref_primary_10_3390_bioengineering11101048 |
| Cites_doi | 10.1016/j.gaitpost.2018.04.047 10.1016/j.specom.2017.02.009 10.1007/s13042-017-0677-5 10.1007/978-1-4842-4470-8 10.1109/7333.928571 10.1080/02640414.2013.805884 10.3390/s21061937 10.1109/TIFS.2015.2415753 10.2106/00004623-195335030-00003 10.3390/s150922089 10.1016/j.ymssp.2020.107398 10.1016/j.neucom.2020.07.103 10.3390/s140916212 10.1016/j.jbiomech.2019.109490 10.1016/j.comcom.2016.03.006 10.1142/9097 10.1016/j.automatica.2004.01.014 10.1016/j.mechatronics.2011.03.003 10.3390/s140202776 10.3390/computers9040096 10.1109/TMI.2016.2535302 10.1109/JSEN.2019.2928777 10.3390/proceedings2019031060 10.1109/CCWC54503.2022.9720821 10.1016/j.ijleo.2017.12.038 10.3390/s19040948 10.1371/journal.pone.0176816 10.3390/s16010066 10.1016/j.neures.2021.06.007 10.1016/j.envsoft.2019.104600 10.3390/s16010115 10.4085/1062-6050-0520.19 10.1109/TNSRE.2014.2337914 10.1109/JIOT.2019.2949715 10.1371/journal.pone.0206049 10.1177/0165551516677946 10.3390/bios10090109 10.3390/s22051722 10.3390/s140406891 10.1111/joes.12012 10.1016/j.humov.2015.07.009 10.3390/s18041279 10.1109/TSMCB.2008.927722 10.1016/j.jbiomech.2009.07.016 10.1016/j.eswa.2016.10.065 10.3934/mbe.2019311 10.1016/S0021-9290(02)00008-8 10.3390/s19163462 10.5121/ijdkp.2015.5201 10.1109/JSEN.2019.2917225 10.1016/j.pmr.2018.12.007 10.1109/TBME.2018.2876068 10.3390/s19071483 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s23020745 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_1bb65cad4fd941bea41604cf8fc4f5d1 10.3390/s23020745 PMC9865094 36679546 10_3390_s23020745 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Slovenian Research Agency grantid: 1000-2022-0552 – fundername: Slovenian Research Agency grantid: P2-0123 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c535t-ab7aa3b44aea3be743dc4b7b4e335ab73daef546970d87e3506fa3c97b8db8bc3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:38:03 EDT 2025 Sun Oct 26 04:14:34 EDT 2025 Tue Sep 30 17:16:30 EDT 2025 Wed Oct 01 17:26:47 EDT 2025 Tue Oct 07 07:20:58 EDT 2025 Wed Feb 19 02:26:16 EST 2025 Thu Oct 16 04:31:55 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | wearable recurrent neural network attention mechanism convolutional neural network human gait machine learning activity recognition |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c535t-ab7aa3b44aea3be743dc4b7b4e335ab73daef546970d87e3506fa3c97b8db8bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4653-8503 0000-0001-8693-3247 0000-0001-6856-7992 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/23/2/745/pdf?version=1673318313 |
| PMID | 36679546 |
| PQID | 2767296287 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1bb65cad4fd941bea41604cf8fc4f5d1 unpaywall_primary_10_3390_s23020745 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9865094 proquest_miscellaneous_2768229274 proquest_journals_2767296287 pubmed_primary_36679546 crossref_primary_10_3390_s23020745 crossref_citationtrail_10_3390_s23020745 |
| PublicationCentury | 2000 |
| PublicationDate | 20230109 |
| PublicationDateYYYYMMDD | 2023-01-09 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230109 day: 9 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Sun (ref_46) 2004; 40 Chen (ref_50) 2017; 72 Urakami (ref_57) 2021; 173 ref_13 Prado (ref_22) 2019; 30 Wang (ref_41) 2019; 19 ref_12 Kawabata (ref_24) 2013; 31 Salyers (ref_42) 2019; 66 Ogawa (ref_52) 2017; 89 ref_10 Xu (ref_28) 2018; 44 ref_19 Saunders (ref_1) 1953; 35 Aminian (ref_16) 2002; 35 Bae (ref_30) 2011; 21 Tajbakhsh (ref_35) 2016; 35 Zhang (ref_54) 2020; 124 Bejarano (ref_9) 2015; 23 Weston (ref_32) 2009; 609 Sprager (ref_33) 2015; 10 ref_20 Alharthi (ref_36) 2019; 19 ref_29 ref_27 ref_26 Moustakidis (ref_14) 2008; 38 Kiranyaz (ref_37) 2020; 151 Zhang (ref_55) 2019; 7 Seel (ref_11) 2014; 14 Yang (ref_53) 2018; 9 DeJong (ref_6) 2020; 55 ref_34 Takeda (ref_21) 2009; 42 ref_31 Chen (ref_49) 2020; 418 Benson (ref_7) 2018; 63 ref_38 Zhao (ref_51) 2017; 158 Kamnik (ref_8) 2014; 14 Woznowski (ref_15) 2016; 89–90 ref_47 ref_45 ref_44 ref_43 Mo (ref_5) 2019; 16 Sprager (ref_18) 2015; 15 ref_40 ref_3 ref_2 Hossin (ref_56) 2015; 5 Pappas (ref_25) 2001; 9 Soares (ref_48) 2014; 28 Lempereur (ref_39) 2020; 98 Hebenstreit (ref_23) 2015; 43 Taborri (ref_17) 2014; 14 ref_4 |
| References_xml | – volume: 63 start-page: 124 year: 2018 ident: ref_7 article-title: The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.04.047 – volume: 89 start-page: 70 year: 2017 ident: ref_52 article-title: Error detection and accuracy estimation in automatic speech recognition using deep bidirectional recurrent neural networks publication-title: Speech Commun. doi: 10.1016/j.specom.2017.02.009 – volume: 9 start-page: 1733 year: 2018 ident: ref_53 article-title: A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-017-0677-5 – ident: ref_38 doi: 10.1007/978-1-4842-4470-8 – volume: 9 start-page: 113 year: 2001 ident: ref_25 article-title: A reliable gait phase detection system publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/7333.928571 – volume: 31 start-page: 1841 year: 2013 ident: ref_24 article-title: Acceleration patterns in the lower and upper trunk during running publication-title: J. Sports Sci. doi: 10.1080/02640414.2013.805884 – ident: ref_47 doi: 10.3390/s21061937 – volume: 10 start-page: 1486 year: 2015 ident: ref_33 article-title: An Efficient HOS-Based Gait Authentication of Accelerometer Data publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2015.2415753 – volume: 35 start-page: 543 year: 1953 ident: ref_1 article-title: The Major Determinants in Normal and Pathological Gait publication-title: J. Bone Jt. Surg. doi: 10.2106/00004623-195335030-00003 – volume: 15 start-page: 22089 year: 2015 ident: ref_18 article-title: Inertial Sensor-Based Gait Recognition: A Review publication-title: Sensors doi: 10.3390/s150922089 – volume: 151 start-page: 107398 year: 2020 ident: ref_37 article-title: 1D convolutional neural networks and applications: A survey publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2020.107398 – ident: ref_31 – volume: 418 start-page: 200 year: 2020 ident: ref_49 article-title: Topographic property of backpropagation artificial neural network: From human functional connectivity network to artificial neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.103 – volume: 14 start-page: 16212 year: 2014 ident: ref_17 article-title: A Novel HMM Distributed Classifier for the Detection of Gait Phases by Means of a Wearable Inertial Sensor Network publication-title: Sensors doi: 10.3390/s140916212 – volume: 98 start-page: 109490 year: 2020 ident: ref_39 article-title: A new deep learning-based method for the detection of gait events in children with gait disorders: Proof-of-concept and concurrent validity publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2019.109490 – volume: 89–90 start-page: 34 year: 2016 ident: ref_15 article-title: Classification and suitability of sensing technologies for activity recognition publication-title: Comput. Commun. doi: 10.1016/j.comcom.2016.03.006 – ident: ref_27 doi: 10.1142/9097 – volume: 40 start-page: 1017 year: 2004 ident: ref_46 article-title: Multi-sensor optimal information fusion Kalman filter publication-title: Automatica doi: 10.1016/j.automatica.2004.01.014 – volume: 21 start-page: 961 year: 2011 ident: ref_30 article-title: Gait phase analysis based on a Hidden Markov Model publication-title: Mechatronics doi: 10.1016/j.mechatronics.2011.03.003 – volume: 14 start-page: 2776 year: 2014 ident: ref_8 article-title: Online Phase Detection Using Wearable Sensors for Walking with a Robotic Prosthesis publication-title: Sensors doi: 10.3390/s140202776 – ident: ref_26 doi: 10.3390/computers9040096 – ident: ref_45 – volume: 35 start-page: 1299 year: 2016 ident: ref_35 article-title: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2535302 – volume: 19 start-page: 9575 year: 2019 ident: ref_36 article-title: Deep Learning for Monitoring of Human Gait: A Review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2928777 – ident: ref_20 doi: 10.3390/proceedings2019031060 – ident: ref_44 doi: 10.1109/CCWC54503.2022.9720821 – volume: 158 start-page: 266 year: 2017 ident: ref_51 article-title: Applying deep bidirectional LSTM and mixture density network for basketball trajectory prediction publication-title: Optik doi: 10.1016/j.ijleo.2017.12.038 – ident: ref_3 doi: 10.3390/s19040948 – ident: ref_2 doi: 10.1371/journal.pone.0176816 – ident: ref_4 doi: 10.3390/s16010066 – volume: 173 start-page: 80 year: 2021 ident: ref_57 article-title: Forward gait instability in patients with Parkinson’s disease with freezing of gait publication-title: Neurosci. Res. doi: 10.1016/j.neures.2021.06.007 – volume: 124 start-page: 104600 year: 2020 ident: ref_54 article-title: Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.104600 – ident: ref_29 doi: 10.3390/s16010115 – ident: ref_34 – volume: 55 start-page: 1307 year: 2020 ident: ref_6 article-title: Validation of Foot-Strike Assessment Using Wearable Sensors During Running publication-title: J. Athl. Train. doi: 10.4085/1062-6050-0520.19 – volume: 23 start-page: 413 year: 2015 ident: ref_9 article-title: A Novel Adaptive, Real-Time Algorithm to Detect Gait Events from Wearable Sensors publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2337914 – volume: 7 start-page: 1072 year: 2019 ident: ref_55 article-title: A Novel IoT-Perceptive Human Activity Recognition (HAR) Approach Using Multihead Convolutional Attention publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2949715 – ident: ref_40 doi: 10.1371/journal.pone.0206049 – volume: 44 start-page: 48 year: 2018 ident: ref_28 article-title: Bayesian Naïve Bayes classifiers to text classification publication-title: J. Inf. Sci. doi: 10.1177/0165551516677946 – ident: ref_13 doi: 10.3390/bios10090109 – ident: ref_19 doi: 10.3390/s22051722 – volume: 609 start-page: 223 year: 2009 ident: ref_32 article-title: A User’s Guide to Support Vector Machines publication-title: Methods Mol. Biol. – volume: 14 start-page: 6891 year: 2014 ident: ref_11 article-title: IMU-Based Joint Angle Measurement for Gait Analysis publication-title: Sensors doi: 10.3390/s140406891 – volume: 28 start-page: 344 year: 2014 ident: ref_48 article-title: The continuous wavelet transform: Moving beyond uni-and bivariate analysis publication-title: J. Econ. Surv. doi: 10.1111/joes.12012 – volume: 43 start-page: 118 year: 2015 ident: ref_23 article-title: Effect of walking speed on gait sub phase durations publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2015.07.009 – ident: ref_10 doi: 10.3390/s18041279 – volume: 38 start-page: 1476 year: 2008 ident: ref_14 article-title: Subject Recognition Based on Ground Reaction Force Measurements of Gait Signals publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) doi: 10.1109/TSMCB.2008.927722 – volume: 42 start-page: 2486 year: 2009 ident: ref_21 article-title: Gait posture estimation using wearable acceleration and gyro sensors publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.07.016 – volume: 72 start-page: 221 year: 2017 ident: ref_50 article-title: Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.10.065 – volume: 16 start-page: 6242 year: 2019 ident: ref_5 article-title: Running gait pattern recognition based on cross-correlation analysis of single acceleration sensor publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2019311 – volume: 35 start-page: 689 year: 2002 ident: ref_16 article-title: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00008-8 – ident: ref_43 doi: 10.3390/s19163462 – volume: 5 start-page: 01 year: 2015 ident: ref_56 article-title: A Review on Evaluation Metrics for Data Classification Evaluations publication-title: Int. J. Data Min. Knowl. Manag. Process doi: 10.5121/ijdkp.2015.5201 – volume: 19 start-page: 7598 year: 2019 ident: ref_41 article-title: Attention-Based Convolutional Neural Network for Weakly Labeled Human Activities’ Recognition with Wearable Sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2917225 – volume: 30 start-page: 355 year: 2019 ident: ref_22 article-title: Gait Segmentation of Data Collected by Instrumented Shoes Using a Recurrent Neural Network Classifier publication-title: Phys. Med. Rehabil. Clin. N. Am. doi: 10.1016/j.pmr.2018.12.007 – volume: 66 start-page: 1588 year: 2019 ident: ref_42 article-title: Continuous Wavelet Transform for Decoding Finger Movements from Single-Channel EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2876068 – ident: ref_12 doi: 10.3390/s19071483 |
| SSID | ssj0023338 |
| Score | 2.525055 |
| Snippet | Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 745 |
| SubjectTerms | activity recognition Algorithms Ankle Classification convolutional neural network Data acquisition systems Data collection Datasets Discriminant analysis Gait human gait Humans Kinematics Machine Learning Neural networks Prostheses Quality of Life recurrent neural network Sensors Wavelet transforms wearable Wearable Electronic Devices |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VXGgPCOgD85LbcuBikXifPgKCRpXSAyISN2t2vVuQIiciiRD_ntm1YyUqFRdOljxzGH3j8cxnr74BOOmj0ai4zXwuXRYU5jJURZ5hjobemJpKKhDF4R85GPHfd-JuZdVXOBPWyAM3wJ31jZHCYsV9VfC-cUgTRI9br73lXlSR-PR0sSRTLdVixLwaHSFGpP5sRoN2Ts1SrHWfKNL_2mT57wHJzUU9xecnHI9Xus_1Nmy1Y2N63oS7Ax9cvQufVsQEP4OO3-PTX_gwT89tsxQivVmeD5rU6TCem3RpK6n6Nx3G7dGzLzC6vrq9HGTtXoTMCibmGRqFyAzn6OjiaAaoLDfKcMeYICOr0HlBvFf1Kq0cEz3pkdlCGV0ZbSz7Chv1pHZ7kDopPRk8dXXDg5S-lNrLXNvCKCFym8DpEq_StqLhYXfFuCTyEKAtO2gT-NG5ThuljNecLgLonUMQt443KOVlm_LyrZQncLhMWdlW3KzMlSSeQKGrBL53ZqqV8AMEazdZRJ-gb09EPIFvTYa7SJiUqiDQElBruV8Ldd1SP9xHPe5CRxnCBH52T8n_Edh_DwQO4GNYex8_BRWHsDF_XLgjGo7m5jjWwQuCyA8b priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLbK9gA9IN4NFBQeBy5RdzPPHBBqUUuFtCtUUam3yDOZKZVWydLdFeLf45k82lULp0ixDyN7PP48cT4DfJig0ai4zXwuXRYY5jJURZ5hjoZOTE0hFQrF6UyenPFv5-J8C2b9vzChrbI_E-NBXTU23JHv50oSDpQE8D8vfmVhalT4utqP0MButEL1KVKM3YPtPDBjjWD78Gj2_XQowRhVZC2_EKNif39JADynJCo2slIk778Lcd5unLy_rhf45zfO5zey0vEjeNjByfSg9f9j2HL1E9i5QTL4FHS8p0-_4uUqPbDtsIj0tO8baup0GvspXdpRrV6k0zhVevkMzo6Pfnw5ybp5CZkVTKwyNAqRGc7R0cMRNqgsN8pwx5ggIavQeUH1sBpXWjkmxtIjs4UyujLaWPYcRnVTu11InZSeBJ6yveGBYl9K7cn4tjBKiNwm8LG3V2k7MvEw02JeUlERTFsOpk3g3aC6aBk07lI6DEYfFALpdXzRXF2UXQyVE2OksFhxXxV8YhwSmBxz67W33ItqksBe77Kyi8Rleb1vEng7iCmGwocRrF2zjjqB954K9ARetB4eVsKkVAUZLQG14fuNpW5K6sufkae70JGeMIH3wy75twVe_n_xr-BBGHQfL3-KPRitrtbuNcGhlXnT7fG_WcQLsg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6h7gE48GYJLCg8DlyyaeJnTqgglhVSVwhRaTlFtmMvFVVabVMQ_HrGjhttYZEQp0jxRJrYM5lvnPE3AC8KpaUS1GSu5DbzDHOZElWZqVJp_GJKdCmfKE5P-PGMvj9lp3HDbR3LKjEVn4ePtD-FlWEEG-clyctcUJavGvfqW9xJKrhvOCiJb1q7xxli8RHszU4-TD6HI0Xx2Z5OiGBun68Rb5cYM9lOEApc_ZcBzD_rJK9u2pX68V0tFheC0NFNqLfq97UnXw83nT40P39jdvz_97sFNyI-TSe9Qd2GK7a9A9cvsBbeBRk2_tN3at6lE9N3n0g_bguRlm06DQWaNo3crWfpNLSpXt-D2dHbT2-Os9iAITOMsC5TWihFNKXK4sUi2GgM1UJTSwjDQdIo6xgm2GLcSGEJG3OniKmElo2W2pD7MGqXrX0AqeXc4YBD-KCp5-znXDpeSlNpwVhpEni5XZHaRHZy3yRjUWOW4hevHhYvgWeD6Kqn5LhM6LVf1kHAs2iHG8vzszo6ZV1ozZlRDXVNRQttFaLTMTVOOkMda4oEDrZGUUfXXtel4JiQoOoigafDMDql_9OiWrvcBBlPpI8ZfwL7vQ0NmhDORYWTloDYsa4dVXdH2vmXQPxdycB3mMDzwQ7_PgMP_0nqEVwrEbaFTaXqAEbd-cY-RpjV6SfRl34B0bsiSw priority: 102 providerName: Unpaywall |
| Title | Human Gait Activity Recognition Machine Learning Methods |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36679546 https://www.proquest.com/docview/2767296287 https://www.proquest.com/docview/2768229274 https://pubmed.ncbi.nlm.nih.gov/PMC9865094 https://www.mdpi.com/1424-8220/23/2/745/pdf?version=1673318313 https://doaj.org/article/1bb65cad4fd941bea41604cf8fc4f5d1 |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zi9swEB72eGj7UHrX7Ta4B6UvbhPr9EMp2bLZpZCwLA2kT0aSpe1CcLI5aPffdyQfrGkKfbHBGsww0nhmpPH3AbwbKC2VoCZxKbeJR5hLlMjSRKVK4xdTokv5QnE84WdT-m3GZnvQtDXXBlzvLO08n9R0Nf_4-_rmCzr8Z19xYsn-aY1pdIqhkL1fXieeT8qfu9bkGvtwiDEr86QOY9qeL6SEBI5r_5tXgiGyX2EOdd_WiVQB0H9XFvp3M-WdbblUN7_UfH4rUo0ewP06xYyH1Zp4CHu2fAT3bgEPPgYZ9u7jU3W1iYemIpCIL5peokUZj0OPpY1r-NXLeByYptdPYDo6-f71LKk5FBLDCNskSguliKZUWbxZzBcKQ7XQ1BLCcJAUyjqGNbLoF1JYwvrcKWIyoWWhpTbkKRyUi9I-h9hy7nDAYQagqYfd51w6nkqTacFYaiL40NgrNzXAuOe5mOdYaHjT5q1pI3jTii4rVI1dQsfe6K2AB8IODxary7z2q3ygNWdGFdQVGR1oqzDB7FPjpDPUsWIQwVEzZXmzuPJUcKwpUHURwet2GP3KH5ao0i62QcZj4WPRHsGzaoZbTQjnIkOjRSA6c99RtTtSXv0M2N2ZDJCFEbxtV8m_LfDiP7R7CXdTXM9hVyg7goPNamtfYZ600T3YFzOBVzk67cHh8cnk_KIX9hx6wRnw2XRyPvzxB4qzF-s |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeqtJnKLTuS-olYjd-JYcK0QddCsuhAmlvwXZsirRKFnZXiD_V39ix84BVaW-cIsWjyJr32JNvAN73lU6VZCZ2ibCxR5iLlcySWCVKo8dM0aR8oTg8FINj9mPER0vwu_0XxrdVtj4xOOqiMv6MfCuRAvNAgQn-9uQ89lOj_O1qO0KjVot9e3WJJdv0095XlO-HJNn9dvRlEDdTBWLDKZ_FSkulqGZMWXxYjKCFYVpqZinluEgLZR3HqlH2ilRaynvCKWoyqdNCp9pQ_O49WGEUfQnajxxdF3gU670avYjSrLc1xfQ-wRDNF2JeGA1wWz77d1vm6rycqKtLNR7fiHm7j-Bhk6ySnVq71mDJlo_hwQ0IwyeQhlsA8l2dzciOqUdRkJ9tV1JVkmHo1rSkAXI9JcMws3r6FI7vhG_PYLmsSvsCiBXC4YLDXEIzD-AvROpQtCbTkvPERPCx5VduGqhyPzFjnGPJ4lmbd6yN4G1HOqnxOW4j-uyZ3hF4SO3woro4zRsLzftaC25UwVyRsb62ClPVHjMudYY5XvQj2GhFljd2Ps2vtTKCN90yWqi_dlGlreaBxqPqY_kfwfNawt1OqBAyQ6ZFIBdkv7DVxZXy7FdAAc_SAH4YwbtOS_7NgfX_b_41rA6Ohgf5wd7h_ku4n6Aqh2OmbAOWZxdzu4mJ10y_CtpO4OSuzesPI3xEWw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VInE8VNwECoRL6ku0uz6ThwoVytJStkKISvsWbMculVbJ0t1V1b_WX9exc7QrCm99ipQZRdYcnhl78g3Au4HSqZLMJI4Im3iEuUTJjCSKKI07Zoou5QvF0b7YOWBfx3y8AmftvzC-rbLdE8NGXVTGn5H3iBSYBwpM8HuuaYv4vj38MP2T-AlS_qa1HadRm8iePT3B8m22ubuNun5PyPDzz087STNhIDGc8nmitFSKasaUxYfFaFoYpqVmllKORFoo6zhWkLJfpNJS3hdOUZNJnRY61Ybid2_ATUlp5tsJ5fii2KNY-9VIRkjs92aY6hMM13wp_oUxAVfltn-3aN5elFN1eqImk0vxb3gP1prENd6qLe0-rNjyAdy9BGf4ENJwIxB_UUfzeMvUYyniH22HUlXGo9C5aeMG1PUwHoX51bNHcHAtcnsMq2VV2qcQWyEcEhzmFZp5MH8hUodqNpmWnBMTwUYrr9w0sOV-esYkx_LFizbvRBvBm451WmN1XMX00Qu9Y_Dw2uFFdXyYN96aD7QW3KiCuSJjA20Vpq19ZlzqDHO8GESw3qosb3x-ll9YaASvOzJ6q7-CUaWtFoHHI-wTySJ4Umu4WwkVQmYotAjkku6XlrpMKY9-B0TwLA1AiBG87azk3xJ49v_Fv4Jb6Fj5t939vedwh6AlhxOnbB1W58cL-wJzsLl-GYw9hl_X7V3nJYFIng |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6h7gE48GYJLCg8DlyyaeJnTqgglhVSVwhRaTlFtmMvFVVabVMQ_HrGjhttYZEQp0jxRJrYM5lvnPE3AC8KpaUS1GSu5DbzDHOZElWZqVJp_GJKdCmfKE5P-PGMvj9lp3HDbR3LKjEVn4ePtD-FlWEEG-clyctcUJavGvfqW9xJKrhvOCiJb1q7xxli8RHszU4-TD6HI0Xx2Z5OiGBun68Rb5cYM9lOEApc_ZcBzD_rJK9u2pX68V0tFheC0NFNqLfq97UnXw83nT40P39jdvz_97sFNyI-TSe9Qd2GK7a9A9cvsBbeBRk2_tN3at6lE9N3n0g_bguRlm06DQWaNo3crWfpNLSpXt-D2dHbT2-Os9iAITOMsC5TWihFNKXK4sUi2GgM1UJTSwjDQdIo6xgm2GLcSGEJG3OniKmElo2W2pD7MGqXrX0AqeXc4YBD-KCp5-znXDpeSlNpwVhpEni5XZHaRHZy3yRjUWOW4hevHhYvgWeD6Kqn5LhM6LVf1kHAs2iHG8vzszo6ZV1ozZlRDXVNRQttFaLTMTVOOkMda4oEDrZGUUfXXtel4JiQoOoigafDMDql_9OiWrvcBBlPpI8ZfwL7vQ0NmhDORYWTloDYsa4dVXdH2vmXQPxdycB3mMDzwQ7_PgMP_0nqEVwrEbaFTaXqAEbd-cY-RpjV6SfRl34B0bsiSw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Gait+Activity+Recognition+Machine+Learning+Methods&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Slemen%C5%A1ek%2C+Jan&rft.au=Fister%2C+Iztok&rft.au=Ger%C5%A1ak%2C+Jelka&rft.au=Bratina%2C+Bo%C5%BEidar&rft.date=2023-01-09&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft_id=info:doi/10.3390%2Fs23020745&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |