Performance Measurement System and Quality Management in Data-Driven Industry 4.0: A Review
The birth of mass production started in the early 1900s. The manufacturing industries were transformed from mechanization to digitalization with the help of Information and Communication Technology (ICT). Now, the advancement of ICT and the Internet of Things has enabled smart manufacturing or Indus...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 1; p. 224 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.12.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22010224 |
Cover
Abstract | The birth of mass production started in the early 1900s. The manufacturing industries were transformed from mechanization to digitalization with the help of Information and Communication Technology (ICT). Now, the advancement of ICT and the Internet of Things has enabled smart manufacturing or Industry 4.0. Industry 4.0 refers to the various technologies that are transforming the way we work in manufacturing industries such as Internet of Things, cloud, big data, AI, robotics, blockchain, autonomous vehicles, enterprise software, etc. Additionally, the Industry 4.0 concept refers to new production patterns involving new technologies, manufacturing factors, and workforce organization. It changes the production process and creates a highly efficient production system that reduces production costs and improves product quality. The concept of Industry 4.0 is relatively new; there is high uncertainty, lack of knowledge and limited publication about the performance measurement and quality management with respect to Industry 4.0. Conversely, manufacturing companies are still struggling to understand the variety of Industry 4.0 technologies. Industrial standards are used to measure performance and manage the quality of the product and services. In order to fill this gap, our study focuses on how the manufacturing industries use different industrial standards to measure performance and manage the quality of the product and services. This paper reviews the current methods, industrial standards, key performance indicators (KPIs) used for performance measurement systems in data-driven Industry 4.0, and the case studies to understand how smart manufacturing companies are taking advantage of Industry 4.0. Furthermore, this article discusses the digitalization of quality called Quality 4.0, research challenges and opportunities in data-driven Industry 4.0 are discussed. |
---|---|
AbstractList | The birth of mass production started in the early 1900s. The manufacturing industries were transformed from mechanization to digitalization with the help of Information and Communication Technology (ICT). Now, the advancement of ICT and the Internet of Things has enabled smart manufacturing or Industry 4.0. Industry 4.0 refers to the various technologies that are transforming the way we work in manufacturing industries such as Internet of Things, cloud, big data, AI, robotics, blockchain, autonomous vehicles, enterprise software, etc. Additionally, the Industry 4.0 concept refers to new production patterns involving new technologies, manufacturing factors, and workforce organization. It changes the production process and creates a highly efficient production system that reduces production costs and improves product quality. The concept of Industry 4.0 is relatively new; there is high uncertainty, lack of knowledge and limited publication about the performance measurement and quality management with respect to Industry 4.0. Conversely, manufacturing companies are still struggling to understand the variety of Industry 4.0 technologies. Industrial standards are used to measure performance and manage the quality of the product and services. In order to fill this gap, our study focuses on how the manufacturing industries use different industrial standards to measure performance and manage the quality of the product and services. This paper reviews the current methods, industrial standards, key performance indicators (KPIs) used for performance measurement systems in data-driven Industry 4.0, and the case studies to understand how smart manufacturing companies are taking advantage of Industry 4.0. Furthermore, this article discusses the digitalization of quality called Quality 4.0, research challenges and opportunities in data-driven Industry 4.0 are discussed. The birth of mass production started in the early 1900s. The manufacturing industries were transformed from mechanization to digitalization with the help of Information and Communication Technology (ICT). Now, the advancement of ICT and the Internet of Things has enabled smart manufacturing or Industry 4.0. Industry 4.0 refers to the various technologies that are transforming the way we work in manufacturing industries such as Internet of Things, cloud, big data, AI, robotics, blockchain, autonomous vehicles, enterprise software, etc. Additionally, the Industry 4.0 concept refers to new production patterns involving new technologies, manufacturing factors, and workforce organization. It changes the production process and creates a highly efficient production system that reduces production costs and improves product quality. The concept of Industry 4.0 is relatively new; there is high uncertainty, lack of knowledge and limited publication about the performance measurement and quality management with respect to Industry 4.0. Conversely, manufacturing companies are still struggling to understand the variety of Industry 4.0 technologies. Industrial standards are used to measure performance and manage the quality of the product and services. In order to fill this gap, our study focuses on how the manufacturing industries use different industrial standards to measure performance and manage the quality of the product and services. This paper reviews the current methods, industrial standards, key performance indicators (KPIs) used for performance measurement systems in data-driven Industry 4.0, and the case studies to understand how smart manufacturing companies are taking advantage of Industry 4.0. Furthermore, this article discusses the digitalization of quality called Quality 4.0, research challenges and opportunities in data-driven Industry 4.0 are discussed.The birth of mass production started in the early 1900s. The manufacturing industries were transformed from mechanization to digitalization with the help of Information and Communication Technology (ICT). Now, the advancement of ICT and the Internet of Things has enabled smart manufacturing or Industry 4.0. Industry 4.0 refers to the various technologies that are transforming the way we work in manufacturing industries such as Internet of Things, cloud, big data, AI, robotics, blockchain, autonomous vehicles, enterprise software, etc. Additionally, the Industry 4.0 concept refers to new production patterns involving new technologies, manufacturing factors, and workforce organization. It changes the production process and creates a highly efficient production system that reduces production costs and improves product quality. The concept of Industry 4.0 is relatively new; there is high uncertainty, lack of knowledge and limited publication about the performance measurement and quality management with respect to Industry 4.0. Conversely, manufacturing companies are still struggling to understand the variety of Industry 4.0 technologies. Industrial standards are used to measure performance and manage the quality of the product and services. In order to fill this gap, our study focuses on how the manufacturing industries use different industrial standards to measure performance and manage the quality of the product and services. This paper reviews the current methods, industrial standards, key performance indicators (KPIs) used for performance measurement systems in data-driven Industry 4.0, and the case studies to understand how smart manufacturing companies are taking advantage of Industry 4.0. Furthermore, this article discusses the digitalization of quality called Quality 4.0, research challenges and opportunities in data-driven Industry 4.0 are discussed. |
Author | Meshram, Chandrashekhar Lee, Cheng-Chi Tambare, Parkash Ramteke, Rakesh Jagdish Imoize, Agbotiname Lucky |
AuthorAffiliation | 1 Water Resources & Applied Mathematics Research Lab, Nagpur 440027, Maharashtra, India; prakash.tambare058@gmail.com 7 Department of Electrical Engineering and Information Technology, Institute of Digital Communication, Ruhr University, 44801 Bochum, Germany 6 Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos, Akoka, Lagos 100213, Nigeria; aimoize@unilag.edu.ng 2 Department of Post Graduate Studies and Research in Mathematics, Jaywanti Haksar Govt. Post-Graduation College, College of Chhindwara University, Betul 460001, Madhya Pradesh, India 3 Department of Library and Information Science, Research and Development Center for Physical Education, Health, and Information Technology, Fu Jen Catholic University, New Taipei 24205, Taiwan 4 Department of Computer Science and Information Engineering, Asia University, Wufeng Shiang, Taichung 41354, Taiwan 5 School of Computer Sciences, KBC North Maharashtra University, P.B. No.80, Umavinagar, Jalgaon 4 |
AuthorAffiliation_xml | – name: 5 School of Computer Sciences, KBC North Maharashtra University, P.B. No.80, Umavinagar, Jalgaon 425001, Maharashtra, India; rakeshramteke@yahoo.co.in – name: 3 Department of Library and Information Science, Research and Development Center for Physical Education, Health, and Information Technology, Fu Jen Catholic University, New Taipei 24205, Taiwan – name: 6 Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos, Akoka, Lagos 100213, Nigeria; aimoize@unilag.edu.ng – name: 7 Department of Electrical Engineering and Information Technology, Institute of Digital Communication, Ruhr University, 44801 Bochum, Germany – name: 1 Water Resources & Applied Mathematics Research Lab, Nagpur 440027, Maharashtra, India; prakash.tambare058@gmail.com – name: 2 Department of Post Graduate Studies and Research in Mathematics, Jaywanti Haksar Govt. Post-Graduation College, College of Chhindwara University, Betul 460001, Madhya Pradesh, India – name: 4 Department of Computer Science and Information Engineering, Asia University, Wufeng Shiang, Taichung 41354, Taiwan |
Author_xml | – sequence: 1 givenname: Parkash surname: Tambare fullname: Tambare, Parkash – sequence: 2 givenname: Chandrashekhar surname: Meshram fullname: Meshram, Chandrashekhar – sequence: 3 givenname: Cheng-Chi orcidid: 0000-0002-8918-1703 surname: Lee fullname: Lee, Cheng-Chi – sequence: 4 givenname: Rakesh Jagdish surname: Ramteke fullname: Ramteke, Rakesh Jagdish – sequence: 5 givenname: Agbotiname Lucky orcidid: 0000-0001-8921-8353 surname: Imoize fullname: Imoize, Agbotiname Lucky |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35009767$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktv1DAQgCNURB9w4A8gS1zgkNbxKzaHSlXLY6VWvE8crIkzWbxK7GIni_bfk3bbqi0nWzPffJqxZ7_YCTFgUbys6CHnhh5lxmhFGRNPir1KMFHqObBz775b7Oe8opRxzvWzYpdLSk2t6r3i1xdMXUwDBIfkAiFPCQcMI_m-ySMOBEJLvk7Q-3FDLiDAcpv1gZzBCOVZ8msMZBHaKY9pQ8QhfUdOyDdce_z7vHjaQZ_xxc15UPz88P7H6afy_PPHxenJeekkl2MphMC65VRUWoGqRVVp0zDBoRa16YxiUqq2EkIpdEYB63QnmeqAmUYLBoofFIutt42wspfJD5A2NoK314GYlhbS6F2PVkNTVaZzztFGUIGmq42QskUG2kjazq7jretyagZs3Txsgv6B9GEm-N92GddW18IoyWfBmxtBin8mzKMdfHbY9xAwTtkyNY9HjRD1jL5-hK7ilML8VNcUU5pROlOv7nd018rtH87A0RZwKeacsLPOjzD6eNWg721F7dWW2LstmSvePqq4lf7P_gPSwLkc |
CitedBy_id | crossref_primary_10_1080_10429247_2025_2475554 crossref_primary_10_3390_s22072688 crossref_primary_10_1108_TQM_08_2023_0249 crossref_primary_10_1016_j_eng_2024_03_022 crossref_primary_10_1080_12294659_2024_2415169 crossref_primary_10_3390_su16073053 crossref_primary_10_3390_eng6030050 crossref_primary_10_3390_su16209045 crossref_primary_10_3390_world3030041 crossref_primary_10_3390_app12136792 crossref_primary_10_1016_j_heliyon_2024_e26638 crossref_primary_10_1177_18479790241234986 crossref_primary_10_1108_IJQRM_10_2023_0322 crossref_primary_10_37394_232032_2025_3_1 crossref_primary_10_1145_3597616 crossref_primary_10_3390_s24134239 crossref_primary_10_3390_su15032161 crossref_primary_10_61186_jstpi_41640_21_81_29 crossref_primary_10_1080_0013791X_2024_2314673 crossref_primary_10_3390_s22113997 crossref_primary_10_3390_electronics13244952 crossref_primary_10_1007_s40171_022_00316_x crossref_primary_10_3390_app122412820 crossref_primary_10_3390_s22072708 crossref_primary_10_1007_s42524_022_0243_z crossref_primary_10_69569_jip_2024_0491 crossref_primary_10_1016_j_procir_2024_01_117 crossref_primary_10_1108_BIJ_08_2023_0562 crossref_primary_10_3390_risks12080125 crossref_primary_10_3390_aerospace11100804 crossref_primary_10_3390_en15041364 crossref_primary_10_1016_j_procs_2025_01_142 crossref_primary_10_3390_blockchains1020008 crossref_primary_10_3390_electronics13010102 crossref_primary_10_3390_app12115661 crossref_primary_10_3390_s22082839 crossref_primary_10_1016_j_matpr_2023_03_485 crossref_primary_10_1016_j_procs_2024_01_041 crossref_primary_10_1016_j_techfore_2023_122361 crossref_primary_10_1080_0951192X_2022_2134930 crossref_primary_10_3390_pr10071233 crossref_primary_10_3390_su141911917 crossref_primary_10_1108_IJQRM_07_2023_0234 crossref_primary_10_47456_bjpe_v10i2_44284 crossref_primary_10_1016_j_eswa_2025_126670 crossref_primary_10_1007_s40171_022_00328_7 crossref_primary_10_3390_ma15238372 crossref_primary_10_3390_electronics13101979 |
Cites_doi | 10.1007/s00502-018-0615-6 10.3390/pr8060634 10.1109/ICPHYS.2018.8390779 10.1016/j.procs.2019.09.123 10.1016/j.techfore.2021.121048 10.1007/s10845-021-01796-x 10.1016/j.procir.2018.03.182 10.1109/ICT-PEP50916.2020.9249918 10.1007/s10845-021-01808-w 10.1016/j.techfore.2021.120784 10.1109/BigData.2016.7840777 10.1108/TQM-12-2019-0275 10.1016/j.procir.2021.01.077 10.1109/ICTMOD49425.2020.9380619 10.1007/s12647-021-00453-1 10.1007/978-3-319-78428-1_6 10.1108/TQM-07-2020-0157 10.1177/2158244016653987 10.3390/s21041470 10.1257/jep.28.1.27 10.1108/TQM-04-2020-0082 10.1007/s00170-012-4223-z 10.1016/j.promfg.2020.01.415 10.1109/IEEM45057.2020.9309952 10.1007/978-3-319-57870-5_16 10.1007/s10796-021-10153-5 10.1109/ITQMIS51053.2020.9322960 10.1007/s40171-020-00240-y 10.17011/ht/urn.201902201608 10.1016/j.procir.2014.05.016 10.1016/j.ifacol.2018.08.230 10.1016/j.procs.2021.01.258 10.1109/TEM.2018.2890443 10.1007/978-3-030-14544-6_11 10.1007/s00170-020-06572-4 10.1109/ACCESS.2021.3105297 10.3103/S000510552002003X 10.3390/en14040940 10.1007/s40812-021-00190-1 10.3390/info11070364 10.3390/joitmc7010034 10.17270/J.LOG.2019.363 10.1016/j.sintl.2021.100109 10.1109/METROI4.2019.8792912 10.1108/JMTM-04-2020-0156 10.1080/14783363.2018.1532789 10.1007/978-981-32-9531-5_24 10.12776/qip.v24i1.1415 10.1016/j.ijpe.2011.06.003 10.1109/EMR.2020.2987884 10.1007/s00170-002-1463-3 10.3390/su13095232 10.1109/ITQMIS.2019.8928426 10.1080/14783363.2021.1944082 10.6028/NIST.IR.8107 10.1109/FSKD.2015.7382284 10.1007/s10033-017-0164-7 10.1108/IR-04-2021-0077 10.1016/j.compind.2019.06.007 10.1186/s40887-019-0029-5 10.1016/j.heliyon.2021.e07753 10.1007/s10796-020-10047-y 10.1080/00207543.2016.1245883 10.1016/j.techfore.2021.120756 10.1016/j.matpr.2020.12.095 10.1177/1687814018822570 10.1007/s10462-020-09942-2 10.1007/s10845-018-1433-8 10.1080/09537287.2020.1719715 10.1080/08982112.2019.1706744 10.1007/978-3-319-65151-4_1 10.1007/s13132-021-00750-9 10.1016/j.techfore.2019.119790 10.1016/j.ijpe.2018.09.005 10.1109/TLA.2021.9475625 10.1007/s11036-020-01548-w 10.1007/s10845-021-01765-4 10.1109/JSYST.2020.3023041 10.1016/j.sftr.2020.100023 10.5220/0005929704410448 10.1109/ACCESS.2021.3105456 10.3390/su13063107 10.1080/09537287.2020.1810761 10.1007/s10479-019-03498-3 10.1186/s42400-020-00052-8 10.5220/0009175800920099 10.1016/j.compstruct.2020.113207 10.3390/app11073186 10.3390/app11125725 10.1108/TQM-12-2019-0295 10.1007/978-3-319-32799-0_10 10.1016/j.procir.2014.02.037 10.1016/j.procir.2018.03.036 10.5772/intechopen.72304 10.1080/14783363.2011.637788 10.1016/j.procir.2016.11.022 10.1007/s10270-015-0493-x 10.1108/IJPPM-08-2019-0400 10.1109/COMST.2020.2997475 10.1007/s11356-021-14474-5 10.3390/su13095169 10.1007/s10845-021-01783-2 10.1016/j.ijpe.2020.107853 10.1109/OJIES.2020.3031660 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s22010224 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_8ab119fccc0b404e9f79455de2a8950d PMC8749653 35009767 10_3390_s22010224 |
Genre | Journal Article Review |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c535t-444e7d304186a6741189b243a7479f962556d14466ec96a2f8f526fa29b842a63 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:12 EDT 2025 Thu Aug 21 18:28:50 EDT 2025 Fri Sep 05 12:24:48 EDT 2025 Fri Jul 25 20:40:07 EDT 2025 Wed Feb 19 02:28:28 EST 2025 Thu Apr 24 23:08:04 EDT 2025 Tue Jul 01 02:41:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Industry 4.0 performance measurement system Internet of Things cyber–physical production system Quality 4.0 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-444e7d304186a6741189b243a7479f962556d14466ec96a2f8f526fa29b842a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8918-1703 0000-0001-8921-8353 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22010224 |
PMID | 35009767 |
PQID | 2618268200 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8ab119fccc0b404e9f79455de2a8950d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8749653 proquest_miscellaneous_2618909447 proquest_journals_2618268200 pubmed_primary_35009767 crossref_citationtrail_10_3390_s22010224 crossref_primary_10_3390_s22010224 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211229 |
PublicationDateYYYYMMDD | 2021-12-29 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211229 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_137 Tonelli (ref_51) 2016; 57 ref_93 ref_92 (ref_124) 2020; 67 Gama (ref_135) 2021; 54 ref_90 Zonnenshain (ref_33) 2020; 32 Sun (ref_86) 2003; 22 Shee (ref_109) 2021; 14 ref_99 Bajic (ref_112) 2021; 15 ref_130 ref_98 ref_132 Chong (ref_44) 2012; 23 ref_134 Raut (ref_56) 2020; 48 ref_19 ref_16 Dafflon (ref_136) 2021; 113 Hwang (ref_27) 2017; 55 Gallab (ref_94) 2021; 48 ref_126 ref_128 ref_24 ref_23 Tortorella (ref_74) 2021; 32 ref_123 ref_29 ref_28 Dutta (ref_146) 2021; 32 Calabrese (ref_49) 2021; 32 ref_70 Santos (ref_127) 2020; 32 Escobar (ref_100) 2021; 32 Javaid (ref_96) 2021; 2 (ref_20) 2020; 24 Lopes (ref_75) 2021; 19 ref_79 ref_78 ref_77 Atik (ref_18) 2019; 158 ref_76 Radanliev (ref_141) 2020; 3 Kamble (ref_11) 2020; 229 Kazi (ref_12) 2020; 258 (ref_39) 2020; 32 Tassey (ref_114) 2014; 28 Rafique (ref_138) 2020; 22 Wen (ref_142) 2021; 28 ref_82 ref_81 ref_80 Miragliotta (ref_5) 2018; 51 Sony (ref_42) 2020; 32 Onu (ref_121) 2021; 44 ref_89 ref_88 Settanni (ref_147) 2018; 135 ref_144 Unver (ref_43) 2013; 65 ref_85 ref_84 Mueller (ref_148) 2017; 30 Vinodh (ref_25) 2020; 33 Zheng (ref_26) 2020; 13 Schuh (ref_140) 2014; 19 Yin (ref_95) 2019; 11 Jayashree (ref_55) 2021; 7 ref_50 Bona (ref_71) 2021; 180 Contador (ref_131) 2020; 21 Tran (ref_122) 2021; 9 ref_58 ref_57 Pitakaso (ref_14) 2019; 15 Samir (ref_63) 2018; 72 ref_53 Ammar (ref_15) 2021; 45 ref_59 Bonci (ref_64) 2019; 52 Grusho (ref_120) 2020; 54 ref_61 ref_60 Bastos (ref_87) 2021; 9 Braz (ref_17) 2011; 133 Lu (ref_22) 2019; 111 Ramamurthy (ref_10) 2017; 48 ref_68 ref_67 ref_66 ref_65 ref_62 Lu (ref_8) 2017; 6 Khalid (ref_133) 2020; 14 Frederico (ref_21) 2020; 70 Roblek (ref_7) 2016; 6 ref_115 ref_117 Oztemel (ref_13) 2020; 31 ref_36 Leitao (ref_52) 2020; 1 Cugno (ref_40) 2021; 168 Xia (ref_83) 2019; 39 ref_32 ref_111 ref_31 ref_110 ref_30 Brandl (ref_91) 2018; 51 Schuh (ref_129) 2014; 17 Cugno (ref_2) 2020; 150 ref_38 Tseng (ref_54) 2021; 38 Kumar (ref_3) 2021; Volume 15 Margherita (ref_34) 2021; 172 Lee (ref_69) 2019; 5 ref_104 ref_103 ref_106 ref_105 Machado (ref_72) 2019; 22 ref_108 ref_107 Turkyilmaz (ref_145) 2021; 96 Mahmood (ref_1) 2018; 72 Shahzad (ref_149) 2020; 25 Chiarini (ref_35) 2020; 32 ref_47 Armani (ref_37) 2021; 4 ref_46 Burritt (ref_97) 2016; 1 Varshney (ref_118) 2021; 36 ref_45 Falk (ref_113) 2015; 88 ref_41 ref_102 ref_101 Meindl (ref_116) 2021; 168 Watson (ref_73) 1998; 31 ref_48 Mosterman (ref_119) 2015; 15 ref_9 Gunasekaran (ref_139) 2019; 207 (ref_143) 2017; 1 Phuyal (ref_125) 2020; 2 ref_4 ref_6 |
References_xml | – volume: 88 start-page: 581 year: 2015 ident: ref_113 article-title: Large manufacturing firms plan to increase their investments in 2015 publication-title: WIFO Mon. – volume: 135 start-page: 278 year: 2018 ident: ref_147 article-title: Countering targeted cyber-physical attacks using anomaly detection in self-adaptive Industry 4.0 Systems publication-title: E I Elektrotechnik Und Inf. doi: 10.1007/s00502-018-0615-6 – volume: 13 start-page: 751 year: 2020 ident: ref_26 article-title: Smart manufacturing systems for Industry 4. 0: Conceptual framework, scenarios, and future perspectives publication-title: Front. Mech. Eng. – ident: ref_38 doi: 10.3390/pr8060634 – ident: ref_90 doi: 10.1109/ICPHYS.2018.8390779 – volume: 158 start-page: 852 year: 2019 ident: ref_18 article-title: The Measurement of Industry 4.0 Performance through Industry 4.0 Index: An Empirical Investigation for Turkey and European Countries publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.09.123 – volume: 172 start-page: 121048 year: 2021 ident: ref_34 article-title: Managing industry 4.0 automation for fair ethical business development: A single case study publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2021.121048 – ident: ref_111 doi: 10.1007/s10845-021-01796-x – volume: 72 start-page: 603 year: 2018 ident: ref_1 article-title: A Performance Evaluation Concept for Production Systems in an SME Network publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.182 – ident: ref_68 – ident: ref_108 doi: 10.1109/ICT-PEP50916.2020.9249918 – ident: ref_4 doi: 10.1007/s10845-021-01808-w – volume: 168 start-page: 120784 year: 2021 ident: ref_116 article-title: The four smarts of Industry 4.0: Evolution of ten years of research and future perspectives publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2021.120784 – ident: ref_60 doi: 10.1109/BigData.2016.7840777 – ident: ref_65 – ident: ref_88 – volume: 32 start-page: 779 year: 2020 ident: ref_42 article-title: Essential ingredients for the implementation of Quality 4.0: A narrative review of the literature and future directions for research publication-title: TQM J. doi: 10.1108/TQM-12-2019-0275 – volume: 96 start-page: 213 year: 2021 ident: ref_145 article-title: Industry 4.0: Challenges and opportunities for Kazakhstan SMEs publication-title: Procedia CIRP doi: 10.1016/j.procir.2021.01.077 – ident: ref_103 doi: 10.1109/ICTMOD49425.2020.9380619 – volume: 36 start-page: 215 year: 2021 ident: ref_118 article-title: Challenges in sensors technology for industry 4.0 for futuristic metrological applications publication-title: MAPAN doi: 10.1007/s12647-021-00453-1 – ident: ref_132 – ident: ref_76 doi: 10.1007/978-3-319-78428-1_6 – volume: 33 start-page: 441 year: 2020 ident: ref_25 article-title: Integration of continuous improvement strategies with Industry 4.0: A systematic review and agenda for further research publication-title: TQM J. doi: 10.1108/TQM-07-2020-0157 – volume: 6 start-page: 2158244016653987 year: 2016 ident: ref_7 article-title: A Complex View of Industry 4.0 publication-title: SAGE Open doi: 10.1177/2158244016653987 – ident: ref_36 doi: 10.3390/s21041470 – ident: ref_77 – volume: 28 start-page: 27 year: 2014 ident: ref_114 article-title: Competing in Advanced Manufacturing: The Need for Improved Growth Models and Policies publication-title: J. Econ. Perspect. doi: 10.1257/jep.28.1.27 – volume: 6 start-page: 1 year: 2017 ident: ref_8 article-title: Industry 4. 0: A survey on technologies, applications and open research issues publication-title: J. Ind. Inf. Integr. – ident: ref_31 – volume: 32 start-page: 603 year: 2020 ident: ref_35 article-title: Industry 4.0, quality management and TQM world. A systematic literature review and a proposed agenda for further research publication-title: TQM J. doi: 10.1108/TQM-04-2020-0082 – volume: 65 start-page: 853 year: 2013 ident: ref_43 article-title: An ISA-95-based manufacturing intelligence system in support of lean initiatives publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4223-z – volume: 39 start-page: 851 year: 2019 ident: ref_83 article-title: A Method towards Smart Manufacturing Capabilities and Performance Measurement publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2020.01.415 – ident: ref_79 doi: 10.1109/IEEM45057.2020.9309952 – ident: ref_123 doi: 10.1007/978-3-319-57870-5_16 – ident: ref_62 – ident: ref_45 – ident: ref_24 doi: 10.1007/s10796-021-10153-5 – ident: ref_50 doi: 10.1109/ITQMIS51053.2020.9322960 – volume: 21 start-page: 15 year: 2020 ident: ref_131 article-title: Flexibility in the Brazilian industry 4.0: Challenges and opportunities publication-title: Glob. J. Flex. Syst. Manag. doi: 10.1007/s40171-020-00240-y – ident: ref_28 – ident: ref_6 doi: 10.17011/ht/urn.201902201608 – volume: 19 start-page: 51 year: 2014 ident: ref_140 article-title: Collaboration Mechanisms to Increase Productivity in the Context of Industrie 4.0 publication-title: Procedia CIRP doi: 10.1016/j.procir.2014.05.016 – ident: ref_30 – volume: 51 start-page: 31 year: 2018 ident: ref_91 article-title: KPI Exchanges in Smart Manufacturing using KPI-ML publication-title: IFAC-PaperOnline doi: 10.1016/j.ifacol.2018.08.230 – volume: 180 start-page: 424 year: 2021 ident: ref_71 article-title: Implementation of Industry 4. 0 technology: New opportunities and challenges for maintenance strategy publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.01.258 – volume: 67 start-page: 973 year: 2020 ident: ref_124 article-title: An interpretive structural analysis for Industry 4.0 adoption challenges publication-title: IEEE Trans. Eng. Manag. doi: 10.1109/TEM.2018.2890443 – volume: 14 start-page: 148 year: 2021 ident: ref_109 article-title: IoT in Supply Chain Management: Opportunities and Challenges for Businesses in Early Industry 4.0 Context publication-title: Oper. Supply Chain Manag. Int. J. – ident: ref_134 – ident: ref_117 doi: 10.1007/978-3-030-14544-6_11 – volume: 113 start-page: 2395 year: 2021 ident: ref_136 article-title: The challenges, approaches, and used techniques of CPS for manufacturing in Industry 4.0: A literature review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-06572-4 – volume: 52 start-page: 2537 year: 2019 ident: ref_64 article-title: Prospective ISO 22400 for the challenges of human-centered manufacturing publication-title: IFAC-Pap. – ident: ref_67 – volume: 9 start-page: 115429 year: 2021 ident: ref_122 article-title: Experimental setup for online fault diagnosis of induction machines via promising IoT and machine learning: Towards Industry 4.0 empowerment publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3105297 – ident: ref_106 – volume: 54 start-page: 55 year: 2020 ident: ref_120 article-title: Industry 4.0: Opportunities and Risks in the Context of Information Security Problems publication-title: Autom. Doc. Math. Linguist. doi: 10.3103/S000510552002003X – ident: ref_78 doi: 10.3390/en14040940 – volume: 48 start-page: 413 year: 2021 ident: ref_94 article-title: Opportunities and challenges of the Industry 4.0 in industrial companies: A survey on Moroccan firms publication-title: Econ. E Politi- Ind. doi: 10.1007/s40812-021-00190-1 – ident: ref_47 doi: 10.3390/info11070364 – ident: ref_48 doi: 10.3390/joitmc7010034 – volume: 15 start-page: 478 year: 2019 ident: ref_14 article-title: Thailand. Industry 4.0: State of the art and research implications publication-title: Logforum doi: 10.17270/J.LOG.2019.363 – volume: 2 start-page: 100109 year: 2021 ident: ref_96 article-title: Significance of Quality 4.0 towards comprehensive enhancement in manufacturing sector publication-title: Sens. Int. doi: 10.1016/j.sintl.2021.100109 – ident: ref_59 doi: 10.1109/METROI4.2019.8792912 – ident: ref_81 – volume: 32 start-page: 245 year: 2020 ident: ref_127 article-title: Industry 4. 0 collaborative networks for industrial performance publication-title: J. Manuf. Technol. Manag. doi: 10.1108/JMTM-04-2020-0156 – volume: 1 start-page: 61 year: 2017 ident: ref_143 article-title: Industry 4.0: Security imperatives for IoT- converging networks, increasing risks, Cyber Security: A publication-title: Peer-Rev. J. – ident: ref_137 – volume: 32 start-page: 119 year: 2021 ident: ref_74 article-title: The mediating effect of employees’ involvement on the relationship between Industry 4. 0 and operational performance improvement publication-title: Total Qual. Manag. Bus. Excel doi: 10.1080/14783363.2018.1532789 – ident: ref_115 doi: 10.1007/978-981-32-9531-5_24 – ident: ref_101 – ident: ref_70 – ident: ref_19 – volume: 24 start-page: 17 year: 2020 ident: ref_20 article-title: The New EFQM Model: What is New and Could Be Considered as a Suitable Tool concerning Quality 4.0 Concept? publication-title: Qual. Innov. Prosper. doi: 10.12776/qip.v24i1.1415 – volume: 133 start-page: 751 year: 2011 ident: ref_17 article-title: Reviewing and improving performance measurement systems: An action research publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2011.06.003 – volume: 48 start-page: 83 year: 2020 ident: ref_56 article-title: Enabling Technologies for Industry 4.0 Manufacturing and Supply Chain: Concepts, Current Status, and Adoption Challenges publication-title: IEEE Eng. Manag. Rev. doi: 10.1109/EMR.2020.2987884 – volume: 22 start-page: 224 year: 2003 ident: ref_86 article-title: The implementation and evaluation of Total Productive Maintenance (TPM) an action case study in a Hong Kong manufacturing company publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-002-1463-3 – ident: ref_144 doi: 10.3390/su13095232 – ident: ref_61 doi: 10.1109/ITQMIS.2019.8928426 – ident: ref_99 doi: 10.1080/14783363.2021.1944082 – ident: ref_80 doi: 10.6028/NIST.IR.8107 – ident: ref_23 doi: 10.1109/FSKD.2015.7382284 – volume: 22 start-page: 899 year: 2019 ident: ref_72 article-title: Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems publication-title: Eng. Sci. Technol. Int. J. – volume: 30 start-page: 1050 year: 2017 ident: ref_148 article-title: Challenges and requirements for the application of industry 4.0: A special insight with the usage of cyber-physical system publication-title: Chin. J. Mech. Eng. doi: 10.1007/s10033-017-0164-7 – ident: ref_32 – ident: ref_93 doi: 10.1108/IR-04-2021-0077 – volume: 111 start-page: 68 year: 2019 ident: ref_22 article-title: Oil and Gas 4.0 era: A systematic review and outlook publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.06.007 – volume: 5 start-page: 4 year: 2019 ident: ref_69 article-title: The quality management ecosystem for predictive maintenance in the Industry 4.0 era publication-title: Int. J. Qual. Innov. doi: 10.1186/s40887-019-0029-5 – ident: ref_84 – volume: 7 start-page: 07753 year: 2021 ident: ref_55 article-title: Industry 4.0 implementation and Triple Bottom Line sustainability: An empirical study on small and medium manufacturing firms publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e07753 – ident: ref_66 doi: 10.1007/s10796-020-10047-y – volume: 55 start-page: 2590 year: 2017 ident: ref_27 article-title: Developing performance measurement system for Internet of Things and smart factory environment publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2016.1245883 – volume: 168 start-page: 120756 year: 2021 ident: ref_40 article-title: Openness to Industry 4.0 and performance: The impact of barriers and incentives publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2021.120756 – volume: 44 start-page: 1925 year: 2021 ident: ref_121 article-title: Industry 4.0 opportunities in manufacturing SMEs: Sustainability outlook publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.12.095 – volume: 11 start-page: 1 year: 2019 ident: ref_95 article-title: A smart performance measurement approach for collaborative design in Industry 4.0 publication-title: Adv. Mech. Eng. doi: 10.1177/1687814018822570 – volume: 54 start-page: 3849 year: 2021 ident: ref_135 article-title: Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09942-2 – volume: Volume 15 start-page: 546 year: 2021 ident: ref_3 article-title: Vinay, Conceptual study of artificial intelligence in smart cities with industry 4.0 publication-title: Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) – volume: 31 start-page: 127 year: 2020 ident: ref_13 article-title: Literature review of Industry 4. 0 and related technologies publication-title: J. Intell. Manuf. doi: 10.1007/s10845-018-1433-8 – volume: 32 start-page: 213 year: 2021 ident: ref_49 article-title: ‘Evolutions’ and ‘revolutions’ in manufacturers’ implementation of industry 4.0: A literature review, a multiple case study, and a conceptual framework publication-title: Prod. Plan. Control doi: 10.1080/09537287.2020.1719715 – volume: 32 start-page: 603 year: 2020 ident: ref_33 article-title: Quality 4.0—The challenging future of quality engineering publication-title: Qual. Eng. doi: 10.1080/08982112.2019.1706744 – ident: ref_104 – ident: ref_128 doi: 10.1007/978-3-319-65151-4_1 – ident: ref_58 – ident: ref_41 doi: 10.1007/s13132-021-00750-9 – volume: 150 start-page: 119790 year: 2020 ident: ref_2 article-title: Smart factory performance and Industry 4.0 publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2019.119790 – volume: 207 start-page: 125 year: 2019 ident: ref_139 article-title: Quality management in the 21st century enterprises: Research pathway towards Industry 4.0 publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2018.09.005 – volume: 19 start-page: 1912 year: 2021 ident: ref_75 article-title: Mapping the impacts of industry 4. 0 on performance measurement systems publication-title: IEEE Lat. Am. Trans. doi: 10.1109/TLA.2021.9475625 – volume: 25 start-page: 1299 year: 2020 ident: ref_149 article-title: Industrie 4.0 readiness: Green computing in relation with key performance indicator for a manufacturing industry publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-020-01548-w – volume: 14 start-page: 263 year: 2020 ident: ref_133 article-title: Cybersecurity in Industry 4.0 context: Background, issues, and future directions publication-title: Inst. Eng. Technol. – volume: 38 start-page: 581 year: 2021 ident: ref_54 article-title: Sustainable industrial and operation engineering trends and challenges Toward Industry 4.0: A data driven analysis publication-title: J. Ind. Prod. Eng. – volume: 32 start-page: 2319 year: 2021 ident: ref_100 article-title: Quality 4.0: A review of big data challenges in manufacturing publication-title: J. Intell. Manuf. doi: 10.1007/s10845-021-01765-4 – volume: 1 start-page: 23 year: 2016 ident: ref_97 article-title: Industry 4.0 and environmental accounting: A new revolution? publication-title: Asian J. Sustain. Soc. Responsib. – volume: 31 start-page: 21 year: 1998 ident: ref_73 article-title: Digital Hammers, and Electronic Nails: Tools of the Next Generation publication-title: Qual. Prog. – volume: 4 start-page: 131 year: 2021 ident: ref_37 article-title: Proposal and application of a framework to measure the degree of maturity in Quality 4.0: A multiple case study publication-title: Adv. Math. Ind. – volume: 15 start-page: 546 year: 2021 ident: ref_112 article-title: Industry 4.0 implementation challenges and opportunities: A managerial perspective publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2020.3023041 – volume: 2 start-page: 100023 year: 2020 ident: ref_125 article-title: Challenges, opportunities and future directions of smart manufacturing: A state of art review publication-title: Sustain. Futures doi: 10.1016/j.sftr.2020.100023 – ident: ref_9 doi: 10.5220/0005929704410448 – volume: 9 start-page: 119778 year: 2021 ident: ref_87 article-title: Industry 4.0 Readiness Assessment Method Based on RAMI 4.0 Standards publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3105456 – ident: ref_98 doi: 10.3390/su13063107 – ident: ref_107 – ident: ref_82 doi: 10.1080/09537287.2020.1810761 – ident: ref_110 doi: 10.1007/s10479-019-03498-3 – volume: 3 start-page: 1 year: 2020 ident: ref_141 article-title: Cyber risk at the edge: Current and future trends on cyber risk analytics and artificial intelligence in the industrial internet of things and industry 4.0 supply chains publication-title: Cybersecurity doi: 10.1186/s42400-020-00052-8 – ident: ref_89 doi: 10.5220/0009175800920099 – volume: 51 start-page: 19 year: 2018 ident: ref_5 article-title: Data driven management in Industry 4.0: A method to measure Data Productivity publication-title: IFAC-Pap. – volume: 258 start-page: 113207 year: 2020 ident: ref_12 article-title: Data-driven modeling to predict the load vs. displacement curves of targeted composite materials for industry 4.0 and smart manufacturing publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.113207 – ident: ref_16 doi: 10.3390/app11073186 – ident: ref_102 – ident: ref_53 doi: 10.3390/app11125725 – ident: ref_130 – volume: 32 start-page: 725 year: 2020 ident: ref_39 article-title: On Quality 4.0 in project-based industries publication-title: TQM J. doi: 10.1108/TQM-12-2019-0295 – ident: ref_46 doi: 10.1007/978-3-319-32799-0_10 – volume: 17 start-page: 3 year: 2014 ident: ref_129 article-title: Collaboration Moves Productivity to the Next Level publication-title: Procedia CIRP doi: 10.1016/j.procir.2014.02.037 – volume: 72 start-page: 498 year: 2018 ident: ref_63 article-title: Key Performance Indicators in Cyber-Physical Production Systems publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.036 – ident: ref_126 doi: 10.5772/intechopen.72304 – volume: 23 start-page: 467 year: 2012 ident: ref_44 article-title: Transfer of total productive maintenance practice to supply chain publication-title: Total. Qual. Manag. Bus. Excel. doi: 10.1080/14783363.2011.637788 – volume: 45 start-page: 5089 year: 2021 ident: ref_15 article-title: Improving material quality management and manufacturing organizations system through Industry 4. 0 technologies publication-title: Mater. Today – ident: ref_29 – volume: 57 start-page: 122 year: 2016 ident: ref_51 article-title: A Novel Methodology for Manufacturing Firms Value Modeling and Mapping to Improve Operational Performance in the Industry 4.0 Era publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.11.022 – volume: 48 start-page: 1 year: 2017 ident: ref_10 article-title: The Internet of Things in the Power Sector: Opportunities in Asia and the Pacific publication-title: ADB Sustain. Dev. Work. Paper Ser. – ident: ref_85 – volume: 15 start-page: 17 year: 2015 ident: ref_119 article-title: Industry 4.0 as a Cyber-Physical System study publication-title: Softw. Syst. Model. doi: 10.1007/s10270-015-0493-x – ident: ref_105 – volume: 70 start-page: 789 year: 2020 ident: ref_21 article-title: Performance measurement for supply chains in the Industry 4.0 era: A balanced scorecard approach publication-title: Int. J. Product. Perform. Manag. doi: 10.1108/IJPPM-08-2019-0400 – ident: ref_57 – volume: 22 start-page: 1761 year: 2020 ident: ref_138 article-title: Complementing IoT services through software defined networking and edge computing: A comprehensive survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2020.2997475 – volume: 28 start-page: 54826 year: 2021 ident: ref_142 article-title: Digitalization and environment: How does ICT affect enterprise environmental performance? publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-021-14474-5 – ident: ref_92 doi: 10.3390/su13095169 – volume: 32 start-page: 1679 year: 2021 ident: ref_146 article-title: Digitalization priorities of quality control processes for SMEs: A conceptual study in perspective of Industry 4.0 adoption publication-title: J. Intell. Manuf. doi: 10.1007/s10845-021-01783-2 – volume: 229 start-page: 107853 year: 2020 ident: ref_11 article-title: A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs- A review and empirical investigation publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2020.107853 – volume: 1 start-page: 298 year: 2020 ident: ref_52 article-title: Quo Vadis Industry 4. 0? Position, Trends, and Challenges publication-title: IEEE Open J. Ind. Electron. Soc. doi: 10.1109/OJIES.2020.3031660 |
SSID | ssj0023338 |
Score | 2.600635 |
SecondaryResourceType | review_article |
Snippet | The birth of mass production started in the early 1900s. The manufacturing industries were transformed from mechanization to digitalization with the help of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 224 |
SubjectTerms | Automation Autonomous Vehicles Big Data Blockchain cyber–physical production system Factories Industry Industry 4.0 Internet of Things Manufacturing Performance evaluation performance measurement system Quality 4.0 Review Technology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_i22qVKB68xGbzauLNJ0WoeFAoeFiSbBYFWUXrof_eSbPdtiJ48brJYTKZycy3mXyD0DFEOUjbvSVcS0vAEz1xXHkSuPbxIWUhfXyN3L9TvUdxO5CDmVZfsSYs0QMnxXW0dVlmSu89dYKKYEqwICmLwKw2khbx9KWGTsBUDbU4IK_EI8QB1Hc-GUvcaXPRZ0zS_1tm-bNAcibi3KyilTpVxOdJxDW0EKp1tDxDILiBnu6ndf-4P_3dhxMRObZVgRNLxghPC13wS4Wv7NCSq4941uG6fccIi1N6hs9xui_YRI831w-XPVK3SyBecjkkQojQLTgVmVZWQaaQaeOY4BYQgymNimRjRYR_KnijLCt1KZkqLTNOC2YV30KL1VsVdhC2RmoIbjE7BKe23BlqSuWFpoo56mgLnUzUmPuaSzy2tHjNAVNEjeeNxlvoqJn6ngg0fpt0EfeimRA5r8cfwBLy2hLyvyyhhdqTncxrR_zMASACgII0B2Q-bIbBheK9iK3C21eaAwsUottC22njG0m4jC9dFIx050xiTtT5kerleUzTrbuRi5_v_sfa9tASi8U0GSPMtNHi8OMr7EM2NHQHY8P_BgXFBiI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QUOFW8CBRnEgYup49faSAi1tFWF1FWFqFSJQ2Q7DlRC2Xa7PfTfM46TbBdVXGMfHI9n5ht75huA9-jlELYHR4VRjqImBuqFDjQKE1IhZa1CqkY-numjU_ntTJ1twGyohUlplYNN7Ax1PQ_pjnwHkT4iYfRX7MvFJU1do9Lr6tBCw_WtFerPHcXYPdhEk6zYBDb3DmYn38cQTGBElvmFBAb7O1ecZ061Na_UkfffhTj_TZy85YkOH8JWDyHJbpb5I9iI7WN4cItY8An8PFnVA5Dj1TUgyQTlxLU1yewZN2SVAEPOW7Lvlo7uL5INJH1bjxsiP7JPZJfkd4SncHp48OPrEe3bKNCghFpSKWWc1oLJ0minEUGUxnouhcNIwjZWJxKyOoWFOgarHW9Mo7huHLfeSO60eAaTdt7GF0CcVQadXkKNqOxOeMtso4M0THPPPCvgw7CNVeg5xlOriz8Vxhppx6txxwt4N069yMQad03aS7IYJyQu7O7DfPGr6lWrMs6XpW1CCMxLJqNt0MYoVUfujFWsLmB7kGTVK-hVtTpOBbwdh1G10nuJa-P8Os_BH5RyWsDzLPhxJUKlChiNI9O1I7G21PWR9vx3R99tpomjX7z8_7JewX2e0mdKTrndhslycR1fI_5Z-jf9of4L6GwDnw priority: 102 providerName: ProQuest |
Title | Performance Measurement System and Quality Management in Data-Driven Industry 4.0: A Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35009767 https://www.proquest.com/docview/2618268200 https://www.proquest.com/docview/2618909447 https://pubmed.ncbi.nlm.nih.gov/PMC8749653 https://doaj.org/article/8ab119fccc0b404e9f79455de2a8950d |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_6AVIfxG9X6xHFB19Ss_naRBBpbc8itBTx4MCHJZvNaqHs6fUK3n_vZL-uJ_fkyz5sZiE7k0nml0x-A_AGVzkM272jwihH0RM9LYT2NAjj40XKUvl4G_nsXJ9O5Jepmm5BX2OzU-D1RmgX60lN5lcHf34vP6LDf4iIEyH7u2vOW2a0bdhtjoliBp8cDhO4QBjWkgqti-_BHaHiRYamyPxqVWrI-zdFnP8mTt5aicb34V4XQpLD1uYPYCvUD-HuLWLBR_D9YnUfgJyttgFJS1BOXF2Slj1jSVYJMOSyJsdu4ejxPM6BpCvrsSTygL0nh6Q9R3gMk_HJt0-ntCujQL0SakGllCErBZOp0U5jBJEaW3ApHCIJW1kdScjKCAt18FY7XplKcV05bgsjudPiCezUszo8A-KsMqjfGDWisztRWGYr7aVhmhesYAm87dWY-45jPJa6uMoRa0Tl54PyE3g9iP5qiTU2CR1FWwwCkQu7eTGb_8g718qNK9LUVt57Vkgmg61wjlGqDNwZq1iZwH5vybwfXzkCRwRWGP5gn18Nzeha8bzE1WF208rgD0qZJfC0NfzQk37gJJCtDYm1rq631Jc_G_puk0WOfvH8v798AXs8ZtaknHK7DzuL-U14iaHRohjBdjbN8GnGn0ewe3RyfvF11GwzjBqX-As3ZhAy |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEG8WChgEEhdTr1-xkSrUklYpbaIKtVIlDovXuwuV0KYkqVD-HL-N8b7SoIpbr_Fo5Yznac98A_AGvRyG7d5RYZSjqImepkJ7mgvjQyNlpnzoRh6N9fBEfj5Vp2vwp-2FCWWVrU2sDHU28eGOfBMjfYyE0V-xj-e_aJgaFV5X2xEarhmtkG1VEGNNY8dBvviNKdxsa3-A5_2W873d409D2kwZoF4JNadSyryfYVYfG-00OtjY2JRL4TDQtoXVAaMrC1mTzr3VjhemUFwXjtvUSO60wO_egHUZLlB6sL6zOz760qV8AjPAGs9ICMs2Z5zXGG4rXrAaFnBVhPtvoeYlz7d3F-40ISvZrmXsHqzl5X24fQnI8AF8PVr2H5DR8tqR1IDoxJUZqdE6FmRZcEPOSjJwc0cH02BzSTNGZEHke_aBbJP63eIhnFwLQx9Br5yU-RMgziqDTjZEqWhcnEgts4X20jDNU5ayCN61bEx8g2keRmv8TDC3CRxPOo5H8LojPa-BPK4i2gln0REE7O3qh8n0e9KocmJcGse28N6zVDKZ2wJtmlJZzp2ximURbLQnmTQGYZYsxTeCV90yqnJ4n3FlPrmoafAPStmP4HF98N1OhAodNxpX-isisbLV1ZXy7EcFF276YSaAePr_bb2Em8Pj0WFyuD8-eAa3eCjdiTnldgN68-lF_hxjr3n6ohFwAt-uW6f-AgkWPYo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA61BdEH8e5o1SgKvsTN5DaJUKR1u7TWLotYKPgwZjKZtiCzdXeL7F_0V3kyk53tSvGtr5PDkMm5T875DkJvwMtB2O4s4VpaAproSMGVI55rFxopS-lCN_LhUO0dic_H8ngN_Vn0woSyyoVNbAx1OXbhH3kPIn2IhMFf0V4VyyJG_cHH818kTJAKN62LcRo2jlkotxq4sdjkceDnvyGdm27t94H3bxkb7H77tEfixAHiJJczIoTwWQkZfqqVVeBsU20KJriFoNtURgW8rjJkUMo7oyyrdCWZqiwzhRbMKg7vvYE2MvD6kAhu7OwOR1-79I9DNthiG3FuaG_KWIvntuIRm8EBV0W7_xZtXvKCg7voTgxf8XYrb_fQmq_vo9uXQA0foO-jZS8CPlz-gsQtODq2dYlb5I45Xhbf4LMa9-3Mkv4k2F8cR4rMsXhPP-Bt3N5hPERH13Kgj9B6Pa79E4StkRocbohYwdBYXhhqKuWEpooVtKAJerc4xtxFfPMwZuNnDnlOOPG8O_EEve5Iz1tQj6uIdgIvOoKAw908GE9O8qjWubZFmprKOUcLQYU3Fdg3KUvPrDaSlgnaXHAyj8Zhmi9FOUGvumVQ63BXY2s_vmhp4AOFyBL0uGV8txMuQ_eNgpVsRSRWtrq6Up-dNtDhOgvzAfjT_2_rJboJupV_2R8ePEO3WKjiSRlhZhOtzyYX_jmEYbPiRZRvjH5ct0r9BSSqQc4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Measurement+System+and+Quality+Management+in+Data-Driven+Industry+4.0%3A+A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Tambare%2C+Parkash&rft.au=Meshram%2C+Chandrashekhar&rft.au=Lee%2C+Cheng-Chi&rft.au=Ramteke%2C+Rakesh+Jagdish&rft.date=2021-12-29&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=1&rft_id=info:doi/10.3390%2Fs22010224&rft_id=info%3Apmid%2F35009767&rft.externalDocID=PMC8749653 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |