TFEB-dependent induction of thermogenesis by the hepatocyte SLC2A inhibitor trehalose
The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepat...
Saved in:
Published in | Autophagy Vol. 14; no. 11; pp. 1959 - 1975 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
02.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1554-8627 1554-8635 1554-8635 |
DOI | 10.1080/15548627.2018.1493044 |
Cover
Abstract | The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepatocyte autophagic flux. However, although every major demonstration of trehalose action invokes activating autophagic flux as its primary function, the mechanism of action of trehalose in whole-body energy metabolism remains poorly defined. Here, we demonstrate that trehalose induces hepatocyte TFEB (transcription factor EB)-dependent thermogenesis in vivo, concomitant with upregulation of hepatic and white adipose expression of UCP1 (uncoupling protein 1 [mitochondrial, protein carrier]). Mechanistically, we provide evidence that hepatocyte fasting transcriptional and metabolic responses depend upon PPARGC1A (peroxisome proliferative activated receptor, gamma, coactivator 1 alpha), TFEB, and FGF21 (fibroblast growth factor 21) signaling. Strikingly, hepatocyte-selective TFEB knockdown abrogated trehalose induction of thermogenesis and white adipose tissue UCP1 upregulation in vivo. In contrast, we found that trehalose action on thermogenesis was independent of LEP (leptin) and the autophagy pathway, as there was robust thermogenic induction in trehalose-treated ob/ob, Becn1, Atg16l1, and Epg5 mutant mice. We conclude that trehalose induces metabolically favorable effects on whole-body thermogenesis in part via hepatocyte-centered fasting-like mechanisms that appear to be independent of autophagic flux. Our findings elucidate a novel mechanism by which trehalose acts as a metabolic therapeutic agent by activating hepatic fasting responses. More broadly, the hepatic glucose fasting response may be of clinical utility against overnutrition-driven disease, such as obesity and type 2 diabetes mellitus. |
---|---|
AbstractList | The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepatocyte autophagic flux. However, although every major demonstration of trehalose action invokes activating autophagic flux as its primary function, the mechanism of action of trehalose in whole-body energy metabolism remains poorly defined. Here, we demonstrate that trehalose induces hepatocyte TFEB (transcription factor EB)-dependent thermogenesis in vivo, concomitant with upregulation of hepatic and white adipose expression of UCP1 (uncoupling protein 1 [mitochondrial, protein carrier]). Mechanistically, we provide evidence that hepatocyte fasting transcriptional and metabolic responses depend upon PPARGC1A (peroxisome proliferative activated receptor, gamma, coactivator 1 alpha), TFEB, and FGF21 (fibroblast growth factor 21) signaling. Strikingly, hepatocyte-selective TFEB knockdown abrogated trehalose induction of thermogenesis and white adipose tissue UCP1 upregulation in vivo. In contrast, we found that trehalose action on thermogenesis was independent of LEP (leptin) and the autophagy pathway, as there was robust thermogenic induction in trehalose-treated ob/ob, Becn1, Atg16l1, and Epg5 mutant mice. We conclude that trehalose induces metabolically favorable effects on whole-body thermogenesis in part via hepatocyte-centered fasting-like mechanisms that appear to be independent of autophagic flux. Our findings elucidate a novel mechanism by which trehalose acts as a metabolic therapeutic agent by activating hepatic fasting responses. More broadly, the hepatic glucose fasting response may be of clinical utility against overnutrition-driven disease, such as obesity and type 2 diabetes mellitus. The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepatocyte autophagic flux. However, although every major demonstration of trehalose action invokes activating autophagic flux as its primary function, the mechanism of action of trehalose in whole-body energy metabolism remains poorly defined. Here, we demonstrate that trehalose induces hepatocyte TFEB (transcription factor EB)-dependent thermogenesis in vivo , concomitant with upregulation of hepatic and white adipose expression of UCP1 (uncoupling protein 1 [mitochondrial, protein carrier]). Mechanistically, we provide evidence that hepatocyte fasting transcriptional and metabolic responses depend upon PPARGC1A (peroxisome proliferative activated receptor, gamma, coactivator 1 alpha), TFEB, and FGF21 (fibroblast growth factor 21) signaling. Strikingly, hepatocyte-selective TFEB knockdown abrogated trehalose induction of thermogenesis and white adipose tissue UCP1 upregulation in vivo . In contrast, we found that trehalose action on thermogenesis was independent of LEP (leptin) and the autophagy pathway, as there was robust thermogenic induction in trehalose-treated ob/ob, Becn1, Atg16l1 , and Epg5 mutant mice. We conclude that trehalose induces metabolically favorable effects on whole-body thermogenesis in part via hepatocyte-centered fasting-like mechanisms that appear to be independent of autophagic flux. Our findings elucidate a novel mechanism by which trehalose acts as a metabolic therapeutic agent by activating hepatic fasting responses. More broadly, the hepatic glucose fasting response may be of clinical utility against overnutrition-driven disease, such as obesity and type 2 diabetes mellitus. The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepatocyte autophagic flux. However, although every major demonstration of trehalose action invokes activating autophagic flux as its primary function, the mechanism of action of trehalose in whole-body energy metabolism remains poorly defined. Here, we demonstrate that trehalose induces hepatocyte TFEB (transcription factor EB)-dependent thermogenesis in vivo, concomitant with upregulation of hepatic and white adipose expression of UCP1 (uncoupling protein 1 [mitochondrial, protein carrier]). Mechanistically, we provide evidence that hepatocyte fasting transcriptional and metabolic responses depend upon PPARGC1A (peroxisome proliferative activated receptor, gamma, coactivator 1 alpha), TFEB, and FGF21 (fibroblast growth factor 21) signaling. Strikingly, hepatocyte-selective TFEB knockdown abrogated trehalose induction of thermogenesis and white adipose tissue UCP1 upregulation in vivo. In contrast, we found that trehalose action on thermogenesis was independent of LEP (leptin) and the autophagy pathway, as there was robust thermogenic induction in trehalose-treated ob/ob, Becn1, Atg16l1, and Epg5 mutant mice. We conclude that trehalose induces metabolically favorable effects on whole-body thermogenesis in part via hepatocyte-centered fasting-like mechanisms that appear to be independent of autophagic flux. Our findings elucidate a novel mechanism by which trehalose acts as a metabolic therapeutic agent by activating hepatic fasting responses. More broadly, the hepatic glucose fasting response may be of clinical utility against overnutrition-driven disease, such as obesity and type 2 diabetes mellitus.The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepatocyte autophagic flux. However, although every major demonstration of trehalose action invokes activating autophagic flux as its primary function, the mechanism of action of trehalose in whole-body energy metabolism remains poorly defined. Here, we demonstrate that trehalose induces hepatocyte TFEB (transcription factor EB)-dependent thermogenesis in vivo, concomitant with upregulation of hepatic and white adipose expression of UCP1 (uncoupling protein 1 [mitochondrial, protein carrier]). Mechanistically, we provide evidence that hepatocyte fasting transcriptional and metabolic responses depend upon PPARGC1A (peroxisome proliferative activated receptor, gamma, coactivator 1 alpha), TFEB, and FGF21 (fibroblast growth factor 21) signaling. Strikingly, hepatocyte-selective TFEB knockdown abrogated trehalose induction of thermogenesis and white adipose tissue UCP1 upregulation in vivo. In contrast, we found that trehalose action on thermogenesis was independent of LEP (leptin) and the autophagy pathway, as there was robust thermogenic induction in trehalose-treated ob/ob, Becn1, Atg16l1, and Epg5 mutant mice. We conclude that trehalose induces metabolically favorable effects on whole-body thermogenesis in part via hepatocyte-centered fasting-like mechanisms that appear to be independent of autophagic flux. Our findings elucidate a novel mechanism by which trehalose acts as a metabolic therapeutic agent by activating hepatic fasting responses. More broadly, the hepatic glucose fasting response may be of clinical utility against overnutrition-driven disease, such as obesity and type 2 diabetes mellitus. |
Author | Razani, Babak Higgins, Cassandra B. Hruz, Paul W. Graham, Mark J. Mayer, Allyson L. Zhang, Yiming DeBosch, Brian J. Mysorekar, Indira U. |
Author_xml | – sequence: 1 givenname: Yiming surname: Zhang fullname: Zhang, Yiming organization: Washington University School of Medicine – sequence: 2 givenname: Cassandra B. surname: Higgins fullname: Higgins, Cassandra B. organization: Washington University School of Medicine – sequence: 3 givenname: Allyson L. surname: Mayer fullname: Mayer, Allyson L. organization: Washington University School of Medicine – sequence: 4 givenname: Indira U. surname: Mysorekar fullname: Mysorekar, Indira U. organization: Washington University School of Medicine – sequence: 5 givenname: Babak surname: Razani fullname: Razani, Babak organization: Washington University School of Medicine – sequence: 6 givenname: Mark J. surname: Graham fullname: Graham, Mark J. organization: Washington University School of Medicine – sequence: 7 givenname: Paul W. surname: Hruz fullname: Hruz, Paul W. organization: Washington University School of Medicine – sequence: 8 givenname: Brian J. orcidid: 0000-0002-9924-7921 surname: DeBosch fullname: DeBosch, Brian J. email: deboschb@wustl.edu organization: Washington University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29996716$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1v1DAQtVAr-gE_AZQjlyz-zMZCQrSrFpBW4kB7thxn3Bgl9mJ7Qfvv62i3K-BATzMav_fmjd8FOvHBA0JvCF4Q3OL3RAjeNnS5oJi0C8Ilw5y_QOfzvG4bJk6OPV2eoYuUfmDMmlbSl-iMSimbJWnO0f3d7c113cMGfA8-V873W5Nd8FWwVR4gTuEBPCSXqm43D6oBNjoHs8tQfV-v6FWhDK5zOcQqRxj0GBK8QqdWjwleH-olur-9uVt9qdffPn9dXa1rIxjPdWcxAc4ZWAtcUkJAEtbjptWyEZxRg4tJ2XdSQ8stMViXI40gvAfGsRDsEn3c62623QS9KRdEPapNdJOOOxW0U3-_eDeoh_BLNURQwZoi8O4gEMPPLaSsJpcMjKP2ELZJ0WJGEipwW6Bv_9x1XPL0lwUg9gATQ0oR7BFCsJozU0-ZqTkzdcis8D78wzMu6zmDYtmNz7I_7dnO2xAn_TvEsVdZ78YQbdTeuKTY_yUeAQ2Ir7I |
CitedBy_id | crossref_primary_10_1038_s41467_022_28717_7 crossref_primary_10_1080_15548627_2021_1896906 crossref_primary_10_3390_jcm11010247 crossref_primary_10_1016_j_dsx_2019_05_023 crossref_primary_10_1016_j_jcmgh_2024_01_016 crossref_primary_10_1128_JVI_02024_20 crossref_primary_10_1080_10408398_2021_1895057 crossref_primary_10_1093_pnasnexus_pgae357 crossref_primary_10_1186_s12986_019_0373_4 crossref_primary_10_1210_en_2017_03150 crossref_primary_10_2174_0929867330666230406102555 crossref_primary_10_1053_j_gastro_2019_11_295 crossref_primary_10_1021_acsnano_1c08391 crossref_primary_10_1016_j_jbc_2022_102835 crossref_primary_10_1038_s41419_019_1931_4 crossref_primary_10_1038_s41586_021_03522_2 crossref_primary_10_1080_19490976_2020_1750273 crossref_primary_10_1097_MCO_0000000000000568 crossref_primary_10_1111_febs_15482 crossref_primary_10_1016_j_lfs_2024_122473 crossref_primary_10_3390_cells7100149 crossref_primary_10_1038_s41467_019_09642_8 crossref_primary_10_1016_j_xcrm_2021_100498 crossref_primary_10_1172_jci_insight_120794 |
Cites_doi | 10.1016/j.cmet.2013.08.005 10.1016/0361-9230(91)90154-C 10.1101/gad.184788.111 10.1210/me.2013-1137 10.1038/nrendo.2016.136 10.1016/j.neuron.2017.01.022 10.1016/j.tcb.2014.06.006 10.4161/auto.5.3.7662 10.3945/ajcn.110.001941 10.1128/MCB.00596-14 10.1073/pnas.0904187106 10.7326/0003-4819-81-4-526 10.1038/ncomms15750 10.1083/jcb.201211014 10.2337/db14-1185 10.1074/jbc.M110.131615 10.1016/j.cmet.2013.12.008 10.1038/emboj.2012.32 10.1038/nature09932 10.1210/en.2017-03150 10.1126/scisignal.aaf1937 10.1074/jbc.M112.375907 10.1186/1475-2891-11-34 10.1530/JOE-15-0160 10.1016/j.arr.2006.04.002 10.1001/archinte.1963.03860030087006 10.2337/db08-0392 10.1523/JNEUROSCI.0109-15.2015 10.1172/JCI65538 10.1016/j.molmet.2014.09.007 10.1016/j.molmed.2008.09.007 10.1152/ajpendo.00263.2010 10.4161/auto.25188 10.4161/auto.27710 10.4161/auto.21600 10.1016/j.neurobiolaging.2011.11.009 10.1074/jbc.M113.527002 10.1074/jbc.M114.595850 10.1038/sj.ijo.0802905 10.4161/auto.19653 10.1016/j.nutres.2010.10.009 10.1038/ncb2718 10.4161/auto.24856 10.1073/pnas.1006962107 10.1016/j.molcel.2008.03.003 10.1080/15548627.2015.1017187 10.1038/nrendo.2016.206 10.1038/ncomms5642 10.1038/srep38586 10.2337/diabetes.54.2.322 10.1113/jphysiol.1973.sp010270 10.1016/S0005-2728(00)00247-4 10.1053/j.gastro.2013.10.059 10.1101/gad.177857.111 10.2337/db14-0595 10.1016/B978-0-12-801415-8.00016-3 10.1111/j.0013-9580.2004.10004.x 10.1016/j.molcel.2016.08.021 10.1016/S0278-6915(02)00011-X 10.1073/pnas.1412047111 10.1074/jbc.M609532200 10.1038/nature07416 10.1038/cdd.2010.191 10.1172/JCI27794 10.1080/15548627.2017.1389356 10.1038/nature09584 10.1038/nm.3014 10.1016/j.cmet.2010.02.001 10.1371/journal.pbio.0030101 10.1126/scisignal.aac5472 |
ContentType | Journal Article |
Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1080/15548627.2018.1493044 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Y. ZHANG ET AL |
EISSN | 1554-8635 |
EndPage | 1975 |
ExternalDocumentID | PMC6152536 29996716 10_1080_15548627_2018_1493044 1493044 |
Genre | Research Article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK100644 – fundername: NIGMS NIH HHS grantid: T32 GM007067 – fundername: BLRD VA grantid: I01 BX003415 – fundername: NICHD NIH HHS grantid: K12 HD076224 – fundername: NIDDK NIH HHS grantid: P30 DK020579 – fundername: NCATS NIH HHS grantid: UL1 TR002345 – fundername: NIDDK NIH HHS grantid: P30 DK056341 – fundername: NCATS NIH HHS grantid: UL1 TR000448 – fundername: NIDDK NIH HHS grantid: P30 DK052574 – fundername: ; ; grantid: DGE-1143954 – fundername: ; ; grantid: AMFDP73315 – fundername: ; ; grantid: R01DK100644 – fundername: ; ; grantid: W81XWH-17-1-0133 – fundername: ; ; grantid: T32GM007067 – fundername: ; grantid: P30DK020579 – fundername: ; grantid: P30DK52574 – fundername: ; grantid: UL1TR002345 – fundername: ; ; grantid: MI-FR-2014-426; MD-FR-2017-593 – fundername: ; grantid: K12HD076224 |
GroupedDBID | --- 0BK 0R~ 23N 30N 4.4 53G 5GY AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADBBV ADCVX ADGTB AEISY AENEX AEYOC AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AVBZW AWYRJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO E3Z EBS EJD EMOBN F5P GTTXZ H13 HYE IPNFZ KYCEM M4Z O9- OK1 P2P RIG RNANH ROSJB RPM RTWRZ SNACF TBQAZ TDBHL TEI TFL TFT TFW TQWBC TR2 TTHFI TUROJ ZGOLN AAGDL AAHIA AAYXX ADHGD ADYSH AFRVT AIYEW AMPGV CITATION AAGME ABFMO ACDHJ ACZPZ ADOPC AURDB BFWEY C1A CGR CUY CVF CWRZV ECM EIF LJTGL NPM PCLFJ 7X8 TASJS 5PM |
ID | FETCH-LOGICAL-c534t-bf01e443effe49211e913d068a965432c06719db9ae84f1c0a304c514de340553 |
ISSN | 1554-8627 1554-8635 |
IngestDate | Thu Aug 21 13:42:58 EDT 2025 Fri Sep 05 11:43:52 EDT 2025 Thu Apr 03 07:07:20 EDT 2025 Tue Jul 01 02:48:57 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 Wed Dec 25 09:03:01 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | glucose transport ectopic P-granules autophagy protein solute carrier 2A transcription factor EB fibroblast growth factor Beclin 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c534t-bf01e443effe49211e913d068a965432c06719db9ae84f1c0a304c514de340553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9924-7921 |
OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/15548627.2018.1493044?needAccess=true |
PMID | 29996716 |
PQID | 2068912508 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2068912508 crossref_primary_10_1080_15548627_2018_1493044 crossref_citationtrail_10_1080_15548627_2018_1493044 pubmed_primary_29996716 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6152536 informaworld_taylorfrancis_310_1080_15548627_2018_1493044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-02 |
PublicationDateYYYYMMDD | 2018-11-02 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Autophagy |
PublicationTitleAlternate | Autophagy |
PublicationYear | 2018 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0033 cit0034 cit0031 cit0032 cit0073 cit0030 cit0071 cit0072 cit0070 Estall JL (cit0060) 2009 Holmes D (cit0012) 2016; 12 cit0039 cit0037 cit0038 cit0035 cit0036 cit0022 cit0066 cit0023 cit0067 cit0020 cit0064 cit0021 cit0065 cit0062 cit0063 cit0061 Tan VP (cit0004) 2016 cit0028 cit0029 cit0026 cit0027 cit0024 cit0068 cit0025 cit0069 cit0011 cit0055 cit0056 cit0053 cit0010 cit0054 cit0051 cit0052 cit0050 cit0019 cit0017 cit0018 cit0015 cit0059 cit0016 cit0013 cit0057 cit0014 cit0058 cit0044 cit0001 cit0045 cit0042 cit0043 cit0040 cit0041 cit0008 cit0009 cit0006 cit0007 cit0048 cit0005 cit0049 cit0002 cit0046 cit0003 cit0047 |
References_xml | – ident: cit0016 doi: 10.1016/j.cmet.2013.08.005 – ident: cit0051 doi: 10.1016/0361-9230(91)90154-C – ident: cit0043 doi: 10.1101/gad.184788.111 – ident: cit0021 doi: 10.1210/me.2013-1137 – ident: cit0018 doi: 10.1038/nrendo.2016.136 – ident: cit0026 doi: 10.1016/j.neuron.2017.01.022 – ident: cit0046 doi: 10.1016/j.tcb.2014.06.006 – ident: cit0023 doi: 10.4161/auto.5.3.7662 – ident: cit0058 doi: 10.3945/ajcn.110.001941 – ident: cit0055 doi: 10.1128/MCB.00596-14 – ident: cit0015 doi: 10.1073/pnas.0904187106 – ident: cit0066 doi: 10.7326/0003-4819-81-4-526 – ident: cit0027 doi: 10.1038/ncomms15750 – ident: cit0039 doi: 10.1083/jcb.201211014 – ident: cit0009 doi: 10.2337/db14-1185 – start-page: 1 year: 2016 ident: cit0004 publication-title: J Mol Cell Cardiol – ident: cit0072 doi: 10.1074/jbc.M110.131615 – ident: cit0001 doi: 10.1016/j.cmet.2013.12.008 – ident: cit0052 doi: 10.1038/emboj.2012.32 – ident: cit0005 doi: 10.1038/nature09932 – ident: cit0069 doi: 10.1210/en.2017-03150 – ident: cit0019 doi: 10.1126/scisignal.aaf1937 – ident: cit0057 doi: 10.1074/jbc.M112.375907 – ident: cit0064 doi: 10.1186/1475-2891-11-34 – ident: cit0014 doi: 10.1530/JOE-15-0160 – ident: cit0065 doi: 10.1016/j.arr.2006.04.002 – ident: cit0067 doi: 10.1001/archinte.1963.03860030087006 – ident: cit0013 doi: 10.2337/db08-0392 – ident: cit0047 doi: 10.1523/JNEUROSCI.0109-15.2015 – ident: cit0002 doi: 10.1172/JCI65538 – ident: cit0030 doi: 10.1016/j.molmet.2014.09.007 – ident: cit0006 doi: 10.1016/j.molmed.2008.09.007 – ident: cit0062 doi: 10.1152/ajpendo.00263.2010 – ident: cit0022 doi: 10.4161/auto.25188 – volume-title: PGC-1a negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erba axis year: 2009 ident: cit0060 – ident: cit0033 doi: 10.4161/auto.27710 – ident: cit0037 doi: 10.4161/auto.21600 – ident: cit0032 doi: 10.1016/j.neurobiolaging.2011.11.009 – ident: cit0070 doi: 10.1074/jbc.M113.527002 – ident: cit0068 doi: 10.1074/jbc.M114.595850 – ident: cit0048 doi: 10.1038/sj.ijo.0802905 – ident: cit0010 doi: 10.4161/auto.19653 – volume: 12 start-page: 3 year: 2016 ident: cit0012 publication-title: Nat Rev Endocrinol – ident: cit0028 doi: 10.1016/j.nutres.2010.10.009 – ident: cit0011 doi: 10.1038/ncb2718 – ident: cit0040 doi: 10.4161/auto.24856 – ident: cit0061 doi: 10.1073/pnas.1006962107 – ident: cit0007 doi: 10.1016/j.molcel.2008.03.003 – ident: cit0034 doi: 10.1080/15548627.2015.1017187 – ident: cit0056 doi: 10.1038/nrendo.2016.206 – ident: cit0071 doi: 10.1038/ncomms5642 – ident: cit0025 doi: 10.1038/srep38586 – ident: cit0049 doi: 10.2337/diabetes.54.2.322 – ident: cit0050 doi: 10.1113/jphysiol.1973.sp010270 – ident: cit0059 doi: 10.1016/S0005-2728(00)00247-4 – ident: cit0017 doi: 10.1053/j.gastro.2013.10.059 – ident: cit0054 doi: 10.1101/gad.177857.111 – ident: cit0045 doi: 10.2337/db14-0595 – ident: cit0042 doi: 10.1016/B978-0-12-801415-8.00016-3 – ident: cit0063 doi: 10.1111/j.0013-9580.2004.10004.x – ident: cit0041 doi: 10.1016/j.molcel.2016.08.021 – ident: cit0031 doi: 10.1016/S0278-6915(02)00011-X – ident: cit0029 doi: 10.1073/pnas.1412047111 – ident: cit0024 doi: 10.1074/jbc.M609532200 – ident: cit0036 doi: 10.1038/nature07416 – ident: cit0035 doi: 10.1038/cdd.2010.191 – ident: cit0008 doi: 10.1172/JCI27794 – ident: cit0038 doi: 10.1080/15548627.2017.1389356 – ident: cit0003 doi: 10.1038/nature09584 – ident: cit0044 doi: 10.1038/nm.3014 – ident: cit0053 doi: 10.1016/j.cmet.2010.02.001 – ident: cit0073 doi: 10.1371/journal.pbio.0030101 – ident: cit0020 doi: 10.1126/scisignal.aac5472 |
SSID | ssj0036892 |
Score | 2.3712633 |
Snippet | The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1959 |
SubjectTerms | Animals Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology Beclin 1 Cells, Cultured ectopic P-granules autophagy protein Energy Metabolism - drug effects Energy Metabolism - genetics fibroblast growth factor glucose transport Glucose Transport Proteins, Facilitative - antagonists & inhibitors Glucose Transport Proteins, Facilitative - metabolism Hepatocytes - drug effects Hepatocytes - metabolism Mice Mice, Inbred C57BL Mice, Transgenic Research Paper - Basic Science solute carrier 2A Thermogenesis - drug effects Thermogenesis - genetics transcription factor EB Trehalose - pharmacology Up-Regulation - drug effects Up-Regulation - genetics |
Title | TFEB-dependent induction of thermogenesis by the hepatocyte SLC2A inhibitor trehalose |
URI | https://www.tandfonline.com/doi/abs/10.1080/15548627.2018.1493044 https://www.ncbi.nlm.nih.gov/pubmed/29996716 https://www.proquest.com/docview/2068912508 https://pubmed.ncbi.nlm.nih.gov/PMC6152536 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBayDgN2GfZeugc8YLfAmWXJjnxMgxbt1u2yBOhOhiwrTdDMHhzn4N72z0dafrYBusfFSGTLFsTPIimTHwn5oNxAuRqLZvDYsbmMfVtKT9igiwVYG0zKGBOcv3z1Txf804V3MRj86maX5NFYXe_NK_kXqUIbyBWzZP9Css1NoQF-g3zhCBKG45_J-OT4yK7L2CLXf2y4YKsP_9mP9BKXsvW2NDIBECtQPnmqilyPvp3P3Cl0Wa0jeKkzjDhfyU267YUGTXfIOyDbffdmf_k7VgO73LNxPQNrXCZxJkdH43a7u6iKZm82BZY8PG9Pwf9MX5kw77MENKwcLcbdvQgqyqS81nOd3yoL0l1ZPW6D-2S0q-62Gb6SZjnmXdjRzuKKPDgdRU0DU3PllhIwUZN4c3wehu8JUAgBcwzT5A1-7erMPXLfnYD5hXb12edamTNflHW1m9HXSWDC-bj3AT3zpkd-u8-FuRmJ2zFt5o_Jo8onsaYGYE_IQCdPyQNTpbR4RhZ9mFkNzKx0afVgZkUFNlgtzKwSZlYDM6uB2XOyODmez07tqhqHrTzGcztaOlRzzjDOiAcupTqgLHZ8IQPMT3YV2D00iKNAasGXVDkS5kOBPR5rBl6Bx16QgyRN9CtiRf5EUUaZcjkYR34UxcILhPTB1xea68mQ8HoSQ1VR1WPFlE1IK0bbeu5DnPuwmvshGTfdfhqulrs6BF0JhXmJ36WBbsju6Pu-FmcIKzJ-ZpOJTndbuApAA36DI4bkpRFvMxwX9xcm1B-SSU_wzQXI9t4_k6xXJeu7j5XKmH_4H2N-TR62b-0bcpBnO_0WbOo8elei_jcfYsOj |
linkProvider | Flying Publisher |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa2DsN2Wfde9tSAXZ3ZlqxIx65okW1pLmuB3gxJlpegrT0kyiH79SP9CJKiQw-9WqIhyZT4USY_AnxxqXapp6IZoogjYQoZGZOpCG2xQrTBjSkowflkKsdn4sd5dr6VC0NhleRDly1RRHNW0-amy-g-JO4r2UBE4iOKzFK41zX65OI-PMgQjlNYH4-n_WnMpWoKI5NIRDJ9Fs__XrNjn3bYS2_CoNdDKbds0_E-uH5WbUjKxXAV7ND9vUb4eLdpP4UnHXRlB62uPYN7vnoOD9tilusXgIp-9C3qi-oGhs5-y0zL6pIRzLyqf9PBOl8yu6YHbIamMNRuHTz7NTlMD1BkNrd4xCxYWPiZuayX_iWcHR-dHo6jrmhD5DIuQmTLOPFCcApHERrdS68TXsRSGU1prKlD85jowmrjlSgTFxuchUPYVniO4DHjr2Cvqiv_BpiVI5fwhLtUoA2V1hYq08pIdAmVF340ANF_qtx1jOZUWOMyTzri037FclqxvFuxAQw3Yn9aSo_bBPS2HuShuUsp28InOb9F9nOvNDluXPobYypfr5bYC1UT4WWsBvC6VaLNcFJyQ9GTHcBoR702HYgUfLelms8acnBJBa24fHuHMX-CR-PTk0k--T79-Q4eU1OTfZm-h72wWPkPCMOC_djss3-JTCKQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BIhAX3o_yNBLXlCR2XPu4LFstsFRIsBK3yHYcWrEkq9Y9lF_PTBJX2xVoD3uNM5HtzHi-SWa-AXjrcu1yT00zRJUmwlQyMaZQCfpihWiDG1NRgfOXmTw6EZ9-FDGbcDWkVVIMXfdEEd1ZTcZ9VtUxI-4duUAE4hNKzFJo6hpDcnEdbsiUa6LP5-ksHsZcqq4vMokkJBOLeP73mB33tENe-i8IejGT8pxrmt4FGxfVZ6T8Gq-DHbs_F_ger7Tqe3BnAK5sv9e0-3DNNw_gZt_KcvMQUM0P3yexpW5gGOr3vLSsrRmBzN_tTzpWFytmN3SBzdERhtZtgmffjg_yfRSZLyweMEsWln5uTtuVfwQn08PvB0fJ0LIhcQUXIbF1mnkhOCWjCI3BpdcZr1KpjKYi1tyhc8x0ZbXxStSZSw2uwiFoqzxH6Fjwx7DXtI1_CszKict4xl0u0INKaytVaGUkBoTKCz8ZgYhvqnQDnzm11Tgts4H2NO5YSTtWDjs2gvFW7Kwn9LhMQJ9XgzJ0X1Lqvu1JyS-RfRN1pkSzpX8xpvHteoV3oWYiuEzVCJ70OrSdTk5BKMaxI5jsaNf2BqIE3x1pFvOOGlxSOysun11hzq_h1tcP0_L44-zzc7hNI13pZf4C9sJy7V8iBgv2VWdlfwHtlyE9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TFEB-dependent+induction+of+thermogenesis+by+the+hepatocyte+SLC2A+inhibitor+trehalose&rft.jtitle=Autophagy&rft.au=Zhang%2C+Yiming&rft.au=Higgins%2C+Cassandra+B.&rft.au=Mayer%2C+Allyson+L.&rft.au=Mysorekar%2C+Indira+U.&rft.date=2018-11-02&rft.pub=Taylor+%26+Francis&rft.issn=1554-8627&rft.eissn=1554-8635&rft.volume=14&rft.issue=11&rft.spage=1959&rft.epage=1975&rft_id=info:doi/10.1080%2F15548627.2018.1493044&rft.externalDocID=1493044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon |