TFEB-dependent induction of thermogenesis by the hepatocyte SLC2A inhibitor trehalose

The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepat...

Full description

Saved in:
Bibliographic Details
Published inAutophagy Vol. 14; no. 11; pp. 1959 - 1975
Main Authors Zhang, Yiming, Higgins, Cassandra B., Mayer, Allyson L., Mysorekar, Indira U., Razani, Babak, Graham, Mark J., Hruz, Paul W., DeBosch, Brian J.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.11.2018
Subjects
Online AccessGet full text
ISSN1554-8627
1554-8635
1554-8635
DOI10.1080/15548627.2018.1493044

Cover

Abstract The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepatocyte autophagic flux. However, although every major demonstration of trehalose action invokes activating autophagic flux as its primary function, the mechanism of action of trehalose in whole-body energy metabolism remains poorly defined. Here, we demonstrate that trehalose induces hepatocyte TFEB (transcription factor EB)-dependent thermogenesis in vivo, concomitant with upregulation of hepatic and white adipose expression of UCP1 (uncoupling protein 1 [mitochondrial, protein carrier]). Mechanistically, we provide evidence that hepatocyte fasting transcriptional and metabolic responses depend upon PPARGC1A (peroxisome proliferative activated receptor, gamma, coactivator 1 alpha), TFEB, and FGF21 (fibroblast growth factor 21) signaling. Strikingly, hepatocyte-selective TFEB knockdown abrogated trehalose induction of thermogenesis and white adipose tissue UCP1 upregulation in vivo. In contrast, we found that trehalose action on thermogenesis was independent of LEP (leptin) and the autophagy pathway, as there was robust thermogenic induction in trehalose-treated ob/ob, Becn1, Atg16l1, and Epg5 mutant mice. We conclude that trehalose induces metabolically favorable effects on whole-body thermogenesis in part via hepatocyte-centered fasting-like mechanisms that appear to be independent of autophagic flux. Our findings elucidate a novel mechanism by which trehalose acts as a metabolic therapeutic agent by activating hepatic fasting responses. More broadly, the hepatic glucose fasting response may be of clinical utility against overnutrition-driven disease, such as obesity and type 2 diabetes mellitus.
AbstractList The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepatocyte autophagic flux. However, although every major demonstration of trehalose action invokes activating autophagic flux as its primary function, the mechanism of action of trehalose in whole-body energy metabolism remains poorly defined. Here, we demonstrate that trehalose induces hepatocyte TFEB (transcription factor EB)-dependent thermogenesis in vivo, concomitant with upregulation of hepatic and white adipose expression of UCP1 (uncoupling protein 1 [mitochondrial, protein carrier]). Mechanistically, we provide evidence that hepatocyte fasting transcriptional and metabolic responses depend upon PPARGC1A (peroxisome proliferative activated receptor, gamma, coactivator 1 alpha), TFEB, and FGF21 (fibroblast growth factor 21) signaling. Strikingly, hepatocyte-selective TFEB knockdown abrogated trehalose induction of thermogenesis and white adipose tissue UCP1 upregulation in vivo. In contrast, we found that trehalose action on thermogenesis was independent of LEP (leptin) and the autophagy pathway, as there was robust thermogenic induction in trehalose-treated ob/ob, Becn1, Atg16l1, and Epg5 mutant mice. We conclude that trehalose induces metabolically favorable effects on whole-body thermogenesis in part via hepatocyte-centered fasting-like mechanisms that appear to be independent of autophagic flux. Our findings elucidate a novel mechanism by which trehalose acts as a metabolic therapeutic agent by activating hepatic fasting responses. More broadly, the hepatic glucose fasting response may be of clinical utility against overnutrition-driven disease, such as obesity and type 2 diabetes mellitus.
The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepatocyte autophagic flux. However, although every major demonstration of trehalose action invokes activating autophagic flux as its primary function, the mechanism of action of trehalose in whole-body energy metabolism remains poorly defined. Here, we demonstrate that trehalose induces hepatocyte TFEB (transcription factor EB)-dependent thermogenesis in vivo , concomitant with upregulation of hepatic and white adipose expression of UCP1 (uncoupling protein 1 [mitochondrial, protein carrier]). Mechanistically, we provide evidence that hepatocyte fasting transcriptional and metabolic responses depend upon PPARGC1A (peroxisome proliferative activated receptor, gamma, coactivator 1 alpha), TFEB, and FGF21 (fibroblast growth factor 21) signaling. Strikingly, hepatocyte-selective TFEB knockdown abrogated trehalose induction of thermogenesis and white adipose tissue UCP1 upregulation in vivo . In contrast, we found that trehalose action on thermogenesis was independent of LEP (leptin) and the autophagy pathway, as there was robust thermogenic induction in trehalose-treated ob/ob, Becn1, Atg16l1 , and Epg5 mutant mice. We conclude that trehalose induces metabolically favorable effects on whole-body thermogenesis in part via hepatocyte-centered fasting-like mechanisms that appear to be independent of autophagic flux. Our findings elucidate a novel mechanism by which trehalose acts as a metabolic therapeutic agent by activating hepatic fasting responses. More broadly, the hepatic glucose fasting response may be of clinical utility against overnutrition-driven disease, such as obesity and type 2 diabetes mellitus.
The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepatocyte autophagic flux. However, although every major demonstration of trehalose action invokes activating autophagic flux as its primary function, the mechanism of action of trehalose in whole-body energy metabolism remains poorly defined. Here, we demonstrate that trehalose induces hepatocyte TFEB (transcription factor EB)-dependent thermogenesis in vivo, concomitant with upregulation of hepatic and white adipose expression of UCP1 (uncoupling protein 1 [mitochondrial, protein carrier]). Mechanistically, we provide evidence that hepatocyte fasting transcriptional and metabolic responses depend upon PPARGC1A (peroxisome proliferative activated receptor, gamma, coactivator 1 alpha), TFEB, and FGF21 (fibroblast growth factor 21) signaling. Strikingly, hepatocyte-selective TFEB knockdown abrogated trehalose induction of thermogenesis and white adipose tissue UCP1 upregulation in vivo. In contrast, we found that trehalose action on thermogenesis was independent of LEP (leptin) and the autophagy pathway, as there was robust thermogenic induction in trehalose-treated ob/ob, Becn1, Atg16l1, and Epg5 mutant mice. We conclude that trehalose induces metabolically favorable effects on whole-body thermogenesis in part via hepatocyte-centered fasting-like mechanisms that appear to be independent of autophagic flux. Our findings elucidate a novel mechanism by which trehalose acts as a metabolic therapeutic agent by activating hepatic fasting responses. More broadly, the hepatic glucose fasting response may be of clinical utility against overnutrition-driven disease, such as obesity and type 2 diabetes mellitus.The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepatocyte autophagic flux. However, although every major demonstration of trehalose action invokes activating autophagic flux as its primary function, the mechanism of action of trehalose in whole-body energy metabolism remains poorly defined. Here, we demonstrate that trehalose induces hepatocyte TFEB (transcription factor EB)-dependent thermogenesis in vivo, concomitant with upregulation of hepatic and white adipose expression of UCP1 (uncoupling protein 1 [mitochondrial, protein carrier]). Mechanistically, we provide evidence that hepatocyte fasting transcriptional and metabolic responses depend upon PPARGC1A (peroxisome proliferative activated receptor, gamma, coactivator 1 alpha), TFEB, and FGF21 (fibroblast growth factor 21) signaling. Strikingly, hepatocyte-selective TFEB knockdown abrogated trehalose induction of thermogenesis and white adipose tissue UCP1 upregulation in vivo. In contrast, we found that trehalose action on thermogenesis was independent of LEP (leptin) and the autophagy pathway, as there was robust thermogenic induction in trehalose-treated ob/ob, Becn1, Atg16l1, and Epg5 mutant mice. We conclude that trehalose induces metabolically favorable effects on whole-body thermogenesis in part via hepatocyte-centered fasting-like mechanisms that appear to be independent of autophagic flux. Our findings elucidate a novel mechanism by which trehalose acts as a metabolic therapeutic agent by activating hepatic fasting responses. More broadly, the hepatic glucose fasting response may be of clinical utility against overnutrition-driven disease, such as obesity and type 2 diabetes mellitus.
Author Razani, Babak
Higgins, Cassandra B.
Hruz, Paul W.
Graham, Mark J.
Mayer, Allyson L.
Zhang, Yiming
DeBosch, Brian J.
Mysorekar, Indira U.
Author_xml – sequence: 1
  givenname: Yiming
  surname: Zhang
  fullname: Zhang, Yiming
  organization: Washington University School of Medicine
– sequence: 2
  givenname: Cassandra B.
  surname: Higgins
  fullname: Higgins, Cassandra B.
  organization: Washington University School of Medicine
– sequence: 3
  givenname: Allyson L.
  surname: Mayer
  fullname: Mayer, Allyson L.
  organization: Washington University School of Medicine
– sequence: 4
  givenname: Indira U.
  surname: Mysorekar
  fullname: Mysorekar, Indira U.
  organization: Washington University School of Medicine
– sequence: 5
  givenname: Babak
  surname: Razani
  fullname: Razani, Babak
  organization: Washington University School of Medicine
– sequence: 6
  givenname: Mark J.
  surname: Graham
  fullname: Graham, Mark J.
  organization: Washington University School of Medicine
– sequence: 7
  givenname: Paul W.
  surname: Hruz
  fullname: Hruz, Paul W.
  organization: Washington University School of Medicine
– sequence: 8
  givenname: Brian J.
  orcidid: 0000-0002-9924-7921
  surname: DeBosch
  fullname: DeBosch, Brian J.
  email: deboschb@wustl.edu
  organization: Washington University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29996716$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAQtVAr-gE_AZQjlyz-zMZCQrSrFpBW4kB7thxn3Bgl9mJ7Qfvv62i3K-BATzMav_fmjd8FOvHBA0JvCF4Q3OL3RAjeNnS5oJi0C8Ilw5y_QOfzvG4bJk6OPV2eoYuUfmDMmlbSl-iMSimbJWnO0f3d7c113cMGfA8-V873W5Nd8FWwVR4gTuEBPCSXqm43D6oBNjoHs8tQfV-v6FWhDK5zOcQqRxj0GBK8QqdWjwleH-olur-9uVt9qdffPn9dXa1rIxjPdWcxAc4ZWAtcUkJAEtbjptWyEZxRg4tJ2XdSQ8stMViXI40gvAfGsRDsEn3c62623QS9KRdEPapNdJOOOxW0U3-_eDeoh_BLNURQwZoi8O4gEMPPLaSsJpcMjKP2ELZJ0WJGEipwW6Bv_9x1XPL0lwUg9gATQ0oR7BFCsJozU0-ZqTkzdcis8D78wzMu6zmDYtmNz7I_7dnO2xAn_TvEsVdZ78YQbdTeuKTY_yUeAQ2Ir7I
CitedBy_id crossref_primary_10_1038_s41467_022_28717_7
crossref_primary_10_1080_15548627_2021_1896906
crossref_primary_10_3390_jcm11010247
crossref_primary_10_1016_j_dsx_2019_05_023
crossref_primary_10_1016_j_jcmgh_2024_01_016
crossref_primary_10_1128_JVI_02024_20
crossref_primary_10_1080_10408398_2021_1895057
crossref_primary_10_1093_pnasnexus_pgae357
crossref_primary_10_1186_s12986_019_0373_4
crossref_primary_10_1210_en_2017_03150
crossref_primary_10_2174_0929867330666230406102555
crossref_primary_10_1053_j_gastro_2019_11_295
crossref_primary_10_1021_acsnano_1c08391
crossref_primary_10_1016_j_jbc_2022_102835
crossref_primary_10_1038_s41419_019_1931_4
crossref_primary_10_1038_s41586_021_03522_2
crossref_primary_10_1080_19490976_2020_1750273
crossref_primary_10_1097_MCO_0000000000000568
crossref_primary_10_1111_febs_15482
crossref_primary_10_1016_j_lfs_2024_122473
crossref_primary_10_3390_cells7100149
crossref_primary_10_1038_s41467_019_09642_8
crossref_primary_10_1016_j_xcrm_2021_100498
crossref_primary_10_1172_jci_insight_120794
Cites_doi 10.1016/j.cmet.2013.08.005
10.1016/0361-9230(91)90154-C
10.1101/gad.184788.111
10.1210/me.2013-1137
10.1038/nrendo.2016.136
10.1016/j.neuron.2017.01.022
10.1016/j.tcb.2014.06.006
10.4161/auto.5.3.7662
10.3945/ajcn.110.001941
10.1128/MCB.00596-14
10.1073/pnas.0904187106
10.7326/0003-4819-81-4-526
10.1038/ncomms15750
10.1083/jcb.201211014
10.2337/db14-1185
10.1074/jbc.M110.131615
10.1016/j.cmet.2013.12.008
10.1038/emboj.2012.32
10.1038/nature09932
10.1210/en.2017-03150
10.1126/scisignal.aaf1937
10.1074/jbc.M112.375907
10.1186/1475-2891-11-34
10.1530/JOE-15-0160
10.1016/j.arr.2006.04.002
10.1001/archinte.1963.03860030087006
10.2337/db08-0392
10.1523/JNEUROSCI.0109-15.2015
10.1172/JCI65538
10.1016/j.molmet.2014.09.007
10.1016/j.molmed.2008.09.007
10.1152/ajpendo.00263.2010
10.4161/auto.25188
10.4161/auto.27710
10.4161/auto.21600
10.1016/j.neurobiolaging.2011.11.009
10.1074/jbc.M113.527002
10.1074/jbc.M114.595850
10.1038/sj.ijo.0802905
10.4161/auto.19653
10.1016/j.nutres.2010.10.009
10.1038/ncb2718
10.4161/auto.24856
10.1073/pnas.1006962107
10.1016/j.molcel.2008.03.003
10.1080/15548627.2015.1017187
10.1038/nrendo.2016.206
10.1038/ncomms5642
10.1038/srep38586
10.2337/diabetes.54.2.322
10.1113/jphysiol.1973.sp010270
10.1016/S0005-2728(00)00247-4
10.1053/j.gastro.2013.10.059
10.1101/gad.177857.111
10.2337/db14-0595
10.1016/B978-0-12-801415-8.00016-3
10.1111/j.0013-9580.2004.10004.x
10.1016/j.molcel.2016.08.021
10.1016/S0278-6915(02)00011-X
10.1073/pnas.1412047111
10.1074/jbc.M609532200
10.1038/nature07416
10.1038/cdd.2010.191
10.1172/JCI27794
10.1080/15548627.2017.1389356
10.1038/nature09584
10.1038/nm.3014
10.1016/j.cmet.2010.02.001
10.1371/journal.pbio.0030101
10.1126/scisignal.aac5472
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
2018 Informa UK Limited, trading as Taylor & Francis Group 2018 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1080/15548627.2018.1493044
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Y. ZHANG ET AL
EISSN 1554-8635
EndPage 1975
ExternalDocumentID PMC6152536
29996716
10_1080_15548627_2018_1493044
1493044
Genre Research Article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK100644
– fundername: NIGMS NIH HHS
  grantid: T32 GM007067
– fundername: BLRD VA
  grantid: I01 BX003415
– fundername: NICHD NIH HHS
  grantid: K12 HD076224
– fundername: NIDDK NIH HHS
  grantid: P30 DK020579
– fundername: NCATS NIH HHS
  grantid: UL1 TR002345
– fundername: NIDDK NIH HHS
  grantid: P30 DK056341
– fundername: NCATS NIH HHS
  grantid: UL1 TR000448
– fundername: NIDDK NIH HHS
  grantid: P30 DK052574
– fundername: ; ;
  grantid: DGE-1143954
– fundername: ; ;
  grantid: AMFDP73315
– fundername: ; ;
  grantid: R01DK100644
– fundername: ; ;
  grantid: W81XWH-17-1-0133
– fundername: ; ;
  grantid: T32GM007067
– fundername: ;
  grantid: P30DK020579
– fundername: ;
  grantid: P30DK52574
– fundername: ;
  grantid: UL1TR002345
– fundername: ; ;
  grantid: MI-FR-2014-426; MD-FR-2017-593
– fundername: ;
  grantid: K12HD076224
GroupedDBID ---
0BK
0R~
23N
30N
4.4
53G
5GY
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEISY
AENEX
AEYOC
AGDLA
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AVBZW
AWYRJ
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EJD
EMOBN
F5P
GTTXZ
H13
HYE
IPNFZ
KYCEM
M4Z
O9-
OK1
P2P
RIG
RNANH
ROSJB
RPM
RTWRZ
SNACF
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
AAGDL
AAHIA
AAYXX
ADHGD
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
AAGME
ABFMO
ACDHJ
ACZPZ
ADOPC
AURDB
BFWEY
C1A
CGR
CUY
CVF
CWRZV
ECM
EIF
LJTGL
NPM
PCLFJ
7X8
TASJS
5PM
ID FETCH-LOGICAL-c534t-bf01e443effe49211e913d068a965432c06719db9ae84f1c0a304c514de340553
ISSN 1554-8627
1554-8635
IngestDate Thu Aug 21 13:42:58 EDT 2025
Fri Sep 05 11:43:52 EDT 2025
Thu Apr 03 07:07:20 EDT 2025
Tue Jul 01 02:48:57 EDT 2025
Thu Apr 24 23:00:12 EDT 2025
Wed Dec 25 09:03:01 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords glucose transport
ectopic P-granules autophagy protein
solute carrier 2A
transcription factor EB
fibroblast growth factor
Beclin 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c534t-bf01e443effe49211e913d068a965432c06719db9ae84f1c0a304c514de340553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9924-7921
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.1080/15548627.2018.1493044?needAccess=true
PMID 29996716
PQID 2068912508
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2068912508
crossref_primary_10_1080_15548627_2018_1493044
crossref_citationtrail_10_1080_15548627_2018_1493044
pubmed_primary_29996716
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6152536
informaworld_taylorfrancis_310_1080_15548627_2018_1493044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-02
PublicationDateYYYYMMDD 2018-11-02
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Autophagy
PublicationTitleAlternate Autophagy
PublicationYear 2018
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0033
cit0034
cit0031
cit0032
cit0073
cit0030
cit0071
cit0072
cit0070
Estall JL (cit0060) 2009
Holmes D (cit0012) 2016; 12
cit0039
cit0037
cit0038
cit0035
cit0036
cit0022
cit0066
cit0023
cit0067
cit0020
cit0064
cit0021
cit0065
cit0062
cit0063
cit0061
Tan VP (cit0004) 2016
cit0028
cit0029
cit0026
cit0027
cit0024
cit0068
cit0025
cit0069
cit0011
cit0055
cit0056
cit0053
cit0010
cit0054
cit0051
cit0052
cit0050
cit0019
cit0017
cit0018
cit0015
cit0059
cit0016
cit0013
cit0057
cit0014
cit0058
cit0044
cit0001
cit0045
cit0042
cit0043
cit0040
cit0041
cit0008
cit0009
cit0006
cit0007
cit0048
cit0005
cit0049
cit0002
cit0046
cit0003
cit0047
References_xml – ident: cit0016
  doi: 10.1016/j.cmet.2013.08.005
– ident: cit0051
  doi: 10.1016/0361-9230(91)90154-C
– ident: cit0043
  doi: 10.1101/gad.184788.111
– ident: cit0021
  doi: 10.1210/me.2013-1137
– ident: cit0018
  doi: 10.1038/nrendo.2016.136
– ident: cit0026
  doi: 10.1016/j.neuron.2017.01.022
– ident: cit0046
  doi: 10.1016/j.tcb.2014.06.006
– ident: cit0023
  doi: 10.4161/auto.5.3.7662
– ident: cit0058
  doi: 10.3945/ajcn.110.001941
– ident: cit0055
  doi: 10.1128/MCB.00596-14
– ident: cit0015
  doi: 10.1073/pnas.0904187106
– ident: cit0066
  doi: 10.7326/0003-4819-81-4-526
– ident: cit0027
  doi: 10.1038/ncomms15750
– ident: cit0039
  doi: 10.1083/jcb.201211014
– ident: cit0009
  doi: 10.2337/db14-1185
– start-page: 1
  year: 2016
  ident: cit0004
  publication-title: J Mol Cell Cardiol
– ident: cit0072
  doi: 10.1074/jbc.M110.131615
– ident: cit0001
  doi: 10.1016/j.cmet.2013.12.008
– ident: cit0052
  doi: 10.1038/emboj.2012.32
– ident: cit0005
  doi: 10.1038/nature09932
– ident: cit0069
  doi: 10.1210/en.2017-03150
– ident: cit0019
  doi: 10.1126/scisignal.aaf1937
– ident: cit0057
  doi: 10.1074/jbc.M112.375907
– ident: cit0064
  doi: 10.1186/1475-2891-11-34
– ident: cit0014
  doi: 10.1530/JOE-15-0160
– ident: cit0065
  doi: 10.1016/j.arr.2006.04.002
– ident: cit0067
  doi: 10.1001/archinte.1963.03860030087006
– ident: cit0013
  doi: 10.2337/db08-0392
– ident: cit0047
  doi: 10.1523/JNEUROSCI.0109-15.2015
– ident: cit0002
  doi: 10.1172/JCI65538
– ident: cit0030
  doi: 10.1016/j.molmet.2014.09.007
– ident: cit0006
  doi: 10.1016/j.molmed.2008.09.007
– ident: cit0062
  doi: 10.1152/ajpendo.00263.2010
– ident: cit0022
  doi: 10.4161/auto.25188
– volume-title: PGC-1a negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erba axis
  year: 2009
  ident: cit0060
– ident: cit0033
  doi: 10.4161/auto.27710
– ident: cit0037
  doi: 10.4161/auto.21600
– ident: cit0032
  doi: 10.1016/j.neurobiolaging.2011.11.009
– ident: cit0070
  doi: 10.1074/jbc.M113.527002
– ident: cit0068
  doi: 10.1074/jbc.M114.595850
– ident: cit0048
  doi: 10.1038/sj.ijo.0802905
– ident: cit0010
  doi: 10.4161/auto.19653
– volume: 12
  start-page: 3
  year: 2016
  ident: cit0012
  publication-title: Nat Rev Endocrinol
– ident: cit0028
  doi: 10.1016/j.nutres.2010.10.009
– ident: cit0011
  doi: 10.1038/ncb2718
– ident: cit0040
  doi: 10.4161/auto.24856
– ident: cit0061
  doi: 10.1073/pnas.1006962107
– ident: cit0007
  doi: 10.1016/j.molcel.2008.03.003
– ident: cit0034
  doi: 10.1080/15548627.2015.1017187
– ident: cit0056
  doi: 10.1038/nrendo.2016.206
– ident: cit0071
  doi: 10.1038/ncomms5642
– ident: cit0025
  doi: 10.1038/srep38586
– ident: cit0049
  doi: 10.2337/diabetes.54.2.322
– ident: cit0050
  doi: 10.1113/jphysiol.1973.sp010270
– ident: cit0059
  doi: 10.1016/S0005-2728(00)00247-4
– ident: cit0017
  doi: 10.1053/j.gastro.2013.10.059
– ident: cit0054
  doi: 10.1101/gad.177857.111
– ident: cit0045
  doi: 10.2337/db14-0595
– ident: cit0042
  doi: 10.1016/B978-0-12-801415-8.00016-3
– ident: cit0063
  doi: 10.1111/j.0013-9580.2004.10004.x
– ident: cit0041
  doi: 10.1016/j.molcel.2016.08.021
– ident: cit0031
  doi: 10.1016/S0278-6915(02)00011-X
– ident: cit0029
  doi: 10.1073/pnas.1412047111
– ident: cit0024
  doi: 10.1074/jbc.M609532200
– ident: cit0036
  doi: 10.1038/nature07416
– ident: cit0035
  doi: 10.1038/cdd.2010.191
– ident: cit0008
  doi: 10.1172/JCI27794
– ident: cit0038
  doi: 10.1080/15548627.2017.1389356
– ident: cit0003
  doi: 10.1038/nature09584
– ident: cit0044
  doi: 10.1038/nm.3014
– ident: cit0053
  doi: 10.1016/j.cmet.2010.02.001
– ident: cit0073
  doi: 10.1371/journal.pbio.0030101
– ident: cit0020
  doi: 10.1126/scisignal.aac5472
SSID ssj0036892
Score 2.3712633
Snippet The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1959
SubjectTerms Animals
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology
Beclin 1
Cells, Cultured
ectopic P-granules autophagy protein
Energy Metabolism - drug effects
Energy Metabolism - genetics
fibroblast growth factor
glucose transport
Glucose Transport Proteins, Facilitative - antagonists & inhibitors
Glucose Transport Proteins, Facilitative - metabolism
Hepatocytes - drug effects
Hepatocytes - metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Research Paper - Basic Science
solute carrier 2A
Thermogenesis - drug effects
Thermogenesis - genetics
transcription factor EB
Trehalose - pharmacology
Up-Regulation - drug effects
Up-Regulation - genetics
Title TFEB-dependent induction of thermogenesis by the hepatocyte SLC2A inhibitor trehalose
URI https://www.tandfonline.com/doi/abs/10.1080/15548627.2018.1493044
https://www.ncbi.nlm.nih.gov/pubmed/29996716
https://www.proquest.com/docview/2068912508
https://pubmed.ncbi.nlm.nih.gov/PMC6152536
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBayDgN2GfZeugc8YLfAmWXJjnxMgxbt1u2yBOhOhiwrTdDMHhzn4N72z0dafrYBusfFSGTLFsTPIimTHwn5oNxAuRqLZvDYsbmMfVtKT9igiwVYG0zKGBOcv3z1Txf804V3MRj86maX5NFYXe_NK_kXqUIbyBWzZP9Css1NoQF-g3zhCBKG45_J-OT4yK7L2CLXf2y4YKsP_9mP9BKXsvW2NDIBECtQPnmqilyPvp3P3Cl0Wa0jeKkzjDhfyU267YUGTXfIOyDbffdmf_k7VgO73LNxPQNrXCZxJkdH43a7u6iKZm82BZY8PG9Pwf9MX5kw77MENKwcLcbdvQgqyqS81nOd3yoL0l1ZPW6D-2S0q-62Gb6SZjnmXdjRzuKKPDgdRU0DU3PllhIwUZN4c3wehu8JUAgBcwzT5A1-7erMPXLfnYD5hXb12edamTNflHW1m9HXSWDC-bj3AT3zpkd-u8-FuRmJ2zFt5o_Jo8onsaYGYE_IQCdPyQNTpbR4RhZ9mFkNzKx0afVgZkUFNlgtzKwSZlYDM6uB2XOyODmez07tqhqHrTzGcztaOlRzzjDOiAcupTqgLHZ8IQPMT3YV2D00iKNAasGXVDkS5kOBPR5rBl6Bx16QgyRN9CtiRf5EUUaZcjkYR34UxcILhPTB1xea68mQ8HoSQ1VR1WPFlE1IK0bbeu5DnPuwmvshGTfdfhqulrs6BF0JhXmJ36WBbsju6Pu-FmcIKzJ-ZpOJTndbuApAA36DI4bkpRFvMxwX9xcm1B-SSU_wzQXI9t4_k6xXJeu7j5XKmH_4H2N-TR62b-0bcpBnO_0WbOo8elei_jcfYsOj
linkProvider Flying Publisher
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa2DsN2Wfde9tSAXZ3ZlqxIx65okW1pLmuB3gxJlpegrT0kyiH79SP9CJKiQw-9WqIhyZT4USY_AnxxqXapp6IZoogjYQoZGZOpCG2xQrTBjSkowflkKsdn4sd5dr6VC0NhleRDly1RRHNW0-amy-g-JO4r2UBE4iOKzFK41zX65OI-PMgQjlNYH4-n_WnMpWoKI5NIRDJ9Fs__XrNjn3bYS2_CoNdDKbds0_E-uH5WbUjKxXAV7ND9vUb4eLdpP4UnHXRlB62uPYN7vnoOD9tilusXgIp-9C3qi-oGhs5-y0zL6pIRzLyqf9PBOl8yu6YHbIamMNRuHTz7NTlMD1BkNrd4xCxYWPiZuayX_iWcHR-dHo6jrmhD5DIuQmTLOPFCcApHERrdS68TXsRSGU1prKlD85jowmrjlSgTFxuchUPYVniO4DHjr2Cvqiv_BpiVI5fwhLtUoA2V1hYq08pIdAmVF340ANF_qtx1jOZUWOMyTzri037FclqxvFuxAQw3Yn9aSo_bBPS2HuShuUsp28InOb9F9nOvNDluXPobYypfr5bYC1UT4WWsBvC6VaLNcFJyQ9GTHcBoR702HYgUfLelms8acnBJBa24fHuHMX-CR-PTk0k--T79-Q4eU1OTfZm-h72wWPkPCMOC_djss3-JTCKQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BIhAX3o_yNBLXlCR2XPu4LFstsFRIsBK3yHYcWrEkq9Y9lF_PTBJX2xVoD3uNM5HtzHi-SWa-AXjrcu1yT00zRJUmwlQyMaZQCfpihWiDG1NRgfOXmTw6EZ9-FDGbcDWkVVIMXfdEEd1ZTcZ9VtUxI-4duUAE4hNKzFJo6hpDcnEdbsiUa6LP5-ksHsZcqq4vMokkJBOLeP73mB33tENe-i8IejGT8pxrmt4FGxfVZ6T8Gq-DHbs_F_ger7Tqe3BnAK5sv9e0-3DNNw_gZt_KcvMQUM0P3yexpW5gGOr3vLSsrRmBzN_tTzpWFytmN3SBzdERhtZtgmffjg_yfRSZLyweMEsWln5uTtuVfwQn08PvB0fJ0LIhcQUXIbF1mnkhOCWjCI3BpdcZr1KpjKYi1tyhc8x0ZbXxStSZSw2uwiFoqzxH6Fjwx7DXtI1_CszKict4xl0u0INKaytVaGUkBoTKCz8ZgYhvqnQDnzm11Tgts4H2NO5YSTtWDjs2gvFW7Kwn9LhMQJ9XgzJ0X1Lqvu1JyS-RfRN1pkSzpX8xpvHteoV3oWYiuEzVCJ70OrSdTk5BKMaxI5jsaNf2BqIE3x1pFvOOGlxSOysun11hzq_h1tcP0_L44-zzc7hNI13pZf4C9sJy7V8iBgv2VWdlfwHtlyE9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TFEB-dependent+induction+of+thermogenesis+by+the+hepatocyte+SLC2A+inhibitor+trehalose&rft.jtitle=Autophagy&rft.au=Zhang%2C+Yiming&rft.au=Higgins%2C+Cassandra+B.&rft.au=Mayer%2C+Allyson+L.&rft.au=Mysorekar%2C+Indira+U.&rft.date=2018-11-02&rft.pub=Taylor+%26+Francis&rft.issn=1554-8627&rft.eissn=1554-8635&rft.volume=14&rft.issue=11&rft.spage=1959&rft.epage=1975&rft_id=info:doi/10.1080%2F15548627.2018.1493044&rft.externalDocID=1493044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon