Deep learning-based optical approach for skin analysis of melanin and hemoglobin distribution

Melanin and hemoglobin have been measured as important diagnostic indicators of facial skin conditions for aesthetic and diagnostic purposes. Commercial clinical equipment provides reliable analysis results, but it has several drawbacks: exclusive to the acquisition system, expensive, and computatio...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical optics Vol. 28; no. 3; p. 035001
Main Authors Jung, Geunho, Kim, Semin, Lee, Jongha, Yoo, Sangwook
Format Journal Article
LanguageEnglish
Published United States Society of Photo-Optical Instrumentation Engineers 01.03.2023
SPIE
S P I E - International Society for
Subjects
Online AccessGet full text
ISSN1083-3668
1560-2281
1560-2281
DOI10.1117/1.JBO.28.3.035001

Cover

Abstract Melanin and hemoglobin have been measured as important diagnostic indicators of facial skin conditions for aesthetic and diagnostic purposes. Commercial clinical equipment provides reliable analysis results, but it has several drawbacks: exclusive to the acquisition system, expensive, and computationally intensive. We propose an approach to alleviate those drawbacks using a deep learning model trained to solve the forward problem of light-tissue interactions. The model is structurally extensible for various light sources and cameras and maintains the input image resolution for medical applications. A facial image is divided into multiple patches and decomposed into melanin, hemoglobin, shading, and specular maps. The outputs are reconstructed into a facial image by solving the forward problem over skin areas. As learning progresses, the difference between the reconstructed image and input image is reduced, resulting in the melanin and hemoglobin maps becoming closer to their distribution of the input image. The proposed approach was evaluated on 30 subjects using the professional clinical system, VISIA VAESTRO. The correlation coefficients for melanin and hemoglobin were found to be 0.932 and 0.857, respectively. Additionally, this approach was applied to simulated images with varying amounts of melanin and hemoglobin. The proposed approach showed high correlation with the clinical system for analyzing melanin and hemoglobin distribution, indicating its potential for accurate diagnosis. Further calibration studies using clinical equipment can enhance its diagnostic ability. The structurally extensible model makes it a promising tool for various image acquisition conditions.
AbstractList SignificanceMelanin and hemoglobin have been measured as important diagnostic indicators of facial skin conditions for aesthetic and diagnostic purposes. Commercial clinical equipment provides reliable analysis results, but it has several drawbacks: exclusive to the acquisition system, expensive, and computationally intensive.AimWe propose an approach to alleviate those drawbacks using a deep learning model trained to solve the forward problem of light–tissue interactions. The model is structurally extensible for various light sources and cameras and maintains the input image resolution for medical applications.ApproachA facial image is divided into multiple patches and decomposed into melanin, hemoglobin, shading, and specular maps. The outputs are reconstructed into a facial image by solving the forward problem over skin areas. As learning progresses, the difference between the reconstructed image and input image is reduced, resulting in the melanin and hemoglobin maps becoming closer to their distribution of the input image.ResultsThe proposed approach was evaluated on 30 subjects using the professional clinical system, VISIA VAESTRO. The correlation coefficients for melanin and hemoglobin were found to be 0.932 and 0.857, respectively. Additionally, this approach was applied to simulated images with varying amounts of melanin and hemoglobin.ConclusionThe proposed approach showed high correlation with the clinical system for analyzing melanin and hemoglobin distribution, indicating its potential for accurate diagnosis. Further calibration studies using clinical equipment can enhance its diagnostic ability. The structurally extensible model makes it a promising tool for various image acquisition conditions.
Melanin and hemoglobin have been measured as important diagnostic indicators of facial skin conditions for aesthetic and diagnostic purposes. Commercial clinical equipment provides reliable analysis results, but it has several drawbacks: exclusive to the acquisition system, expensive, and computationally intensive.SignificanceMelanin and hemoglobin have been measured as important diagnostic indicators of facial skin conditions for aesthetic and diagnostic purposes. Commercial clinical equipment provides reliable analysis results, but it has several drawbacks: exclusive to the acquisition system, expensive, and computationally intensive.We propose an approach to alleviate those drawbacks using a deep learning model trained to solve the forward problem of light-tissue interactions. The model is structurally extensible for various light sources and cameras and maintains the input image resolution for medical applications.AimWe propose an approach to alleviate those drawbacks using a deep learning model trained to solve the forward problem of light-tissue interactions. The model is structurally extensible for various light sources and cameras and maintains the input image resolution for medical applications.A facial image is divided into multiple patches and decomposed into melanin, hemoglobin, shading, and specular maps. The outputs are reconstructed into a facial image by solving the forward problem over skin areas. As learning progresses, the difference between the reconstructed image and input image is reduced, resulting in the melanin and hemoglobin maps becoming closer to their distribution of the input image.ApproachA facial image is divided into multiple patches and decomposed into melanin, hemoglobin, shading, and specular maps. The outputs are reconstructed into a facial image by solving the forward problem over skin areas. As learning progresses, the difference between the reconstructed image and input image is reduced, resulting in the melanin and hemoglobin maps becoming closer to their distribution of the input image.The proposed approach was evaluated on 30 subjects using the professional clinical system, VISIA VAESTRO. The correlation coefficients for melanin and hemoglobin were found to be 0.932 and 0.857, respectively. Additionally, this approach was applied to simulated images with varying amounts of melanin and hemoglobin.ResultsThe proposed approach was evaluated on 30 subjects using the professional clinical system, VISIA VAESTRO. The correlation coefficients for melanin and hemoglobin were found to be 0.932 and 0.857, respectively. Additionally, this approach was applied to simulated images with varying amounts of melanin and hemoglobin.The proposed approach showed high correlation with the clinical system for analyzing melanin and hemoglobin distribution, indicating its potential for accurate diagnosis. Further calibration studies using clinical equipment can enhance its diagnostic ability. The structurally extensible model makes it a promising tool for various image acquisition conditions.ConclusionThe proposed approach showed high correlation with the clinical system for analyzing melanin and hemoglobin distribution, indicating its potential for accurate diagnosis. Further calibration studies using clinical equipment can enhance its diagnostic ability. The structurally extensible model makes it a promising tool for various image acquisition conditions.
Melanin and hemoglobin have been measured as important diagnostic indicators of facial skin conditions for aesthetic and diagnostic purposes. Commercial clinical equipment provides reliable analysis results, but it has several drawbacks: exclusive to the acquisition system, expensive, and computationally intensive. We propose an approach to alleviate those drawbacks using a deep learning model trained to solve the forward problem of light-tissue interactions. The model is structurally extensible for various light sources and cameras and maintains the input image resolution for medical applications. A facial image is divided into multiple patches and decomposed into melanin, hemoglobin, shading, and specular maps. The outputs are reconstructed into a facial image by solving the forward problem over skin areas. As learning progresses, the difference between the reconstructed image and input image is reduced, resulting in the melanin and hemoglobin maps becoming closer to their distribution of the input image. The proposed approach was evaluated on 30 subjects using the professional clinical system, VISIA VAESTRO. The correlation coefficients for melanin and hemoglobin were found to be 0.932 and 0.857, respectively. Additionally, this approach was applied to simulated images with varying amounts of melanin and hemoglobin. The proposed approach showed high correlation with the clinical system for analyzing melanin and hemoglobin distribution, indicating its potential for accurate diagnosis. Further calibration studies using clinical equipment can enhance its diagnostic ability. The structurally extensible model makes it a promising tool for various image acquisition conditions.
Audience Academic
Author Lee, Jongha
Kim, Semin
Yoo, Sangwook
Jung, Geunho
Author_xml – sequence: 1
  givenname: Geunho
  orcidid: 0000-0002-4896-009X
  surname: Jung
  fullname: Jung, Geunho
  email: gh.jung@lulu-lab.com
  organization: Lulu-lab, AI R&D Center, Seoul, Republic of Korea
– sequence: 2
  givenname: Semin
  orcidid: 0000-0003-3746-0863
  surname: Kim
  fullname: Kim, Semin
  email: sm.kim@lulu-lab.com
  organization: Lulu-lab, AI R&D Center, Seoul, Republic of Korea
– sequence: 3
  givenname: Jongha
  orcidid: 0000-0002-1568-6733
  surname: Lee
  fullname: Lee, Jongha
  email: jongha.lee@lulu-lab.com
  organization: Lulu-lab, AI R&D Center, Seoul, Republic of Korea
– sequence: 4
  givenname: Sangwook
  surname: Yoo
  fullname: Yoo, Sangwook
  email: sangwook.yoo@lulu-lab.com
  organization: Lulu-lab, AI R&D Center, Seoul, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36992693$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URNuBH8AGRWLDJsGPxGOvUFveqtQNLJHlODczLo4d7AQ0_x4PMzB0VJAXsW--c3J9cs_RiQ8eEHpKcEUIWb4k1cfLm4qKilWYNRiTB-iMNByXlApykvdYsJJxLk7ReUq3GGPBJX-EThmXknLJztCX1wBj4UBHb_2qbHWCrgjjZI12hR7HGLRZF32IRfpqfaG9dptkUxH6YgCn_a9aV6xhCCsX2nzsbJqibefJBv8YPey1S_Bk_1ygz2_ffLp6X17fvPtwdXFdmobVUykICNpDgzUzDTBc085I0dWcUyFbhgEzLQzjlDLT9oLUpiba1LKvDQPGOFsguvOd_ag3P7Rzaox20HGjCFbbrBRRt21QVCimdlll0audaJzbAToDfor6IAzaqrtvvF2rVfieLXOHVIrs8GLvEMO3GdKkBpsMuJwLhDkpupRUYk5rnNHnR-htmGNOM1OCU8YkbcSBWmkHyvo-5A-bram6EHVDJaGZXaDqHiqvDgZr8oj0NtfvCJ79fdM_V_w9BhkgO8DEkFKE_p748qgdxbc80hg76e1fz91Y91_lvv80Wjjk8G_BT2qu45g
CitedBy_id crossref_primary_10_3390_bioengineering12030282
crossref_primary_10_1002_jbio_202300231
crossref_primary_10_1111_srt_13486
crossref_primary_10_1016_j_compbiomed_2024_108741
crossref_primary_10_1016_j_artmed_2023_102679
crossref_primary_10_1007_s13534_024_00409_9
crossref_primary_10_1111_srt_70088
crossref_primary_10_1111_jocd_16279
crossref_primary_10_1007_s12282_024_01655_6
Cites_doi 10.1111/j.1365-2818.2012.03619.x
10.1016/0169-2607(95)01640-F
10.1109/WACV.2013.6475015
10.1002/lsm.10242
10.1016/j.optlaseng.2009.04.006
10.1109/TPAMI.2021.3070580
10.1117/12.697932
10.1117/12.472026
10.1111/j.1467-8659.2004.00764.x
10.1088/0031-9155/60/9/3415
10.1007/s00266-016-0640-y
10.32523/2306-6172-2020-8-1-76-90
10.1364/OL.35.003739
10.1364/BOE.425451
10.1016/j.optlastec.2019.105712
10.2147/CCID.S69106
10.1016/j.jim.2006.01.018
10.1111/j.1524-4725.2009.01443.x
10.1109/CVPR.2017.297
10.1117/1.1756918
10.1016/j.medengphy.2022.103884
10.1117/1.JBO.24.7.071613
10.1007/s10043-017-0343-x
10.1111/j.1600-0846.2009.00359.x
10.1111/j.1600-0722.1997.tb00255.x
10.1117/12.239608
10.1109/TPAMI.2004.36
10.1016/j.jphotobiol.2008.06.010
10.1007/s10043-000-0479-x
10.1088/0031-9155/25/4/008
10.1111/srt.12342
10.1002/jbio.201300198
10.1111/j.1478-4408.2004.tb00201.x
10.1111/srt.13194
10.1111/cgf.142622
10.1561/0600000013
10.1117/1.JBO.17.4.047004
10.1007/s11042-011-0987-7
10.1117/1.JBO.23.12.121608
10.1111/srt.12440
10.1145/882262.882344
10.1109/ICME.2009.5202721
10.1016/j.patcog.2007.11.018
10.2340/00015555-2717
10.1109/79.962278
10.1117/1.1647545
10.1088/0031-9155/58/11/R37
ContentType Journal Article
Copyright The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
2023 The Authors.
COPYRIGHT 2023 SPIE
2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 The Authors 2023 The Authors
Copyright_xml – notice: The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
– notice: 2023 The Authors.
– notice: COPYRIGHT 2023 SPIE
– notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 The Authors 2023 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FH
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L7M
LK8
L~C
L~D
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1117/1.JBO.28.3.035001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Materials Business File
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Copper Technical Reference Library
ProQuest One Sustainability
Engineered Materials Abstracts
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Ceramic Abstracts
Biological Science Database
ProQuest SciTech Collection
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Corrosion Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
Physics
EISSN 1560-2281
EndPage 035001
ExternalDocumentID 10.1117/1.jbo.28.3.035001
PMC10042298
A845291262
36992693
10_1117_1_JBO_28_3_035001
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIPA
– fundername: Ministry of SMEs and Startups
  grantid: S3197480
GroupedDBID ---
0R~
29J
4.4
53G
5GY
AAFWJ
ABPTK
ACGFO
ACGFS
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CS3
DU5
EBS
F5P
FQ0
GROUPED_DOAJ
HZ~
O9-
OK1
P2P
RNS
RPM
SPBNH
UPT
UT2
W2D
YQT
AAYXX
ACBEA
AEUYN
AFKRA
AKROS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
HCIFZ
HYE
IAO
M4X
M7P
PBYJJ
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
EJD
EMOBN
M4W
NPM
NU.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FH
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
LK8
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c534t-81e82fe50a3c5e3042dc98d466289b30e03a8c36223cbf814c41ac49f4c3e3363
IEDL.DBID BENPR
ISSN 1083-3668
1560-2281
IngestDate Sun Oct 26 03:38:18 EDT 2025
Tue Sep 30 17:15:33 EDT 2025
Sun Sep 28 10:57:32 EDT 2025
Sun Jul 13 05:20:36 EDT 2025
Mon Oct 20 22:41:23 EDT 2025
Mon Oct 20 16:53:03 EDT 2025
Thu Jan 02 22:52:06 EST 2025
Wed Oct 01 03:56:49 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Sat Apr 01 05:15:35 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep learning
skin analysis
light–tissue interaction
melanin
VISIA
hemoglobin
Language English
License 2023 The Authors.
Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-81e82fe50a3c5e3042dc98d466289b30e03a8c36223cbf814c41ac49f4c3e3363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4896-009X
0000-0003-3746-0863
0000-0002-1568-6733
OpenAccessLink https://www.proquest.com/docview/2862339258?pq-origsite=%requestingapplication%&accountid=15518
PMID 36992693
PQID 2862339258
PQPubID 2049439
PageCount 1
ParticipantIDs spie_journals_10_1117_1_JBO_28_3_035001
unpaywall_primary_10_1117_1_jbo_28_3_035001
pubmed_primary_36992693
proquest_journals_2862339258
proquest_miscellaneous_2792906240
gale_infotracmisc_A845291262
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10042298
gale_infotracacademiconefile_A845291262
crossref_citationtrail_10_1117_1_JBO_28_3_035001
crossref_primary_10_1117_1_JBO_28_3_035001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bellingham
PublicationTitle Journal of biomedical optics
PublicationTitleAlternate J. Biomed. Opt
PublicationYear 2023
Publisher Society of Photo-Optical Instrumentation Engineers
SPIE
S P I E - International Society for
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
– name: SPIE
– name: S P I E - International Society for
References r2
r3
Tani (r12) 2004
r4
r5
r6
r7
r8
r9
r50
r51
r54
r53
r11
r55
r14
r13
r16
r15
Ohta (r48) 1997
Kobayashi Frisk (r41) 2016
r17
r19
Demirli (r52) 2007
r21
r20
r23
r22
r25
r24
r27
r26
r29
Jacques (r47) 1998
r28
r30
r32
r31
r34
r33
r36
r35
r38
r37
Gang (r10) 2006
r39
Annala (r40) 2022
Alotaibi (r18) 2019
r43
r42
r45
r44
r46
r49
r1
References_xml – ident: r6
  doi: 10.1111/j.1365-2818.2012.03619.x
– start-page: 137
  year: 2022
  ident: r40
  article-title: Kubelka–Munk model and stochastic model comparison in skin physical parameter retrieval
– year: 1997
  ident: r48
– ident: r27
  doi: 10.1016/0169-2607(95)01640-F
– ident: r37
  doi: 10.1109/WACV.2013.6475015
– ident: r17
  doi: 10.1002/lsm.10242
– ident: r45
  doi: 10.1016/j.optlaseng.2009.04.006
– ident: r25
  doi: 10.1109/TPAMI.2021.3070580
– ident: r29
  doi: 10.1117/12.697932
– ident: r39
  doi: 10.1117/12.472026
– year: 2007
  ident: r52
  article-title: RBX technology overview
– ident: r44
  doi: 10.1111/j.1467-8659.2004.00764.x
– ident: r33
  doi: 10.1088/0031-9155/60/9/3415
– ident: r9
  doi: 10.1007/s00266-016-0640-y
– ident: r50
  doi: 10.32523/2306-6172-2020-8-1-76-90
– start-page: 185
  year: 2006
  ident: r10
  article-title: Real-time automatic analysis of facial skin chromophore: dermavision
– ident: r26
  doi: 10.1364/OL.35.003739
– ident: r42
  doi: 10.1364/BOE.425451
– year: 2019
  ident: r18
  article-title: BiofaceNet: deep biophysical face image interpretation
– ident: r28
  doi: 10.1016/j.optlastec.2019.105712
– ident: r3
  doi: 10.2147/CCID.S69106
– ident: r51
  doi: 10.1016/j.jim.2006.01.018
– ident: r8
  doi: 10.1111/j.1524-4725.2009.01443.x
– ident: r2
  doi: 10.1109/CVPR.2017.297
– ident: r19
  doi: 10.1117/1.1756918
– ident: r55
  doi: 10.1016/j.medengphy.2022.103884
– ident: r7
  doi: 10.1117/1.JBO.24.7.071613
– ident: r31
  doi: 10.1007/s10043-017-0343-x
– year: 2016
  ident: r41
  article-title: Diffuse reflectance spectroscopy: using a Monte Carlo method to determine chromophore compositions of tissue
– ident: r23
  doi: 10.1111/j.1600-0846.2009.00359.x
– ident: r22
  doi: 10.1111/j.1600-0722.1997.tb00255.x
– ident: r46
  doi: 10.1117/12.239608
– ident: r34
  doi: 10.1109/TPAMI.2004.36
– ident: r35
  doi: 10.1016/j.jphotobiol.2008.06.010
– ident: r32
  doi: 10.1007/s10043-000-0479-x
– ident: r21
  doi: 10.1088/0031-9155/25/4/008
– ident: r15
  doi: 10.1111/srt.12342
– ident: r43
  doi: 10.1002/jbio.201300198
– ident: r49
  doi: 10.1111/j.1478-4408.2004.tb00201.x
– ident: r53
  doi: 10.1111/srt.13194
– ident: r1
  doi: 10.1111/cgf.142622
– ident: r38
  doi: 10.1561/0600000013
– ident: r30
  doi: 10.1117/1.JBO.17.4.047004
– ident: r14
  doi: 10.1007/s11042-011-0987-7
– year: 2004
  ident: r12
  article-title: New skin analyzing system-robo skin analyzer
– ident: r20
  doi: 10.1117/1.JBO.23.12.121608
– ident: r11
  doi: 10.1111/srt.12440
– ident: r16
  doi: 10.1145/882262.882344
– ident: r13
  doi: 10.1109/ICME.2009.5202721
– ident: r54
  doi: 10.1016/j.patcog.2007.11.018
– ident: r4
  doi: 10.2340/00015555-2717
– ident: r5
  doi: 10.1109/79.962278
– ident: r24
  doi: 10.1117/1.1647545
– year: 1998
  ident: r47
  article-title: Skin optics
– ident: r36
  doi: 10.1088/0031-9155/58/11/R37
SSID ssj0008696
Score 2.457357
Snippet Melanin and hemoglobin have been measured as important diagnostic indicators of facial skin conditions for aesthetic and diagnostic purposes. Commercial...
SignificanceMelanin and hemoglobin have been measured as important diagnostic indicators of facial skin conditions for aesthetic and diagnostic purposes....
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
spie
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 035001
SubjectTerms Cameras
Correlation coefficient
Correlation coefficients
Decomposition
Deep Learning
Extensibility
Face
Forward problem
Hemoglobin
Hemoglobins
Humans
Image acquisition
Image processing
Image reconstruction
Image resolution
Inverse problems
Light
Light sources
Machine vision
Medical imaging
Medical research
Medicine, Experimental
Melanin
Melanins
Morphology
Optical properties
Skin
Skin - diagnostic imaging
Skin diseases
Tomography
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGJwR74DJugYGChDQJ5CS-JHUey2Wa9jB4oNJ4QFHiOF3ZlkRrKzT-HX-FX8I5tRPaCk3ikZeqjX3s0yMf-3N8_B1CXsmSRSaqJE3yEjYoCtO84AcTKtKiVACCl9EWx8nhWB6dxCdb5Gd3FwbDKmctoK_pBJNm9LwPl5PQGXfWfaFNRe0ddfw7tGmR1zi0Tk25CpeKUxHi2VnEwvfGtNSlYphQXCNKKwOyHX83BaBIZ2fTmuaOEgQ7uTDnOQi5CWYYsuDo7ceAq0AEtu2gLasbZDuJYTswINvj40-jLzawX1CR2Ot4gCwo54q5k1XbzreiWW1nbW3cXCFWlsjN8M0BWmyH3FrUbX71Hay2skQe3CW_OuPayJizYDEvAv1jg3fyv7b-PXLHAXh_ZD3uPtky9S65aVN6Xu2SnRWCR3i-DLDVswfkK6rmr6vmO9X8TjUfVPNRNb9TzW8q36kGz0r_1Fw0yOECP0ukPHbZyh6S8cGHz-8OqUttQXUs5JwqZhSvTBzlQscGXymVOlWlTBLYABcC3EfkSgO44EIXlWJSS5ZrmVZSCyNEIh6RQd3U5gnxhwqEmeRVWgxlVcgchABjwlSt0jg2hUeiblBl2vG-Y_qR88zu_4YZy8CiGVeZyKxFPfK6F2kt6cl1lfdxpGY4IUK7Onf3OkA7pBbLRgrP9hlPuEf21mrCRKbXi7uxnnWjDToCfA4YPlYeedkXoyQGB9amWUCdYYpJCwCbeuSxdY1ebZGkKU9S4RG15jR9BaRXXy-pp6dLmnW25MdLoeN99Ik_Ol1jije9C_7FcODtq7Wf_lPtZ-Q2B3xtwx_3yGB-uTDPAQ_PixduxvkNhd6ygg
  priority: 102
  providerName: Unpaywall
Title Deep learning-based optical approach for skin analysis of melanin and hemoglobin distribution
URI http://www.dx.doi.org/10.1117/1.JBO.28.3.035001
https://www.ncbi.nlm.nih.gov/pubmed/36992693
https://www.proquest.com/docview/2862339258
https://www.proquest.com/docview/2792906240
https://pubmed.ncbi.nlm.nih.gov/PMC10042298
https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-28/issue-3/035001/Deep-learning-based-optical-approach-for-skin-analysis-of-melanin/10.1117/1.JBO.28.3.035001.pdf
UnpaywallVersion publishedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1560-2281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008696
  issn: 1083-3668
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1560-2281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008696
  issn: 1083-3668
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1560-2281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008696
  issn: 1083-3668
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZGJwQ8IBgMAmMyEtIkULr6R1LnAaEONk17KBOi0nhAluM4rNAlgbZC---5S5ysnVBfIiU-p659vjvbl-8j5I3M2MANchnGJoMFikKaF7wwoQZWZAqC4DrbYhyfTuTZRXSxRcbttzCYVtnaxNpQZ6XFPfJDDqG3AGceqQ_V7xBZo_B0taXQMJ5aIXtfQ4zdIdsckbF6ZPvoeHz-pbPNKq4ZuxgEHqGIY-XPORkbHrL-2dHnPld90cfTNs8S03qq2_Z6xWHdTqbszaspiN5bFpW5_mtmsxWHdfKIPPSRJh01qvGYbLlih9xtuCevd8iDFSRCeF5ngtr5E_L9k3MV9WQSP0L0chktq3rLm7YI5BRCXTr_NS2o8aAmtMzplZuZon6W0Ut3VSLYCNxmiM3rabWeksnJ8dePp6HnYAhtJOQiVMwpnrtoYISNHO59ZDZRmYxjWKmlAsZZGGXBC3Jh01wxaSUzVia5tMIJEYtd0ivKwj0ndKigMpM8T9KhzFNpoBIEQ2BTVBJFLg3IoO1vbT1AOfJkzHSzUBlqpmGINFda6GaIAvK2q1I16BybhA9wEDXOXHivNf4DBGgdYmDpkcJDaMZjHpC9NUmYcXa9uFUD7Wf8XN_oZ0Bed8VYE7PYClcuQWaYILo-BFEBedZoTddsEScJjxMRELWmT50A4oCvlxTTyxoPnNVAbgn88AGq3k2bNnTFu047_9NxP9NyVfrF5v_7ktznEPk1iXl7pLf4s3SvIFJbpPt--u3XOx1wNxmfj779A6tQOI0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJzR4QDAuCwwwEmgSKF19ies8TGhjm7oLBaFN2gsyieNshS4JtNXUP8dv4zhxsnZCfdtLpcbHieNzfC7x8XcQessT0jGdlPsiSiBAkbbMi_0hTHY0SyQ4wWW2RV_0TvnhWXC2hP7WZ2FsWmWtE0tFneTafiPfpOB6MzDmgfxY_PZt1Si7u1qX0IhcaYVkq4QYcwc7jsz0CkK40dbBLvD7HaX7eyefer6rMuDrgPGxL4mRNDVBJ2I6MDa6T3QoEy4ExCIxgzdhkdSg5ynTcSoJ15xEmocp18wwJhjc9w5a5oyHEPwt7-z1v35rbIEUZYUwAo6Oz4SQbl-VkO4maR_ufGlT2WZtu7vnqtLUlvGmfZgxkDeTN1ujYgCkK5OsiKZX0XA4YyD3H6IHzrPF25UoPkJLJltFd6tal9NVdH8G-RCul5mnevQYfd81psCueMW5b61qgvOi_MSOa8RzDK41Hv0aZDhyICo4T_GlGUZZeS3BF-Yyt-Am8DexWMCujNcTdHor3HiKWlmemTWEuxI6E07TMO7yNOYRdALnC3SYDIPAxB7q1POttANEt3U5hqoKjLqKKGCRolIxVbHIQ--bLkWFBrKIeMMyUVlNAffVkTvwAKOzmFtqW9pNb0IF9dD6HCWscD3fXIuBchpmpK7Xg4feNM22p82ay0w-AZpuaNH8wWnz0LNKapphMxGGVITMQ3JOnhoCizs-35INLkr8cVICx4Xw4A0retdjWjAVHxrp_M_E_YzzWerni9_3NVrpnXw-VscH_aMX6B4Fr7NKClxHrfGfiXkJXuI4fuWWIkY_bnv1_wMnR3HU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJ24PCMYtMMBIoEmgtPUlqfMwoY2u2gWVCTFpL8g4jsMKXRJoq6l_kV_FceJk7YT6tpdKjY8Txz4-5zg-_j6E3vCEdE035X6oEligCEvzYn8IE13NEgFBcJltMQz3T_jhaXC6hv7WZ2FsWmVtE0tDneTafiPvUAi9GTjzQHRSlxZx3B98KH77lkHK7rTWdBrK0Swk2yXcmDvkcWTmF7Ccm2wf9GHs31I62Pv6cd93jAO-Dhif-oIYQVMTdBXTgbEr_URHIuFhCOuSmMFbMSU02HzKdJwKwjUnSvMo5ZoZxkIG972B1u3mFxiJ9d294fGXxi-IsGQLIxD0-CwMhdtjJaTXIe3D3c9tKtqsbXf6HENN7SWv-ooFZ3k1kbM1KUYgenuWFWp-ocbjBWc5uI_uuSgX71Rq-QCtmWwD3ax4L-cb6O4CCiJcL7NQ9eQh-tY3psCOyOKHbz1sgvOi_NyOa_RzDGE2nvwaZVg5QBWcp_jcjFVWXkvwmTnPLdAJ_E0sLrCj9HqETq5lNB6jVpZn5inCPQGVCadpFPd4GnMFlSAQA3smoiAwsYe6dX9L7cDRLUfHWFaLpJ4kEoZIUiGZrIbIQ--aKkWFDLJKeMsOorRWA-6rlTv8AK2z-FtyR9gNcEJD6qHNJUmY7Xq5uFYD6azNRF7ODQ-9boptTZtBl5l8BjK9yCL7QwDnoSeV1jTNZmEU0TBiHhJL-tQIWAzy5ZJsdFZikZMSRC6CB29Z1bts04queN9o53867mecL0o_W_2-r9AtsALy08Hw6Dm6QyEArfIDN1Fr-mdmXkDAOI1fupmI0ffrnvz_AMdPdgM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGJwR74DJugYGChDQJ5CS-JHUey2Wa9jB4oNJ4QFHiOF3ZlkRrKzT-HX-FX8I5tRPaCk3ikZeqjX3s0yMf-3N8_B1CXsmSRSaqJE3yEjYoCtO84AcTKtKiVACCl9EWx8nhWB6dxCdb5Gd3FwbDKmctoK_pBJNm9LwPl5PQGXfWfaFNRe0ddfw7tGmR1zi0Tk25CpeKUxHi2VnEwvfGtNSlYphQXCNKKwOyHX83BaBIZ2fTmuaOEgQ7uTDnOQi5CWYYsuDo7ceAq0AEtu2gLasbZDuJYTswINvj40-jLzawX1CR2Ot4gCwo54q5k1XbzreiWW1nbW3cXCFWlsjN8M0BWmyH3FrUbX71Hay2skQe3CW_OuPayJizYDEvAv1jg3fyv7b-PXLHAXh_ZD3uPtky9S65aVN6Xu2SnRWCR3i-DLDVswfkK6rmr6vmO9X8TjUfVPNRNb9TzW8q36kGz0r_1Fw0yOECP0ukPHbZyh6S8cGHz-8OqUttQXUs5JwqZhSvTBzlQscGXymVOlWlTBLYABcC3EfkSgO44EIXlWJSS5ZrmVZSCyNEIh6RQd3U5gnxhwqEmeRVWgxlVcgchABjwlSt0jg2hUeiblBl2vG-Y_qR88zu_4YZy8CiGVeZyKxFPfK6F2kt6cl1lfdxpGY4IUK7Onf3OkA7pBbLRgrP9hlPuEf21mrCRKbXi7uxnnWjDToCfA4YPlYeedkXoyQGB9amWUCdYYpJCwCbeuSxdY1ebZGkKU9S4RG15jR9BaRXXy-pp6dLmnW25MdLoeN99Ik_Ol1jije9C_7FcODtq7Wf_lPtZ-Q2B3xtwx_3yGB-uTDPAQ_PixduxvkNhd6ygg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+optical+approach+for+skin+analysis+of+melanin+and+hemoglobin+distribution&rft.jtitle=Journal+of+biomedical+optics&rft.au=Jung%2C+Geunho&rft.au=Kim%2C+Semin&rft.au=Lee%2C+Jongha&rft.au=Yoo%2C+Sangwook&rft.date=2023-03-01&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=1083-3668&rft.eissn=1560-2281&rft.volume=28&rft.issue=3&rft_id=info:doi/10.1117%2F1.JBO.28.3.035001&rft.externalDocID=PMC10042298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-3668&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-3668&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-3668&client=summon