Nonlinear rheology of colloidal dispersions

Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the mic...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 22; no. 36; p. 363101
Main Author Brader, J M
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 15.09.2010
Institute of Physics
Subjects
Online AccessGet full text
ISSN0953-8984
1361-648X
1361-648X
DOI10.1088/0953-8984/22/36/363101

Cover

Abstract Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states.
AbstractList Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states.Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states.
Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states.
Author Brader, J M
Author_xml – sequence: 1
  fullname: Brader, J M
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23243195$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21386516$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtKxDAUQIMoOj5-QWYjLqRObpImKbiRwReIbhTchTRNNZJpatJB5u_t0HEEFRQC2ZyTm3N30WYTGovQIeBTwFJOcJHTTBaSTQiZUN4fChg20Agoh4wz-bSJRmtoB-2m9IoxZpKybbRDgEqeAx-hk7vQeNdYHcfxxQYfnhfjUI9N8D64Svtx5VJrY3KhSftoq9Y-2YPVvYceLy8eptfZ7f3VzfT8NjM5ZV0mQGhNpS2gyEswFkRFoNBcUFFwm5uKWkEI1cxCWclKFGBIWWPBclECYYbuITG8O29avXjX3qs2upmOCwVYLfPVskwtyxQhinI15Pfm8WC2MbzNberUzCVjvdeNDfOkZM4ZlowtycMVOS9ntloP-NxMDxytAJ2M9nXUjXHpi6OE0T6w584GzsSQUrS1Mq7TXb-vLmrn__4x_6b_OzUbRBfatfM7q9qq7nn4yf8x4wMw_bBB
CODEN JCOMEL
CitedBy_id crossref_primary_10_1088_0953_8984_25_50_502101
crossref_primary_10_1073_pnas_1301055110
crossref_primary_10_1088_0953_8984_24_46_464115
crossref_primary_10_1103_PhysRevE_86_031802
crossref_primary_10_1016_j_conbuildmat_2022_128335
crossref_primary_10_1103_RevModPhys_94_015007
crossref_primary_10_1016_j_conbuildmat_2022_127362
crossref_primary_10_1063_1_4861041
crossref_primary_10_1088_1742_5468_2016_08_084006
crossref_primary_10_1103_PhysRevE_107_014603
crossref_primary_10_1002_smll_201303360
crossref_primary_10_1088_1361_648X_aa9de4
crossref_primary_10_1088_0034_4885_75_6_066501
crossref_primary_10_1088_0953_8984_27_19_194121
crossref_primary_10_1007_s00396_020_04654_z
crossref_primary_10_1103_PhysRevE_88_062309
crossref_primary_10_1103_PhysRevLett_120_028001
crossref_primary_10_1088_0953_8984_26_24_243101
crossref_primary_10_1016_j_cemconcomp_2021_104163
crossref_primary_10_2115_fiberst_2020_0004
crossref_primary_10_1063_1_3623472
crossref_primary_10_1103_PhysRevE_85_011503
crossref_primary_10_1122_1_4949340
crossref_primary_10_1038_s41598_019_44233_z
crossref_primary_10_1016_j_powtec_2019_05_054
crossref_primary_10_1039_c2sm25935d
crossref_primary_10_1063_1_4868688
crossref_primary_10_1016_j_conbuildmat_2016_03_077
crossref_primary_10_1080_00268976_2017_1323128
crossref_primary_10_1007_s11665_025_10828_z
crossref_primary_10_1016_j_ceramint_2020_05_126
crossref_primary_10_3390_ceramics7040087
crossref_primary_10_1103_PhysRevX_12_041006
crossref_primary_10_1209_0295_5075_108_68007
crossref_primary_10_3390_met12030409
crossref_primary_10_1103_PhysRevE_106_044610
crossref_primary_10_1039_c2sm07187h
crossref_primary_10_1080_00268976_2010_541889
crossref_primary_10_1088_0034_4885_79_1_016601
crossref_primary_10_1063_5_0211198
crossref_primary_10_1103_PhysRevE_86_021403
crossref_primary_10_1103_PhysRevE_92_042301
crossref_primary_10_1016_j_cocis_2014_11_001
crossref_primary_10_1016_j_jobe_2023_106016
crossref_primary_10_1209_0295_5075_102_28011
crossref_primary_10_1039_C7SM02470C
crossref_primary_10_1126_science_1207032
crossref_primary_10_1063_1_4800109
crossref_primary_10_1209_0295_5075_96_68006
crossref_primary_10_1140_epjst_e2013_02059_x
crossref_primary_10_1122_1_4871474
crossref_primary_10_1016_j_jcis_2013_01_024
crossref_primary_10_1073_pnas_1515033112
crossref_primary_10_1063_1_4807586
crossref_primary_10_1063_5_0131441
crossref_primary_10_1103_PhysRevLett_121_148002
crossref_primary_10_1016_j_colsurfa_2013_06_003
crossref_primary_10_1016_j_conbuildmat_2017_11_147
crossref_primary_10_1122_1_3676741
crossref_primary_10_1088_0953_8984_25_3_035101
crossref_primary_10_1002_macp_201200551
crossref_primary_10_1155_2015_153854
crossref_primary_10_1063_5_0087444
crossref_primary_10_1007_s11356_023_25452_4
crossref_primary_10_1063_1_4917039
crossref_primary_10_1088_2399_6528_ab1e79
crossref_primary_10_1021_acssuschemeng_9b00911
crossref_primary_10_1039_c2sm07011a
crossref_primary_10_1088_0022_3727_46_49_494006
crossref_primary_10_1016_j_conbuildmat_2025_140237
crossref_primary_10_1016_j_cis_2020_102248
crossref_primary_10_1103_PhysRevLett_108_135005
crossref_primary_10_1016_j_oceram_2025_100742
crossref_primary_10_1088_0953_8984_28_24_244023
crossref_primary_10_1103_PhysRevE_82_061401
crossref_primary_10_1103_PhysRevE_85_011404
crossref_primary_10_1016_j_colsurfa_2014_09_040
crossref_primary_10_1002_adma_201903195
crossref_primary_10_1039_c2cp41041a
crossref_primary_10_3389_fphy_2022_955006
crossref_primary_10_1063_5_0174598
crossref_primary_10_1103_PhysRevE_105_044610
crossref_primary_10_1016_j_cofs_2016_10_004
crossref_primary_10_1103_PhysRevE_88_042303
crossref_primary_10_1063_1_4820399
crossref_primary_10_1016_j_jcis_2023_07_187
crossref_primary_10_1016_j_cis_2011_12_005
crossref_primary_10_1007_s00396_020_04644_1
crossref_primary_10_1103_PhysRevE_94_042602
crossref_primary_10_1140_epje_s10189_021_00146_2
crossref_primary_10_1016_j_jmrt_2024_02_103
crossref_primary_10_1063_1_4870497
crossref_primary_10_1103_PhysRevE_92_052120
Cites_doi 10.1016/j.actamat.2007.01.052
10.1088/0953-8984/15/1/355
10.1002/0471720577
10.1006/jcis.1993.1122
10.1122/1.1784784
10.1063/1.456930
10.1016/S0377-0257(03)00011-9
10.1063/1.2374886
10.1103/PhysRevE.58.738
10.1016/j.cis.2008.09.005
10.1126/science.1097116
10.1063/1.3103889
10.1063/1.452194
10.1016/0378-4371(89)90003-4
10.1103/PhysRevE.80.021503
10.1016/S0377-0257(00)00140-3
10.1122/1.551104
10.1016/j.cocis.2004.01.002
10.1122/1.549584
10.1080/00268976900100271
10.1063/1.467763
10.1122/1.550257
10.1103/PhysRevLett.78.2020
10.1209/epl/i2006-10203-9
10.1017/S0022112080002042
10.1063/1.1749657
10.1126/science.287.5453.627
10.1122/1.551088
10.1103/PhysRevE.72.051401
10.1017/CBO9780511608810
10.1016/0009-2614(92)85110-V
10.1063/1.1366335
10.1006/jcis.1993.1456
10.1103/PhysRevE.74.041403
10.1017/S0022112003006001
10.1002/andp.19133460808
10.1063/1.1705301
10.1063/1.2007667
10.1063/1.1636451
10.1103/PhysRevLett.100.188102
10.1017/S0022112094004404
10.1063/1.457091
10.1016/0031-9163(64)90246-X
10.1063/1.1695762
10.1103/PhysRevE.49.4206
10.1103/PhysRevLett.98.058301
10.1016/0378-4371(83)90175-9
10.1007/BF01303903
10.1103/PhysRevE.52.6492
10.1088/0953-8984/19/20/205132
10.1098/rsta.2009.0191
10.1007/s00397-008-0344-6
10.1103/PhysRevE.76.031501
10.1103/PhysRevLett.95.238302
10.1126/science.1068238
10.1016/S0378-4371(02)00506-X
10.1006/jcis.1996.0217
10.1016/0031-8914(66)90060-7
10.1209/epl/i2006-10156-y
10.1088/0953-8984/20/40/404210
10.1103/PhysRevLett.95.268302
10.1080/00018730601082029
10.1103/PhysRevLett.97.195701
10.1103/PhysRevE.66.050501
10.1088/0953-8984/19/11/113102
10.1122/1.550017
10.1002/andp.19113390313
10.1063/1.1460862
10.1016/0098-1354(94)00076-Z
10.1002/andp.19063240204
10.1007/s00023-003-0949-3
10.1017/S0022112097006320
10.1088/0953-8984/21/20/203101
10.1103/PhysRevE.73.011408
10.1103/PhysRevA.5.939
10.1088/0953-8984/19/32/323101
10.1016/S0009-2509(00)00475-9
10.1063/1.2921801
10.1122/1.1814114
10.1103/PhysRevLett.96.135701
10.1103/PhysRevLett.86.6042
10.1063/1.2889926
10.1007/s00397-009-0351-2
10.1122/1.550884
10.1122/1.1784785
10.1103/PhysRevE.71.021401
10.1007/s10765-005-0002-5
10.1103/PhysRevLett.100.018301
10.1103/PhysRevE.70.061506
10.1146/annurev.fl.20.010188.000551
10.1007/s00397-009-0352-1
10.1103/PhysRevE.65.041405
10.1017/S0022112001007583
10.1038/nmat1496
10.1103/PhysRevE.67.021502
10.1002/apmc.1984.051230115
10.1103/PhysRevA.32.1239
10.1103/PhysRevLett.97.168301
10.1002/9780470141700.ch3
10.1103/PhysRevLett.104.165702
10.1007/BF01025835
10.1016/0031-8914(65)90026-1
10.1103/PhysRevLett.58.2075
10.1039/b611021p
10.1103/PhysRevA.29.1453
10.1088/0953-8984/20/24/244129
10.1007/978-3-642-61544-3
10.1103/PhysRevE.61.5464
10.1063/1.1670641
10.1002/aic.690360302
10.1063/1.446585
10.1017/S0022112072002927
10.1080/00268979000101361
10.1122/1.1784783
10.1088/0953-8984/16/38/013
10.1103/PhysRevLett.101.138301
10.1063/1.2363998
10.1122/1.550530
10.1063/1.42337
10.1021/jp052683g
10.1103/PhysRevE.70.011501
10.1063/1.1571819
10.1080/00018730210153216
10.1103/PhysRevE.78.041501
10.1017/S0022112072002435
10.1103/PhysRevLett.90.095702
10.1122/1.3119084
10.1088/0953-8984/17/4/R02
10.1103/PhysRevA.30.999
10.1063/1.1319379
10.1098/rspa.1953.0139
10.1016/0003-4916(68)90111-5
10.1122/1.550314
10.1103/PhysRevLett.70.2766
10.1103/PhysRevE.76.011508
10.1103/PhysRevA.33.4277
10.1122/1.550873
10.1063/1.476428
10.1103/PhysRevA.43.5429
10.1039/b205629a
10.1103/PhysRevA.46.6731
10.1017/S0022112089001813
10.1088/0953-8984/11/50/304
10.1016/j.cis.2008.09.008
10.1122/1.550767
10.1122/1.550791
10.1122/1.3093088
10.1017/S0022112001005912
10.1063/1.473029
10.1063/1.2200689
10.1063/1.1747099
10.1103/PhysRevE.48.4632
10.1126/science.1097964
10.1103/PhysRevE.69.011503
10.1103/PhysRevLett.60.2705
10.1126/science.1149308
10.1103/PhysRevLett.103.086001
10.1122/1.549250
10.1088/0953-8984/17/20/003
10.1007/s00397-008-0341-9
10.1017/CBO9780511535307
10.1063/1.465782
10.1122/1.3073754
10.1088/0953-8984/11/10A/002
10.1103/PhysRevLett.94.078301
10.1016/0031-8914(67)90248-0
10.1063/1.1743957
10.1016/0378-4371(82)90072-3
10.1103/PhysRevLett.56.2172
10.1063/1.865384
10.1063/1.3141940
10.1103/PhysRevLett.101.258301
10.1088/0034-4885/55/3/001
10.1063/1.2806094
10.1016/0377-0257(94)80016-2
10.1122/1.1895800
10.1002/0471727903
10.1016/0031-8914(64)90204-6
10.1103/PhysRevLett.99.028301
10.1063/1.1859285
10.1038/nmat2615
10.1088/0953-8984/17/24/010
10.1007/s00397-008-0328-6
10.1122/1.550904
10.1063/1.450428
10.1016/0378-4371(81)90141-2
10.1073/pnas.0905330106
10.1017/S0022112077001062
10.1103/PhysRevE.61.6898
10.1122/1.550712
10.1103/PhysRevLett.89.248304
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
ADTOC
UNPAY
DOI 10.1088/0953-8984/22/36/363101
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Chemistry
EISSN 1361-648X
ExternalDocumentID 10.1088/0953-8984/22/36/363101
21386516
23243195
10_1088_0953_8984_22_36_363101
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
02O
1JI
1PV
1WK
4.4
53G
5B3
5GY
5PX
5VS
5ZH
5ZI
7.M
7.Q
8RP
9BW
AAGCD
AAGID
AAJIO
AALHV
ABHWH
ABQJV
ACGFS
ACNCT
ADIYS
AEFHF
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TN5
UNR
UQL
W28
WH7
X
XFK
XPP
ZMT
---
-~X
AAJKP
AATNI
AAYXX
ABLJU
ABVAM
ACAFW
ACARI
ACHIP
ADEQX
AEINN
AERVB
AGQPQ
AKPSB
AOAED
ARNYC
CITATION
CRLBU
IJHAN
JCGBZ
PJBAE
YQT
~02
29L
6TJ
8WZ
A6W
AAGCF
AAYJJ
ABCXL
ACWPO
AETNG
AFFNX
AI.
CBCFC
CEBXE
H~9
IQODW
MVM
R4D
RKQ
T37
VH1
XOL
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c534t-717aa38e9195b1ce17d219a673796e5cd3e7223a4e1bd8d791c2bf07457b124c3
IEDL.DBID UNPAY
ISSN 0953-8984
1361-648X
IngestDate Wed Oct 01 16:35:48 EDT 2025
Fri Sep 05 03:00:21 EDT 2025
Mon Jul 21 06:04:21 EDT 2025
Mon Jul 21 09:12:00 EDT 2025
Wed Oct 01 04:17:03 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Tue Nov 10 14:20:40 EST 2020
Mon May 13 15:42:34 EDT 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords Brownian motion
Phenomenology
Glass transition
Shear thickening
Rheology
Colloidal suspension
Continuum mechanics
Microscopic model
Hard sphere model
Non linear effect
Smoluchowski equation
Shear thinning
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-717aa38e9195b1ce17d219a673796e5cd3e7223a4e1bd8d791c2bf07457b124c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/0953-8984/22/36/363101/pdf
PMID 21386516
PQID 856408441
PQPubID 23479
ParticipantIDs crossref_citationtrail_10_1088_0953_8984_22_36_363101
iop_primary_10_1088_0953_8984_22_36_363101
unpaywall_primary_10_1088_0953_8984_22_36_363101
proquest_miscellaneous_856408441
crossref_primary_10_1088_0953_8984_22_36_363101
pubmed_primary_21386516
pascalfrancis_primary_23243195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-15
PublicationDateYYYYMMDD 2010-09-15
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: England
PublicationTitle Journal of physics. Condensed matter
PublicationTitleAlternate J Phys Condens Matter
PublicationYear 2010
Publisher IOP Publishing
Institute of Physics
Publisher_xml – name: IOP Publishing
– name: Institute of Physics
References Vermant J (26) 2005; 17
Bird R B (29) 1987
110
111
112
113
114
115
116
117
118
von Mises R (211) 1913
Bouchaud J-P (45) 1998
12
13
16
17
18
Riskin H (46) 1989
120
1
122
123
3
124
4
125
5
126
127
7
128
8
129
9
Doi M (21) 1989
Götze W (99) 1991
20
23
24
25
27
28
130
131
132
133
134
135
136
137
138
139
Stell G (172) 1964
32
33
34
35
36
37
39
Born M (163) 1949
140
141
142
143
144
145
146
147
148
149
40
41
42
Dijkstra M (83) 1999; 11
43
44
48
49
Larson R G (22) 1988
150
151
152
153
154
155
156
157
158
159
50
51
54
55
56
57
Hill R (212) 1971
58
Ramaswamy S (160) 1997
59
Zausch J (62) 2008; 20
161
162
164
165
166
167
168
Henrich O (187) 2007; 19
Pham K N (94) 2006; 75
169
60
61
63
64
65
67
Miyazaki K (197) 2006; 75
68
69
170
171
173
174
175
176
177
178
179
Götze W (10) 1992; 55
71
72
Saltzman E J (199) 2008; 20
73
74
75
76
77
78
79
180
181
182
183
184
185
186
188
189
Götze W (11) 1999; 11
80
81
82
84
85
Gasser U (66) 2009; 21
86
87
88
89
Mathews J (53) 1970
190
Dhont J K G (14) 1996
191
192
193
194
195
196
198
Prasad V (38) 2007; 19
90
91
92
Petekidis G (200) 2004; 16
95
96
97
98
McQuarrie D A (206) 2000
Zaccarelli E (93) 2007; 19
Tresca H (210) 1854; 59
Hansen J-P (15) 1986
van Kampen N G (205) 1981
Cates M E (121) 2005; 17
Truesdell C (31) 1965
Sami S (52) 1997
Phung T (100) 1992; 256
Kim S (47) 1991
Berthier L (70) 2006; 310
Batchelor G K (30) 1967
Fuchs M (19) 2009
202
203
Cates M E (119) 2004
207
208
209
Larson R G (2) 1999
Russel W B (6) 1989
213
Fuchs M (201) 2003; 15
214
215
Fuchs M (204) 2005; 17
101
102
103
104
105
106
107
108
109
References_xml – ident: 213
  doi: 10.1016/j.actamat.2007.01.052
– volume: 15
  start-page: S401
  issn: 0953-8984
  year: 2003
  ident: 201
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/15/1/355
– ident: 5
  doi: 10.1002/0471720577
– ident: 107
  doi: 10.1006/jcis.1993.1122
– ident: 104
  doi: 10.1122/1.1784784
– ident: 147
  doi: 10.1063/1.456930
– ident: 130
  doi: 10.1016/S0377-0257(03)00011-9
– ident: 203
  doi: 10.1063/1.2374886
– ident: 35
  doi: 10.1103/PhysRevE.58.738
– ident: 106
  doi: 10.1016/j.cis.2008.09.005
– ident: 12
  doi: 10.1126/science.1097116
– ident: 85
  doi: 10.1063/1.3103889
– ident: 208
  doi: 10.1063/1.452194
– ident: 141
  doi: 10.1016/0378-4371(89)90003-4
– ident: 78
  doi: 10.1103/PhysRevE.80.021503
– ident: 191
  doi: 10.1016/S0377-0257(00)00140-3
– ident: 133
  doi: 10.1122/1.551104
– ident: 79
  doi: 10.1016/j.cocis.2004.01.002
– ident: 157
  doi: 10.1122/1.549584
– ident: 181
  doi: 10.1080/00268976900100271
– ident: 48
  doi: 10.1063/1.467763
– ident: 112
  doi: 10.1122/1.550257
– ident: 34
  doi: 10.1103/PhysRevLett.78.2020
– year: 1991
  ident: 99
  publication-title: Liquids, Freezing and the Glass Transition
– volume: 75
  start-page: 915
  issn: 0295-5075
  year: 2006
  ident: 197
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2006-10203-9
– ident: 54
  doi: 10.1017/S0022112080002042
– ident: 164
  doi: 10.1063/1.1749657
– ident: 74
  doi: 10.1126/science.287.5453.627
– ident: 36
  doi: 10.1122/1.551088
– ident: 72
  doi: 10.1103/PhysRevE.72.051401
– year: 1989
  ident: 6
  publication-title: Colloidal Dispersions
  doi: 10.1017/CBO9780511608810
– ident: 168
  doi: 10.1016/0009-2614(92)85110-V
– ident: 170
  doi: 10.1063/1.1366335
– ident: 143
  doi: 10.1006/jcis.1993.1456
– ident: 86
  doi: 10.1103/PhysRevE.74.041403
– ident: 209
  doi: 10.1017/S0022112003006001
– ident: 13
  doi: 10.1002/andp.19133460808
– ident: 179
  doi: 10.1063/1.1705301
– ident: 122
  doi: 10.1063/1.2007667
– ident: 139
  doi: 10.1063/1.1636451
– ident: 73
  doi: 10.1103/PhysRevLett.100.188102
– ident: 162
  doi: 10.1017/S0022112094004404
– ident: 113
  doi: 10.1063/1.457091
– ident: 175
  doi: 10.1016/0031-9163(64)90246-X
– ident: 165
  doi: 10.1063/1.1695762
– ident: 9
  doi: 10.1103/PhysRevE.49.4206
– ident: 16
  doi: 10.1103/PhysRevLett.98.058301
– ident: 32
  doi: 10.1016/0378-4371(83)90175-9
– ident: 169
  doi: 10.1007/BF01303903
– ident: 194
  doi: 10.1103/PhysRevE.52.6492
– year: 1971
  ident: 212
  publication-title: The Mathematical Theory of Plasticity
– volume: 19
  start-page: 205132
  issn: 0953-8984
  year: 2007
  ident: 187
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/19/20/205132
– ident: 76
  doi: 10.1098/rsta.2009.0191
– ident: 138
  doi: 10.1007/s00397-008-0344-6
– ident: 90
  doi: 10.1103/PhysRevE.76.031501
– ident: 87
  doi: 10.1103/PhysRevLett.95.238302
– ident: 81
  doi: 10.1126/science.1068238
– ident: 84
  doi: 10.1016/S0378-4371(02)00506-X
– ident: 37
  doi: 10.1006/jcis.1996.0217
– ident: 177
  doi: 10.1016/0031-8914(66)90060-7
– volume: 75
  start-page: 624
  issn: 0295-5075
  year: 2006
  ident: 94
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2006-10156-y
– volume: 20
  start-page: 404210
  issn: 0953-8984
  year: 2008
  ident: 62
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/20/40/404210
– ident: 131
  doi: 10.1103/PhysRevLett.95.268302
– ident: 24
  doi: 10.1080/00018730601082029
– ident: 71
  doi: 10.1103/PhysRevLett.97.195701
– ident: 195
  doi: 10.1103/PhysRevE.66.050501
– year: 1997
  ident: 160
  publication-title: Theoretical Challenges in the Dynamics of Colloidal Fluids
– volume: 19
  start-page: 113102
  issn: 0953-8984
  year: 2007
  ident: 38
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/19/11/113102
– ident: 108
  doi: 10.1122/1.550017
– ident: 152
  doi: 10.1002/andp.19113390313
– ident: 44
  doi: 10.1063/1.1460862
– year: 1997
  ident: 52
– ident: 101
  doi: 10.1016/0098-1354(94)00076-Z
– ident: 151
  doi: 10.1002/andp.19063240204
– year: 1999
  ident: 2
  publication-title: The Structure and Rheology of Complex Fluids
– ident: 207
  doi: 10.1007/s00023-003-0949-3
– ident: 56
  doi: 10.1017/S0022112097006320
– volume: 21
  start-page: 203101
  issn: 0953-8984
  year: 2009
  ident: 66
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/21/20/203101
– year: 1998
  ident: 45
  publication-title: Spin Glasses and Random Fields
– ident: 135
  doi: 10.1103/PhysRevE.73.011408
– ident: 171
  doi: 10.1103/PhysRevA.5.939
– volume: 19
  start-page: 323101
  issn: 0953-8984
  year: 2007
  ident: 93
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/19/32/323101
– ident: 51
  doi: 10.1016/S0009-2509(00)00475-9
– ident: 60
  doi: 10.1063/1.2921801
– ident: 120
  doi: 10.1122/1.1814114
– ident: 68
  doi: 10.1103/PhysRevLett.96.135701
– ident: 80
  doi: 10.1103/PhysRevLett.86.6042
– ident: 148
  doi: 10.1063/1.2889926
– ident: 114
  doi: 10.1007/s00397-009-0351-2
– ident: 115
  doi: 10.1122/1.550884
– ident: 124
  doi: 10.1122/1.1784785
– year: 1964
  ident: 172
  publication-title: Equilibrium Theory of Classical Fluids
– ident: 198
  doi: 10.1103/PhysRevE.71.021401
– ident: 173
  doi: 10.1007/s10765-005-0002-5
– ident: 4
  doi: 10.1103/PhysRevLett.100.018301
– ident: 67
  doi: 10.1103/PhysRevE.70.061506
– ident: 49
  doi: 10.1146/annurev.fl.20.010188.000551
– year: 1965
  ident: 31
  publication-title: The Nonlinear Field Theories of Mechanics
– ident: 28
  doi: 10.1007/s00397-009-0352-1
– ident: 98
  doi: 10.1103/PhysRevE.65.041405
– ident: 134
  doi: 10.1017/S0022112001007583
– ident: 1
  doi: 10.1038/nmat1496
– ident: 77
  doi: 10.1103/PhysRevE.67.021502
– ident: 95
  doi: 10.1002/apmc.1984.051230115
– ident: 33
  doi: 10.1103/PhysRevA.32.1239
– ident: 92
  doi: 10.1103/PhysRevLett.97.168301
– ident: 27
  doi: 10.1002/9780470141700.ch3
– ident: 91
  doi: 10.1103/PhysRevLett.104.165702
– ident: 188
  doi: 10.1007/BF01025835
– ident: 176
  doi: 10.1016/0031-8914(65)90026-1
– ident: 182
  doi: 10.1103/PhysRevLett.58.2075
– ident: 25
  doi: 10.1039/b611021p
– year: 2004
  ident: 119
  publication-title: Unifying Concepts in Granular Media and Glasses
– ident: 189
  doi: 10.1103/PhysRevA.29.1453
– volume: 20
  start-page: 244129
  issn: 0953-8984
  year: 2008
  ident: 199
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/20/24/244129
– year: 1989
  ident: 46
  publication-title: The Fokker-Planck Equation
  doi: 10.1007/978-3-642-61544-3
– ident: 43
  doi: 10.1103/PhysRevE.61.5464
– year: 1996
  ident: 14
  publication-title: An Introduction to the Dynamics of Colloids
– ident: 65
  doi: 10.1063/1.1670641
– ident: 110
  doi: 10.1002/aic.690360302
– ident: 102
  doi: 10.1063/1.446585
– ident: 153
  doi: 10.1017/S0022112072002927
– ident: 183
  doi: 10.1080/00268979000101361
– year: 1981
  ident: 205
  publication-title: Stochastic Processes in Physics and Chemistry
– ident: 103
  doi: 10.1122/1.1784783
– volume: 16
  start-page: S3955
  issn: 0953-8984
  year: 2004
  ident: 200
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/16/38/013
– ident: 17
  doi: 10.1103/PhysRevLett.101.138301
– ident: 40
  doi: 10.1063/1.2363998
– ident: 96
  doi: 10.1122/1.550530
– volume: 256
  start-page: 391
  year: 1992
  ident: 100
  publication-title: Slow Dynamics in Condensed Matter
  doi: 10.1063/1.42337
– year: 1970
  ident: 53
  publication-title: Mathematical Methods of Physics
– ident: 89
  doi: 10.1021/jp052683g
– ident: 196
  doi: 10.1103/PhysRevE.70.011501
– ident: 50
  doi: 10.1063/1.1571819
– ident: 23
  doi: 10.1080/00018730210153216
– ident: 69
  doi: 10.1103/PhysRevE.78.041501
– volume: 310
  start-page: 5755
  year: 2006
  ident: 70
  publication-title: Science
– ident: 154
  doi: 10.1017/S0022112072002435
– ident: 140
  doi: 10.1103/PhysRevLett.90.095702
– ident: 20
  doi: 10.1122/1.3119084
– volume: 17
  start-page: R187
  issn: 0953-8984
  year: 2005
  ident: 26
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/17/4/R02
– year: 1991
  ident: 47
  publication-title: Microhydrodynamics, Principles and Selected Applications
– ident: 185
  doi: 10.1103/PhysRevA.30.999
– ident: 129
  doi: 10.1063/1.1319379
– ident: 55
  doi: 10.1098/rspa.1953.0139
– ident: 180
  doi: 10.1016/0003-4916(68)90111-5
– ident: 111
  doi: 10.1122/1.550314
– ident: 8
  doi: 10.1103/PhysRevLett.70.2766
– ident: 75
  doi: 10.1103/PhysRevE.76.011508
– ident: 190
  doi: 10.1103/PhysRevA.33.4277
– ident: 186
  doi: 10.1122/1.550873
– ident: 97
  doi: 10.1063/1.476428
– year: 2009
  ident: 19
  publication-title: High Dolid Dispersions
– ident: 7
  doi: 10.1103/PhysRevA.43.5429
– ident: 57
  doi: 10.1039/b205629a
– ident: 128
  doi: 10.1103/PhysRevA.46.6731
– ident: 158
  doi: 10.1017/S0022112089001813
– volume: 11
  start-page: 10079
  issn: 0953-8984
  year: 1999
  ident: 83
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/11/50/304
– ident: 39
  doi: 10.1016/j.cis.2008.09.008
– ident: 58
  doi: 10.1122/1.550767
– ident: 118
  doi: 10.1122/1.550791
– year: 1989
  ident: 21
  publication-title: The Theory of Polymer Dynamics
– ident: 61
  doi: 10.1122/1.3093088
– ident: 41
  doi: 10.1017/S0022112001005912
– ident: 184
  doi: 10.1063/1.473029
– year: 1967
  ident: 30
  publication-title: An Introduction to Fluid Dynamics
– ident: 150
  doi: 10.1063/1.2200689
– ident: 149
  doi: 10.1063/1.1747099
– ident: 161
  doi: 10.1103/PhysRevE.48.4632
– volume: 59
  start-page: 754
  year: 1854
  ident: 210
  publication-title: C. R. Acad. Sci. Paris
– ident: 126
  doi: 10.1126/science.1097964
– ident: 82
  doi: 10.1103/PhysRevE.69.011503
– ident: 145
  doi: 10.1103/PhysRevLett.60.2705
– ident: 215
  doi: 10.1126/science.1149308
– ident: 3
  doi: 10.1103/PhysRevLett.103.086001
– ident: 109
  doi: 10.1122/1.549250
– volume: 17
  start-page: S1681
  issn: 0953-8984
  year: 2005
  ident: 204
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/17/20/003
– ident: 125
  doi: 10.1007/s00397-008-0341-9
– ident: 193
  doi: 10.1017/CBO9780511535307
– ident: 146
  doi: 10.1063/1.465782
– ident: 105
  doi: 10.1122/1.3073754
– volume: 11
  start-page: A1
  issn: 0953-8984
  year: 1999
  ident: 11
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/11/10A/002
– year: 1986
  ident: 15
  publication-title: Theory of Simple Liquids
– ident: 88
  doi: 10.1103/PhysRevLett.94.078301
– ident: 178
  doi: 10.1016/0031-8914(67)90248-0
– ident: 64
  doi: 10.1063/1.1743957
– ident: 167
  doi: 10.1016/0378-4371(82)90072-3
– ident: 127
  doi: 10.1103/PhysRevLett.56.2172
– ident: 144
  doi: 10.1063/1.865384
– ident: 123
  doi: 10.1063/1.3141940
– ident: 59
  doi: 10.1103/PhysRevLett.101.258301
– year: 1988
  ident: 22
  publication-title: Constitutive Equations for Polymer Melts and Solutions
– volume: 55
  start-page: 241
  issn: 0034-4885
  year: 1992
  ident: 10
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/55/3/001
– ident: 63
  doi: 10.1063/1.2806094
– year: 1949
  ident: 163
  publication-title: A General Kinetic Theory of Liquids
– year: 2000
  ident: 206
  publication-title: Statistical Mechanics
– ident: 117
  doi: 10.1016/0377-0257(94)80016-2
– ident: 116
  doi: 10.1122/1.1895800
– ident: 192
  doi: 10.1002/0471727903
– ident: 174
  doi: 10.1016/0031-8914(64)90204-6
– ident: 137
  doi: 10.1103/PhysRevLett.99.028301
– ident: 202
  doi: 10.1063/1.1859285
– start-page: 582
  year: 1913
  ident: 211
  publication-title: Göttinger Nachrichten, Math.-Phys. Klasse
– ident: 214
  doi: 10.1038/nmat2615
– year: 1987
  ident: 29
  publication-title: Dynamics of Polymeric Liquids
– volume: 17
  start-page: S2517
  issn: 0953-8984
  year: 2005
  ident: 121
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/17/24/010
– ident: 132
  doi: 10.1007/s00397-008-0328-6
– ident: 159
  doi: 10.1122/1.550904
– ident: 142
  doi: 10.1063/1.450428
– ident: 166
  doi: 10.1016/0378-4371(81)90141-2
– ident: 18
  doi: 10.1073/pnas.0905330106
– ident: 155
  doi: 10.1017/S0022112077001062
– ident: 42
  doi: 10.1103/PhysRevE.61.6898
– ident: 156
  doi: 10.1122/1.550712
– ident: 136
  doi: 10.1103/PhysRevLett.89.248304
SSID ssj0004834
Score 2.40637
SecondaryResourceType review_article
Snippet Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many...
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 363101
SubjectTerms Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Physical and chemical studies. Granulometry. Electrokinetic phenomena
SummonAdditionalLinks – databaseName: IOP Electronic Journals
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SQGl7aPqO2zT4UHpo0W5k6-VjCQmh0LSFBnITepKli73sg5D--o7stZPQhaTggw8aWR6PpE-exwfwwckguQ2CuKgYYVFaYpURJDrrUvVNL1vmuW-n4uSMfT3n51vQkyBOmtl65R_hbevJTwXRiKoUGxfFuBR4ISJJ5500V1PG3vcf14mQqnUjDyJ9SjCe8jZ3c2s3eoCPTLGRZoHqiR2vxSbg-QQereqZubo00-mNzeh4B372KT1dDMrv0WppR-7PvxUe7_2ez-DpGpnmXzpTeg5boX4BD9sIUbd4CZ9Pu6IaZp7PL1o64Ku8iXmyo2biUdBPUtHx9PNt8QrOjo9-HZ6QNdMCcbxkS4IfxJhShYpW3FIXqPS4kpnEYVOJwJ0vg0QcYVig1isvK-oKGxF9cGkRILjyNWzXTR12IY-VDayUjipvGPdeyVDwaAP1onKG0gx4r3Ht1mXIExvGVLfucKV0UoROitBFoUuhO0VkMB7kZl0hjjslPqJuh8abG-mZjxl8utnwrl73bxnIIJagKa5nPIO8txiNUzX5X0wdmtVCKy7YgUL8mcGbzpKuhWniXqUig4PBtO45oLf_M_p38LgLf6gI5XuwvZyvwntEVUu7386kv0VNDWA
  priority: 102
  providerName: IOP Publishing
Title Nonlinear rheology of colloidal dispersions
URI http://iopscience.iop.org/0953-8984/22/36/363101
https://www.ncbi.nlm.nih.gov/pubmed/21386516
https://www.proquest.com/docview/856408441
https://iopscience.iop.org/article/10.1088/0953-8984/22/36/363101/pdf
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Electronic Journals
  customDbUrl:
  eissn: 1361-648X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004834
  issn: 0953-8984
  databaseCode: IOP
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB51t0LAgfcjPFY5IA4gb-rErxwr1KogsfTASsvJ8iuiYpWsNrtC5ddjx9nQoqKCkHLIYT7LGY_tT_H4G4BXhjtOtWPIVIIgUnGNtFAMVUaboL5peVd57uOMnczJhwVd7MHRcBemWfVL_9S_RqHg6MI-IU5kQSENiVKQLM-zgvnHUxScrWw1gn0WzpnGsD-fnR5-iTp70Tjev8KIEbHY3RT-Y2OXNqmR70hImVSt91oVy11cxUdvw81tvVLn39VyeWGPOr4bc0naTtowpKZ8m243emp-_Cb8-N-ffw_u9Cw2PYyg-7Dn6gdwo8smNe1DeDuLAhxqna6_dqWDz9OmSkPMNWfWA-1ZECgPP-raRzA_Pvr87gT1VRmQoQXZID94ShXClbikGhuHufWrngr1bkrmqLGF455zKOKwtsLyEptcV56pUK49mTDFYxjXTe2eQlqV2pGCGyysItRawV1OK-2wZaVRGCdAd8MgTS9ZHipnLGV3dC6EDM6QwRkyz2XBZHRGAtmAW0XRjmsRr72_B-OrjaT3cQJvLhpe1-rkUtQMsEBj_dpHE0h3YST9tA5nNap2zbaVgjJyIDxXTeBJDK9fYBzqtGKWwMEQb3_ZoWf_DnkOt2LCRIkwfQHjzXrrXnoettETGL3_dDrp59pPn8Ae5Q
linkProvider Unpaywall
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH5qi4ByYF9SoOSAOIA8qZN4ybGCjlqWoQcq9WZ5FRWjZDSZUVV-PXacSVtUVBBSDonkZznPz_Yn-_n7AF5rZhlRliLteIlKxxRSXFLktNKBfdOwTnnuy4TuH5Ufj8nxGuwNd2GaWT_1j_xrJAqOLuwT4ngWGNIQr3iZ5XlWUP94iIKzmXHrcIP4r0Chf_D18Px6JO8Olwe71UXhP9Z1aY1a9-0IGZOy9U5zUe3iKjh6B24v65k8O5XT6YUlanwvppK0HbNhyEz5MVou1Ej__I338b___j7c7UFsuhuNHsCarR_CzS6ZVLeP4N0k8m_IeTr_3ikHn6WNS0PINSfGG5qTwE8e9unax3A03vv2fh_1ogxIk6JcIN93UhbcVrgiCmuLmfGTngxyNxW1RJvCMg85ZGmxMtywCutcOQ9UCFMeS-jiCWzUTW2fQeoqZcuCacyNLIkxnNmcOGWxoZWWGCdAVt0gdM9YHoQzpqI7OedcBGeI4AyR56KgIjojgWywm0XOjmst3nh_D4WvLiS8jxN4e7HgdbVuX4qawSygWD_1kQTSVRgJP6rDUY2sbbNsBSe03OEeqibwNIbXuTEOMq2YJrAzxNtfNmjrX1r_Cm4dfhiLzweTT89hMyZNVAiTF7CxmC_tS4_FFmq7G2m_AD5GHUk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SDaXNoe8mTtvgQ-mhRevI1svHUBJCoUsPXdiehF4moYu9rHcJ6a-vZHmdpKSkpeCDD_MJeTSSPqzRNwDvDHecaseQqQRBpOIaaaEYqow2QX3T8q7y3JcJO5uSzzM624KT4S5Ms-iX_rF_jULB0YV9QpzIgkIaEqUgWZ5nBfOPpyg4W9hqG3ZYOGcawc508vX4e9TZi8bx_hVGjIjZ5qbwHxu7tUlt-46ElEnVeq9VsdzFXXx0Fx6u64W6ulTz-Y096vRJzCVpO2nDkJryY7xe6bH5-Zvw439__lN43LPY9DiCnsGWq5_Dgy6b1LQv4OMkCnCoZbo870oHX6VNlYaYay6sB9qLIFAeftS1L2F6evLt0xnqqzIgQwuyQn7wlCqEK3FJNTYOc-tXPRXq3ZTMUWMLxz3nUMRhbYXlJTa5rjxToVx7MmGKVzCqm9rtQ1qV2pGCGyysItRawV1OK-2wZaVRGCdAN8MgTS9ZHipnzGV3dC6EDM6QwRkyz2XBZHRGAtmAW0TRjnsR772_B-O7jaT3cQIfbhre1-rhragZYIHG-rWPJpBuwkj6aR3OalTtmnUrBWXkSHiumsBeDK9rMA51WjFL4GiIt7_s0MG_Q17Do5gwUSJM38BotVy7t56HrfRhP8t-AevYHdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+rheology+of+colloidal+dispersions&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=Brader%2C+J+M&rft.date=2010-09-15&rft.pub=IOP+Publishing&rft.issn=0953-8984&rft.eissn=1361-648X&rft.volume=22&rft.spage=363101&rft_id=info:doi/10.1088%2F0953-8984%2F22%2F36%2F363101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0953_8984_22_36_363101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon