Nonlinear rheology of colloidal dispersions
Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the mic...
Saved in:
Published in | Journal of physics. Condensed matter Vol. 22; no. 36; p. 363101 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
15.09.2010
Institute of Physics |
Subjects | |
Online Access | Get full text |
ISSN | 0953-8984 1361-648X 1361-648X |
DOI | 10.1088/0953-8984/22/36/363101 |
Cover
Abstract | Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states. |
---|---|
AbstractList | Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states.Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states. Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states. |
Author | Brader, J M |
Author_xml | – sequence: 1 fullname: Brader, J M |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23243195$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21386516$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkMtKxDAUQIMoOj5-QWYjLqRObpImKbiRwReIbhTchTRNNZJpatJB5u_t0HEEFRQC2ZyTm3N30WYTGovQIeBTwFJOcJHTTBaSTQiZUN4fChg20Agoh4wz-bSJRmtoB-2m9IoxZpKybbRDgEqeAx-hk7vQeNdYHcfxxQYfnhfjUI9N8D64Svtx5VJrY3KhSftoq9Y-2YPVvYceLy8eptfZ7f3VzfT8NjM5ZV0mQGhNpS2gyEswFkRFoNBcUFFwm5uKWkEI1cxCWclKFGBIWWPBclECYYbuITG8O29avXjX3qs2upmOCwVYLfPVskwtyxQhinI15Pfm8WC2MbzNberUzCVjvdeNDfOkZM4ZlowtycMVOS9ntloP-NxMDxytAJ2M9nXUjXHpi6OE0T6w584GzsSQUrS1Mq7TXb-vLmrn__4x_6b_OzUbRBfatfM7q9qq7nn4yf8x4wMw_bBB |
CODEN | JCOMEL |
CitedBy_id | crossref_primary_10_1088_0953_8984_25_50_502101 crossref_primary_10_1073_pnas_1301055110 crossref_primary_10_1088_0953_8984_24_46_464115 crossref_primary_10_1103_PhysRevE_86_031802 crossref_primary_10_1016_j_conbuildmat_2022_128335 crossref_primary_10_1103_RevModPhys_94_015007 crossref_primary_10_1016_j_conbuildmat_2022_127362 crossref_primary_10_1063_1_4861041 crossref_primary_10_1088_1742_5468_2016_08_084006 crossref_primary_10_1103_PhysRevE_107_014603 crossref_primary_10_1002_smll_201303360 crossref_primary_10_1088_1361_648X_aa9de4 crossref_primary_10_1088_0034_4885_75_6_066501 crossref_primary_10_1088_0953_8984_27_19_194121 crossref_primary_10_1007_s00396_020_04654_z crossref_primary_10_1103_PhysRevE_88_062309 crossref_primary_10_1103_PhysRevLett_120_028001 crossref_primary_10_1088_0953_8984_26_24_243101 crossref_primary_10_1016_j_cemconcomp_2021_104163 crossref_primary_10_2115_fiberst_2020_0004 crossref_primary_10_1063_1_3623472 crossref_primary_10_1103_PhysRevE_85_011503 crossref_primary_10_1122_1_4949340 crossref_primary_10_1038_s41598_019_44233_z crossref_primary_10_1016_j_powtec_2019_05_054 crossref_primary_10_1039_c2sm25935d crossref_primary_10_1063_1_4868688 crossref_primary_10_1016_j_conbuildmat_2016_03_077 crossref_primary_10_1080_00268976_2017_1323128 crossref_primary_10_1007_s11665_025_10828_z crossref_primary_10_1016_j_ceramint_2020_05_126 crossref_primary_10_3390_ceramics7040087 crossref_primary_10_1103_PhysRevX_12_041006 crossref_primary_10_1209_0295_5075_108_68007 crossref_primary_10_3390_met12030409 crossref_primary_10_1103_PhysRevE_106_044610 crossref_primary_10_1039_c2sm07187h crossref_primary_10_1080_00268976_2010_541889 crossref_primary_10_1088_0034_4885_79_1_016601 crossref_primary_10_1063_5_0211198 crossref_primary_10_1103_PhysRevE_86_021403 crossref_primary_10_1103_PhysRevE_92_042301 crossref_primary_10_1016_j_cocis_2014_11_001 crossref_primary_10_1016_j_jobe_2023_106016 crossref_primary_10_1209_0295_5075_102_28011 crossref_primary_10_1039_C7SM02470C crossref_primary_10_1126_science_1207032 crossref_primary_10_1063_1_4800109 crossref_primary_10_1209_0295_5075_96_68006 crossref_primary_10_1140_epjst_e2013_02059_x crossref_primary_10_1122_1_4871474 crossref_primary_10_1016_j_jcis_2013_01_024 crossref_primary_10_1073_pnas_1515033112 crossref_primary_10_1063_1_4807586 crossref_primary_10_1063_5_0131441 crossref_primary_10_1103_PhysRevLett_121_148002 crossref_primary_10_1016_j_colsurfa_2013_06_003 crossref_primary_10_1016_j_conbuildmat_2017_11_147 crossref_primary_10_1122_1_3676741 crossref_primary_10_1088_0953_8984_25_3_035101 crossref_primary_10_1002_macp_201200551 crossref_primary_10_1155_2015_153854 crossref_primary_10_1063_5_0087444 crossref_primary_10_1007_s11356_023_25452_4 crossref_primary_10_1063_1_4917039 crossref_primary_10_1088_2399_6528_ab1e79 crossref_primary_10_1021_acssuschemeng_9b00911 crossref_primary_10_1039_c2sm07011a crossref_primary_10_1088_0022_3727_46_49_494006 crossref_primary_10_1016_j_conbuildmat_2025_140237 crossref_primary_10_1016_j_cis_2020_102248 crossref_primary_10_1103_PhysRevLett_108_135005 crossref_primary_10_1016_j_oceram_2025_100742 crossref_primary_10_1088_0953_8984_28_24_244023 crossref_primary_10_1103_PhysRevE_82_061401 crossref_primary_10_1103_PhysRevE_85_011404 crossref_primary_10_1016_j_colsurfa_2014_09_040 crossref_primary_10_1002_adma_201903195 crossref_primary_10_1039_c2cp41041a crossref_primary_10_3389_fphy_2022_955006 crossref_primary_10_1063_5_0174598 crossref_primary_10_1103_PhysRevE_105_044610 crossref_primary_10_1016_j_cofs_2016_10_004 crossref_primary_10_1103_PhysRevE_88_042303 crossref_primary_10_1063_1_4820399 crossref_primary_10_1016_j_jcis_2023_07_187 crossref_primary_10_1016_j_cis_2011_12_005 crossref_primary_10_1007_s00396_020_04644_1 crossref_primary_10_1103_PhysRevE_94_042602 crossref_primary_10_1140_epje_s10189_021_00146_2 crossref_primary_10_1016_j_jmrt_2024_02_103 crossref_primary_10_1063_1_4870497 crossref_primary_10_1103_PhysRevE_92_052120 |
Cites_doi | 10.1016/j.actamat.2007.01.052 10.1088/0953-8984/15/1/355 10.1002/0471720577 10.1006/jcis.1993.1122 10.1122/1.1784784 10.1063/1.456930 10.1016/S0377-0257(03)00011-9 10.1063/1.2374886 10.1103/PhysRevE.58.738 10.1016/j.cis.2008.09.005 10.1126/science.1097116 10.1063/1.3103889 10.1063/1.452194 10.1016/0378-4371(89)90003-4 10.1103/PhysRevE.80.021503 10.1016/S0377-0257(00)00140-3 10.1122/1.551104 10.1016/j.cocis.2004.01.002 10.1122/1.549584 10.1080/00268976900100271 10.1063/1.467763 10.1122/1.550257 10.1103/PhysRevLett.78.2020 10.1209/epl/i2006-10203-9 10.1017/S0022112080002042 10.1063/1.1749657 10.1126/science.287.5453.627 10.1122/1.551088 10.1103/PhysRevE.72.051401 10.1017/CBO9780511608810 10.1016/0009-2614(92)85110-V 10.1063/1.1366335 10.1006/jcis.1993.1456 10.1103/PhysRevE.74.041403 10.1017/S0022112003006001 10.1002/andp.19133460808 10.1063/1.1705301 10.1063/1.2007667 10.1063/1.1636451 10.1103/PhysRevLett.100.188102 10.1017/S0022112094004404 10.1063/1.457091 10.1016/0031-9163(64)90246-X 10.1063/1.1695762 10.1103/PhysRevE.49.4206 10.1103/PhysRevLett.98.058301 10.1016/0378-4371(83)90175-9 10.1007/BF01303903 10.1103/PhysRevE.52.6492 10.1088/0953-8984/19/20/205132 10.1098/rsta.2009.0191 10.1007/s00397-008-0344-6 10.1103/PhysRevE.76.031501 10.1103/PhysRevLett.95.238302 10.1126/science.1068238 10.1016/S0378-4371(02)00506-X 10.1006/jcis.1996.0217 10.1016/0031-8914(66)90060-7 10.1209/epl/i2006-10156-y 10.1088/0953-8984/20/40/404210 10.1103/PhysRevLett.95.268302 10.1080/00018730601082029 10.1103/PhysRevLett.97.195701 10.1103/PhysRevE.66.050501 10.1088/0953-8984/19/11/113102 10.1122/1.550017 10.1002/andp.19113390313 10.1063/1.1460862 10.1016/0098-1354(94)00076-Z 10.1002/andp.19063240204 10.1007/s00023-003-0949-3 10.1017/S0022112097006320 10.1088/0953-8984/21/20/203101 10.1103/PhysRevE.73.011408 10.1103/PhysRevA.5.939 10.1088/0953-8984/19/32/323101 10.1016/S0009-2509(00)00475-9 10.1063/1.2921801 10.1122/1.1814114 10.1103/PhysRevLett.96.135701 10.1103/PhysRevLett.86.6042 10.1063/1.2889926 10.1007/s00397-009-0351-2 10.1122/1.550884 10.1122/1.1784785 10.1103/PhysRevE.71.021401 10.1007/s10765-005-0002-5 10.1103/PhysRevLett.100.018301 10.1103/PhysRevE.70.061506 10.1146/annurev.fl.20.010188.000551 10.1007/s00397-009-0352-1 10.1103/PhysRevE.65.041405 10.1017/S0022112001007583 10.1038/nmat1496 10.1103/PhysRevE.67.021502 10.1002/apmc.1984.051230115 10.1103/PhysRevA.32.1239 10.1103/PhysRevLett.97.168301 10.1002/9780470141700.ch3 10.1103/PhysRevLett.104.165702 10.1007/BF01025835 10.1016/0031-8914(65)90026-1 10.1103/PhysRevLett.58.2075 10.1039/b611021p 10.1103/PhysRevA.29.1453 10.1088/0953-8984/20/24/244129 10.1007/978-3-642-61544-3 10.1103/PhysRevE.61.5464 10.1063/1.1670641 10.1002/aic.690360302 10.1063/1.446585 10.1017/S0022112072002927 10.1080/00268979000101361 10.1122/1.1784783 10.1088/0953-8984/16/38/013 10.1103/PhysRevLett.101.138301 10.1063/1.2363998 10.1122/1.550530 10.1063/1.42337 10.1021/jp052683g 10.1103/PhysRevE.70.011501 10.1063/1.1571819 10.1080/00018730210153216 10.1103/PhysRevE.78.041501 10.1017/S0022112072002435 10.1103/PhysRevLett.90.095702 10.1122/1.3119084 10.1088/0953-8984/17/4/R02 10.1103/PhysRevA.30.999 10.1063/1.1319379 10.1098/rspa.1953.0139 10.1016/0003-4916(68)90111-5 10.1122/1.550314 10.1103/PhysRevLett.70.2766 10.1103/PhysRevE.76.011508 10.1103/PhysRevA.33.4277 10.1122/1.550873 10.1063/1.476428 10.1103/PhysRevA.43.5429 10.1039/b205629a 10.1103/PhysRevA.46.6731 10.1017/S0022112089001813 10.1088/0953-8984/11/50/304 10.1016/j.cis.2008.09.008 10.1122/1.550767 10.1122/1.550791 10.1122/1.3093088 10.1017/S0022112001005912 10.1063/1.473029 10.1063/1.2200689 10.1063/1.1747099 10.1103/PhysRevE.48.4632 10.1126/science.1097964 10.1103/PhysRevE.69.011503 10.1103/PhysRevLett.60.2705 10.1126/science.1149308 10.1103/PhysRevLett.103.086001 10.1122/1.549250 10.1088/0953-8984/17/20/003 10.1007/s00397-008-0341-9 10.1017/CBO9780511535307 10.1063/1.465782 10.1122/1.3073754 10.1088/0953-8984/11/10A/002 10.1103/PhysRevLett.94.078301 10.1016/0031-8914(67)90248-0 10.1063/1.1743957 10.1016/0378-4371(82)90072-3 10.1103/PhysRevLett.56.2172 10.1063/1.865384 10.1063/1.3141940 10.1103/PhysRevLett.101.258301 10.1088/0034-4885/55/3/001 10.1063/1.2806094 10.1016/0377-0257(94)80016-2 10.1122/1.1895800 10.1002/0471727903 10.1016/0031-8914(64)90204-6 10.1103/PhysRevLett.99.028301 10.1063/1.1859285 10.1038/nmat2615 10.1088/0953-8984/17/24/010 10.1007/s00397-008-0328-6 10.1122/1.550904 10.1063/1.450428 10.1016/0378-4371(81)90141-2 10.1073/pnas.0905330106 10.1017/S0022112077001062 10.1103/PhysRevE.61.6898 10.1122/1.550712 10.1103/PhysRevLett.89.248304 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 ADTOC UNPAY |
DOI | 10.1088/0953-8984/22/36/363101 |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Chemistry |
EISSN | 1361-648X |
ExternalDocumentID | 10.1088/0953-8984/22/36/363101 21386516 23243195 10_1088_0953_8984_22_36_363101 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 02O 1JI 1PV 1WK 4.4 53G 5B3 5GY 5PX 5VS 5ZH 5ZI 7.M 7.Q 8RP 9BW AAGCD AAGID AAJIO AALHV ABHWH ABQJV ACGFS ACNCT ADIYS AEFHF AFYNE AHSEE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CJUJL CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IOP IZVLO KNG KOT LAP M45 MGA N5L N9A NT- NT. P2P Q02 RIN RNS RO9 ROL RPA RW3 S3P SY9 TN5 UNR UQL W28 WH7 X XFK XPP ZMT --- -~X AAJKP AATNI AAYXX ABLJU ABVAM ACAFW ACARI ACHIP ADEQX AEINN AERVB AGQPQ AKPSB AOAED ARNYC CITATION CRLBU IJHAN JCGBZ PJBAE YQT ~02 29L 6TJ 8WZ A6W AAGCF AAYJJ ABCXL ACWPO AETNG AFFNX AI. CBCFC CEBXE H~9 IQODW MVM R4D RKQ T37 VH1 XOL NPM 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c534t-717aa38e9195b1ce17d219a673796e5cd3e7223a4e1bd8d791c2bf07457b124c3 |
IEDL.DBID | UNPAY |
ISSN | 0953-8984 1361-648X |
IngestDate | Wed Oct 01 16:35:48 EDT 2025 Fri Sep 05 03:00:21 EDT 2025 Mon Jul 21 06:04:21 EDT 2025 Mon Jul 21 09:12:00 EDT 2025 Wed Oct 01 04:17:03 EDT 2025 Thu Apr 24 23:04:16 EDT 2025 Tue Nov 10 14:20:40 EST 2020 Mon May 13 15:42:34 EDT 2019 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Keywords | Brownian motion Phenomenology Glass transition Shear thickening Rheology Colloidal suspension Continuum mechanics Microscopic model Hard sphere model Non linear effect Smoluchowski equation Shear thinning |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-717aa38e9195b1ce17d219a673796e5cd3e7223a4e1bd8d791c2bf07457b124c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/0953-8984/22/36/363101/pdf |
PMID | 21386516 |
PQID | 856408441 |
PQPubID | 23479 |
ParticipantIDs | crossref_citationtrail_10_1088_0953_8984_22_36_363101 iop_primary_10_1088_0953_8984_22_36_363101 unpaywall_primary_10_1088_0953_8984_22_36_363101 proquest_miscellaneous_856408441 crossref_primary_10_1088_0953_8984_22_36_363101 pubmed_primary_21386516 pascalfrancis_primary_23243195 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-15 |
PublicationDateYYYYMMDD | 2010-09-15 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: England |
PublicationTitle | Journal of physics. Condensed matter |
PublicationTitleAlternate | J Phys Condens Matter |
PublicationYear | 2010 |
Publisher | IOP Publishing Institute of Physics |
Publisher_xml | – name: IOP Publishing – name: Institute of Physics |
References | Vermant J (26) 2005; 17 Bird R B (29) 1987 110 111 112 113 114 115 116 117 118 von Mises R (211) 1913 Bouchaud J-P (45) 1998 12 13 16 17 18 Riskin H (46) 1989 120 1 122 123 3 124 4 125 5 126 127 7 128 8 129 9 Doi M (21) 1989 Götze W (99) 1991 20 23 24 25 27 28 130 131 132 133 134 135 136 137 138 139 Stell G (172) 1964 32 33 34 35 36 37 39 Born M (163) 1949 140 141 142 143 144 145 146 147 148 149 40 41 42 Dijkstra M (83) 1999; 11 43 44 48 49 Larson R G (22) 1988 150 151 152 153 154 155 156 157 158 159 50 51 54 55 56 57 Hill R (212) 1971 58 Ramaswamy S (160) 1997 59 Zausch J (62) 2008; 20 161 162 164 165 166 167 168 Henrich O (187) 2007; 19 Pham K N (94) 2006; 75 169 60 61 63 64 65 67 Miyazaki K (197) 2006; 75 68 69 170 171 173 174 175 176 177 178 179 Götze W (10) 1992; 55 71 72 Saltzman E J (199) 2008; 20 73 74 75 76 77 78 79 180 181 182 183 184 185 186 188 189 Götze W (11) 1999; 11 80 81 82 84 85 Gasser U (66) 2009; 21 86 87 88 89 Mathews J (53) 1970 190 Dhont J K G (14) 1996 191 192 193 194 195 196 198 Prasad V (38) 2007; 19 90 91 92 Petekidis G (200) 2004; 16 95 96 97 98 McQuarrie D A (206) 2000 Zaccarelli E (93) 2007; 19 Tresca H (210) 1854; 59 Hansen J-P (15) 1986 van Kampen N G (205) 1981 Cates M E (121) 2005; 17 Truesdell C (31) 1965 Sami S (52) 1997 Phung T (100) 1992; 256 Kim S (47) 1991 Berthier L (70) 2006; 310 Batchelor G K (30) 1967 Fuchs M (19) 2009 202 203 Cates M E (119) 2004 207 208 209 Larson R G (2) 1999 Russel W B (6) 1989 213 Fuchs M (201) 2003; 15 214 215 Fuchs M (204) 2005; 17 101 102 103 104 105 106 107 108 109 |
References_xml | – ident: 213 doi: 10.1016/j.actamat.2007.01.052 – volume: 15 start-page: S401 issn: 0953-8984 year: 2003 ident: 201 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/15/1/355 – ident: 5 doi: 10.1002/0471720577 – ident: 107 doi: 10.1006/jcis.1993.1122 – ident: 104 doi: 10.1122/1.1784784 – ident: 147 doi: 10.1063/1.456930 – ident: 130 doi: 10.1016/S0377-0257(03)00011-9 – ident: 203 doi: 10.1063/1.2374886 – ident: 35 doi: 10.1103/PhysRevE.58.738 – ident: 106 doi: 10.1016/j.cis.2008.09.005 – ident: 12 doi: 10.1126/science.1097116 – ident: 85 doi: 10.1063/1.3103889 – ident: 208 doi: 10.1063/1.452194 – ident: 141 doi: 10.1016/0378-4371(89)90003-4 – ident: 78 doi: 10.1103/PhysRevE.80.021503 – ident: 191 doi: 10.1016/S0377-0257(00)00140-3 – ident: 133 doi: 10.1122/1.551104 – ident: 79 doi: 10.1016/j.cocis.2004.01.002 – ident: 157 doi: 10.1122/1.549584 – ident: 181 doi: 10.1080/00268976900100271 – ident: 48 doi: 10.1063/1.467763 – ident: 112 doi: 10.1122/1.550257 – ident: 34 doi: 10.1103/PhysRevLett.78.2020 – year: 1991 ident: 99 publication-title: Liquids, Freezing and the Glass Transition – volume: 75 start-page: 915 issn: 0295-5075 year: 2006 ident: 197 publication-title: Europhys. Lett. doi: 10.1209/epl/i2006-10203-9 – ident: 54 doi: 10.1017/S0022112080002042 – ident: 164 doi: 10.1063/1.1749657 – ident: 74 doi: 10.1126/science.287.5453.627 – ident: 36 doi: 10.1122/1.551088 – ident: 72 doi: 10.1103/PhysRevE.72.051401 – year: 1989 ident: 6 publication-title: Colloidal Dispersions doi: 10.1017/CBO9780511608810 – ident: 168 doi: 10.1016/0009-2614(92)85110-V – ident: 170 doi: 10.1063/1.1366335 – ident: 143 doi: 10.1006/jcis.1993.1456 – ident: 86 doi: 10.1103/PhysRevE.74.041403 – ident: 209 doi: 10.1017/S0022112003006001 – ident: 13 doi: 10.1002/andp.19133460808 – ident: 179 doi: 10.1063/1.1705301 – ident: 122 doi: 10.1063/1.2007667 – ident: 139 doi: 10.1063/1.1636451 – ident: 73 doi: 10.1103/PhysRevLett.100.188102 – ident: 162 doi: 10.1017/S0022112094004404 – ident: 113 doi: 10.1063/1.457091 – ident: 175 doi: 10.1016/0031-9163(64)90246-X – ident: 165 doi: 10.1063/1.1695762 – ident: 9 doi: 10.1103/PhysRevE.49.4206 – ident: 16 doi: 10.1103/PhysRevLett.98.058301 – ident: 32 doi: 10.1016/0378-4371(83)90175-9 – ident: 169 doi: 10.1007/BF01303903 – ident: 194 doi: 10.1103/PhysRevE.52.6492 – year: 1971 ident: 212 publication-title: The Mathematical Theory of Plasticity – volume: 19 start-page: 205132 issn: 0953-8984 year: 2007 ident: 187 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/19/20/205132 – ident: 76 doi: 10.1098/rsta.2009.0191 – ident: 138 doi: 10.1007/s00397-008-0344-6 – ident: 90 doi: 10.1103/PhysRevE.76.031501 – ident: 87 doi: 10.1103/PhysRevLett.95.238302 – ident: 81 doi: 10.1126/science.1068238 – ident: 84 doi: 10.1016/S0378-4371(02)00506-X – ident: 37 doi: 10.1006/jcis.1996.0217 – ident: 177 doi: 10.1016/0031-8914(66)90060-7 – volume: 75 start-page: 624 issn: 0295-5075 year: 2006 ident: 94 publication-title: Europhys. Lett. doi: 10.1209/epl/i2006-10156-y – volume: 20 start-page: 404210 issn: 0953-8984 year: 2008 ident: 62 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/20/40/404210 – ident: 131 doi: 10.1103/PhysRevLett.95.268302 – ident: 24 doi: 10.1080/00018730601082029 – ident: 71 doi: 10.1103/PhysRevLett.97.195701 – ident: 195 doi: 10.1103/PhysRevE.66.050501 – year: 1997 ident: 160 publication-title: Theoretical Challenges in the Dynamics of Colloidal Fluids – volume: 19 start-page: 113102 issn: 0953-8984 year: 2007 ident: 38 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/19/11/113102 – ident: 108 doi: 10.1122/1.550017 – ident: 152 doi: 10.1002/andp.19113390313 – ident: 44 doi: 10.1063/1.1460862 – year: 1997 ident: 52 – ident: 101 doi: 10.1016/0098-1354(94)00076-Z – ident: 151 doi: 10.1002/andp.19063240204 – year: 1999 ident: 2 publication-title: The Structure and Rheology of Complex Fluids – ident: 207 doi: 10.1007/s00023-003-0949-3 – ident: 56 doi: 10.1017/S0022112097006320 – volume: 21 start-page: 203101 issn: 0953-8984 year: 2009 ident: 66 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/21/20/203101 – year: 1998 ident: 45 publication-title: Spin Glasses and Random Fields – ident: 135 doi: 10.1103/PhysRevE.73.011408 – ident: 171 doi: 10.1103/PhysRevA.5.939 – volume: 19 start-page: 323101 issn: 0953-8984 year: 2007 ident: 93 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/19/32/323101 – ident: 51 doi: 10.1016/S0009-2509(00)00475-9 – ident: 60 doi: 10.1063/1.2921801 – ident: 120 doi: 10.1122/1.1814114 – ident: 68 doi: 10.1103/PhysRevLett.96.135701 – ident: 80 doi: 10.1103/PhysRevLett.86.6042 – ident: 148 doi: 10.1063/1.2889926 – ident: 114 doi: 10.1007/s00397-009-0351-2 – ident: 115 doi: 10.1122/1.550884 – ident: 124 doi: 10.1122/1.1784785 – year: 1964 ident: 172 publication-title: Equilibrium Theory of Classical Fluids – ident: 198 doi: 10.1103/PhysRevE.71.021401 – ident: 173 doi: 10.1007/s10765-005-0002-5 – ident: 4 doi: 10.1103/PhysRevLett.100.018301 – ident: 67 doi: 10.1103/PhysRevE.70.061506 – ident: 49 doi: 10.1146/annurev.fl.20.010188.000551 – year: 1965 ident: 31 publication-title: The Nonlinear Field Theories of Mechanics – ident: 28 doi: 10.1007/s00397-009-0352-1 – ident: 98 doi: 10.1103/PhysRevE.65.041405 – ident: 134 doi: 10.1017/S0022112001007583 – ident: 1 doi: 10.1038/nmat1496 – ident: 77 doi: 10.1103/PhysRevE.67.021502 – ident: 95 doi: 10.1002/apmc.1984.051230115 – ident: 33 doi: 10.1103/PhysRevA.32.1239 – ident: 92 doi: 10.1103/PhysRevLett.97.168301 – ident: 27 doi: 10.1002/9780470141700.ch3 – ident: 91 doi: 10.1103/PhysRevLett.104.165702 – ident: 188 doi: 10.1007/BF01025835 – ident: 176 doi: 10.1016/0031-8914(65)90026-1 – ident: 182 doi: 10.1103/PhysRevLett.58.2075 – ident: 25 doi: 10.1039/b611021p – year: 2004 ident: 119 publication-title: Unifying Concepts in Granular Media and Glasses – ident: 189 doi: 10.1103/PhysRevA.29.1453 – volume: 20 start-page: 244129 issn: 0953-8984 year: 2008 ident: 199 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/20/24/244129 – year: 1989 ident: 46 publication-title: The Fokker-Planck Equation doi: 10.1007/978-3-642-61544-3 – ident: 43 doi: 10.1103/PhysRevE.61.5464 – year: 1996 ident: 14 publication-title: An Introduction to the Dynamics of Colloids – ident: 65 doi: 10.1063/1.1670641 – ident: 110 doi: 10.1002/aic.690360302 – ident: 102 doi: 10.1063/1.446585 – ident: 153 doi: 10.1017/S0022112072002927 – ident: 183 doi: 10.1080/00268979000101361 – year: 1981 ident: 205 publication-title: Stochastic Processes in Physics and Chemistry – ident: 103 doi: 10.1122/1.1784783 – volume: 16 start-page: S3955 issn: 0953-8984 year: 2004 ident: 200 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/16/38/013 – ident: 17 doi: 10.1103/PhysRevLett.101.138301 – ident: 40 doi: 10.1063/1.2363998 – ident: 96 doi: 10.1122/1.550530 – volume: 256 start-page: 391 year: 1992 ident: 100 publication-title: Slow Dynamics in Condensed Matter doi: 10.1063/1.42337 – year: 1970 ident: 53 publication-title: Mathematical Methods of Physics – ident: 89 doi: 10.1021/jp052683g – ident: 196 doi: 10.1103/PhysRevE.70.011501 – ident: 50 doi: 10.1063/1.1571819 – ident: 23 doi: 10.1080/00018730210153216 – ident: 69 doi: 10.1103/PhysRevE.78.041501 – volume: 310 start-page: 5755 year: 2006 ident: 70 publication-title: Science – ident: 154 doi: 10.1017/S0022112072002435 – ident: 140 doi: 10.1103/PhysRevLett.90.095702 – ident: 20 doi: 10.1122/1.3119084 – volume: 17 start-page: R187 issn: 0953-8984 year: 2005 ident: 26 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/17/4/R02 – year: 1991 ident: 47 publication-title: Microhydrodynamics, Principles and Selected Applications – ident: 185 doi: 10.1103/PhysRevA.30.999 – ident: 129 doi: 10.1063/1.1319379 – ident: 55 doi: 10.1098/rspa.1953.0139 – ident: 180 doi: 10.1016/0003-4916(68)90111-5 – ident: 111 doi: 10.1122/1.550314 – ident: 8 doi: 10.1103/PhysRevLett.70.2766 – ident: 75 doi: 10.1103/PhysRevE.76.011508 – ident: 190 doi: 10.1103/PhysRevA.33.4277 – ident: 186 doi: 10.1122/1.550873 – ident: 97 doi: 10.1063/1.476428 – year: 2009 ident: 19 publication-title: High Dolid Dispersions – ident: 7 doi: 10.1103/PhysRevA.43.5429 – ident: 57 doi: 10.1039/b205629a – ident: 128 doi: 10.1103/PhysRevA.46.6731 – ident: 158 doi: 10.1017/S0022112089001813 – volume: 11 start-page: 10079 issn: 0953-8984 year: 1999 ident: 83 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/11/50/304 – ident: 39 doi: 10.1016/j.cis.2008.09.008 – ident: 58 doi: 10.1122/1.550767 – ident: 118 doi: 10.1122/1.550791 – year: 1989 ident: 21 publication-title: The Theory of Polymer Dynamics – ident: 61 doi: 10.1122/1.3093088 – ident: 41 doi: 10.1017/S0022112001005912 – ident: 184 doi: 10.1063/1.473029 – year: 1967 ident: 30 publication-title: An Introduction to Fluid Dynamics – ident: 150 doi: 10.1063/1.2200689 – ident: 149 doi: 10.1063/1.1747099 – ident: 161 doi: 10.1103/PhysRevE.48.4632 – volume: 59 start-page: 754 year: 1854 ident: 210 publication-title: C. R. Acad. Sci. Paris – ident: 126 doi: 10.1126/science.1097964 – ident: 82 doi: 10.1103/PhysRevE.69.011503 – ident: 145 doi: 10.1103/PhysRevLett.60.2705 – ident: 215 doi: 10.1126/science.1149308 – ident: 3 doi: 10.1103/PhysRevLett.103.086001 – ident: 109 doi: 10.1122/1.549250 – volume: 17 start-page: S1681 issn: 0953-8984 year: 2005 ident: 204 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/17/20/003 – ident: 125 doi: 10.1007/s00397-008-0341-9 – ident: 193 doi: 10.1017/CBO9780511535307 – ident: 146 doi: 10.1063/1.465782 – ident: 105 doi: 10.1122/1.3073754 – volume: 11 start-page: A1 issn: 0953-8984 year: 1999 ident: 11 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/11/10A/002 – year: 1986 ident: 15 publication-title: Theory of Simple Liquids – ident: 88 doi: 10.1103/PhysRevLett.94.078301 – ident: 178 doi: 10.1016/0031-8914(67)90248-0 – ident: 64 doi: 10.1063/1.1743957 – ident: 167 doi: 10.1016/0378-4371(82)90072-3 – ident: 127 doi: 10.1103/PhysRevLett.56.2172 – ident: 144 doi: 10.1063/1.865384 – ident: 123 doi: 10.1063/1.3141940 – ident: 59 doi: 10.1103/PhysRevLett.101.258301 – year: 1988 ident: 22 publication-title: Constitutive Equations for Polymer Melts and Solutions – volume: 55 start-page: 241 issn: 0034-4885 year: 1992 ident: 10 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/55/3/001 – ident: 63 doi: 10.1063/1.2806094 – year: 1949 ident: 163 publication-title: A General Kinetic Theory of Liquids – year: 2000 ident: 206 publication-title: Statistical Mechanics – ident: 117 doi: 10.1016/0377-0257(94)80016-2 – ident: 116 doi: 10.1122/1.1895800 – ident: 192 doi: 10.1002/0471727903 – ident: 174 doi: 10.1016/0031-8914(64)90204-6 – ident: 137 doi: 10.1103/PhysRevLett.99.028301 – ident: 202 doi: 10.1063/1.1859285 – start-page: 582 year: 1913 ident: 211 publication-title: Göttinger Nachrichten, Math.-Phys. Klasse – ident: 214 doi: 10.1038/nmat2615 – year: 1987 ident: 29 publication-title: Dynamics of Polymeric Liquids – volume: 17 start-page: S2517 issn: 0953-8984 year: 2005 ident: 121 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/17/24/010 – ident: 132 doi: 10.1007/s00397-008-0328-6 – ident: 159 doi: 10.1122/1.550904 – ident: 142 doi: 10.1063/1.450428 – ident: 166 doi: 10.1016/0378-4371(81)90141-2 – ident: 18 doi: 10.1073/pnas.0905330106 – ident: 155 doi: 10.1017/S0022112077001062 – ident: 42 doi: 10.1103/PhysRevE.61.6898 – ident: 156 doi: 10.1122/1.550712 – ident: 136 doi: 10.1103/PhysRevLett.89.248304 |
SSID | ssj0004834 |
Score | 2.40637 |
SecondaryResourceType | review_article |
Snippet | Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many... |
SourceID | unpaywall proquest pubmed pascalfrancis crossref iop |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 363101 |
SubjectTerms | Chemistry Colloidal state and disperse state Exact sciences and technology General and physical chemistry Physical and chemical studies. Granulometry. Electrokinetic phenomena |
SummonAdditionalLinks | – databaseName: IOP Electronic Journals dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SQGl7aPqO2zT4UHpo0W5k6-VjCQmh0LSFBnITepKli73sg5D--o7stZPQhaTggw8aWR6PpE-exwfwwckguQ2CuKgYYVFaYpURJDrrUvVNL1vmuW-n4uSMfT3n51vQkyBOmtl65R_hbevJTwXRiKoUGxfFuBR4ISJJ5500V1PG3vcf14mQqnUjDyJ9SjCe8jZ3c2s3eoCPTLGRZoHqiR2vxSbg-QQereqZubo00-mNzeh4B372KT1dDMrv0WppR-7PvxUe7_2ez-DpGpnmXzpTeg5boX4BD9sIUbd4CZ9Pu6IaZp7PL1o64Ku8iXmyo2biUdBPUtHx9PNt8QrOjo9-HZ6QNdMCcbxkS4IfxJhShYpW3FIXqPS4kpnEYVOJwJ0vg0QcYVig1isvK-oKGxF9cGkRILjyNWzXTR12IY-VDayUjipvGPdeyVDwaAP1onKG0gx4r3Ht1mXIExvGVLfucKV0UoROitBFoUuhO0VkMB7kZl0hjjslPqJuh8abG-mZjxl8utnwrl73bxnIIJagKa5nPIO8txiNUzX5X0wdmtVCKy7YgUL8mcGbzpKuhWniXqUig4PBtO45oLf_M_p38LgLf6gI5XuwvZyvwntEVUu7386kv0VNDWA priority: 102 providerName: IOP Publishing |
Title | Nonlinear rheology of colloidal dispersions |
URI | http://iopscience.iop.org/0953-8984/22/36/363101 https://www.ncbi.nlm.nih.gov/pubmed/21386516 https://www.proquest.com/docview/856408441 https://iopscience.iop.org/article/10.1088/0953-8984/22/36/363101/pdf |
UnpaywallVersion | publishedVersion |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Electronic Journals customDbUrl: eissn: 1361-648X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004834 issn: 0953-8984 databaseCode: IOP dateStart: 19890101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB51t0LAgfcjPFY5IA4gb-rErxwr1KogsfTASsvJ8iuiYpWsNrtC5ddjx9nQoqKCkHLIYT7LGY_tT_H4G4BXhjtOtWPIVIIgUnGNtFAMVUaboL5peVd57uOMnczJhwVd7MHRcBemWfVL_9S_RqHg6MI-IU5kQSENiVKQLM-zgvnHUxScrWw1gn0WzpnGsD-fnR5-iTp70Tjev8KIEbHY3RT-Y2OXNqmR70hImVSt91oVy11cxUdvw81tvVLn39VyeWGPOr4bc0naTtowpKZ8m243emp-_Cb8-N-ffw_u9Cw2PYyg-7Dn6gdwo8smNe1DeDuLAhxqna6_dqWDz9OmSkPMNWfWA-1ZECgPP-raRzA_Pvr87gT1VRmQoQXZID94ShXClbikGhuHufWrngr1bkrmqLGF455zKOKwtsLyEptcV56pUK49mTDFYxjXTe2eQlqV2pGCGyysItRawV1OK-2wZaVRGCdAd8MgTS9ZHipnLGV3dC6EDM6QwRkyz2XBZHRGAtmAW0XRjmsRr72_B-OrjaT3cQJvLhpe1-rkUtQMsEBj_dpHE0h3YST9tA5nNap2zbaVgjJyIDxXTeBJDK9fYBzqtGKWwMEQb3_ZoWf_DnkOt2LCRIkwfQHjzXrrXnoettETGL3_dDrp59pPn8Ae5Q |
linkProvider | Unpaywall |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH5qi4ByYF9SoOSAOIA8qZN4ybGCjlqWoQcq9WZ5FRWjZDSZUVV-PXacSVtUVBBSDonkZznPz_Yn-_n7AF5rZhlRliLteIlKxxRSXFLktNKBfdOwTnnuy4TuH5Ufj8nxGuwNd2GaWT_1j_xrJAqOLuwT4ngWGNIQr3iZ5XlWUP94iIKzmXHrcIP4r0Chf_D18Px6JO8Olwe71UXhP9Z1aY1a9-0IGZOy9U5zUe3iKjh6B24v65k8O5XT6YUlanwvppK0HbNhyEz5MVou1Ej__I338b___j7c7UFsuhuNHsCarR_CzS6ZVLeP4N0k8m_IeTr_3ikHn6WNS0PINSfGG5qTwE8e9unax3A03vv2fh_1ogxIk6JcIN93UhbcVrgiCmuLmfGTngxyNxW1RJvCMg85ZGmxMtywCutcOQ9UCFMeS-jiCWzUTW2fQeoqZcuCacyNLIkxnNmcOGWxoZWWGCdAVt0gdM9YHoQzpqI7OedcBGeI4AyR56KgIjojgWywm0XOjmst3nh_D4WvLiS8jxN4e7HgdbVuX4qawSygWD_1kQTSVRgJP6rDUY2sbbNsBSe03OEeqibwNIbXuTEOMq2YJrAzxNtfNmjrX1r_Cm4dfhiLzweTT89hMyZNVAiTF7CxmC_tS4_FFmq7G2m_AD5GHUk |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SDaXNoe8mTtvgQ-mhRevI1svHUBJCoUsPXdiehF4moYu9rHcJ6a-vZHmdpKSkpeCDD_MJeTSSPqzRNwDvDHecaseQqQRBpOIaaaEYqow2QX3T8q7y3JcJO5uSzzM624KT4S5Ms-iX_rF_jULB0YV9QpzIgkIaEqUgWZ5nBfOPpyg4W9hqG3ZYOGcawc508vX4e9TZi8bx_hVGjIjZ5qbwHxu7tUlt-46ElEnVeq9VsdzFXXx0Fx6u64W6ulTz-Y096vRJzCVpO2nDkJryY7xe6bH5-Zvw439__lN43LPY9DiCnsGWq5_Dgy6b1LQv4OMkCnCoZbo870oHX6VNlYaYay6sB9qLIFAeftS1L2F6evLt0xnqqzIgQwuyQn7wlCqEK3FJNTYOc-tXPRXq3ZTMUWMLxz3nUMRhbYXlJTa5rjxToVx7MmGKVzCqm9rtQ1qV2pGCGyysItRawV1OK-2wZaVRGCdAN8MgTS9ZHipnzGV3dC6EDM6QwRkyz2XBZHRGAtmAW0TRjnsR772_B-O7jaT3cQIfbhre1-rhragZYIHG-rWPJpBuwkj6aR3OalTtmnUrBWXkSHiumsBeDK9rMA51WjFL4GiIt7_s0MG_Q17Do5gwUSJM38BotVy7t56HrfRhP8t-AevYHdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+rheology+of+colloidal+dispersions&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=Brader%2C+J+M&rft.date=2010-09-15&rft.pub=IOP+Publishing&rft.issn=0953-8984&rft.eissn=1361-648X&rft.volume=22&rft.spage=363101&rft_id=info:doi/10.1088%2F0953-8984%2F22%2F36%2F363101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0953_8984_22_36_363101 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon |