Interocular Symmetry of Foveal Cone Topography in Congenital Achromatopsia

Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Methods: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean...

Full description

Saved in:
Bibliographic Details
Published inCurrent eye research Vol. 45; no. 10; pp. 1257 - 1264
Main Authors Litts, Katie M., Georgiou, Michalis, Langlo, Christopher S., Patterson, Emily J., Mastey, Rebecca R., Kalitzeos, Angelos, Linderman, Rachel E., Lam, Byron L., Fishman, Gerald A., Pennesi, Mark E., Kay, Christine N., Hauswirth, William W., Michaelides, Michel, Carroll, Joseph
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 02.10.2020
Subjects
Online AccessGet full text
ISSN0271-3683
1460-2202
1460-2202
DOI10.1080/02713683.2020.1737138

Cover

Abstract Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Methods: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8-44 years, 14 females) with genetically confirmed CNGA3- or CNGB3-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of inter-cell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes. Results: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm 2 and 17,638 ± 9,753 cones/mm 2 for right and left eyes, respectively (p = .677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (p = .410, paired t-test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (p = .562, paired t-test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes. Conclusions: These results demonstrate the interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control.
AbstractList : To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). : Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8-44 years, 14 females) with genetically confirmed - or -associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of inter-cell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes. : PCD (mean ± SD) was 17,530 ± 9,614 cones/mm and 17,638 ± 9,753 cones/mm for right and left eyes, respectively ( = .677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively ( = .410, paired -test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively ( = .562, paired -test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes. : These results demonstrate the interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control.
Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Methods: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8-44 years, 14 females) with genetically confirmed CNGA3- or CNGB3-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of inter-cell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes. Results: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm2 and 17,638 ± 9,753 cones/mm2 for right and left eyes, respectively (p = .677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (p = .410, paired t-test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (p = .562, paired t-test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes. Conclusions: These results demonstrate the interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control.Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Methods: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8-44 years, 14 females) with genetically confirmed CNGA3- or CNGB3-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of inter-cell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes. Results: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm2 and 17,638 ± 9,753 cones/mm2 for right and left eyes, respectively (p = .677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (p = .410, paired t-test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (p = .562, paired t-test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes. Conclusions: These results demonstrate the interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control.
Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Methods: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8-44 years, 14 females) with genetically confirmed CNGA3- or CNGB3-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of inter-cell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes. Results: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm 2 and 17,638 ± 9,753 cones/mm 2 for right and left eyes, respectively (p = .677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (p = .410, paired t-test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (p = .562, paired t-test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes. Conclusions: These results demonstrate the interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control.
Author Lam, Byron L.
Litts, Katie M.
Fishman, Gerald A.
Langlo, Christopher S.
Patterson, Emily J.
Georgiou, Michalis
Mastey, Rebecca R.
Pennesi, Mark E.
Hauswirth, William W.
Carroll, Joseph
Kay, Christine N.
Kalitzeos, Angelos
Linderman, Rachel E.
Michaelides, Michel
AuthorAffiliation 5 Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States of America
8 Vitreoretinal Associates, Gainesville, Florida, United States
6 Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, Illinois, United States
1 Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
9 Ophthalmology, University of Florida, Gainesville, Florida, United States
2 Moorfields Eye Hospital, London, United Kingdom
4 Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
7 Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
3 UCL Institute of Ophthalmology, University College London, London, United Kingdom
AuthorAffiliation_xml – name: 2 Moorfields Eye Hospital, London, United Kingdom
– name: 9 Ophthalmology, University of Florida, Gainesville, Florida, United States
– name: 1 Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
– name: 7 Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
– name: 4 Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
– name: 5 Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States of America
– name: 8 Vitreoretinal Associates, Gainesville, Florida, United States
– name: 6 Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, Illinois, United States
– name: 3 UCL Institute of Ophthalmology, University College London, London, United Kingdom
Author_xml – sequence: 1
  givenname: Katie M.
  surname: Litts
  fullname: Litts, Katie M.
  organization: Medical College of Wisconsin
– sequence: 2
  givenname: Michalis
  surname: Georgiou
  fullname: Georgiou, Michalis
  organization: University College London
– sequence: 3
  givenname: Christopher S.
  surname: Langlo
  fullname: Langlo, Christopher S.
  organization: Medical College of Wisconsin
– sequence: 4
  givenname: Emily J.
  surname: Patterson
  fullname: Patterson, Emily J.
  organization: Medical College of Wisconsin
– sequence: 5
  givenname: Rebecca R.
  surname: Mastey
  fullname: Mastey, Rebecca R.
  organization: Medical College of Wisconsin
– sequence: 6
  givenname: Angelos
  orcidid: 0000-0001-8345-0557
  surname: Kalitzeos
  fullname: Kalitzeos, Angelos
  organization: University College London
– sequence: 7
  givenname: Rachel E.
  surname: Linderman
  fullname: Linderman, Rachel E.
  organization: Medical College of Wisconsin
– sequence: 8
  givenname: Byron L.
  surname: Lam
  fullname: Lam, Byron L.
  organization: University of Miami
– sequence: 9
  givenname: Gerald A.
  surname: Fishman
  fullname: Fishman, Gerald A.
  organization: The Chicago Lighthouse
– sequence: 10
  givenname: Mark E.
  orcidid: 0000-0002-4943-6599
  surname: Pennesi
  fullname: Pennesi, Mark E.
  organization: Oregon Health & Science University
– sequence: 11
  givenname: Christine N.
  surname: Kay
  fullname: Kay, Christine N.
  organization: Vitreoretinal Associates
– sequence: 12
  givenname: William W.
  surname: Hauswirth
  fullname: Hauswirth, William W.
  organization: University of Florida
– sequence: 13
  givenname: Michel
  surname: Michaelides
  fullname: Michaelides, Michel
  organization: University College London
– sequence: 14
  givenname: Joseph
  orcidid: 0000-0002-8640-1029
  surname: Carroll
  fullname: Carroll, Joseph
  email: jcarroll@mcw.edu
  organization: Medical College of Wisconsin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32108519$$D View this record in MEDLINE/PubMed
BookMark eNqFUctu1DAUtVARnRY-AZQlm7R-JhkhIaoRpUWVWFDWluPYM0aOb7A9Rfl7HM20AhawsnzueVzdc4ZOAgSD0GuCLwju8CWmLWFNxy4opgVqWfl2z9CK8AbXtIAnaLVw6oV0is5S-o7xAvAX6JTR4iHIeoU-34ZsIui9V7H6Oo-jyXGuwFbX8GCUrzYltbqHCbZRTbu5cmGBtia4XKZXehdhVBmm5NRL9Nwqn8yr43uOvl1_vN_c1HdfPt1uru5qLRjPddO1iljeC2N1T7VQdGhFgwextqRXA24pw5zYhljWW0uooIxrsh7awZiuFw07R-8PvtO-H82gTchReTlFN6o4S1BO_jkJbie38CBb3rWYsWLw9mgQ4cfepCxHl7TxXgUD-yQpa9YcM867Qn3ze9ZTyOMBC0EcCDpCStHYJwrBcilKPhYll6Lksaiie_eXTpeLZgfLys7_V_3hoHbBQhzVT4h-kFnNHqKNKmiXJPu3xS_ny6yr
CitedBy_id crossref_primary_10_1167_tvst_10_6_22
crossref_primary_10_1016_j_ajo_2021_03_004
crossref_primary_10_1364_BOE_473101
crossref_primary_10_1101_cshperspect_a041285
crossref_primary_10_1167_iovs_65_4_16
crossref_primary_10_1167_tvst_10_1_11
crossref_primary_10_1167_iovs_62_12_27
crossref_primary_10_1167_iovs_65_12_6
crossref_primary_10_1016_j_ajo_2023_01_006
crossref_primary_10_1111_ceo_13917
crossref_primary_10_1136_bjophthalmol_2021_319228
crossref_primary_10_1146_annurev_vision_102122_100022
crossref_primary_10_1167_tvst_9_4_27
crossref_primary_10_1109_ACCESS_2021_3101521
crossref_primary_10_1016_j_xops_2025_100765
crossref_primary_10_1364_BOE_472274
crossref_primary_10_1167_iovs_61_14_23
crossref_primary_10_3389_fopht_2024_1348950
crossref_primary_10_1016_j_preteyeres_2024_101244
crossref_primary_10_1016_j_survophthal_2023_09_006
crossref_primary_10_1080_13816810_2021_2015789
Cites_doi 10.1097/IAE.0000000000001434
10.1016/j.visres.2016.10.012
10.1177/096228029900800204
10.1167/iovs.18-25880
10.1167/iovs.14-14225
10.1167/iovs.18-25452
10.1167/iovs.14-14542
10.1364/BOE.7.002036
10.1364/BOE.9.003740
10.1093/hmg/9.14.2107
10.1016/j.ajo.2015.04.034
10.1167/iovs.14-14937
10.1002/uog.5256
10.1038/nn817
10.1038/s41598-018-23919-w
10.1364/BOE.2.001757
10.1016/j.ajhg.2012.07.006
10.1002/()1096-9861
10.1038/935
10.1167/iovs.16-19313
10.1364/BOE.7.004899
10.1167/iovs.16-20427
10.1086/341835
10.1167/iovs.14-14910
10.1016/j.ophtha.2009.03.053
10.1167/tvst.6.2.9
10.1038/nmeth.2089
10.1007/978-3-642-14366-3_6
10.1038/ng.3319
10.7554/eLife.47148
10.1038/s41598-018-26350-3
10.1007/978-3-319-17121-0_37
10.1016/j.ophtha.2013.08.017
10.1167/iovs.17-21904
10.1080/13816810.2017.1418389
10.1167/tvst.8.5.21
10.1038/s41598-017-07103-0
ContentType Journal Article
Copyright 2020 Taylor & Francis Group, LLC 2020
Copyright_xml – notice: 2020 Taylor & Francis Group, LLC 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1080/02713683.2020.1737138
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1460-2202
EndPage 1264
ExternalDocumentID PMC7487033
32108519
10_1080_02713683_2020_1737138
1737138
Genre Research Article
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: P30 EY010572
– fundername: NCRR NIH HHS
  grantid: C06 RR016511
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 099173/Z/12/Z
– fundername: NCATS NIH HHS
  grantid: UL1 TR001436
– fundername: NIGMS NIH HHS
  grantid: T32 GM080202
– fundername: NEI NIH HHS
  grantid: F32 EY029148
– fundername: NEI NIH HHS
  grantid: T32 EY014537
– fundername: NEI NIH HHS
  grantid: P30 EY001931
– fundername: NEI NIH HHS
  grantid: R01 EY017607
GroupedDBID ---
00X
03L
0BK
0R~
29F
36B
4.4
5GY
5RE
AALUX
AAMIU
AAPUL
AAQRR
ABBKH
ABDBF
ABEIZ
ABJNI
ABLIJ
ABLJU
ABLKL
ABUPF
ABXYU
ACENM
ACGEJ
ACGFS
ACIEZ
ACNCT
ACUHS
ADCVX
ADRBQ
ADXPE
AECIN
AENEX
AEOZL
AFKVX
AGDLA
AGFJD
AGRBW
AGYJP
AIJEM
AIRBT
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALYBC
AMDAE
BABNJ
BLEHA
BOHLJ
CCCUG
CS3
DKSSO
DU5
EAP
EBC
EBD
EBS
EMB
EMK
EMOBN
EPL
ESX
F5P
H13
HZ~
KRBQP
KSSTO
KWAYT
KYCEM
LJTGL
M4Z
O9-
P2P
PQQKQ
RNANH
RVRKI
SV3
TBQAZ
TDBHL
TERGH
TFDNU
TFL
TFW
TUROJ
TUS
UEQFS
V1S
~1N
AAGDL
AAYXX
ABWVI
ADYSH
AFRVT
AMPGV
CITATION
.55
.GJ
34G
39C
53G
5VS
AALIY
AAORF
AAPXX
ABWCV
ABZEW
ACKZS
ACOPL
ACYZI
ADFOM
ADFZZ
AEIIZ
AFFNX
AFLEI
AJVHN
AWYRJ
BRMBE
CAG
CGR
COF
CUY
CVF
CYYVM
CZDIS
DRXRE
DWTOO
ECM
EIF
EJD
JENTW
M44
NPM
NUSFT
QQXMO
RIG
TASJS
X7M
ZGI
ZXP
7X8
5PM
ID FETCH-LOGICAL-c534t-687a1f4b5efcb2c5a2d7560d59f1bad0723041f61f3bff125234c19d7dee8b563
ISSN 0271-3683
1460-2202
IngestDate Thu Aug 21 18:22:09 EDT 2025
Thu Sep 04 17:28:37 EDT 2025
Mon Jul 21 05:58:27 EDT 2025
Tue Jul 01 00:42:46 EDT 2025
Thu Apr 24 22:48:41 EDT 2025
Wed Dec 25 09:07:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords fovea
cone photoreceptors
Achromatopsia
interocular symmetry
retinal imaging
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c534t-687a1f4b5efcb2c5a2d7560d59f1bad0723041f61f3bff125234c19d7dee8b563
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-8345-0557
0000-0002-4943-6599
0000-0002-8640-1029
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7487033
PMID 32108519
PQID 2369403448
PQPubID 23479
PageCount 8
ParticipantIDs pubmed_primary_32108519
crossref_primary_10_1080_02713683_2020_1737138
crossref_citationtrail_10_1080_02713683_2020_1737138
informaworld_taylorfrancis_310_1080_02713683_2020_1737138
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7487033
proquest_miscellaneous_2369403448
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-02
PublicationDateYYYYMMDD 2020-10-02
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current eye research
PublicationTitleAlternate Curr Eye Res
PublicationYear 2020
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_3_30_1
Cava JA (e_1_3_3_33_1) 2019; 60
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_40_1
Emsley H (e_1_3_3_24_1)
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_10_1
  doi: 10.1097/IAE.0000000000001434
– ident: e_1_3_3_31_1
  doi: 10.1016/j.visres.2016.10.012
– volume: 60
  year: 2019
  ident: e_1_3_3_33_1
  article-title: Assessing interocular symmetry of foveal cone density
  publication-title: Invest Ophthalmol Vis Sci
– volume-title: Visual optics
  ident: e_1_3_3_24_1
– ident: e_1_3_3_27_1
  doi: 10.1177/096228029900800204
– ident: e_1_3_3_11_1
  doi: 10.1167/iovs.18-25880
– ident: e_1_3_3_16_1
  doi: 10.1167/iovs.14-14225
– ident: e_1_3_3_17_1
  doi: 10.1167/iovs.18-25452
– ident: e_1_3_3_15_1
  doi: 10.1167/iovs.14-14542
– ident: e_1_3_3_26_1
  doi: 10.1364/BOE.7.002036
– ident: e_1_3_3_38_1
  doi: 10.1364/BOE.9.003740
– ident: e_1_3_3_6_1
  doi: 10.1093/hmg/9.14.2107
– ident: e_1_3_3_29_1
  doi: 10.1016/j.ajo.2015.04.034
– ident: e_1_3_3_18_1
  doi: 10.1167/iovs.14-14937
– ident: e_1_3_3_28_1
  doi: 10.1002/uog.5256
– ident: e_1_3_3_40_1
  doi: 10.1038/nn817
– ident: e_1_3_3_32_1
  doi: 10.1038/s41598-018-23919-w
– ident: e_1_3_3_19_1
  doi: 10.1364/BOE.2.001757
– ident: e_1_3_3_5_1
  doi: 10.1016/j.ajhg.2012.07.006
– ident: e_1_3_3_39_1
  doi: 10.1002/()1096-9861
– ident: e_1_3_3_3_1
  doi: 10.1038/935
– ident: e_1_3_3_9_1
  doi: 10.1167/iovs.16-19313
– ident: e_1_3_3_23_1
  doi: 10.1364/BOE.7.004899
– ident: e_1_3_3_34_1
  doi: 10.1167/iovs.16-20427
– ident: e_1_3_3_7_1
  doi: 10.1086/341835
– ident: e_1_3_3_35_1
  doi: 10.1167/iovs.14-14910
– ident: e_1_3_3_8_1
  doi: 10.1016/j.ophtha.2009.03.053
– ident: e_1_3_3_22_1
  doi: 10.1167/tvst.6.2.9
– ident: e_1_3_3_25_1
  doi: 10.1038/nmeth.2089
– ident: e_1_3_3_21_1
  doi: 10.1007/978-3-642-14366-3_6
– ident: e_1_3_3_4_1
  doi: 10.1038/ng.3319
– ident: e_1_3_3_30_1
  doi: 10.7554/eLife.47148
– ident: e_1_3_3_36_1
  doi: 10.1038/s41598-018-26350-3
– ident: e_1_3_3_14_1
  doi: 10.1007/978-3-319-17121-0_37
– ident: e_1_3_3_13_1
  doi: 10.1016/j.ophtha.2013.08.017
– ident: e_1_3_3_20_1
  doi: 10.1167/iovs.17-21904
– ident: e_1_3_3_2_1
  doi: 10.1080/13816810.2017.1418389
– ident: e_1_3_3_12_1
  doi: 10.1167/tvst.8.5.21
– ident: e_1_3_3_37_1
  doi: 10.1038/s41598-017-07103-0
SSID ssj0002714
Score 2.4007845
Snippet Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning...
: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1257
SubjectTerms Achromatopsia
Adolescent
Adult
Cell Count
Child
Color Vision Defects - congenital
Color Vision Defects - genetics
Color Vision Defects - pathology
cone photoreceptors
Cyclic Nucleotide-Gated Cation Channels - genetics
DNA Mutational Analysis
Female
fovea
Fovea Centralis - diagnostic imaging
Fovea Centralis - pathology
Humans
interocular symmetry
Male
Ophthalmoscopy
Retinal Cone Photoreceptor Cells - pathology
retinal imaging
Topography, Medical
Visual Acuity - physiology
Young Adult
Title Interocular Symmetry of Foveal Cone Topography in Congenital Achromatopsia
URI https://www.tandfonline.com/doi/abs/10.1080/02713683.2020.1737138
https://www.ncbi.nlm.nih.gov/pubmed/32108519
https://www.proquest.com/docview/2369403448
https://pubmed.ncbi.nlm.nih.gov/PMC7487033
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbCmMvY2t3yW5oMPYyHGJJtuLHdGsoIe0GSyBvxrKl1dDYoXEK6a_fkSXfhqHdXkyi2JLwdyIdnct3EPosIpmMPcWdQDLf0QRdjuAJLIZUh7GJWAmp7R0Xl_75is3X3rqJny-zSwoxiu9680r-B1VoA1x1luw_IFt3Cg3wGfCFKyAM1wdhXJrzchNJ-uuw2cjCOMxn-a0sjQKgQS7zrWWltgl-0JsuFPJ1Gl_d5KCv5ttdGrV11IqySR50SZWWtUvH7aRFsbNRGKlsTKmlaT3N93Uk_nVaK-uLKPttHDwtJoPG5PrTMHzamiKluWXetkXAwVN70lvmSVh2xw4htkn2tNk111BIVrI1bq2goHDx3qXdxkISOFX7EzrSw49cTuHrpNnLKv_95Y9wtloswuXZevkYHREOitUAHU1Pv5_O6o0aumIm-cxMsErw0tTrfcN0VJcOsW3f8eTvKNuW2rJ8jp7Z8waeGuF5gR7J7BidTDPAfXPAX3AZAVy6Vo7RkwsbaHGC5i3RwpVo4VxhI1pYixZuRAunGW5EC3dE6yVazc6W384dW3bDiT3KCsef8MhVTHhSxYLEXkQSDnpx4gXKFVEy5tqP4CrfVVQoBXgRymI3SHgi5UR4Pn2FBhnM4g3CHhEuFUkUx5Ix4soI1CVFk4gq5bkJEUPEqjcaxpaTXpdGuQ7dirrWAhFqIEILxBCN6se2hpTlvgeCNlxhUVrDlCldE9J7nv1UYRvC0qv9aVEm8_0uJNQPmKbMhHteG6zr6ejUODjMBEPEO1JQ36Bp3bu_ZOlVSe_OGeyhlL59wLjv0NPmb_geDYqbvfwASnIhPlph_wMFW7l5
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interocular+Symmetry+of+Foveal+Cone+Topography+in+Congenital+Achromatopsia&rft.jtitle=Current+eye+research&rft.au=Litts%2C+Katie+M&rft.au=Georgiou%2C+Michalis&rft.au=Langlo%2C+Christopher+S&rft.au=Patterson%2C+Emily+J&rft.date=2020-10-02&rft.issn=1460-2202&rft.eissn=1460-2202&rft.volume=45&rft.issue=10&rft.spage=1257&rft_id=info:doi/10.1080%2F02713683.2020.1737138&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-3683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-3683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-3683&client=summon