Interocular Symmetry of Foveal Cone Topography in Congenital Achromatopsia
Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Methods: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean...
Saved in:
Published in | Current eye research Vol. 45; no. 10; pp. 1257 - 1264 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
02.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0271-3683 1460-2202 1460-2202 |
DOI | 10.1080/02713683.2020.1737138 |
Cover
Abstract | Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO).
Methods: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8-44 years, 14 females) with genetically confirmed CNGA3- or CNGB3-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of inter-cell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes.
Results: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm
2
and 17,638 ± 9,753 cones/mm
2
for right and left eyes, respectively (p = .677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (p = .410, paired t-test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (p = .562, paired t-test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes.
Conclusions: These results demonstrate the interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control. |
---|---|
AbstractList | : To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO).
: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8-44 years, 14 females) with genetically confirmed
- or
-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of inter-cell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes.
: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm
and 17,638 ± 9,753 cones/mm
for right and left eyes, respectively (
= .677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (
= .410, paired
-test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (
= .562, paired
-test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes.
: These results demonstrate the interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control. Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Methods: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8-44 years, 14 females) with genetically confirmed CNGA3- or CNGB3-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of inter-cell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes. Results: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm2 and 17,638 ± 9,753 cones/mm2 for right and left eyes, respectively (p = .677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (p = .410, paired t-test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (p = .562, paired t-test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes. Conclusions: These results demonstrate the interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control.Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Methods: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8-44 years, 14 females) with genetically confirmed CNGA3- or CNGB3-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of inter-cell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes. Results: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm2 and 17,638 ± 9,753 cones/mm2 for right and left eyes, respectively (p = .677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (p = .410, paired t-test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (p = .562, paired t-test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes. Conclusions: These results demonstrate the interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control. Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Methods: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8-44 years, 14 females) with genetically confirmed CNGA3- or CNGB3-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of inter-cell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes. Results: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm 2 and 17,638 ± 9,753 cones/mm 2 for right and left eyes, respectively (p = .677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (p = .410, paired t-test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (p = .562, paired t-test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes. Conclusions: These results demonstrate the interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control. |
Author | Lam, Byron L. Litts, Katie M. Fishman, Gerald A. Langlo, Christopher S. Patterson, Emily J. Georgiou, Michalis Mastey, Rebecca R. Pennesi, Mark E. Hauswirth, William W. Carroll, Joseph Kay, Christine N. Kalitzeos, Angelos Linderman, Rachel E. Michaelides, Michel |
AuthorAffiliation | 5 Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States of America 8 Vitreoretinal Associates, Gainesville, Florida, United States 6 Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, Illinois, United States 1 Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America 9 Ophthalmology, University of Florida, Gainesville, Florida, United States 2 Moorfields Eye Hospital, London, United Kingdom 4 Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America 7 Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239 3 UCL Institute of Ophthalmology, University College London, London, United Kingdom |
AuthorAffiliation_xml | – name: 2 Moorfields Eye Hospital, London, United Kingdom – name: 9 Ophthalmology, University of Florida, Gainesville, Florida, United States – name: 1 Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America – name: 7 Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239 – name: 4 Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America – name: 5 Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States of America – name: 8 Vitreoretinal Associates, Gainesville, Florida, United States – name: 6 Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, Illinois, United States – name: 3 UCL Institute of Ophthalmology, University College London, London, United Kingdom |
Author_xml | – sequence: 1 givenname: Katie M. surname: Litts fullname: Litts, Katie M. organization: Medical College of Wisconsin – sequence: 2 givenname: Michalis surname: Georgiou fullname: Georgiou, Michalis organization: University College London – sequence: 3 givenname: Christopher S. surname: Langlo fullname: Langlo, Christopher S. organization: Medical College of Wisconsin – sequence: 4 givenname: Emily J. surname: Patterson fullname: Patterson, Emily J. organization: Medical College of Wisconsin – sequence: 5 givenname: Rebecca R. surname: Mastey fullname: Mastey, Rebecca R. organization: Medical College of Wisconsin – sequence: 6 givenname: Angelos orcidid: 0000-0001-8345-0557 surname: Kalitzeos fullname: Kalitzeos, Angelos organization: University College London – sequence: 7 givenname: Rachel E. surname: Linderman fullname: Linderman, Rachel E. organization: Medical College of Wisconsin – sequence: 8 givenname: Byron L. surname: Lam fullname: Lam, Byron L. organization: University of Miami – sequence: 9 givenname: Gerald A. surname: Fishman fullname: Fishman, Gerald A. organization: The Chicago Lighthouse – sequence: 10 givenname: Mark E. orcidid: 0000-0002-4943-6599 surname: Pennesi fullname: Pennesi, Mark E. organization: Oregon Health & Science University – sequence: 11 givenname: Christine N. surname: Kay fullname: Kay, Christine N. organization: Vitreoretinal Associates – sequence: 12 givenname: William W. surname: Hauswirth fullname: Hauswirth, William W. organization: University of Florida – sequence: 13 givenname: Michel surname: Michaelides fullname: Michaelides, Michel organization: University College London – sequence: 14 givenname: Joseph orcidid: 0000-0002-8640-1029 surname: Carroll fullname: Carroll, Joseph email: jcarroll@mcw.edu organization: Medical College of Wisconsin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32108519$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctu1DAUtVARnRY-AZQlm7R-JhkhIaoRpUWVWFDWluPYM0aOb7A9Rfl7HM20AhawsnzueVzdc4ZOAgSD0GuCLwju8CWmLWFNxy4opgVqWfl2z9CK8AbXtIAnaLVw6oV0is5S-o7xAvAX6JTR4iHIeoU-34ZsIui9V7H6Oo-jyXGuwFbX8GCUrzYltbqHCbZRTbu5cmGBtia4XKZXehdhVBmm5NRL9Nwqn8yr43uOvl1_vN_c1HdfPt1uru5qLRjPddO1iljeC2N1T7VQdGhFgwextqRXA24pw5zYhljWW0uooIxrsh7awZiuFw07R-8PvtO-H82gTchReTlFN6o4S1BO_jkJbie38CBb3rWYsWLw9mgQ4cfepCxHl7TxXgUD-yQpa9YcM867Qn3ze9ZTyOMBC0EcCDpCStHYJwrBcilKPhYll6Lksaiie_eXTpeLZgfLys7_V_3hoHbBQhzVT4h-kFnNHqKNKmiXJPu3xS_ny6yr |
CitedBy_id | crossref_primary_10_1167_tvst_10_6_22 crossref_primary_10_1016_j_ajo_2021_03_004 crossref_primary_10_1364_BOE_473101 crossref_primary_10_1101_cshperspect_a041285 crossref_primary_10_1167_iovs_65_4_16 crossref_primary_10_1167_tvst_10_1_11 crossref_primary_10_1167_iovs_62_12_27 crossref_primary_10_1167_iovs_65_12_6 crossref_primary_10_1016_j_ajo_2023_01_006 crossref_primary_10_1111_ceo_13917 crossref_primary_10_1136_bjophthalmol_2021_319228 crossref_primary_10_1146_annurev_vision_102122_100022 crossref_primary_10_1167_tvst_9_4_27 crossref_primary_10_1109_ACCESS_2021_3101521 crossref_primary_10_1016_j_xops_2025_100765 crossref_primary_10_1364_BOE_472274 crossref_primary_10_1167_iovs_61_14_23 crossref_primary_10_3389_fopht_2024_1348950 crossref_primary_10_1016_j_preteyeres_2024_101244 crossref_primary_10_1016_j_survophthal_2023_09_006 crossref_primary_10_1080_13816810_2021_2015789 |
Cites_doi | 10.1097/IAE.0000000000001434 10.1016/j.visres.2016.10.012 10.1177/096228029900800204 10.1167/iovs.18-25880 10.1167/iovs.14-14225 10.1167/iovs.18-25452 10.1167/iovs.14-14542 10.1364/BOE.7.002036 10.1364/BOE.9.003740 10.1093/hmg/9.14.2107 10.1016/j.ajo.2015.04.034 10.1167/iovs.14-14937 10.1002/uog.5256 10.1038/nn817 10.1038/s41598-018-23919-w 10.1364/BOE.2.001757 10.1016/j.ajhg.2012.07.006 10.1002/()1096-9861 10.1038/935 10.1167/iovs.16-19313 10.1364/BOE.7.004899 10.1167/iovs.16-20427 10.1086/341835 10.1167/iovs.14-14910 10.1016/j.ophtha.2009.03.053 10.1167/tvst.6.2.9 10.1038/nmeth.2089 10.1007/978-3-642-14366-3_6 10.1038/ng.3319 10.7554/eLife.47148 10.1038/s41598-018-26350-3 10.1007/978-3-319-17121-0_37 10.1016/j.ophtha.2013.08.017 10.1167/iovs.17-21904 10.1080/13816810.2017.1418389 10.1167/tvst.8.5.21 10.1038/s41598-017-07103-0 |
ContentType | Journal Article |
Copyright | 2020 Taylor & Francis Group, LLC 2020 |
Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1080/02713683.2020.1737138 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1460-2202 |
EndPage | 1264 |
ExternalDocumentID | PMC7487033 32108519 10_1080_02713683_2020_1737138 1737138 |
Genre | Research Article Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: P30 EY010572 – fundername: NCRR NIH HHS grantid: C06 RR016511 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 099173/Z/12/Z – fundername: NCATS NIH HHS grantid: UL1 TR001436 – fundername: NIGMS NIH HHS grantid: T32 GM080202 – fundername: NEI NIH HHS grantid: F32 EY029148 – fundername: NEI NIH HHS grantid: T32 EY014537 – fundername: NEI NIH HHS grantid: P30 EY001931 – fundername: NEI NIH HHS grantid: R01 EY017607 |
GroupedDBID | --- 00X 03L 0BK 0R~ 29F 36B 4.4 5GY 5RE AALUX AAMIU AAPUL AAQRR ABBKH ABDBF ABEIZ ABJNI ABLIJ ABLJU ABLKL ABUPF ABXYU ACENM ACGEJ ACGFS ACIEZ ACNCT ACUHS ADCVX ADRBQ ADXPE AECIN AENEX AEOZL AFKVX AGDLA AGFJD AGRBW AGYJP AIJEM AIRBT AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU ALYBC AMDAE BABNJ BLEHA BOHLJ CCCUG CS3 DKSSO DU5 EAP EBC EBD EBS EMB EMK EMOBN EPL ESX F5P H13 HZ~ KRBQP KSSTO KWAYT KYCEM LJTGL M4Z O9- P2P PQQKQ RNANH RVRKI SV3 TBQAZ TDBHL TERGH TFDNU TFL TFW TUROJ TUS UEQFS V1S ~1N AAGDL AAYXX ABWVI ADYSH AFRVT AMPGV CITATION .55 .GJ 34G 39C 53G 5VS AALIY AAORF AAPXX ABWCV ABZEW ACKZS ACOPL ACYZI ADFOM ADFZZ AEIIZ AFFNX AFLEI AJVHN AWYRJ BRMBE CAG CGR COF CUY CVF CYYVM CZDIS DRXRE DWTOO ECM EIF EJD JENTW M44 NPM NUSFT QQXMO RIG TASJS X7M ZGI ZXP 7X8 5PM |
ID | FETCH-LOGICAL-c534t-687a1f4b5efcb2c5a2d7560d59f1bad0723041f61f3bff125234c19d7dee8b563 |
ISSN | 0271-3683 1460-2202 |
IngestDate | Thu Aug 21 18:22:09 EDT 2025 Thu Sep 04 17:28:37 EDT 2025 Mon Jul 21 05:58:27 EDT 2025 Tue Jul 01 00:42:46 EDT 2025 Thu Apr 24 22:48:41 EDT 2025 Wed Dec 25 09:07:52 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | fovea cone photoreceptors Achromatopsia interocular symmetry retinal imaging |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c534t-687a1f4b5efcb2c5a2d7560d59f1bad0723041f61f3bff125234c19d7dee8b563 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0001-8345-0557 0000-0002-4943-6599 0000-0002-8640-1029 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7487033 |
PMID | 32108519 |
PQID | 2369403448 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_32108519 crossref_primary_10_1080_02713683_2020_1737138 crossref_citationtrail_10_1080_02713683_2020_1737138 informaworld_taylorfrancis_310_1080_02713683_2020_1737138 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7487033 proquest_miscellaneous_2369403448 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-02 |
PublicationDateYYYYMMDD | 2020-10-02 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current eye research |
PublicationTitleAlternate | Curr Eye Res |
PublicationYear | 2020 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | e_1_3_3_30_1 Cava JA (e_1_3_3_33_1) 2019; 60 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_39_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_40_1 Emsley H (e_1_3_3_24_1) e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 e_1_3_3_22_1 |
References_xml | – ident: e_1_3_3_10_1 doi: 10.1097/IAE.0000000000001434 – ident: e_1_3_3_31_1 doi: 10.1016/j.visres.2016.10.012 – volume: 60 year: 2019 ident: e_1_3_3_33_1 article-title: Assessing interocular symmetry of foveal cone density publication-title: Invest Ophthalmol Vis Sci – volume-title: Visual optics ident: e_1_3_3_24_1 – ident: e_1_3_3_27_1 doi: 10.1177/096228029900800204 – ident: e_1_3_3_11_1 doi: 10.1167/iovs.18-25880 – ident: e_1_3_3_16_1 doi: 10.1167/iovs.14-14225 – ident: e_1_3_3_17_1 doi: 10.1167/iovs.18-25452 – ident: e_1_3_3_15_1 doi: 10.1167/iovs.14-14542 – ident: e_1_3_3_26_1 doi: 10.1364/BOE.7.002036 – ident: e_1_3_3_38_1 doi: 10.1364/BOE.9.003740 – ident: e_1_3_3_6_1 doi: 10.1093/hmg/9.14.2107 – ident: e_1_3_3_29_1 doi: 10.1016/j.ajo.2015.04.034 – ident: e_1_3_3_18_1 doi: 10.1167/iovs.14-14937 – ident: e_1_3_3_28_1 doi: 10.1002/uog.5256 – ident: e_1_3_3_40_1 doi: 10.1038/nn817 – ident: e_1_3_3_32_1 doi: 10.1038/s41598-018-23919-w – ident: e_1_3_3_19_1 doi: 10.1364/BOE.2.001757 – ident: e_1_3_3_5_1 doi: 10.1016/j.ajhg.2012.07.006 – ident: e_1_3_3_39_1 doi: 10.1002/()1096-9861 – ident: e_1_3_3_3_1 doi: 10.1038/935 – ident: e_1_3_3_9_1 doi: 10.1167/iovs.16-19313 – ident: e_1_3_3_23_1 doi: 10.1364/BOE.7.004899 – ident: e_1_3_3_34_1 doi: 10.1167/iovs.16-20427 – ident: e_1_3_3_7_1 doi: 10.1086/341835 – ident: e_1_3_3_35_1 doi: 10.1167/iovs.14-14910 – ident: e_1_3_3_8_1 doi: 10.1016/j.ophtha.2009.03.053 – ident: e_1_3_3_22_1 doi: 10.1167/tvst.6.2.9 – ident: e_1_3_3_25_1 doi: 10.1038/nmeth.2089 – ident: e_1_3_3_21_1 doi: 10.1007/978-3-642-14366-3_6 – ident: e_1_3_3_4_1 doi: 10.1038/ng.3319 – ident: e_1_3_3_30_1 doi: 10.7554/eLife.47148 – ident: e_1_3_3_36_1 doi: 10.1038/s41598-018-26350-3 – ident: e_1_3_3_14_1 doi: 10.1007/978-3-319-17121-0_37 – ident: e_1_3_3_13_1 doi: 10.1016/j.ophtha.2013.08.017 – ident: e_1_3_3_20_1 doi: 10.1167/iovs.17-21904 – ident: e_1_3_3_2_1 doi: 10.1080/13816810.2017.1418389 – ident: e_1_3_3_12_1 doi: 10.1167/tvst.8.5.21 – ident: e_1_3_3_37_1 doi: 10.1038/s41598-017-07103-0 |
SSID | ssj0002714 |
Score | 2.4007845 |
Snippet | Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning... : To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1257 |
SubjectTerms | Achromatopsia Adolescent Adult Cell Count Child Color Vision Defects - congenital Color Vision Defects - genetics Color Vision Defects - pathology cone photoreceptors Cyclic Nucleotide-Gated Cation Channels - genetics DNA Mutational Analysis Female fovea Fovea Centralis - diagnostic imaging Fovea Centralis - pathology Humans interocular symmetry Male Ophthalmoscopy Retinal Cone Photoreceptor Cells - pathology retinal imaging Topography, Medical Visual Acuity - physiology Young Adult |
Title | Interocular Symmetry of Foveal Cone Topography in Congenital Achromatopsia |
URI | https://www.tandfonline.com/doi/abs/10.1080/02713683.2020.1737138 https://www.ncbi.nlm.nih.gov/pubmed/32108519 https://www.proquest.com/docview/2369403448 https://pubmed.ncbi.nlm.nih.gov/PMC7487033 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbCmMvY2t3yW5oMPYyHGJJtuLHdGsoIe0GSyBvxrKl1dDYoXEK6a_fkSXfhqHdXkyi2JLwdyIdnct3EPosIpmMPcWdQDLf0QRdjuAJLIZUh7GJWAmp7R0Xl_75is3X3rqJny-zSwoxiu9680r-B1VoA1x1luw_IFt3Cg3wGfCFKyAM1wdhXJrzchNJ-uuw2cjCOMxn-a0sjQKgQS7zrWWltgl-0JsuFPJ1Gl_d5KCv5ttdGrV11IqySR50SZWWtUvH7aRFsbNRGKlsTKmlaT3N93Uk_nVaK-uLKPttHDwtJoPG5PrTMHzamiKluWXetkXAwVN70lvmSVh2xw4htkn2tNk111BIVrI1bq2goHDx3qXdxkISOFX7EzrSw49cTuHrpNnLKv_95Y9wtloswuXZevkYHREOitUAHU1Pv5_O6o0aumIm-cxMsErw0tTrfcN0VJcOsW3f8eTvKNuW2rJ8jp7Z8waeGuF5gR7J7BidTDPAfXPAX3AZAVy6Vo7RkwsbaHGC5i3RwpVo4VxhI1pYixZuRAunGW5EC3dE6yVazc6W384dW3bDiT3KCsef8MhVTHhSxYLEXkQSDnpx4gXKFVEy5tqP4CrfVVQoBXgRymI3SHgi5UR4Pn2FBhnM4g3CHhEuFUkUx5Ix4soI1CVFk4gq5bkJEUPEqjcaxpaTXpdGuQ7dirrWAhFqIEILxBCN6se2hpTlvgeCNlxhUVrDlCldE9J7nv1UYRvC0qv9aVEm8_0uJNQPmKbMhHteG6zr6ejUODjMBEPEO1JQ36Bp3bu_ZOlVSe_OGeyhlL59wLjv0NPmb_geDYqbvfwASnIhPlph_wMFW7l5 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interocular+Symmetry+of+Foveal+Cone+Topography+in+Congenital+Achromatopsia&rft.jtitle=Current+eye+research&rft.au=Litts%2C+Katie+M&rft.au=Georgiou%2C+Michalis&rft.au=Langlo%2C+Christopher+S&rft.au=Patterson%2C+Emily+J&rft.date=2020-10-02&rft.issn=1460-2202&rft.eissn=1460-2202&rft.volume=45&rft.issue=10&rft.spage=1257&rft_id=info:doi/10.1080%2F02713683.2020.1737138&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-3683&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-3683&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-3683&client=summon |