Neuroimaging Markers for Studying Gulf-War Illness: Single-Subject Level Analytical Method Based on Machine Learning
Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal, and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf War (GW). Longitudinal...
Saved in:
Published in | Brain sciences Vol. 10; no. 11; p. 884 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2076-3425 2076-3425 |
DOI | 10.3390/brainsci10110884 |
Cover
Abstract | Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal, and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf War (GW). Longitudinal studies showed that the severity of these symptoms often remain unchanged even years after the GW, and these veterans with GWI continue to have poorer general health and increased chronic medical conditions than their non-deployed counterparts. For better management and treatment of this condition, there is an urgent need for developing objective biomarkers that can help with simple and accurate diagnosis of GWI. In this study, we applied multiple neuroimaging techniques, including T1-weighted magnetic resonance imaging (T1W-MRI), diffusion tensor imaging (DTI), and novel neurite density imaging (NDI) to perform both a group-level statistical comparison and a single-subject level machine learning (ML) analysis to identify diagnostic imaging features of GWI. Our results supported NDI as the most sensitive in defining GWI characteristics. In particular, our classifier trained with white matter NDI features achieved an accuracy of 90% and F-score of 0.941 for classifying GWI cases from controls after the cross-validation. These results are consistent with our previous study which suggests that NDI measures are sensitive to the microstructural and macrostructural changes in the brain of veterans with GWI, which can be valuable for designing better diagnosis method and treatment efficacy studies. |
---|---|
AbstractList | Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal, and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf War (GW). Longitudinal studies showed that the severity of these symptoms often remain unchanged even years after the GW, and these veterans with GWI continue to have poorer general health and increased chronic medical conditions than their non-deployed counterparts. For better management and treatment of this condition, there is an urgent need for developing objective biomarkers that can help with simple and accurate diagnosis of GWI. In this study, we applied multiple neuroimaging techniques, including T1-weighted magnetic resonance imaging (T1W-MRI), diffusion tensor imaging (DTI), and novel neurite density imaging (NDI) to perform both a group-level statistical comparison and a single-subject level machine learning (ML) analysis to identify diagnostic imaging features of GWI. Our results supported NDI as the most sensitive in defining GWI characteristics. In particular, our classifier trained with white matter NDI features achieved an accuracy of 90% and F-score of 0.941 for classifying GWI cases from controls after the cross-validation. These results are consistent with our previous study which suggests that NDI measures are sensitive to the microstructural and macrostructural changes in the brain of veterans with GWI, which can be valuable for designing better diagnosis method and treatment efficacy studies.Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal, and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf War (GW). Longitudinal studies showed that the severity of these symptoms often remain unchanged even years after the GW, and these veterans with GWI continue to have poorer general health and increased chronic medical conditions than their non-deployed counterparts. For better management and treatment of this condition, there is an urgent need for developing objective biomarkers that can help with simple and accurate diagnosis of GWI. In this study, we applied multiple neuroimaging techniques, including T1-weighted magnetic resonance imaging (T1W-MRI), diffusion tensor imaging (DTI), and novel neurite density imaging (NDI) to perform both a group-level statistical comparison and a single-subject level machine learning (ML) analysis to identify diagnostic imaging features of GWI. Our results supported NDI as the most sensitive in defining GWI characteristics. In particular, our classifier trained with white matter NDI features achieved an accuracy of 90% and F-score of 0.941 for classifying GWI cases from controls after the cross-validation. These results are consistent with our previous study which suggests that NDI measures are sensitive to the microstructural and macrostructural changes in the brain of veterans with GWI, which can be valuable for designing better diagnosis method and treatment efficacy studies. Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal, and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf War (GW). Longitudinal studies showed that the severity of these symptoms often remain unchanged even years after the GW, and these veterans with GWI continue to have poorer general health and increased chronic medical conditions than their non-deployed counterparts. For better management and treatment of this condition, there is an urgent need for developing objective biomarkers that can help with simple and accurate diagnosis of GWI. In this study, we applied multiple neuroimaging techniques, including T1-weighted magnetic resonance imaging (T1W-MRI), diffusion tensor imaging (DTI), and novel neurite density imaging (NDI) to perform both a group-level statistical comparison and a single-subject level machine learning (ML) analysis to identify diagnostic imaging features of GWI. Our results supported NDI as the most sensitive in defining GWI characteristics. In particular, our classifier trained with white matter NDI features achieved an accuracy of 90% and F-score of 0.941 for classifying GWI cases from controls after the cross-validation. These results are consistent with our previous study which suggests that NDI measures are sensitive to the microstructural and macrostructural changes in the brain of veterans with GWI, which can be valuable for designing better diagnosis method and treatment efficacy studies. Keywords: Gulf War illness; MRI; objective biomarker; machine learning; Kansas case criteria; diffusion; grey matter; neurite density imaging Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal, and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf War (GW). Longitudinal studies showed that the severity of these symptoms often remain unchanged even years after the GW, and these veterans with GWI continue to have poorer general health and increased chronic medical conditions than their non-deployed counterparts. For better management and treatment of this condition, there is an urgent need for developing objective biomarkers that can help with simple and accurate diagnosis of GWI. In this study, we applied multiple neuroimaging techniques, including T1-weighted magnetic resonance imaging (T1W-MRI), diffusion tensor imaging (DTI), and novel neurite density imaging (NDI) to perform both a group-level statistical comparison and a single-subject level machine learning (ML) analysis to identify diagnostic imaging features of GWI. Our results supported NDI as the most sensitive in defining GWI characteristics. In particular, our classifier trained with white matter NDI features achieved an accuracy of 90% and F-score of 0.941 for classifying GWI cases from controls after the cross-validation. These results are consistent with our previous study which suggests that NDI measures are sensitive to the microstructural and macrostructural changes in the brain of veterans with GWI, which can be valuable for designing better diagnosis method and treatment efficacy studies. |
Audience | Academic |
Author | Kim, Jae-Hun Chen, Weifan Steele, Lea Toomey, Rosemary Guan, Yi Koo, Bang-Bon Janulewicz, Patricia Krengel, Maxine Yang, Ehwa Zhang, Yingqi Koo, Sophia Bhadelia, Rafeeque Cheng, Chia-Hsin Sullivan, Kimberly |
AuthorAffiliation | 1 School of Medicine, Boston University, Boston, MA 02118, USA; guanyi1@bu.edu (Y.G.); chiahsin@bu.edu (C.-H.C.); wfchen@bu.edu (W.C.); yqz2019@bu.edu (Y.Z.); sskoo@bu.edu (S.K.); mhk@bu.edu (M.K.); toomey@bu.edu (R.T.) 3 Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; ehwayang@gmail.com (E.Y.); jaehun1115.kim@samsung.com (J.-H.K.) 2 School of Public Health, Boston University, Boston, MA 02118, USA; paj@bu.edu 4 Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; rbhadelia@gmail.com 5 Neuropsychiatry Division, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Lea.Steele@bcm.edu |
AuthorAffiliation_xml | – name: 2 School of Public Health, Boston University, Boston, MA 02118, USA; paj@bu.edu – name: 5 Neuropsychiatry Division, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Lea.Steele@bcm.edu – name: 4 Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; rbhadelia@gmail.com – name: 3 Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; ehwayang@gmail.com (E.Y.); jaehun1115.kim@samsung.com (J.-H.K.) – name: 1 School of Medicine, Boston University, Boston, MA 02118, USA; guanyi1@bu.edu (Y.G.); chiahsin@bu.edu (C.-H.C.); wfchen@bu.edu (W.C.); yqz2019@bu.edu (Y.Z.); sskoo@bu.edu (S.K.); mhk@bu.edu (M.K.); toomey@bu.edu (R.T.) |
Author_xml | – sequence: 1 givenname: Yi surname: Guan fullname: Guan, Yi – sequence: 2 givenname: Chia-Hsin surname: Cheng fullname: Cheng, Chia-Hsin – sequence: 3 givenname: Weifan surname: Chen fullname: Chen, Weifan – sequence: 4 givenname: Yingqi surname: Zhang fullname: Zhang, Yingqi – sequence: 5 givenname: Sophia surname: Koo fullname: Koo, Sophia – sequence: 6 givenname: Maxine surname: Krengel fullname: Krengel, Maxine – sequence: 7 givenname: Patricia surname: Janulewicz fullname: Janulewicz, Patricia – sequence: 8 givenname: Rosemary surname: Toomey fullname: Toomey, Rosemary – sequence: 9 givenname: Ehwa surname: Yang fullname: Yang, Ehwa – sequence: 10 givenname: Rafeeque surname: Bhadelia fullname: Bhadelia, Rafeeque – sequence: 11 givenname: Lea surname: Steele fullname: Steele, Lea – sequence: 12 givenname: Jae-Hun surname: Kim fullname: Kim, Jae-Hun – sequence: 13 givenname: Kimberly orcidid: 0000-0001-7940-6123 surname: Sullivan fullname: Sullivan, Kimberly – sequence: 14 givenname: Bang-Bon orcidid: 0000-0001-7423-5572 surname: Koo fullname: Koo, Bang-Bon |
BookMark | eNp1ks9v0zAUxyM0xMbYnWMkLlwy_Ct2zAGpTDAqdXAoiKPl2C-ti2tvdjKp_z0uHdI6QXyI9fz9fuz31XtZnYQYoKpeY3RJqUTv-qRdyMZhhDHqOvasOiNI8IYy0p482p9WFzlvUPk6hGiLXlSnlBJKuSBn1fgVphTdVq9cWNU3Ov2ClOshpno5Tna3L15Pfmh-6lTPvQ-Q8_t6WcoemuXUb8CM9QLuwdezoP1udEb7-gbGdbT1R53B1jEUrFm7AEWoUyjeV9XzQfsMFw__8-rH50_fr740i2_X86vZojEtZWPDGbNGCENkb5AQotWk59QyTrCWWIpOks5aoREVHKTGBAhQ2tuB96ZvMdDzan7g2qg36jaVNtNORe3Un0JMK6VTebIHJUkBM0N6SjEzFPVUtJgXtpUIQLeF9eHAup36LVgDYUzaH0GPT4Jbq1W8V4JLKXBXAG8fACneTZBHtXXZgPc6QJyyIowzLGnbsSJ980S6iVMq-R5UBJc0HqlWujTgwhDLvWYPVbMSneCUIFpUl_9QlWVh60yZqMGV-pGBHwwmxZwTDMq4UY8u7ttyXmGk9uOnno5fMaInxr_h_NfyGz_m3gM |
CitedBy_id | crossref_primary_10_1016_j_lfs_2021_119903 crossref_primary_10_1016_j_ynirp_2024_100209 crossref_primary_10_3390_brainsci11091132 crossref_primary_10_1016_j_lfs_2021_119702 crossref_primary_10_3390_brainsci11111410 crossref_primary_10_3390_brainsci12081068 crossref_primary_10_1016_j_lfs_2021_119818 |
Cites_doi | 10.1016/j.ntt.2018.05.001 10.1007/978-3-030-20518-8_65 10.1016/j.bbi.2020.01.020 10.1016/j.neuro.2015.04.005 10.1016/j.nicl.2018.08.019 10.1016/j.psyneuen.2014.11.007 10.1148/radiol.2301021640 10.3390/brainsci8110198 10.1007/s10898-007-9149-x 10.1016/0304-3959(75)90044-5 10.1016/j.neubiorev.2018.05.008 10.1073/pnas.200033797 10.1212/NXI.0000000000000399 10.1093/ije/27.6.1000 10.1016/j.neuro.2014.07.003 10.1016/j.neuro.2016.02.009 10.1371/journal.pone.0058493 10.1016/j.neuroimage.2006.01.021 10.1016/j.neuroimage.2006.02.024 10.1002/glia.23668 10.1016/j.cortex.2015.08.022 10.1016/j.neuro.2011.06.006 10.1016/j.neuroimage.2012.03.072 10.1002/hec.1594 10.1109/TNN.1998.712192 10.1016/j.jneumeth.2019.108544 10.1097/HTR.0000000000000173 10.1109/ACII.2013.47 10.1016/S1470-2045(19)30149-4 10.1186/s12974-016-0744-y 10.1007/s11604-018-0794-4 10.3390/brainsci7070079 10.1111/jnc.13088 10.1016/j.bbi.2020.07.006 10.1016/0165-1781(89)90047-4 10.1016/j.neuroimage.2012.01.021 10.1016/j.neuroimage.2018.02.017 10.1016/j.neuroimage.2014.10.002 10.3390/brainsci10070456 10.1016/0022-3999(94)00125-O 10.1038/nbt1209-1135 10.1093/aje/152.10.992 10.1186/s12974-018-1113-9 10.1016/j.bbi.2015.02.009 10.1093/cercor/bhu065 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION 3V. 7TK 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/brainsci10110884 |
DatabaseName | CrossRef ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Biological Sciences Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2076-3425 |
ExternalDocumentID | oai_doaj_org_article_923d44c2b3314c30b375167a0d90eea5 PMC7699718 A644763203 10_3390_brainsci10110884 |
GeographicLocations | United States United States--US Kansas |
GeographicLocations_xml | – name: United States – name: Kansas – name: United States--US |
GroupedDBID | 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM PMFND 3V. 7TK 7XB 8FK MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c534t-644dc77c29bc07775a2b63d4621a91978928dd7a0376e9a12e2e33bdf6bcb51e3 |
IEDL.DBID | M48 |
ISSN | 2076-3425 |
IngestDate | Wed Aug 27 01:29:37 EDT 2025 Thu Aug 21 14:11:13 EDT 2025 Fri Sep 05 03:18:01 EDT 2025 Fri Jul 25 11:58:42 EDT 2025 Tue Jun 17 21:25:24 EDT 2025 Tue Jun 10 20:39:28 EDT 2025 Tue Jul 01 02:32:44 EDT 2025 Thu Apr 24 22:56:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-644dc77c29bc07775a2b63d4621a91978928dd7a0376e9a12e2e33bdf6bcb51e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Both authors contributed equally to this work. |
ORCID | 0000-0001-7940-6123 0000-0001-7423-5572 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/brainsci10110884 |
PMID | 33233672 |
PQID | 2464210774 |
PQPubID | 2032423 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_923d44c2b3314c30b375167a0d90eea5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7699718 proquest_miscellaneous_2464193584 proquest_journals_2464210774 gale_infotracmisc_A644763203 gale_infotracacademiconefile_A644763203 crossref_citationtrail_10_3390_brainsci10110884 crossref_primary_10_3390_brainsci10110884 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Brain sciences |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Chao (ref_13) 2015; 48 Smets (ref_24) 1995; 39 Ashbrook (ref_45) 2018; 15 Fischl (ref_25) 2012; 62 Chao (ref_47) 2016; 53 Gade (ref_6) 2011; 20 Steele (ref_8) 2000; 152 ref_34 Bierer (ref_48) 2015; 51 Alshelh (ref_46) 2020; 87 Dadar (ref_17) 2018; 20 Buysse (ref_22) 1989; 28 Pawlitzki (ref_39) 2017; 4 Moradi (ref_19) 2015; 104 Ngiam (ref_21) 2019; 20 Melzack (ref_23) 1975; 1 Zhang (ref_29) 2012; 61 Fischl (ref_32) 2000; 97 Wakana (ref_27) 2004; 230 Chao (ref_14) 2018; 68 ref_15 Noble (ref_33) 2009; 27 ref_37 Kelly (ref_5) 2015; 133 Rojas (ref_35) 2019; Volume 11507 Forouzannezhad (ref_42) 2020; 333 Yee (ref_3) 2016; 31 Chao (ref_12) 2014; 44 Belgrad (ref_43) 2019; 67 Desikan (ref_31) 2006; 31 Smith (ref_26) 2006; 31 Dursa (ref_9) 2018; 26 Rathbone (ref_7) 2015; 46 Chao (ref_11) 2011; 32 Bubb (ref_40) 2018; 92 ref_20 Sakai (ref_18) 2019; 37 Proctor (ref_10) 1998; 27 Fukutomi (ref_30) 2018; 182 ref_2 White (ref_1) 2016; 74 ref_28 Karaboga (ref_36) 2007; 39 Cheng (ref_16) 2020; 89 ref_4 Phillips (ref_38) 2015; 25 Herrera (ref_41) 2018; 61 Flannery (ref_44) 2016; 13 |
References_xml | – ident: ref_28 – volume: 68 start-page: 36 year: 2018 ident: ref_14 article-title: Effects of low-level sarin and cyclosarin exposure on hippocampal microstructure in Gulf War Veterans publication-title: Neurotoxicol. Teratol. doi: 10.1016/j.ntt.2018.05.001 – volume: Volume 11507 start-page: 785 year: 2019 ident: ref_35 article-title: QBSO-FS: A Reinforcement Learning Based Bee Swarm Optimization Metaheuristic for Feature Selection publication-title: Advances in Computational Intelligence doi: 10.1007/978-3-030-20518-8_65 – volume: 87 start-page: 498 year: 2020 ident: ref_46 article-title: In-vivo imaging of neuroinflammation in veterans with Gulf War illness publication-title: Brain Behav. Immun. doi: 10.1016/j.bbi.2020.01.020 – volume: 48 start-page: 239 year: 2015 ident: ref_13 article-title: Effects of low-level sarin and cyclosarin exposure on white matter integrity in Gulf War Veterans publication-title: Neurotoxicology doi: 10.1016/j.neuro.2015.04.005 – volume: 20 start-page: 506 year: 2018 ident: ref_17 article-title: Structural neuroimaging as clinical predictor: A review of machine learning applications publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2018.08.019 – volume: 51 start-page: 567 year: 2015 ident: ref_48 article-title: White matter abnormalities in Gulf War veterans with posttraumatic stress disorder: A pilot study publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2014.11.007 – volume: 230 start-page: 77 year: 2004 ident: ref_27 article-title: Fiber tract-based atlas of human white matter anatomy publication-title: Radiology doi: 10.1148/radiol.2301021640 – ident: ref_2 doi: 10.3390/brainsci8110198 – volume: 39 start-page: 459 year: 2007 ident: ref_36 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9149-x – volume: 1 start-page: 277 year: 1975 ident: ref_23 article-title: The McGill Pain Questionnaire: Major properties and scoring methods publication-title: Pain doi: 10.1016/0304-3959(75)90044-5 – volume: 92 start-page: 104 year: 2018 ident: ref_40 article-title: The cingulum bundle: Anatomy, function, and dysfunction publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2018.05.008 – volume: 97 start-page: 11050 year: 2000 ident: ref_32 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.200033797 – volume: 4 start-page: e399 year: 2017 ident: ref_39 article-title: Loss of corticospinal tract integrity in early MS disease stages publication-title: Neurol. Neuroimmunol. Neuroinflamm. doi: 10.1212/NXI.0000000000000399 – volume: 27 start-page: 1000 year: 1998 ident: ref_10 article-title: Health status of Persian Gulf War veterans: Self-reported symptoms, environmental exposures and the effect of stress publication-title: Int. J. Epidemiol. doi: 10.1093/ije/27.6.1000 – volume: 44 start-page: 263 year: 2014 ident: ref_12 article-title: Effects of low-level sarin and cyclosarin exposure on hippocampal subfields in Gulf War Veterans publication-title: Neurotoxicology doi: 10.1016/j.neuro.2014.07.003 – volume: 53 start-page: 246 year: 2016 ident: ref_47 article-title: Associations between the self-reported frequency of hearing chemical alarms in theater and regional brain volume in Gulf War Veterans publication-title: Neurotoxicology doi: 10.1016/j.neuro.2016.02.009 – ident: ref_15 doi: 10.1371/journal.pone.0058493 – volume: 31 start-page: 968 year: 2006 ident: ref_31 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 31 start-page: 1487 year: 2006 ident: ref_26 article-title: Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.02.024 – volume: 67 start-page: 2107 year: 2019 ident: ref_43 article-title: Oligodendrocyte involvement in Gulf War Illness publication-title: Glia doi: 10.1002/glia.23668 – volume: 26 start-page: 43 year: 2018 ident: ref_9 article-title: Gulf War Illness in the 1991 Gulf war and Gulf era veteran population: An application of the centers for disease control and prevention and Kansas case definitions to historical data publication-title: J. Mil. Veterans Health – volume: 74 start-page: 449 year: 2016 ident: ref_1 article-title: Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment publication-title: Cortex doi: 10.1016/j.cortex.2015.08.022 – volume: 32 start-page: 814 year: 2011 ident: ref_11 article-title: Effects of low-level sarin and cyclosarin exposure and Gulf War Illness on brain structure and function: A study at 4T publication-title: Neurotoxicology doi: 10.1016/j.neuro.2011.06.006 – volume: 61 start-page: 1000 year: 2012 ident: ref_29 article-title: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.072 – volume: 20 start-page: 401 year: 2011 ident: ref_6 article-title: Combat exposure and mental health: The long-term effects among US Vietnam and Gulf War veterans publication-title: Health Econ. doi: 10.1002/hec.1594 – ident: ref_34 doi: 10.1109/TNN.1998.712192 – volume: 333 start-page: 108544 year: 2020 ident: ref_42 article-title: A gaussian-based model for early detection of mild cognitive impairment using multimodal neuroimaging publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108544 – volume: 61 start-page: 863 year: 2018 ident: ref_41 article-title: SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary publication-title: J. Artif. Int. Res. – volume: 31 start-page: 320 year: 2016 ident: ref_3 article-title: Self-Reported Traumatic Brain Injury, Health and Rate of Chronic Multisymptom Illness in Veterans from the 1990–1991 Gulf War publication-title: J. Head Trauma Rehabil. doi: 10.1097/HTR.0000000000000173 – ident: ref_37 doi: 10.1109/ACII.2013.47 – volume: 20 start-page: e262 year: 2019 ident: ref_21 article-title: Big data and machine learning algorithms for health-care delivery publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(19)30149-4 – volume: 13 start-page: 267 year: 2016 ident: ref_44 article-title: Persistent neuroinflammation and cognitive impairment in a rat model of acute diisopropylfluorophosphate intoxication publication-title: J. Neuroinflamm. doi: 10.1186/s12974-016-0744-y – volume: 37 start-page: 34 year: 2019 ident: ref_18 article-title: Machine learning studies on major brain diseases: 5-year trends of 2014–2018 publication-title: Jpn. J. Radiol. doi: 10.1007/s11604-018-0794-4 – ident: ref_4 doi: 10.3390/brainsci7070079 – volume: 133 start-page: 708 year: 2015 ident: ref_5 article-title: Corticosterone primes the neuroinflammatory response to DFP in mice: Potential animal model of Gulf War Illness publication-title: J. Neurochem. doi: 10.1111/jnc.13088 – volume: 89 start-page: 281 year: 2020 ident: ref_16 article-title: Alterations in high-order diffusion imaging in veterans with Gulf War Illness is associated with chemical weapons exposure and mild traumatic brain injury publication-title: Brain Behav. Immun. doi: 10.1016/j.bbi.2020.07.006 – volume: 28 start-page: 193 year: 1989 ident: ref_22 article-title: The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research publication-title: Psychiatry Res. doi: 10.1016/0165-1781(89)90047-4 – volume: 62 start-page: 774 year: 2012 ident: ref_25 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 182 start-page: 488 year: 2018 ident: ref_30 article-title: Neurite imaging reveals microstructural variations in human cerebral cortical gray matter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.02.017 – volume: 104 start-page: 398 year: 2015 ident: ref_19 article-title: Alzheimer’s Disease Neuroimaging Initiative. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – ident: ref_20 doi: 10.3390/brainsci10070456 – volume: 39 start-page: 315 year: 1995 ident: ref_24 article-title: The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue publication-title: J. Psychosom. Res. doi: 10.1016/0022-3999(94)00125-O – volume: 27 start-page: 1135 year: 2009 ident: ref_33 article-title: How does multiple testing correction work? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1209-1135 – volume: 152 start-page: 992 year: 2000 ident: ref_8 article-title: Prevalence and patterns of Gulf War illness in Kansas veterans: Association of symptoms with characteristics of person, place, and time of military service publication-title: Am. J. Epidemiol. doi: 10.1093/aje/152.10.992 – volume: 15 start-page: 86 year: 2018 ident: ref_45 article-title: Epigenetic impacts of stress priming of the neuroinflammatory response to sarin surrogate in mice: A model of Gulf War illness publication-title: J. Neuroinflamm. doi: 10.1186/s12974-018-1113-9 – volume: 46 start-page: 1 year: 2015 ident: ref_7 article-title: A review of the neuro- and systemic inflammatory responses in post concussion symptoms: Introduction of the “post-inflammatory brain syndrome” PIBS publication-title: Brain Behav. Immun. doi: 10.1016/j.bbi.2015.02.009 – volume: 25 start-page: 2670 year: 2015 ident: ref_38 article-title: The Corticospinal Tract in Huntington’s Disease publication-title: Cereb. Cortex doi: 10.1093/cercor/bhu065 |
SSID | ssj0000800350 |
Score | 2.1709492 |
Snippet | Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 884 |
SubjectTerms | Biological markers Biomarkers Classification Consortia Diagnosis diffusion Fatigue Gulf War Gulf War illness Gulf War syndrome Health aspects Illnesses Kansas case criteria Learning algorithms Machine learning Magnetic resonance imaging Medical imaging Military personnel MRI Neuroimaging objective biomarker Pain Persian Gulf syndrome Persian Gulf War Questionnaires Registration Sleep Substantia alba Technology application Traumatic brain injury War |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnrhUQKlYKMiVEBWHaON3zG2LaAtqe4GK3iy_ForSLCq7B_49M0662hQJLhwTO5Eztme-cWa-IeRVUjokNWdVBDxRSRNZFTRcGg_Gydi51wpzh88v9Oml_HilrjZKfWFMWE8P3AtuCgAkSRl5EILJKOogjGIaXpVsnbMv7KW1rTecqe8DDhKq7v9LCvDrpwErLoBVYWjwmkaO7FCh6_9TKd8PlNywPMcPyc4AGemsH-ojspW7x2R31oG7fPOLvqYliLOcju-SZSHbuL4ptYcoJuIAvKMATCkGDGJKEz1ZtfPqi7-lH9oW9dxb-glut7kCHYKHMvQM44hoYSspB930vFSZpkdg8BJddPBaDMDMdOBm_fqEXB6___zutBoKK1RRCbmsAAOlaEzkNsTaGKM8DxrErDnzloFfaXmTEsgYtE-2nvHMsxAhzXWIQbEs9sh2t-jyU0KF8VL7xqPbBlgsWi1ZnQVPjcoNoKsJmd6J2cWBdRyLX7QOvA-cGHd_YibkzfqJHz3jxl_6HuHMrfshV3a5ASvIDSvI_WsFTcghzrvDHQ1Di35ITIAPRG4sNwNxgRbmtZiQ_VFP2Ilx3Hy3ctygCX46LjGVGKQMgz1YN-OTGN3W5cWq78PwhzT0MaMVN_qycUt3_a2wgRttLQCMZ_9DFM_JA47nCSXXcp9sL29X-QWArmV4WfbXb95ZKmM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9sIFAQWxpSAjIRCHaON3goTQLmopiK4QUNFb5NeWSmlSlt0D_54Zb7KQIvWY2HnYY898M54HIc-D0i6oBcs84IlMGs8yp-HSWBBOplxYrTB2-GSuj0_lxzN1tkPmfSwMulX2PDEx6tB6tJFPuMSQzBzQyturnxlWjcLT1b6Ehu1KK4Q3KcXYLbILLFnlI7I7O5x__rK1uiA-EirfnFcK0PcnDisxgLRhKAiLQg7kU0rj_z-zvu5A-Y9EOrpL7nRQkk43tL9HdmJzn-xNG1CjL3_TFzQ5dyar-R5ZpSQcF5epJhHFAB2AfRQAK0VHQgx1ou_X9SL7bpf0Q10j_3tNv8LtOmbAW9BYQz-hfxFNWUySAZyepOrTdAaCMNC2gdeiY2akXc7W8wfk9Ojw27vjrCu4kHkl5CoDbBS8MZ6XzsNMG2W50yJIzZktGeibJS9CADICV4qlZTzyKIQLC-28UyyKh2TUtE18RKgwVmpbWFTnAKP5UkuWR8FDoWIBqGtMJv00V77LRo5FMeoKtBIkTHWdMGPyavvE1SYTxw19Z0i5bT_MoZ1utMvzqtuSFUDbIKXnTggmvcidMIppGF0o8xgt_OJLpHuFOx1-zdsuYAEGiDmzqilMF3BnnosxORj0hB3qh839yqk6DvGr-ruex-TZthmfRK-3JrbrTR-GB9XQxwxW3GBkw5bm4kfKEm50WQLw2L_544_JbY4WhBRdeUBGq-U6PgGYtXJPu73zBxCLKTQ priority: 102 providerName: ProQuest |
Title | Neuroimaging Markers for Studying Gulf-War Illness: Single-Subject Level Analytical Method Based on Machine Learning |
URI | https://www.proquest.com/docview/2464210774 https://www.proquest.com/docview/2464193584 https://pubmed.ncbi.nlm.nih.gov/PMC7699718 https://doaj.org/article/923d44c2b3314c30b375167a0d90eea5 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdge-EFMQaiMCojIRAPYfF3MgmhFm0MxCYEVOwt8lfHpiwdXStt_z13blrImBCPiZ3I9p3vfmffByHPg9IuqDHLPOCJTBrPMqfh0VhQTqYcW60wdvjgUO-P5McjdfQ7PLpdwIsbTTusJzWa1q8vf169hQ3_Bi1OMNm3HRZTAIXBUJcVhbxN1tNtETrytWD_tMVGIpVs5WC8ZwK4dXFveeNPOnoqpfP_W2hfd6T8QzPt3SN3W0hJBwse2CC3YnOfbA4aMKfPrugLmpw80-n5JpmlZBwnZ6k2EcVAHYB_FIArRYdCDHmi7-f1OPtup_RDXaMc3KFf4XUdM5AxeGhDP6GfEU3ZTNJBOD1IVajpEBRioJMGfosOmpG2uVuPH5DR3u63d_tZW3gh80rIWQYYKXhjPC-dz40xynKnRZCaM1sysDtLXoQA5ATpFEvLeORRCBfG2nmnWBQPyVozaeIjQoWxUtvColkHWM2XWrI8Ch4KFQtAXz2yvVzmyrdZybE4Rl2BdYKEqa4Tpkderb44X2Tk-EffIVJu1Q9zaacXk-lx1W7NCiBukNJzJwSTXuROGMU0zC6UeYwWhvgS6V4hD8LQvG0DF2CCmDurGsBygZTmueiRrU5P2Km-27zknGrJ6BWXGGoMqwyDfbZqxi_R-62Jk_miD8MLa-hjOhzXmVm3pTn5kbKFG12WAEAe__csnpA7HA8VUsDlFlmbTefxKSCvmeuT9eHu4ecv_XRy0U_b6xfqHi9z |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAXBBREoMAi8RAHK96H1zZShRJoSWgSIWhFb2ZfKZVcp6SJUP8cv42ZjRNwkXrr0d71ep8z38zOg5AXLlHGJRMWWcATkUwti4yCx1QDc0rziVYJ-g6Pxqp_KD8dJUcb5PfKFwbNKlc0MRBqN7WoI-9wiS6ZMaCVd2c_I8wahberqxQauk6t4HZCiLHasWPfX_wCEe58Z_AB1vsl53u7B-_7UZ1lILKJkPMIAIGzaWp5biw0nyaaGyWcVJzpnIGQlfPMOeg7HEWfa8Y990IYN1HGmoR5Ae3eIJsSFSgtstnbHX_-stbyIB4TSby8HxUijzsGMz8Ad2PIeLNMNvhhSBvwP3O4bLD5Dwfcu0Nu19CVdpd77S7Z8NU9stWtQGw_vaCvaDAmDVr6LTIPQT9OTkMOJIoOQQAzKQBkioaL6FpFPy7KSfRNz-igLJHevqVf4XXpI6BlqByiQ7RnoiFqSlC401HIdk17wHgdnVbQLBqCelrHiD2-Tw6vZeofkFY1rfxDQkWqpdKZRvERMKHNlWSxF9xlic8A5bVJZzXNha2jn2MSjrIAKQgXpri8MG3yZv3F2TLyxxV1e7hy63oYszu8mM6Oi5oEFAClnZSWGyGYtCI2Ik2YgtG5PPZeQxdf47oXSFmga1bXDhIwQIzRVXRhuoAb8Fi0yXajJlAE2yxe7Zyipkjnxd_z0ybP18X4JVrZVX66WNZheDEOddLGjmuMrFlSnfwIUclTlecAdB5d_fNn5Gb_YDQshoPx_mNyi6P2Inh2bpPWfLbwTwDizc3T-hxR8v26j-4fyRplkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVkK8IKAgAgUWiUM8WPEeXttIFUpoQ0PbqAKq9s3slVIpdUqaCPUv8quY2WwCLlLf-mjv-thjZr6ZnYOQVy5TxmVDlljAE4nMLUuMgstcg3DKy6FWGcYO7w_UzqH8fJwdr5Dfi1gYdKtc8MTAqN3Yoo28zSWGZKaAVtrD6BZxsNX7cP4zwQpSeNK6KKehY5kFtxnSjcUgj11_-QvUuYvN_has_WvOe9vfPu4kseJAYjMhpwmAA2fz3PLSWPhUnmlulHBScaZLBgpXyQvnYBxAlr7UjHvuhTBuqIw1GfMC3nuLrOUg9UERXOtuDw6-LC0-iM1Els7PSoUo07bBKhAg6RgK4aKQDdkYSgj8LyiuOm_-Iw1798jdCGNpZ77v7pMVXz8g650aVPizS_qGBsfSYLFfJ9OQAOT0LNRDohgcBJCTAlim6MSIYVb002w0TI70hPZHI-S97-lXuD3yCfA1NBTRPfRtoiGDSjC-0_1Q-Zp2QQg7Oq7htegU6mnMF3vykBzeyNQ_Iqv1uPaPCRW5lkoXGlVJwIe2VJKlXnBXZL4AxNci7cU0VzZmQseCHKMKNCJcmOrqwrTIu-UT5_MsINf07eLKLfth_u5wYzw5qSI7qABWOyktN0IwaUVqRJ4xBaNzZeq9hl98i-teIZeBX7M6BkvAADFfV9WB6QLJwFPRIhuNnsAdbLN5sXOqyJ0uqr-01CIvl834JHrc1X48m_dheEgOffLGjmuMrNlSn_4IGcpzBQTAiifXf_wFuQ0kXO31B7tPyR2OhowQ5LlBVqeTmX8GaG9qnkcyouT7TVPuH5xhadc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroimaging+Markers+for+Studying+Gulf-War+Illness%3A+Single-Subject+Level+Analytical+Method+Based+on+Machine+Learning&rft.jtitle=Brain+sciences&rft.au=Guan%2C+Yi&rft.au=Cheng%2C+Chia-Hsin&rft.au=Chen%2C+Weifan&rft.au=Zhang%2C+Yingqi&rft.date=2020-11-01&rft.pub=MDPI+AG&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=10&rft.issue=11&rft.spage=1&rft_id=info:doi/10.3390%2Fbrainsci10110884&rft.externalDocID=A644763203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon |