Neuroimaging Markers for Studying Gulf-War Illness: Single-Subject Level Analytical Method Based on Machine Learning

Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal, and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf War (GW). Longitudinal...

Full description

Saved in:
Bibliographic Details
Published inBrain sciences Vol. 10; no. 11; p. 884
Main Authors Guan, Yi, Cheng, Chia-Hsin, Chen, Weifan, Zhang, Yingqi, Koo, Sophia, Krengel, Maxine, Janulewicz, Patricia, Toomey, Rosemary, Yang, Ehwa, Bhadelia, Rafeeque, Steele, Lea, Kim, Jae-Hun, Sullivan, Kimberly, Koo, Bang-Bon
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2020
MDPI
Subjects
Online AccessGet full text
ISSN2076-3425
2076-3425
DOI10.3390/brainsci10110884

Cover

Abstract Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal, and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf War (GW). Longitudinal studies showed that the severity of these symptoms often remain unchanged even years after the GW, and these veterans with GWI continue to have poorer general health and increased chronic medical conditions than their non-deployed counterparts. For better management and treatment of this condition, there is an urgent need for developing objective biomarkers that can help with simple and accurate diagnosis of GWI. In this study, we applied multiple neuroimaging techniques, including T1-weighted magnetic resonance imaging (T1W-MRI), diffusion tensor imaging (DTI), and novel neurite density imaging (NDI) to perform both a group-level statistical comparison and a single-subject level machine learning (ML) analysis to identify diagnostic imaging features of GWI. Our results supported NDI as the most sensitive in defining GWI characteristics. In particular, our classifier trained with white matter NDI features achieved an accuracy of 90% and F-score of 0.941 for classifying GWI cases from controls after the cross-validation. These results are consistent with our previous study which suggests that NDI measures are sensitive to the microstructural and macrostructural changes in the brain of veterans with GWI, which can be valuable for designing better diagnosis method and treatment efficacy studies.
AbstractList Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal, and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf War (GW). Longitudinal studies showed that the severity of these symptoms often remain unchanged even years after the GW, and these veterans with GWI continue to have poorer general health and increased chronic medical conditions than their non-deployed counterparts. For better management and treatment of this condition, there is an urgent need for developing objective biomarkers that can help with simple and accurate diagnosis of GWI. In this study, we applied multiple neuroimaging techniques, including T1-weighted magnetic resonance imaging (T1W-MRI), diffusion tensor imaging (DTI), and novel neurite density imaging (NDI) to perform both a group-level statistical comparison and a single-subject level machine learning (ML) analysis to identify diagnostic imaging features of GWI. Our results supported NDI as the most sensitive in defining GWI characteristics. In particular, our classifier trained with white matter NDI features achieved an accuracy of 90% and F-score of 0.941 for classifying GWI cases from controls after the cross-validation. These results are consistent with our previous study which suggests that NDI measures are sensitive to the microstructural and macrostructural changes in the brain of veterans with GWI, which can be valuable for designing better diagnosis method and treatment efficacy studies.Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal, and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf War (GW). Longitudinal studies showed that the severity of these symptoms often remain unchanged even years after the GW, and these veterans with GWI continue to have poorer general health and increased chronic medical conditions than their non-deployed counterparts. For better management and treatment of this condition, there is an urgent need for developing objective biomarkers that can help with simple and accurate diagnosis of GWI. In this study, we applied multiple neuroimaging techniques, including T1-weighted magnetic resonance imaging (T1W-MRI), diffusion tensor imaging (DTI), and novel neurite density imaging (NDI) to perform both a group-level statistical comparison and a single-subject level machine learning (ML) analysis to identify diagnostic imaging features of GWI. Our results supported NDI as the most sensitive in defining GWI characteristics. In particular, our classifier trained with white matter NDI features achieved an accuracy of 90% and F-score of 0.941 for classifying GWI cases from controls after the cross-validation. These results are consistent with our previous study which suggests that NDI measures are sensitive to the microstructural and macrostructural changes in the brain of veterans with GWI, which can be valuable for designing better diagnosis method and treatment efficacy studies.
Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal, and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf War (GW). Longitudinal studies showed that the severity of these symptoms often remain unchanged even years after the GW, and these veterans with GWI continue to have poorer general health and increased chronic medical conditions than their non-deployed counterparts. For better management and treatment of this condition, there is an urgent need for developing objective biomarkers that can help with simple and accurate diagnosis of GWI. In this study, we applied multiple neuroimaging techniques, including T1-weighted magnetic resonance imaging (T1W-MRI), diffusion tensor imaging (DTI), and novel neurite density imaging (NDI) to perform both a group-level statistical comparison and a single-subject level machine learning (ML) analysis to identify diagnostic imaging features of GWI. Our results supported NDI as the most sensitive in defining GWI characteristics. In particular, our classifier trained with white matter NDI features achieved an accuracy of 90% and F-score of 0.941 for classifying GWI cases from controls after the cross-validation. These results are consistent with our previous study which suggests that NDI measures are sensitive to the microstructural and macrostructural changes in the brain of veterans with GWI, which can be valuable for designing better diagnosis method and treatment efficacy studies. Keywords: Gulf War illness; MRI; objective biomarker; machine learning; Kansas case criteria; diffusion; grey matter; neurite density imaging
Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal, and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf War (GW). Longitudinal studies showed that the severity of these symptoms often remain unchanged even years after the GW, and these veterans with GWI continue to have poorer general health and increased chronic medical conditions than their non-deployed counterparts. For better management and treatment of this condition, there is an urgent need for developing objective biomarkers that can help with simple and accurate diagnosis of GWI. In this study, we applied multiple neuroimaging techniques, including T1-weighted magnetic resonance imaging (T1W-MRI), diffusion tensor imaging (DTI), and novel neurite density imaging (NDI) to perform both a group-level statistical comparison and a single-subject level machine learning (ML) analysis to identify diagnostic imaging features of GWI. Our results supported NDI as the most sensitive in defining GWI characteristics. In particular, our classifier trained with white matter NDI features achieved an accuracy of 90% and F-score of 0.941 for classifying GWI cases from controls after the cross-validation. These results are consistent with our previous study which suggests that NDI measures are sensitive to the microstructural and macrostructural changes in the brain of veterans with GWI, which can be valuable for designing better diagnosis method and treatment efficacy studies.
Audience Academic
Author Kim, Jae-Hun
Chen, Weifan
Steele, Lea
Toomey, Rosemary
Guan, Yi
Koo, Bang-Bon
Janulewicz, Patricia
Krengel, Maxine
Yang, Ehwa
Zhang, Yingqi
Koo, Sophia
Bhadelia, Rafeeque
Cheng, Chia-Hsin
Sullivan, Kimberly
AuthorAffiliation 1 School of Medicine, Boston University, Boston, MA 02118, USA; guanyi1@bu.edu (Y.G.); chiahsin@bu.edu (C.-H.C.); wfchen@bu.edu (W.C.); yqz2019@bu.edu (Y.Z.); sskoo@bu.edu (S.K.); mhk@bu.edu (M.K.); toomey@bu.edu (R.T.)
3 Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; ehwayang@gmail.com (E.Y.); jaehun1115.kim@samsung.com (J.-H.K.)
2 School of Public Health, Boston University, Boston, MA 02118, USA; paj@bu.edu
4 Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; rbhadelia@gmail.com
5 Neuropsychiatry Division, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Lea.Steele@bcm.edu
AuthorAffiliation_xml – name: 2 School of Public Health, Boston University, Boston, MA 02118, USA; paj@bu.edu
– name: 5 Neuropsychiatry Division, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Lea.Steele@bcm.edu
– name: 4 Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; rbhadelia@gmail.com
– name: 3 Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; ehwayang@gmail.com (E.Y.); jaehun1115.kim@samsung.com (J.-H.K.)
– name: 1 School of Medicine, Boston University, Boston, MA 02118, USA; guanyi1@bu.edu (Y.G.); chiahsin@bu.edu (C.-H.C.); wfchen@bu.edu (W.C.); yqz2019@bu.edu (Y.Z.); sskoo@bu.edu (S.K.); mhk@bu.edu (M.K.); toomey@bu.edu (R.T.)
Author_xml – sequence: 1
  givenname: Yi
  surname: Guan
  fullname: Guan, Yi
– sequence: 2
  givenname: Chia-Hsin
  surname: Cheng
  fullname: Cheng, Chia-Hsin
– sequence: 3
  givenname: Weifan
  surname: Chen
  fullname: Chen, Weifan
– sequence: 4
  givenname: Yingqi
  surname: Zhang
  fullname: Zhang, Yingqi
– sequence: 5
  givenname: Sophia
  surname: Koo
  fullname: Koo, Sophia
– sequence: 6
  givenname: Maxine
  surname: Krengel
  fullname: Krengel, Maxine
– sequence: 7
  givenname: Patricia
  surname: Janulewicz
  fullname: Janulewicz, Patricia
– sequence: 8
  givenname: Rosemary
  surname: Toomey
  fullname: Toomey, Rosemary
– sequence: 9
  givenname: Ehwa
  surname: Yang
  fullname: Yang, Ehwa
– sequence: 10
  givenname: Rafeeque
  surname: Bhadelia
  fullname: Bhadelia, Rafeeque
– sequence: 11
  givenname: Lea
  surname: Steele
  fullname: Steele, Lea
– sequence: 12
  givenname: Jae-Hun
  surname: Kim
  fullname: Kim, Jae-Hun
– sequence: 13
  givenname: Kimberly
  orcidid: 0000-0001-7940-6123
  surname: Sullivan
  fullname: Sullivan, Kimberly
– sequence: 14
  givenname: Bang-Bon
  orcidid: 0000-0001-7423-5572
  surname: Koo
  fullname: Koo, Bang-Bon
BookMark eNp1ks9v0zAUxyM0xMbYnWMkLlwy_Ct2zAGpTDAqdXAoiKPl2C-ti2tvdjKp_z0uHdI6QXyI9fz9fuz31XtZnYQYoKpeY3RJqUTv-qRdyMZhhDHqOvasOiNI8IYy0p482p9WFzlvUPk6hGiLXlSnlBJKuSBn1fgVphTdVq9cWNU3Ov2ClOshpno5Tna3L15Pfmh-6lTPvQ-Q8_t6WcoemuXUb8CM9QLuwdezoP1udEb7-gbGdbT1R53B1jEUrFm7AEWoUyjeV9XzQfsMFw__8-rH50_fr740i2_X86vZojEtZWPDGbNGCENkb5AQotWk59QyTrCWWIpOks5aoREVHKTGBAhQ2tuB96ZvMdDzan7g2qg36jaVNtNORe3Un0JMK6VTebIHJUkBM0N6SjEzFPVUtJgXtpUIQLeF9eHAup36LVgDYUzaH0GPT4Jbq1W8V4JLKXBXAG8fACneTZBHtXXZgPc6QJyyIowzLGnbsSJ980S6iVMq-R5UBJc0HqlWujTgwhDLvWYPVbMSneCUIFpUl_9QlWVh60yZqMGV-pGBHwwmxZwTDMq4UY8u7ttyXmGk9uOnno5fMaInxr_h_NfyGz_m3gM
CitedBy_id crossref_primary_10_1016_j_lfs_2021_119903
crossref_primary_10_1016_j_ynirp_2024_100209
crossref_primary_10_3390_brainsci11091132
crossref_primary_10_1016_j_lfs_2021_119702
crossref_primary_10_3390_brainsci11111410
crossref_primary_10_3390_brainsci12081068
crossref_primary_10_1016_j_lfs_2021_119818
Cites_doi 10.1016/j.ntt.2018.05.001
10.1007/978-3-030-20518-8_65
10.1016/j.bbi.2020.01.020
10.1016/j.neuro.2015.04.005
10.1016/j.nicl.2018.08.019
10.1016/j.psyneuen.2014.11.007
10.1148/radiol.2301021640
10.3390/brainsci8110198
10.1007/s10898-007-9149-x
10.1016/0304-3959(75)90044-5
10.1016/j.neubiorev.2018.05.008
10.1073/pnas.200033797
10.1212/NXI.0000000000000399
10.1093/ije/27.6.1000
10.1016/j.neuro.2014.07.003
10.1016/j.neuro.2016.02.009
10.1371/journal.pone.0058493
10.1016/j.neuroimage.2006.01.021
10.1016/j.neuroimage.2006.02.024
10.1002/glia.23668
10.1016/j.cortex.2015.08.022
10.1016/j.neuro.2011.06.006
10.1016/j.neuroimage.2012.03.072
10.1002/hec.1594
10.1109/TNN.1998.712192
10.1016/j.jneumeth.2019.108544
10.1097/HTR.0000000000000173
10.1109/ACII.2013.47
10.1016/S1470-2045(19)30149-4
10.1186/s12974-016-0744-y
10.1007/s11604-018-0794-4
10.3390/brainsci7070079
10.1111/jnc.13088
10.1016/j.bbi.2020.07.006
10.1016/0165-1781(89)90047-4
10.1016/j.neuroimage.2012.01.021
10.1016/j.neuroimage.2018.02.017
10.1016/j.neuroimage.2014.10.002
10.3390/brainsci10070456
10.1016/0022-3999(94)00125-O
10.1038/nbt1209-1135
10.1093/aje/152.10.992
10.1186/s12974-018-1113-9
10.1016/j.bbi.2015.02.009
10.1093/cercor/bhu065
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
3V.
7TK
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/brainsci10110884
DatabaseName CrossRef
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Biological Sciences
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2076-3425
ExternalDocumentID oai_doaj_org_article_923d44c2b3314c30b375167a0d90eea5
PMC7699718
A644763203
10_3390_brainsci10110884
GeographicLocations United States
United States--US
Kansas
GeographicLocations_xml – name: United States
– name: Kansas
– name: United States--US
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
PMFND
3V.
7TK
7XB
8FK
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c534t-644dc77c29bc07775a2b63d4621a91978928dd7a0376e9a12e2e33bdf6bcb51e3
IEDL.DBID M48
ISSN 2076-3425
IngestDate Wed Aug 27 01:29:37 EDT 2025
Thu Aug 21 14:11:13 EDT 2025
Fri Sep 05 03:18:01 EDT 2025
Fri Jul 25 11:58:42 EDT 2025
Tue Jun 17 21:25:24 EDT 2025
Tue Jun 10 20:39:28 EDT 2025
Tue Jul 01 02:32:44 EDT 2025
Thu Apr 24 22:56:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-644dc77c29bc07775a2b63d4621a91978928dd7a0376e9a12e2e33bdf6bcb51e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Both authors contributed equally to this work.
ORCID 0000-0001-7940-6123
0000-0001-7423-5572
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/brainsci10110884
PMID 33233672
PQID 2464210774
PQPubID 2032423
ParticipantIDs doaj_primary_oai_doaj_org_article_923d44c2b3314c30b375167a0d90eea5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7699718
proquest_miscellaneous_2464193584
proquest_journals_2464210774
gale_infotracmisc_A644763203
gale_infotracacademiconefile_A644763203
crossref_citationtrail_10_3390_brainsci10110884
crossref_primary_10_3390_brainsci10110884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Brain sciences
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chao (ref_13) 2015; 48
Smets (ref_24) 1995; 39
Ashbrook (ref_45) 2018; 15
Fischl (ref_25) 2012; 62
Chao (ref_47) 2016; 53
Gade (ref_6) 2011; 20
Steele (ref_8) 2000; 152
ref_34
Bierer (ref_48) 2015; 51
Alshelh (ref_46) 2020; 87
Dadar (ref_17) 2018; 20
Buysse (ref_22) 1989; 28
Pawlitzki (ref_39) 2017; 4
Moradi (ref_19) 2015; 104
Ngiam (ref_21) 2019; 20
Melzack (ref_23) 1975; 1
Zhang (ref_29) 2012; 61
Fischl (ref_32) 2000; 97
Wakana (ref_27) 2004; 230
Chao (ref_14) 2018; 68
ref_15
Noble (ref_33) 2009; 27
ref_37
Kelly (ref_5) 2015; 133
Rojas (ref_35) 2019; Volume 11507
Forouzannezhad (ref_42) 2020; 333
Yee (ref_3) 2016; 31
Chao (ref_12) 2014; 44
Belgrad (ref_43) 2019; 67
Desikan (ref_31) 2006; 31
Smith (ref_26) 2006; 31
Dursa (ref_9) 2018; 26
Rathbone (ref_7) 2015; 46
Chao (ref_11) 2011; 32
Bubb (ref_40) 2018; 92
ref_20
Sakai (ref_18) 2019; 37
Proctor (ref_10) 1998; 27
Fukutomi (ref_30) 2018; 182
ref_2
White (ref_1) 2016; 74
ref_28
Karaboga (ref_36) 2007; 39
Cheng (ref_16) 2020; 89
ref_4
Phillips (ref_38) 2015; 25
Herrera (ref_41) 2018; 61
Flannery (ref_44) 2016; 13
References_xml – ident: ref_28
– volume: 68
  start-page: 36
  year: 2018
  ident: ref_14
  article-title: Effects of low-level sarin and cyclosarin exposure on hippocampal microstructure in Gulf War Veterans
  publication-title: Neurotoxicol. Teratol.
  doi: 10.1016/j.ntt.2018.05.001
– volume: Volume 11507
  start-page: 785
  year: 2019
  ident: ref_35
  article-title: QBSO-FS: A Reinforcement Learning Based Bee Swarm Optimization Metaheuristic for Feature Selection
  publication-title: Advances in Computational Intelligence
  doi: 10.1007/978-3-030-20518-8_65
– volume: 87
  start-page: 498
  year: 2020
  ident: ref_46
  article-title: In-vivo imaging of neuroinflammation in veterans with Gulf War illness
  publication-title: Brain Behav. Immun.
  doi: 10.1016/j.bbi.2020.01.020
– volume: 48
  start-page: 239
  year: 2015
  ident: ref_13
  article-title: Effects of low-level sarin and cyclosarin exposure on white matter integrity in Gulf War Veterans
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2015.04.005
– volume: 20
  start-page: 506
  year: 2018
  ident: ref_17
  article-title: Structural neuroimaging as clinical predictor: A review of machine learning applications
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2018.08.019
– volume: 51
  start-page: 567
  year: 2015
  ident: ref_48
  article-title: White matter abnormalities in Gulf War veterans with posttraumatic stress disorder: A pilot study
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2014.11.007
– volume: 230
  start-page: 77
  year: 2004
  ident: ref_27
  article-title: Fiber tract-based atlas of human white matter anatomy
  publication-title: Radiology
  doi: 10.1148/radiol.2301021640
– ident: ref_2
  doi: 10.3390/brainsci8110198
– volume: 39
  start-page: 459
  year: 2007
  ident: ref_36
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9149-x
– volume: 1
  start-page: 277
  year: 1975
  ident: ref_23
  article-title: The McGill Pain Questionnaire: Major properties and scoring methods
  publication-title: Pain
  doi: 10.1016/0304-3959(75)90044-5
– volume: 92
  start-page: 104
  year: 2018
  ident: ref_40
  article-title: The cingulum bundle: Anatomy, function, and dysfunction
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2018.05.008
– volume: 97
  start-page: 11050
  year: 2000
  ident: ref_32
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.200033797
– volume: 4
  start-page: e399
  year: 2017
  ident: ref_39
  article-title: Loss of corticospinal tract integrity in early MS disease stages
  publication-title: Neurol. Neuroimmunol. Neuroinflamm.
  doi: 10.1212/NXI.0000000000000399
– volume: 27
  start-page: 1000
  year: 1998
  ident: ref_10
  article-title: Health status of Persian Gulf War veterans: Self-reported symptoms, environmental exposures and the effect of stress
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/27.6.1000
– volume: 44
  start-page: 263
  year: 2014
  ident: ref_12
  article-title: Effects of low-level sarin and cyclosarin exposure on hippocampal subfields in Gulf War Veterans
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2014.07.003
– volume: 53
  start-page: 246
  year: 2016
  ident: ref_47
  article-title: Associations between the self-reported frequency of hearing chemical alarms in theater and regional brain volume in Gulf War Veterans
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2016.02.009
– ident: ref_15
  doi: 10.1371/journal.pone.0058493
– volume: 31
  start-page: 968
  year: 2006
  ident: ref_31
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 31
  start-page: 1487
  year: 2006
  ident: ref_26
  article-title: Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.02.024
– volume: 67
  start-page: 2107
  year: 2019
  ident: ref_43
  article-title: Oligodendrocyte involvement in Gulf War Illness
  publication-title: Glia
  doi: 10.1002/glia.23668
– volume: 26
  start-page: 43
  year: 2018
  ident: ref_9
  article-title: Gulf War Illness in the 1991 Gulf war and Gulf era veteran population: An application of the centers for disease control and prevention and Kansas case definitions to historical data
  publication-title: J. Mil. Veterans Health
– volume: 74
  start-page: 449
  year: 2016
  ident: ref_1
  article-title: Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment
  publication-title: Cortex
  doi: 10.1016/j.cortex.2015.08.022
– volume: 32
  start-page: 814
  year: 2011
  ident: ref_11
  article-title: Effects of low-level sarin and cyclosarin exposure and Gulf War Illness on brain structure and function: A study at 4T
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2011.06.006
– volume: 61
  start-page: 1000
  year: 2012
  ident: ref_29
  article-title: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.072
– volume: 20
  start-page: 401
  year: 2011
  ident: ref_6
  article-title: Combat exposure and mental health: The long-term effects among US Vietnam and Gulf War veterans
  publication-title: Health Econ.
  doi: 10.1002/hec.1594
– ident: ref_34
  doi: 10.1109/TNN.1998.712192
– volume: 333
  start-page: 108544
  year: 2020
  ident: ref_42
  article-title: A gaussian-based model for early detection of mild cognitive impairment using multimodal neuroimaging
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108544
– volume: 61
  start-page: 863
  year: 2018
  ident: ref_41
  article-title: SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary
  publication-title: J. Artif. Int. Res.
– volume: 31
  start-page: 320
  year: 2016
  ident: ref_3
  article-title: Self-Reported Traumatic Brain Injury, Health and Rate of Chronic Multisymptom Illness in Veterans from the 1990–1991 Gulf War
  publication-title: J. Head Trauma Rehabil.
  doi: 10.1097/HTR.0000000000000173
– ident: ref_37
  doi: 10.1109/ACII.2013.47
– volume: 20
  start-page: e262
  year: 2019
  ident: ref_21
  article-title: Big data and machine learning algorithms for health-care delivery
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(19)30149-4
– volume: 13
  start-page: 267
  year: 2016
  ident: ref_44
  article-title: Persistent neuroinflammation and cognitive impairment in a rat model of acute diisopropylfluorophosphate intoxication
  publication-title: J. Neuroinflamm.
  doi: 10.1186/s12974-016-0744-y
– volume: 37
  start-page: 34
  year: 2019
  ident: ref_18
  article-title: Machine learning studies on major brain diseases: 5-year trends of 2014–2018
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-018-0794-4
– ident: ref_4
  doi: 10.3390/brainsci7070079
– volume: 133
  start-page: 708
  year: 2015
  ident: ref_5
  article-title: Corticosterone primes the neuroinflammatory response to DFP in mice: Potential animal model of Gulf War Illness
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13088
– volume: 89
  start-page: 281
  year: 2020
  ident: ref_16
  article-title: Alterations in high-order diffusion imaging in veterans with Gulf War Illness is associated with chemical weapons exposure and mild traumatic brain injury
  publication-title: Brain Behav. Immun.
  doi: 10.1016/j.bbi.2020.07.006
– volume: 28
  start-page: 193
  year: 1989
  ident: ref_22
  article-title: The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research
  publication-title: Psychiatry Res.
  doi: 10.1016/0165-1781(89)90047-4
– volume: 62
  start-page: 774
  year: 2012
  ident: ref_25
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 182
  start-page: 488
  year: 2018
  ident: ref_30
  article-title: Neurite imaging reveals microstructural variations in human cerebral cortical gray matter
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.02.017
– volume: 104
  start-page: 398
  year: 2015
  ident: ref_19
  article-title: Alzheimer’s Disease Neuroimaging Initiative. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– ident: ref_20
  doi: 10.3390/brainsci10070456
– volume: 39
  start-page: 315
  year: 1995
  ident: ref_24
  article-title: The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue
  publication-title: J. Psychosom. Res.
  doi: 10.1016/0022-3999(94)00125-O
– volume: 27
  start-page: 1135
  year: 2009
  ident: ref_33
  article-title: How does multiple testing correction work?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1209-1135
– volume: 152
  start-page: 992
  year: 2000
  ident: ref_8
  article-title: Prevalence and patterns of Gulf War illness in Kansas veterans: Association of symptoms with characteristics of person, place, and time of military service
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/152.10.992
– volume: 15
  start-page: 86
  year: 2018
  ident: ref_45
  article-title: Epigenetic impacts of stress priming of the neuroinflammatory response to sarin surrogate in mice: A model of Gulf War illness
  publication-title: J. Neuroinflamm.
  doi: 10.1186/s12974-018-1113-9
– volume: 46
  start-page: 1
  year: 2015
  ident: ref_7
  article-title: A review of the neuro- and systemic inflammatory responses in post concussion symptoms: Introduction of the “post-inflammatory brain syndrome” PIBS
  publication-title: Brain Behav. Immun.
  doi: 10.1016/j.bbi.2015.02.009
– volume: 25
  start-page: 2670
  year: 2015
  ident: ref_38
  article-title: The Corticospinal Tract in Huntington’s Disease
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhu065
SSID ssj0000800350
Score 2.1709492
Snippet Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from fatigue, musculoskeletal pain, and neurological complaints to...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 884
SubjectTerms Biological markers
Biomarkers
Classification
Consortia
Diagnosis
diffusion
Fatigue
Gulf War
Gulf War illness
Gulf War syndrome
Health aspects
Illnesses
Kansas case criteria
Learning algorithms
Machine learning
Magnetic resonance imaging
Medical imaging
Military personnel
MRI
Neuroimaging
objective biomarker
Pain
Persian Gulf syndrome
Persian Gulf War
Questionnaires
Registration
Sleep
Substantia alba
Technology application
Traumatic brain injury
War
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnrhUQKlYKMiVEBWHaON3zG2LaAtqe4GK3iy_ForSLCq7B_49M0662hQJLhwTO5Eztme-cWa-IeRVUjokNWdVBDxRSRNZFTRcGg_Gydi51wpzh88v9Oml_HilrjZKfWFMWE8P3AtuCgAkSRl5EILJKOogjGIaXpVsnbMv7KW1rTecqe8DDhKq7v9LCvDrpwErLoBVYWjwmkaO7FCh6_9TKd8PlNywPMcPyc4AGemsH-ojspW7x2R31oG7fPOLvqYliLOcju-SZSHbuL4ptYcoJuIAvKMATCkGDGJKEz1ZtfPqi7-lH9oW9dxb-glut7kCHYKHMvQM44hoYSspB930vFSZpkdg8BJddPBaDMDMdOBm_fqEXB6___zutBoKK1RRCbmsAAOlaEzkNsTaGKM8DxrErDnzloFfaXmTEsgYtE-2nvHMsxAhzXWIQbEs9sh2t-jyU0KF8VL7xqPbBlgsWi1ZnQVPjcoNoKsJmd6J2cWBdRyLX7QOvA-cGHd_YibkzfqJHz3jxl_6HuHMrfshV3a5ASvIDSvI_WsFTcghzrvDHQ1Di35ITIAPRG4sNwNxgRbmtZiQ_VFP2Ilx3Hy3ctygCX46LjGVGKQMgz1YN-OTGN3W5cWq78PwhzT0MaMVN_qycUt3_a2wgRttLQCMZ_9DFM_JA47nCSXXcp9sL29X-QWArmV4WfbXb95ZKmM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9sIFAQWxpSAjIRCHaON3goTQLmopiK4QUNFb5NeWSmlSlt0D_54Zb7KQIvWY2HnYY898M54HIc-D0i6oBcs84IlMGs8yp-HSWBBOplxYrTB2-GSuj0_lxzN1tkPmfSwMulX2PDEx6tB6tJFPuMSQzBzQyturnxlWjcLT1b6Ehu1KK4Q3KcXYLbILLFnlI7I7O5x__rK1uiA-EirfnFcK0PcnDisxgLRhKAiLQg7kU0rj_z-zvu5A-Y9EOrpL7nRQkk43tL9HdmJzn-xNG1CjL3_TFzQ5dyar-R5ZpSQcF5epJhHFAB2AfRQAK0VHQgx1ou_X9SL7bpf0Q10j_3tNv8LtOmbAW9BYQz-hfxFNWUySAZyepOrTdAaCMNC2gdeiY2akXc7W8wfk9Ojw27vjrCu4kHkl5CoDbBS8MZ6XzsNMG2W50yJIzZktGeibJS9CADICV4qlZTzyKIQLC-28UyyKh2TUtE18RKgwVmpbWFTnAKP5UkuWR8FDoWIBqGtMJv00V77LRo5FMeoKtBIkTHWdMGPyavvE1SYTxw19Z0i5bT_MoZ1utMvzqtuSFUDbIKXnTggmvcidMIppGF0o8xgt_OJLpHuFOx1-zdsuYAEGiDmzqilMF3BnnosxORj0hB3qh839yqk6DvGr-ruex-TZthmfRK-3JrbrTR-GB9XQxwxW3GBkw5bm4kfKEm50WQLw2L_544_JbY4WhBRdeUBGq-U6PgGYtXJPu73zBxCLKTQ
  priority: 102
  providerName: ProQuest
Title Neuroimaging Markers for Studying Gulf-War Illness: Single-Subject Level Analytical Method Based on Machine Learning
URI https://www.proquest.com/docview/2464210774
https://www.proquest.com/docview/2464193584
https://pubmed.ncbi.nlm.nih.gov/PMC7699718
https://doaj.org/article/923d44c2b3314c30b375167a0d90eea5
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdge-EFMQaiMCojIRAPYfF3MgmhFm0MxCYEVOwt8lfHpiwdXStt_z13blrImBCPiZ3I9p3vfmffByHPg9IuqDHLPOCJTBrPMqfh0VhQTqYcW60wdvjgUO-P5McjdfQ7PLpdwIsbTTusJzWa1q8vf169hQ3_Bi1OMNm3HRZTAIXBUJcVhbxN1tNtETrytWD_tMVGIpVs5WC8ZwK4dXFveeNPOnoqpfP_W2hfd6T8QzPt3SN3W0hJBwse2CC3YnOfbA4aMKfPrugLmpw80-n5JpmlZBwnZ6k2EcVAHYB_FIArRYdCDHmi7-f1OPtup_RDXaMc3KFf4XUdM5AxeGhDP6GfEU3ZTNJBOD1IVajpEBRioJMGfosOmpG2uVuPH5DR3u63d_tZW3gh80rIWQYYKXhjPC-dz40xynKnRZCaM1sysDtLXoQA5ATpFEvLeORRCBfG2nmnWBQPyVozaeIjQoWxUtvColkHWM2XWrI8Ch4KFQtAXz2yvVzmyrdZybE4Rl2BdYKEqa4Tpkderb44X2Tk-EffIVJu1Q9zaacXk-lx1W7NCiBukNJzJwSTXuROGMU0zC6UeYwWhvgS6V4hD8LQvG0DF2CCmDurGsBygZTmueiRrU5P2Km-27zknGrJ6BWXGGoMqwyDfbZqxi_R-62Jk_miD8MLa-hjOhzXmVm3pTn5kbKFG12WAEAe__csnpA7HA8VUsDlFlmbTefxKSCvmeuT9eHu4ecv_XRy0U_b6xfqHi9z
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAXBBREoMAi8RAHK96H1zZShRJoSWgSIWhFb2ZfKZVcp6SJUP8cv42ZjRNwkXrr0d71ep8z38zOg5AXLlHGJRMWWcATkUwti4yCx1QDc0rziVYJ-g6Pxqp_KD8dJUcb5PfKFwbNKlc0MRBqN7WoI-9wiS6ZMaCVd2c_I8wahberqxQauk6t4HZCiLHasWPfX_wCEe58Z_AB1vsl53u7B-_7UZ1lILKJkPMIAIGzaWp5biw0nyaaGyWcVJzpnIGQlfPMOeg7HEWfa8Y990IYN1HGmoR5Ae3eIJsSFSgtstnbHX_-stbyIB4TSby8HxUijzsGMz8Ad2PIeLNMNvhhSBvwP3O4bLD5Dwfcu0Nu19CVdpd77S7Z8NU9stWtQGw_vaCvaDAmDVr6LTIPQT9OTkMOJIoOQQAzKQBkioaL6FpFPy7KSfRNz-igLJHevqVf4XXpI6BlqByiQ7RnoiFqSlC401HIdk17wHgdnVbQLBqCelrHiD2-Tw6vZeofkFY1rfxDQkWqpdKZRvERMKHNlWSxF9xlic8A5bVJZzXNha2jn2MSjrIAKQgXpri8MG3yZv3F2TLyxxV1e7hy63oYszu8mM6Oi5oEFAClnZSWGyGYtCI2Ik2YgtG5PPZeQxdf47oXSFmga1bXDhIwQIzRVXRhuoAb8Fi0yXajJlAE2yxe7Zyipkjnxd_z0ybP18X4JVrZVX66WNZheDEOddLGjmuMrFlSnfwIUclTlecAdB5d_fNn5Gb_YDQshoPx_mNyi6P2Inh2bpPWfLbwTwDizc3T-hxR8v26j-4fyRplkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVkK8IKAgAgUWiUM8WPEeXttIFUpoQ0PbqAKq9s3slVIpdUqaCPUv8quY2WwCLlLf-mjv-thjZr6ZnYOQVy5TxmVDlljAE4nMLUuMgstcg3DKy6FWGcYO7w_UzqH8fJwdr5Dfi1gYdKtc8MTAqN3Yoo28zSWGZKaAVtrD6BZxsNX7cP4zwQpSeNK6KKehY5kFtxnSjcUgj11_-QvUuYvN_has_WvOe9vfPu4kseJAYjMhpwmAA2fz3PLSWPhUnmlulHBScaZLBgpXyQvnYBxAlr7UjHvuhTBuqIw1GfMC3nuLrOUg9UERXOtuDw6-LC0-iM1Els7PSoUo07bBKhAg6RgK4aKQDdkYSgj8LyiuOm_-Iw1798jdCGNpZ77v7pMVXz8g650aVPizS_qGBsfSYLFfJ9OQAOT0LNRDohgcBJCTAlim6MSIYVb002w0TI70hPZHI-S97-lXuD3yCfA1NBTRPfRtoiGDSjC-0_1Q-Zp2QQg7Oq7htegU6mnMF3vykBzeyNQ_Iqv1uPaPCRW5lkoXGlVJwIe2VJKlXnBXZL4AxNci7cU0VzZmQseCHKMKNCJcmOrqwrTIu-UT5_MsINf07eLKLfth_u5wYzw5qSI7qABWOyktN0IwaUVqRJ4xBaNzZeq9hl98i-teIZeBX7M6BkvAADFfV9WB6QLJwFPRIhuNnsAdbLN5sXOqyJ0uqr-01CIvl834JHrc1X48m_dheEgOffLGjmuMrNlSn_4IGcpzBQTAiifXf_wFuQ0kXO31B7tPyR2OhowQ5LlBVqeTmX8GaG9qnkcyouT7TVPuH5xhadc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroimaging+Markers+for+Studying+Gulf-War+Illness%3A+Single-Subject+Level+Analytical+Method+Based+on+Machine+Learning&rft.jtitle=Brain+sciences&rft.au=Guan%2C+Yi&rft.au=Cheng%2C+Chia-Hsin&rft.au=Chen%2C+Weifan&rft.au=Zhang%2C+Yingqi&rft.date=2020-11-01&rft.pub=MDPI+AG&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=10&rft.issue=11&rft.spage=1&rft_id=info:doi/10.3390%2Fbrainsci10110884&rft.externalDocID=A644763203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon