From Gene Trees to Organismal Phylogeny in Prokaryotes:The Case of the γ-Proteobacteria

The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on in...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 1; no. 1; pp. e19 - 109
Main Authors Lerat, Emmanuelle, Daubin, Vincent, Moran, Nancy A
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2003
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1545-7885
1544-9173
1545-7885
DOI10.1371/journal.pbio.0000019

Cover

Abstract The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the gamma-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the gamma-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.
AbstractList The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the γ-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the γ-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.
The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the γ-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the γ-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization. The study demonstrates that single-copy orthologous genes are resistant to horizontal transfer and can be used to generate robust hypotheses for organismal phylogenies
The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the gamma-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the gamma-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.
The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the gamma-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the gamma-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the gamma-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the gamma-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.
Author Lerat, Emmanuelle
Moran, Nancy A
Daubin, Vincent
AuthorAffiliation 2 Department of Biochemistry and Molecular Biophysics, University of Arizona Tucson, Arizona United States of America
1 Department of Ecology and Evolutionary Biology, University of Arizona Tucson, Arizona United States of America
AuthorAffiliation_xml – name: 2 Department of Biochemistry and Molecular Biophysics, University of Arizona Tucson, Arizona United States of America
– name: 1 Department of Ecology and Evolutionary Biology, University of Arizona Tucson, Arizona United States of America
Author_xml – sequence: 1
  givenname: Emmanuelle
  surname: Lerat
  fullname: Lerat, Emmanuelle
– sequence: 2
  givenname: Vincent
  surname: Daubin
  fullname: Daubin, Vincent
– sequence: 3
  givenname: Nancy A
  surname: Moran
  fullname: Moran, Nancy A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12975657$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00427440$$DView record in HAL
BookMark eNqFUstu2zAQFIoUzaP9g6LQqUAOckmRFKUAPQRG8wAMJAcX6I1YUUubrky6JB3A39X_6DdVqt0gyaHlhYvZmeEuOKfZkfMOs-w9JRPKJP208tvgoJ9sWusnZDy0eZWdUMFFIetaHD2pj7PTGFeElGVT1m-yY1o2UlRCnmTfroJf59foMJ8HxJgnn9-FBTgb19Dn98td7xfodrl1-X3w3yHsfMJ4MV9iPoWIuTd5GupfP4uhndC3oBMGC2-z1wb6iO8O91n29erLfHpTzO6ub6eXs0ILxlNBh11KLTlpO4EoeWM6A7Wo645BXUthaNVWYDpGZKVNSyhyplkJZoDbjjfsLLvd-3YeVmoT7HoYUXmw6g_gw0JBSFb3qAg0nAGiYbzmhJGWNoIQQ0vDgTR69Pq899ps2zV2Gl0K0D8zfd5xdqkW_kHRhlVEDPrzvX75QnVzOVMjRggvJefkgQ7cj4e3gv-xxZjU2kaNfQ8O_TYqSYUknPyfSOtGiJKXA_HD0-kfB_j72QPhYk_QwccY0ChtEyTrx2VsryhRY7LUIVlqTJY6JGsQ8xfiR_9_yX4DlpTXEQ
CitedBy_id crossref_primary_10_1016_j_ympev_2009_12_010
crossref_primary_10_1073_pnas_0900194106
crossref_primary_10_3390_ijms23116257
crossref_primary_10_1371_journal_pcbi_1000059
crossref_primary_10_1093_gbe_evr050
crossref_primary_10_1371_journal_pcbi_1000732
crossref_primary_10_1186_s12864_017_4056_0
crossref_primary_10_1099_ijs_0_014308_0
crossref_primary_10_1371_journal_pbio_0040188
crossref_primary_10_1128_JB_00122_08
crossref_primary_10_1093_bioinformatics_btl313
crossref_primary_10_1186_gb_2006_7_5_r44
crossref_primary_10_1590_S1415_47572007000200015
crossref_primary_10_1016_j_fgb_2006_05_001
crossref_primary_10_1186_1471_2105_14_4
crossref_primary_10_1080_10635150590923335
crossref_primary_10_1099_ijs_0_044388_0
crossref_primary_10_1186_1471_2105_5_204
crossref_primary_10_1038_nrmicro1204
crossref_primary_10_1093_bioinformatics_btu806
crossref_primary_10_1089_omi_2005_9_43
crossref_primary_10_1101_gr_2231904
crossref_primary_10_1007_s00287_009_0350_9
crossref_primary_10_1093_bioinformatics_btt021
crossref_primary_10_1371_journal_pcbi_1004408
crossref_primary_10_1186_1471_2148_5_63
crossref_primary_10_1007_s00239_005_0250_9
crossref_primary_10_1186_1471_2148_11_64
crossref_primary_10_1111_j_1462_2920_2012_02704_x
crossref_primary_10_1002_bies_20030
crossref_primary_10_1089_cmb_2010_0098
crossref_primary_10_3390_ijms21239131
crossref_primary_10_1186_s12864_020_07262_x
crossref_primary_10_1371_journal_pcbi_1004095
crossref_primary_10_1016_j_bbagen_2016_06_020
crossref_primary_10_1080_10635150601156313
crossref_primary_10_1371_journal_pgen_1008479
crossref_primary_10_1089_cmb_2010_0095
crossref_primary_10_1007_s00203_017_1368_z
crossref_primary_10_1016_j_gde_2005_09_011
crossref_primary_10_1016_j_resmic_2007_02_004
crossref_primary_10_1007_s11214_007_9253_8
crossref_primary_10_1155_2019_7586430
crossref_primary_10_1093_molbev_mss264
crossref_primary_10_1073_pnas_0711165105
crossref_primary_10_1128_msystems_00257_18
crossref_primary_10_3389_fmicb_2018_00138
crossref_primary_10_1007_s10482_015_0556_6
crossref_primary_10_1093_molbev_msi211
crossref_primary_10_1093_nar_gkl734
crossref_primary_10_1016_j_tim_2007_01_007
crossref_primary_10_1099_ijs_0_63370_0
crossref_primary_10_1073_pnas_2000860117
crossref_primary_10_3201_eid2303_161476
crossref_primary_10_1099_mgen_0_000351
crossref_primary_10_1016_j_fmrre_2004_11_004
crossref_primary_10_1007_s12088_007_0022_x
crossref_primary_10_1016_j_tig_2004_03_009
crossref_primary_10_1186_1471_2105_7_270
crossref_primary_10_1038_s41598_017_05918_5
crossref_primary_10_1093_gbe_evs001
crossref_primary_10_1186_s12864_025_11301_w
crossref_primary_10_1080_07352680903241204
crossref_primary_10_1128_JB_187_17_6106_6118_2005
crossref_primary_10_1016_j_tig_2004_11_006
crossref_primary_10_1186_gb_2008_9_10_r151
crossref_primary_10_1186_s13059_023_03089_3
crossref_primary_10_1128_AEM_06540_11
crossref_primary_10_1016_j_aspen_2017_08_001
crossref_primary_10_1128_JB_01581_08
crossref_primary_10_1093_gbe_evq068
crossref_primary_10_1093_nar_gkn240
crossref_primary_10_1264_jsme2_23_182
crossref_primary_10_1016_j_syapm_2016_09_004
crossref_primary_10_1128_AEM_71_10_6335_6344_2005
crossref_primary_10_1146_annurev_micro_59_030804_121041
crossref_primary_10_1093_ecco_jcc_jjab101
crossref_primary_10_1007_s10539_010_9219_1
crossref_primary_10_1186_1471_2148_7_S1_S7
crossref_primary_10_1186_gb_2004_5_4_r27
crossref_primary_10_7554_eLife_65366
crossref_primary_10_1016_j_ympev_2004_10_021
crossref_primary_10_1109_TCBB_2015_2430860
crossref_primary_10_1101_gr_125351_111
crossref_primary_10_1186_gb_2007_8_8_r156
crossref_primary_10_1016_S0378_1097_04_00006_0
crossref_primary_10_1073_pnas_0502035102
crossref_primary_10_1016_j_biochi_2015_07_008
crossref_primary_10_1155_2020_8708305
crossref_primary_10_1080_10635150802580949
crossref_primary_10_1093_nar_gku1265
crossref_primary_10_1186_gb_2007_8_5_r71
crossref_primary_10_1101_gr_3024704
crossref_primary_10_1371_journal_pone_0063025
crossref_primary_10_1007_s00335_004_4002_8
crossref_primary_10_1038_ismej_2013_235
crossref_primary_10_1186_gb_2009_10_6_r70
crossref_primary_10_1080_10635150701546231
crossref_primary_10_3390_genes13040598
crossref_primary_10_1093_gbe_evx064
crossref_primary_10_1080_10635150500541722
crossref_primary_10_1007_s00239_006_0178_8
crossref_primary_10_1186_1471_2105_10_154
crossref_primary_10_1093_nar_gkl440
crossref_primary_10_3389_fmicb_2018_02493
crossref_primary_10_1098_rstb_2009_0032
crossref_primary_10_1098_rstb_2009_0031
crossref_primary_10_1098_rstb_2009_0033
crossref_primary_10_1093_gbe_evu119
crossref_primary_10_1128_AEM_01487_15
crossref_primary_10_1186_s13062_020_0258_5
crossref_primary_10_1186_1471_2148_5_27
crossref_primary_10_1186_gb_2009_10_6_r65
crossref_primary_10_3390_microorganisms9030624
crossref_primary_10_1186_1944_3277_10_9
crossref_primary_10_1111_gcb_12447
crossref_primary_10_3390_v9050120
crossref_primary_10_1101_gr_5322306
crossref_primary_10_1016_j_tim_2006_01_009
crossref_primary_10_1177_1177932220938064
crossref_primary_10_1186_1471_2148_5_33
crossref_primary_10_1186_1471_2148_5_34
crossref_primary_10_5352_JLS_2012_22_2_245
crossref_primary_10_1016_j_tim_2004_02_007
crossref_primary_10_3390_ijms25168861
crossref_primary_10_1128_genomeA_00767_14
crossref_primary_10_1111_mec_15656
crossref_primary_10_1128_mSystems_00001_17
crossref_primary_10_1146_annurev_ecolsys_35_112202_130205
crossref_primary_10_1186_s40793_016_0195_1
crossref_primary_10_1111_j_1751_7915_2010_00215_x
crossref_primary_10_1186_1471_2148_5_36
crossref_primary_10_1371_journal_pbio_0030130
crossref_primary_10_1016_j_mib_2005_08_005
crossref_primary_10_1371_journal_pone_0000743
crossref_primary_10_1016_j_meegid_2004_09_002
crossref_primary_10_1073_pnas_0610699104
crossref_primary_10_1186_s12864_017_3616_7
crossref_primary_10_1007_s10482_015_0610_4
crossref_primary_10_1098_rsob_130010
crossref_primary_10_3390_microorganisms8081179
crossref_primary_10_1128_MMBR_00020_10
crossref_primary_10_1016_j_resmic_2009_07_006
crossref_primary_10_1093_molbev_msr239
crossref_primary_10_1093_sysbio_syv084
crossref_primary_10_1093_bioinformatics_btz745
crossref_primary_10_1186_1471_2164_6_94
crossref_primary_10_1099_mgen_0_000322
crossref_primary_10_7717_peerj_4560
crossref_primary_10_1111_mmi_12897
crossref_primary_10_1038_nrg1603
crossref_primary_10_1155_2012_394026
crossref_primary_10_1186_1471_2105_8_83
crossref_primary_10_1371_journal_pone_0024704
crossref_primary_10_3389_fmicb_2014_00660
crossref_primary_10_1021_cr0683111
crossref_primary_10_1099_ijs_0_034322_0
crossref_primary_10_1016_j_ympev_2005_02_002
crossref_primary_10_1111_j_1462_2920_2009_02085_x
crossref_primary_10_1371_journal_pone_0088805
crossref_primary_10_1016_j_ympev_2005_02_008
crossref_primary_10_1016_j_zool_2005_09_006
crossref_primary_10_1086_519476
crossref_primary_10_1089_cmb_2007_A001
crossref_primary_10_1099_ijsem_0_001485
crossref_primary_10_1080_10635150701639754
crossref_primary_10_1111_1462_2920_14800
crossref_primary_10_1007_s00203_016_1245_1
crossref_primary_10_1073_pnas_0401526101
crossref_primary_10_1016_j_tree_2009_09_007
crossref_primary_10_1093_nar_gkn668
crossref_primary_10_1016_j_margen_2014_09_005
crossref_primary_10_1038_s41396_020_0601_y
crossref_primary_10_3390_microorganisms9010070
crossref_primary_10_1073_pnas_1001418107
crossref_primary_10_1371_journal_pone_0053818
crossref_primary_10_1038_s41559_019_0796_3
crossref_primary_10_1007_s00239_009_9233_6
crossref_primary_10_1093_gbe_evs099
crossref_primary_10_1089_cmb_2007_A010
crossref_primary_10_1186_1471_2105_9_34
crossref_primary_10_1111_j_1096_0031_2010_00337_x
crossref_primary_10_1093_molbev_msab254
crossref_primary_10_1128_JB_187_4_1305_1316_2005
crossref_primary_10_1186_1471_2180_8_13
crossref_primary_10_1016_j_biochi_2017_04_014
crossref_primary_10_1093_molbev_msi056
crossref_primary_10_1093_sysbio_syp056
crossref_primary_10_1007_s00248_009_9519_7
crossref_primary_10_1080_10635150500234609
crossref_primary_10_1364_OE_18_014416
crossref_primary_10_1371_journal_pone_0011604
crossref_primary_10_1111_j_1462_2920_2004_00668_x
crossref_primary_10_1128_ecosalplus_5_4_4_1
crossref_primary_10_1099_mic_0_2006_000802_0
crossref_primary_10_1111_1462_2920_12606
crossref_primary_10_3390_d11110204
crossref_primary_10_3389_fmicb_2017_02614
crossref_primary_10_1099_ijs_0_002741_0
crossref_primary_10_1093_molbev_msh097
crossref_primary_10_3390_antibiotics10060740
crossref_primary_10_1128_AEM_03467_12
crossref_primary_10_1371_journal_pbio_0030316
crossref_primary_10_1016_j_ympev_2014_02_013
crossref_primary_10_1007_s10482_006_9061_2
crossref_primary_10_1093_gbe_evu133
crossref_primary_10_1128_MMBR_00035_13
crossref_primary_10_1016_S1049_9644_06_00126_5
crossref_primary_10_1128_AEM_00092_18
crossref_primary_10_1186_1741_7007_9_87
crossref_primary_10_1016_j_ympev_2011_08_011
crossref_primary_10_1186_1471_2105_13_S19_S3
crossref_primary_10_1073_pnas_0611553104
crossref_primary_10_1093_molbev_mst059
crossref_primary_10_1111_febs_13350
crossref_primary_10_1007_s10482_017_0852_4
crossref_primary_10_3389_fmicb_2018_00771
crossref_primary_10_1038_nrmicro780
crossref_primary_10_1371_journal_pone_0176191
crossref_primary_10_1093_molbev_msi036
crossref_primary_10_1371_journal_pone_0175541
crossref_primary_10_1099_ijsem_0_004550
crossref_primary_10_1099_mic_0_27096_0
crossref_primary_10_1109_TCBB_2012_11
crossref_primary_10_1371_journal_pone_0146423
crossref_primary_10_1099_mgen_0_000939
crossref_primary_10_1128_AEM_71_9_5107_5115_2005
crossref_primary_10_1371_journal_pcbi_1010216
crossref_primary_10_1089_cmb_2008_0061
crossref_primary_10_1371_journal_pone_0004969
crossref_primary_10_24072_pci_evolbiol_100593
crossref_primary_10_1371_journal_pone_0301871
crossref_primary_10_1016_j_syapm_2016_04_001
crossref_primary_10_1098_rstb_2008_0144
crossref_primary_10_1094_MPMI_12_14_0397_FI
crossref_primary_10_1093_bib_bbaa198
crossref_primary_10_1093_femsec_fiy068
crossref_primary_10_1371_journal_pone_0085103
crossref_primary_10_1186_gb_2008_9_1_r4
crossref_primary_10_1093_gbe_evr121
crossref_primary_10_1111_j_1574_6976_2011_00274_x
crossref_primary_10_1007_s13213_012_0563_z
crossref_primary_10_1101_gr_3368805
crossref_primary_10_1093_gbe_evr002
crossref_primary_10_1099_ijs_0_000090
crossref_primary_10_1099_mic_0_27840_0
crossref_primary_10_1186_1471_2105_7_368
crossref_primary_10_1002_ajpa_20727
crossref_primary_10_1371_journal_pone_0013680
crossref_primary_10_1093_molbev_msi134
crossref_primary_10_1016_j_csda_2010_08_002
crossref_primary_10_1111_1462_2920_15593
crossref_primary_10_1128_JB_00183_12
crossref_primary_10_1098_rspb_2004_2864
crossref_primary_10_1128_JB_186_19_6575_6585_2004
crossref_primary_10_1016_j_gene_2017_04_019
crossref_primary_10_1093_gbe_evp044
crossref_primary_10_1080_10635150801910436
crossref_primary_10_1007_s00239_009_9226_5
crossref_primary_10_1093_gbe_evv030
crossref_primary_10_1007_s00203_019_01695_z
crossref_primary_10_1016_j_ympev_2008_03_021
crossref_primary_10_1186_s12934_018_0892_0
crossref_primary_10_1890_0012_9658_2006_87_100_PCAOIB_2_0_CO_2
crossref_primary_10_1371_journal_pone_0231274
crossref_primary_10_1099_ijs_0_64099_0
crossref_primary_10_1146_annurev_micro_59_030804_121233
crossref_primary_10_1021_acs_jproteome_4c00943
crossref_primary_10_1126_science_1116238
crossref_primary_10_1007_s00284_020_02214_w
crossref_primary_10_1371_journal_pcbi_0020143
crossref_primary_10_1128_JB_01480_09
crossref_primary_10_1093_molbev_msj113
crossref_primary_10_1186_1471_2148_7_141
crossref_primary_10_1007_s00284_011_9893_5
crossref_primary_10_1016_j_ijfoodmicro_2010_06_027
crossref_primary_10_1111_j_1469_185X_2012_00240_x
crossref_primary_10_1080_10635150601109759
crossref_primary_10_1093_nar_gkw255
crossref_primary_10_1007_s10539_010_9210_x
crossref_primary_10_1186_1471_2105_11_324
crossref_primary_10_1007_s10539_010_9217_3
crossref_primary_10_1080_10635150600999150
crossref_primary_10_1016_j_biocontrol_2005_11_008
crossref_primary_10_1186_1741_7007_2_15
Cites_doi 10.1128/JB.181.1.78-82.1999
10.1038/90129
10.1126/science.1086568
10.1126/science.284.5423.2124
10.1038/35012500
10.1038/35054089
10.1093/oxfordjournals.molbev.a004046
10.1126/science.277.5331.1453
10.1038/35020000
10.1093/bioinformatics/12.6.543
10.1093/oxfordjournals.molbev.a026257
10.1093/bioinformatics/18.3.502
10.1038/35024074
10.1016/S0960-9822(02)00478-5
10.1016/S0168-9525(00)02142-9
10.1128/JB.181.17.5201-5209.1999
10.1038/35101614
10.1038/35101607
10.1128/JB.184.16.4601-4611.2002
10.1038/417459a
10.1007/s00239-001-2307-8
10.1128/MMBR.51.2.221-271.1987
10.1093/emboj/19.24.6637
10.1016/S0168-9525(02)02744-0
10.1038/35097083
10.1038/nrg1000
10.1101/gr.187002
10.1016/S0092-8674(03)00233-2
10.1093/nar/25.17.3389
10.1073/pnas.93.7.2873
10.1080/106351500750049752
10.1073/pnas.96.7.3801
10.1080/10635150390132911
10.1038/20601
10.1128/jb.179.15.4768-4777.1997
10.1093/bioinformatics/8.3.275
10.1093/oxfordjournals.molbev.a026201
10.1038/35023079
10.1038/ng986
10.1007/s002390010184
10.1007/PL00006158
10.1038/35018003
10.1093/nar/22.22.4673
10.1016/S0168-9525(01)02522-7
10.1093/nar/30.1.17
10.1126/science.7542800
10.1080/10635150290102339
10.1101/gr.8.10.1048
10.1093/oxfordjournals.molbev.a026071
10.1073/pnas.051634598
10.1093/oxfordjournals.molbev.a025878
10.1007/s002390010224
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright: © 2003 Lerat et al. 2003
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright: © 2003 Lerat et al. 2003
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
7X8
1XC
VOOES
5PM
DOA
DOI 10.1371/journal.pbio.0000019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

Bacteriology Abstracts (Microbiology B)

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate From Gene Trees to Organismal Phylogeny
EISSN 1545-7885
EndPage 109
ExternalDocumentID oai_doaj_org_article_0a943aeef3484030b19500f12f4a09c9
PMC193605
oai_HAL_hal_00427440v1
12975657
10_1371_journal_pbio_0000019
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
.GJ
123
29O
2WC
53G
5VS
7X7
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFRAH
AFXKF
AHMBA
AKRSQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
C1A
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBS
EJD
EMB
EMK
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IGS
IHR
ISE
KQ8
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PIMPY
QN7
RNS
RPM
SJN
SV3
TR2
WOQ
WOW
XSB
YZZ
36B
7XC
88E
8FE
8FH
8FI
8FJ
ABUWG
ADXHL
AEUYN
AFKRA
AFPKN
B0M
BVXVI
BWKFM
CCPQU
CGR
CUY
CVF
EBD
ECM
EIF
EMOBN
EPL
HMCUK
IAG
IOV
IPNFZ
ISN
ISR
ITC
LK8
M1P
M48
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
PYCSY
QF4
RIG
RZL
TUS
UKHRP
~8M
7QL
C1K
PUEGO
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c534t-11372c740bd5ee749fdfa8588d3a8875f16b6afd3076cfb01e43c32af6b6bd493
IEDL.DBID M48
ISSN 1545-7885
1544-9173
IngestDate Wed Aug 27 01:12:14 EDT 2025
Thu Aug 21 13:41:26 EDT 2025
Fri Sep 12 12:52:38 EDT 2025
Fri Sep 05 14:35:58 EDT 2025
Fri Sep 05 08:58:15 EDT 2025
Mon Jul 21 06:03:35 EDT 2025
Tue Jul 01 01:24:10 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-11372c740bd5ee749fdfa8588d3a8875f16b6afd3076cfb01e43c32af6b6bd493
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0001-8269-9430
0000-0001-6757-8796
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.0000019
PMID 12975657
PQID 18955242
PQPubID 23462
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_0a943aeef3484030b19500f12f4a09c9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_193605
hal_primary_oai_HAL_hal_00427440v1
proquest_miscellaneous_71570401
proquest_miscellaneous_18955242
pubmed_primary_12975657
crossref_citationtrail_10_1371_journal_pbio_0000019
crossref_primary_10_1371_journal_pbio_0000019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-10-01
PublicationDateYYYYMMDD 2003-10-01
PublicationDate_xml – month: 10
  year: 2003
  text: 2003-10-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2003
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Jain (JOURNAL-PBIO-0000019-JAIN1) 1999; 96
Simpson (JOURNAL-PBIO-0000019-SIMPSON1) 2000; 406
Shimodaira (JOURNAL-PBIO-0000019-SHIMODAIRA1) 1999; 16
Ochman (JOURNAL-PBIO-0000019-OCHMAN2) 2000; 405
May (JOURNAL-PBIO-0000019-MAY1) 2001; 98
Doolittle (JOURNAL-PBIO-0000019-DOOLITTLE1) 1999; 284
Brown (JOURNAL-PBIO-0000019-BROWN1) 2003; 4
Parkhill (JOURNAL-PBIO-0000019-PARKHILL1) 2000; 413
Clark (JOURNAL-PBIO-0000019-CLARK1) 1999; 16
Brochier (JOURNAL-PBIO-0000019-BROCHIER1) 2000; 16
Tomii (JOURNAL-PBIO-0000019-TOMII1) 1998; 8
Ueda (JOURNAL-PBIO-0000019-UEDA1) 1999; 181
Goldman (JOURNAL-PBIO-0000019-GOLDMAN1) 2000; 49
da Silva (JOURNAL-PBIO-0000019-DA1) 2002; 417
Moran (JOURNAL-PBIO-0000019-MORAN1) 1996; 93
Galtier (JOURNAL-PBIO-0000019-GALTIER1) 1996; 12
Zwickl (JOURNAL-PBIO-0000019-ZWICKL1) 2002; 51
Daubin (JOURNAL-PBIO-0000019-DAUBIN3) 2003b; 301
Altschul (JOURNAL-PBIO-0000019-ALTSCHUL1) 1997; 25
Moya (JOURNAL-PBIO-0000019-MOYA1) 2002; 55
Tatusov (JOURNAL-PBIO-0000019-TATUSOV1) 1996; 6
Hillis (JOURNAL-PBIO-0000019-HILLIS1) 2003; 52
Brown (JOURNAL-PBIO-0000019-BROWN2) 2001; 28
Pedulla (JOURNAL-PBIO-0000019-PEDULLA1) 2003; 113
Stover (JOURNAL-PBIO-0000019-STOVER1) 2000; 406
Nelson (JOURNAL-PBIO-0000019-NELSON1) 1999; 399
Koski (JOURNAL-PBIO-0000019-KOSKI1) 2001; 52
Wolf (JOURNAL-PBIO-0000019-WOLF1) 2002; 18
Gogarten (JOURNAL-PBIO-0000019-GOGARTEN1) 2002; 19
Schmidt (JOURNAL-PBIO-0000019-SCHMIDT1) 2002; 18
Heidelberg (JOURNAL-PBIO-0000019-HEIDELBERG1) 2000; 406
Daubin (JOURNAL-PBIO-0000019-DAUBIN1) 2002; 12
Jones (JOURNAL-PBIO-0000019-JONES1) 1992; 8
Ochman (JOURNAL-PBIO-0000019-OCHMAN1) 2000; 19
van Ham (JOURNAL-PBIO-0000019-VAN1) 1997; 179
Blattner (JOURNAL-PBIO-0000019-BLATTNER1) 1997; 277
Brochier (JOURNAL-PBIO-0000019-BROCHIER2) 2002; 18
McClelland (JOURNAL-PBIO-0000019-MCCLELLAND1) 2001; 413
Spaulding (JOURNAL-PBIO-0000019-SPAULDING1) 1998; 15
Benson (JOURNAL-PBIO-0000019-BENSON1) 2002; 30
Lawrence (JOURNAL-PBIO-0000019-LAWRENCE1) 1997; 44
Nesbø (JOURNAL-PBIO-0000019-NESBO1) 2001; 53
Singer (JOURNAL-PBIO-0000019-SINGER1) 2000; 17
Shigenobu (JOURNAL-PBIO-0000019-SHIGENOBU1) 2000; 407
Thompson (JOURNAL-PBIO-0000019-THOMPSON1) 1994; 22
Yap (JOURNAL-PBIO-0000019-YAP1) 1999; 181
Fleischmann (JOURNAL-PBIO-0000019-FLEISCHMANN1) 1995; 269
Deng (JOURNAL-PBIO-0000019-DENG1) 2002; 184
Woese (JOURNAL-PBIO-0000019-WOESE1) 1987; 51
Parkhill (JOURNAL-PBIO-0000019-PARKHILL2) 2001; 413
Akman (JOURNAL-PBIO-0000019-AKMAN1) 2002; 32
Perna (JOURNAL-PBIO-0000019-PERNA1) 2001; 409
References_xml – volume: 181
  start-page: 78
  issn: 0021-9193
  year: 1999
  ident: JOURNAL-PBIO-0000019-UEDA1
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.1.78-82.1999
– volume: 28
  start-page: 281
  issn: 1061-4036
  year: 2001
  ident: JOURNAL-PBIO-0000019-BROWN2
  publication-title: Nat Genet
  doi: 10.1038/90129
– volume: 301
  start-page: 829
  year: 2003b
  ident: JOURNAL-PBIO-0000019-DAUBIN3
  publication-title: Science
  doi: 10.1126/science.1086568
– volume: 284
  start-page: 2124
  issn: 0036-8075
  year: 1999
  ident: JOURNAL-PBIO-0000019-DOOLITTLE1
  publication-title: Science
  doi: 10.1126/science.284.5423.2124
– volume: 405
  start-page: 299
  issn: 0028-0836
  year: 2000
  ident: JOURNAL-PBIO-0000019-OCHMAN2
  publication-title: Nature
  doi: 10.1038/35012500
– volume: 409
  start-page: 529
  issn: 0028-0836
  year: 2001
  ident: JOURNAL-PBIO-0000019-PERNA1
  publication-title: Nature
  doi: 10.1038/35054089
– volume: 19
  start-page: 2226
  issn: 0737-4038
  year: 2002
  ident: JOURNAL-PBIO-0000019-GOGARTEN1
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a004046
– volume: 277
  start-page: 1453
  issn: 0036-8075
  year: 1997
  ident: JOURNAL-PBIO-0000019-BLATTNER1
  publication-title: Science
  doi: 10.1126/science.277.5331.1453
– volume: 406
  start-page: 477
  issn: 0028-0836
  year: 2000
  ident: JOURNAL-PBIO-0000019-HEIDELBERG1
  publication-title: Nature
  doi: 10.1038/35020000
– volume: 12
  start-page: 543
  issn: 1460-2059
  year: 1996
  ident: JOURNAL-PBIO-0000019-GALTIER1
  publication-title: Comput Appl Biosci
  doi: 10.1093/bioinformatics/12.6.543
– volume: 17
  start-page: 1581
  issn: 0737-4038
  year: 2000
  ident: JOURNAL-PBIO-0000019-SINGER1
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026257
– volume: 18
  start-page: 502
  issn: 1367-4803
  year: 2002
  ident: JOURNAL-PBIO-0000019-SCHMIDT1
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.3.502
– volume: 407
  start-page: 81
  issn: 0028-0836
  year: 2000
  ident: JOURNAL-PBIO-0000019-SHIGENOBU1
  publication-title: Nature
  doi: 10.1038/35024074
– volume: 6
  start-page: 279
  issn: 0960-9822
  year: 1996
  ident: JOURNAL-PBIO-0000019-TATUSOV1
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(02)00478-5
– volume: 16
  start-page: 529
  issn: 0168-9525
  year: 2000
  ident: JOURNAL-PBIO-0000019-BROCHIER1
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(00)02142-9
– volume: 181
  start-page: 5201
  issn: 0021-9193
  year: 1999
  ident: JOURNAL-PBIO-0000019-YAP1
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.17.5201-5209.1999
– volume: 413
  start-page: 852
  issn: 0028-0836
  year: 2001
  ident: JOURNAL-PBIO-0000019-MCCLELLAND1
  publication-title: Nature
  doi: 10.1038/35101614
– volume: 413
  start-page: 848
  issn: 0028-0836
  year: 2001
  ident: JOURNAL-PBIO-0000019-PARKHILL2
  publication-title: Nature
  doi: 10.1038/35101607
– volume: 184
  start-page: 4601
  issn: 0021-9193
  year: 2002
  ident: JOURNAL-PBIO-0000019-DENG1
  publication-title: J Bacteriol
  doi: 10.1128/JB.184.16.4601-4611.2002
– volume: 417
  start-page: 459
  issn: 0028-0836
  year: 2002
  ident: JOURNAL-PBIO-0000019-DA1
  publication-title: Nature
  doi: 10.1038/417459a
– volume: 55
  start-page: 127
  issn: 0022-2844
  year: 2002
  ident: JOURNAL-PBIO-0000019-MOYA1
  publication-title: J Mol Evol
  doi: 10.1007/s00239-001-2307-8
– volume: 51
  start-page: 221
  issn: 0146-0749
  year: 1987
  ident: JOURNAL-PBIO-0000019-WOESE1
  publication-title: Microbiol Rev
  doi: 10.1128/MMBR.51.2.221-271.1987
– volume: 19
  start-page: 6637
  issn: 0261-4189
  year: 2000
  ident: JOURNAL-PBIO-0000019-OCHMAN1
  publication-title: EMBO J
  doi: 10.1093/emboj/19.24.6637
– volume: 18
  start-page: 472
  issn: 0168-9525
  year: 2002
  ident: JOURNAL-PBIO-0000019-WOLF1
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(02)02744-0
– volume: 413
  start-page: 523
  issn: 0028-0836
  year: 2000
  ident: JOURNAL-PBIO-0000019-PARKHILL1
  publication-title: Nature
  doi: 10.1038/35097083
– volume: 4
  start-page: 121
  year: 2003
  ident: JOURNAL-PBIO-0000019-BROWN1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1000
– volume: 12
  start-page: 1080
  issn: 1088-9051
  year: 2002
  ident: JOURNAL-PBIO-0000019-DAUBIN1
  publication-title: Genome Res
  doi: 10.1101/gr.187002
– volume: 113
  start-page: 171
  issn: 0092-8674
  year: 2003
  ident: JOURNAL-PBIO-0000019-PEDULLA1
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00233-2
– volume: 25
  start-page: 3389
  issn: 0305-1048
  year: 1997
  ident: JOURNAL-PBIO-0000019-ALTSCHUL1
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 93
  start-page: 2873
  issn: 0027-8424
  year: 1996
  ident: JOURNAL-PBIO-0000019-MORAN1
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.7.2873
– volume: 49
  start-page: 652
  issn: 1063-5157
  year: 2000
  ident: JOURNAL-PBIO-0000019-GOLDMAN1
  publication-title: Syst Biol
  doi: 10.1080/106351500750049752
– volume: 96
  start-page: 3801
  issn: 0027-8424
  year: 1999
  ident: JOURNAL-PBIO-0000019-JAIN1
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.7.3801
– volume: 52
  start-page: 124
  issn: 1063-5157
  year: 2003
  ident: JOURNAL-PBIO-0000019-HILLIS1
  publication-title: Syst Biol
  doi: 10.1080/10635150390132911
– volume: 399
  start-page: 323
  issn: 0028-0836
  year: 1999
  ident: JOURNAL-PBIO-0000019-NELSON1
  publication-title: Nature
  doi: 10.1038/20601
– volume: 179
  start-page: 4768
  issn: 0021-9193
  year: 1997
  ident: JOURNAL-PBIO-0000019-VAN1
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.15.4768-4777.1997
– volume: 8
  start-page: 275
  issn: 1460-2059
  year: 1992
  ident: JOURNAL-PBIO-0000019-JONES1
  publication-title: Comput Appl Biosci
  doi: 10.1093/bioinformatics/8.3.275
– volume: 16
  start-page: 1114
  issn: 0737-4038
  year: 1999
  ident: JOURNAL-PBIO-0000019-SHIMODAIRA1
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026201
– volume: 406
  start-page: 959
  issn: 0028-0836
  year: 2000
  ident: JOURNAL-PBIO-0000019-STOVER1
  publication-title: Nature
  doi: 10.1038/35023079
– volume: 32
  start-page: 402
  issn: 1061-4036
  year: 2002
  ident: JOURNAL-PBIO-0000019-AKMAN1
  publication-title: Nat Genet
  doi: 10.1038/ng986
– volume: 52
  start-page: 540
  issn: 0022-2844
  year: 2001
  ident: JOURNAL-PBIO-0000019-KOSKI1
  publication-title: J Mol Evol
  doi: 10.1007/s002390010184
– volume: 44
  start-page: 383
  issn: 0022-2844
  year: 1997
  ident: JOURNAL-PBIO-0000019-LAWRENCE1
  publication-title: J Mol Evol
  doi: 10.1007/PL00006158
– volume: 406
  start-page: 151
  issn: 0028-0836
  year: 2000
  ident: JOURNAL-PBIO-0000019-SIMPSON1
  publication-title: Nature
  doi: 10.1038/35018003
– volume: 22
  start-page: 4673
  issn: 0305-1048
  year: 1994
  ident: JOURNAL-PBIO-0000019-THOMPSON1
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/22.22.4673
– volume: 18
  start-page: 1
  issn: 0168-9525
  year: 2002
  ident: JOURNAL-PBIO-0000019-BROCHIER2
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(01)02522-7
– volume: 30
  start-page: 17
  issn: 0305-1048
  year: 2002
  ident: JOURNAL-PBIO-0000019-BENSON1
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.17
– volume: 269
  start-page: 496
  issn: 0036-8075
  year: 1995
  ident: JOURNAL-PBIO-0000019-FLEISCHMANN1
  publication-title: Science
  doi: 10.1126/science.7542800
– volume: 51
  start-page: 588
  issn: 1063-5157
  year: 2002
  ident: JOURNAL-PBIO-0000019-ZWICKL1
  publication-title: Syst Biol
  doi: 10.1080/10635150290102339
– volume: 8
  start-page: 1048
  issn: 1088-9051
  year: 1998
  ident: JOURNAL-PBIO-0000019-TOMII1
  publication-title: Genome Res
  doi: 10.1101/gr.8.10.1048
– volume: 16
  start-page: 1586
  issn: 0737-4038
  year: 1999
  ident: JOURNAL-PBIO-0000019-CLARK1
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026071
– volume: 98
  start-page: 3460
  issn: 0027-8424
  year: 2001
  ident: JOURNAL-PBIO-0000019-MAY1
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.051634598
– volume: 15
  start-page: 1506
  issn: 0737-4038
  year: 1998
  ident: JOURNAL-PBIO-0000019-SPAULDING1
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025878
– volume: 53
  start-page: 340
  issn: 0022-2844
  year: 2001
  ident: JOURNAL-PBIO-0000019-NESBO1
  publication-title: J Mol Evol
  doi: 10.1007/s002390010224
SSID ssj0022928
Score 2.3032706
Snippet The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e19
SubjectTerms Bacteria
Bacteriology
Biodiversity
Computational Biology - methods
Eubacteria
Evolution
Evolution, Molecular
Gammaproteobacteria - genetics
Gene Expression Regulation, Bacterial
Gene Transfer Techniques
Gene Transfer, Horizontal
Genetics/Genomics/Gene Therapy
Genome
Genome, Bacterial
Life Sciences
Microbiology
Microbiology and Parasitology
Models, Genetic
Multigene Family
Phylogeny
Prokaryotic Cells
Proteobacteria
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEA-HINyLeHpqPT-C3Gs1aZKmvTcVl-U4j3tQ8EEISZu4i24ru6uw__1Nkq7uKocv91bSZJpMZjozJPMbhL4XmTS5rUVKwPqlvOAmNdpClGJy8OUs1yIAmF7-zvvX_OeNuFko9eXvhEV44Mi4E6JLzrS1jgEhkEjj65YSRzPHNSmrkLpHSjIPprpQKytDVVUPNQPqLFmXNMckPen26PjRDNuIXuhRdhaMUsDuB1Mz8Dcj37udb29PLpij3jpa6_xIfBrn_wV9ss0GWo2VJWeb6LY3bkcYhMNif-w8wdMWxwJOkxEMA95CP9vM8LDB8O17PZ614HT-wOAP4gosG25deL7To5FO_3g0B9D8gOysv6Lr3sXVeT_tCimklWB8mlJYeFZJTkwtrJW8dLXThSiKmmn4yQhHYWu0q0Hf88oZQi1nFcu0g2ZT85JtoZWmbewOwjzTQpqQqqU5WPeips7SSpSOSUcdTxCbc1JVHcq4L3bxoMLRmYRoIzJIef6rjv8JSl9GPUaUjQ_6n_lNeunrMbJDA3BSdZKjPpKcBB0NPN0FGv3TX8q3hQoknJNnmqDDuQQoUDx_mqIb2z5NFC1KIcDB-XcPSYWEfyTQ2I4S87o2n8-cC5mgfEmWliaz_KYZDgL4NzjcEIHu_g8GfEOfX68m7qGV6fjJ7oOLNTUHQZv-AmaAJFo
  priority: 102
  providerName: Directory of Open Access Journals
Title From Gene Trees to Organismal Phylogeny in Prokaryotes:The Case of the γ-Proteobacteria
URI https://www.ncbi.nlm.nih.gov/pubmed/12975657
https://www.proquest.com/docview/18955242
https://www.proquest.com/docview/71570401
https://hal.science/hal-00427440
https://pubmed.ncbi.nlm.nih.gov/PMC193605
https://doaj.org/article/0a943aeef3484030b19500f12f4a09c9
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED-6lsFextZ9ZR-pGHt1sSzJsgdjtKMhdFvpRgN5KAjJlpawxu6SdCz__U6ykzb9oC8hKNI5Pp90J9_p9wP4kCXSpLYUUYzeL-IZN5HRFncpJsVYznItAoDp96O0P-CHQzHcgCVna6vA2a1bO88nNZie7f77s_iME_5TYG2QdDlo99yM6waP0OOAboWMkS_m46u8QpLkgW3Vxw2-jk60h-nukrLmrAKmP7qgka-YvBmOXq-qvOKmek_gcRtfkr3GIJ7Chq224WHDOLl4Bqe9aT0haDSW-HT0jMxr0hA7zSY4DHWO_Wy1IOOK4LV_6-mixmD0I8E4kRTo8UjtwvdfejLR0bFHecAVISA-6-cw6B2cfOlHLcFCVAjG5xHFG08KyWNTCmslz13pdCayrGQaFx_hKD4y7UpcB9LCmZhazgqWaIfNpuQ5ewGbVV3ZV0B4ooU04QiX5uj1s5I6SwuROyYddbwDbKlJVbTo454E40yFlJrEXUijIOX1r1r9dyBajTpv0Dfu6b_vH9Kqr8fODg2oSdVORRXrnDNtrWNomrjGGc-EGzuaOK7jvEAh70de7hUZ_b1vyrcFZhLO47-0AztLC1A4IX2WRVe2vpgpmuVCYOBzdw9JhcS1E2W8bCzm8t78OedUyA6ka7a09mfWf6nGowAKjoE47kxf33vRN_Dosh7xLWzOpxf2HcZVc9OFB3Iou7C1f3B0_LMb3k7g59cfWTdMov_lIChm
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+gene+trees+to+organismal+phylogeny+in+prokaryotes%3A+the+case+of+the+gamma-Proteobacteria&rft.jtitle=PLoS+biology&rft.au=Lerat%2C+Emmanuelle&rft.au=Daubin%2C+Vincent&rft.au=Moran%2C+Nancy+A&rft.date=2003-10-01&rft.issn=1545-7885&rft.eissn=1545-7885&rft.volume=1&rft.issue=1&rft.spage=E19&rft_id=info:doi/10.1371%2Fjournal.pbio.0000019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon