From Gene Trees to Organismal Phylogeny in Prokaryotes:The Case of the γ-Proteobacteria
The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on in...
Saved in:
Published in | PLoS biology Vol. 1; no. 1; pp. e19 - 109 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.10.2003
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-7885 1544-9173 1545-7885 |
DOI | 10.1371/journal.pbio.0000019 |
Cover
Abstract | The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the gamma-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the gamma-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization. |
---|---|
AbstractList | The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the γ-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the γ-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization. The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the γ-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the γ-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization. The study demonstrates that single-copy orthologous genes are resistant to horizontal transfer and can be used to generate robust hypotheses for organismal phylogenies The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the gamma-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the gamma-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization. The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the gamma-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the gamma-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the gamma-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the gamma-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization. |
Author | Lerat, Emmanuelle Moran, Nancy A Daubin, Vincent |
AuthorAffiliation | 2 Department of Biochemistry and Molecular Biophysics, University of Arizona Tucson, Arizona United States of America 1 Department of Ecology and Evolutionary Biology, University of Arizona Tucson, Arizona United States of America |
AuthorAffiliation_xml | – name: 2 Department of Biochemistry and Molecular Biophysics, University of Arizona Tucson, Arizona United States of America – name: 1 Department of Ecology and Evolutionary Biology, University of Arizona Tucson, Arizona United States of America |
Author_xml | – sequence: 1 givenname: Emmanuelle surname: Lerat fullname: Lerat, Emmanuelle – sequence: 2 givenname: Vincent surname: Daubin fullname: Daubin, Vincent – sequence: 3 givenname: Nancy A surname: Moran fullname: Moran, Nancy A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12975657$$D View this record in MEDLINE/PubMed https://hal.science/hal-00427440$$DView record in HAL |
BookMark | eNqFUstu2zAQFIoUzaP9g6LQqUAOckmRFKUAPQRG8wAMJAcX6I1YUUubrky6JB3A39X_6DdVqt0gyaHlhYvZmeEuOKfZkfMOs-w9JRPKJP208tvgoJ9sWusnZDy0eZWdUMFFIetaHD2pj7PTGFeElGVT1m-yY1o2UlRCnmTfroJf59foMJ8HxJgnn9-FBTgb19Dn98td7xfodrl1-X3w3yHsfMJ4MV9iPoWIuTd5GupfP4uhndC3oBMGC2-z1wb6iO8O91n29erLfHpTzO6ub6eXs0ILxlNBh11KLTlpO4EoeWM6A7Wo645BXUthaNVWYDpGZKVNSyhyplkJZoDbjjfsLLvd-3YeVmoT7HoYUXmw6g_gw0JBSFb3qAg0nAGiYbzmhJGWNoIQQ0vDgTR69Pq899ps2zV2Gl0K0D8zfd5xdqkW_kHRhlVEDPrzvX75QnVzOVMjRggvJefkgQ7cj4e3gv-xxZjU2kaNfQ8O_TYqSYUknPyfSOtGiJKXA_HD0-kfB_j72QPhYk_QwccY0ChtEyTrx2VsryhRY7LUIVlqTJY6JGsQ8xfiR_9_yX4DlpTXEQ |
CitedBy_id | crossref_primary_10_1016_j_ympev_2009_12_010 crossref_primary_10_1073_pnas_0900194106 crossref_primary_10_3390_ijms23116257 crossref_primary_10_1371_journal_pcbi_1000059 crossref_primary_10_1093_gbe_evr050 crossref_primary_10_1371_journal_pcbi_1000732 crossref_primary_10_1186_s12864_017_4056_0 crossref_primary_10_1099_ijs_0_014308_0 crossref_primary_10_1371_journal_pbio_0040188 crossref_primary_10_1128_JB_00122_08 crossref_primary_10_1093_bioinformatics_btl313 crossref_primary_10_1186_gb_2006_7_5_r44 crossref_primary_10_1590_S1415_47572007000200015 crossref_primary_10_1016_j_fgb_2006_05_001 crossref_primary_10_1186_1471_2105_14_4 crossref_primary_10_1080_10635150590923335 crossref_primary_10_1099_ijs_0_044388_0 crossref_primary_10_1186_1471_2105_5_204 crossref_primary_10_1038_nrmicro1204 crossref_primary_10_1093_bioinformatics_btu806 crossref_primary_10_1089_omi_2005_9_43 crossref_primary_10_1101_gr_2231904 crossref_primary_10_1007_s00287_009_0350_9 crossref_primary_10_1093_bioinformatics_btt021 crossref_primary_10_1371_journal_pcbi_1004408 crossref_primary_10_1186_1471_2148_5_63 crossref_primary_10_1007_s00239_005_0250_9 crossref_primary_10_1186_1471_2148_11_64 crossref_primary_10_1111_j_1462_2920_2012_02704_x crossref_primary_10_1002_bies_20030 crossref_primary_10_1089_cmb_2010_0098 crossref_primary_10_3390_ijms21239131 crossref_primary_10_1186_s12864_020_07262_x crossref_primary_10_1371_journal_pcbi_1004095 crossref_primary_10_1016_j_bbagen_2016_06_020 crossref_primary_10_1080_10635150601156313 crossref_primary_10_1371_journal_pgen_1008479 crossref_primary_10_1089_cmb_2010_0095 crossref_primary_10_1007_s00203_017_1368_z crossref_primary_10_1016_j_gde_2005_09_011 crossref_primary_10_1016_j_resmic_2007_02_004 crossref_primary_10_1007_s11214_007_9253_8 crossref_primary_10_1155_2019_7586430 crossref_primary_10_1093_molbev_mss264 crossref_primary_10_1073_pnas_0711165105 crossref_primary_10_1128_msystems_00257_18 crossref_primary_10_3389_fmicb_2018_00138 crossref_primary_10_1007_s10482_015_0556_6 crossref_primary_10_1093_molbev_msi211 crossref_primary_10_1093_nar_gkl734 crossref_primary_10_1016_j_tim_2007_01_007 crossref_primary_10_1099_ijs_0_63370_0 crossref_primary_10_1073_pnas_2000860117 crossref_primary_10_3201_eid2303_161476 crossref_primary_10_1099_mgen_0_000351 crossref_primary_10_1016_j_fmrre_2004_11_004 crossref_primary_10_1007_s12088_007_0022_x crossref_primary_10_1016_j_tig_2004_03_009 crossref_primary_10_1186_1471_2105_7_270 crossref_primary_10_1038_s41598_017_05918_5 crossref_primary_10_1093_gbe_evs001 crossref_primary_10_1186_s12864_025_11301_w crossref_primary_10_1080_07352680903241204 crossref_primary_10_1128_JB_187_17_6106_6118_2005 crossref_primary_10_1016_j_tig_2004_11_006 crossref_primary_10_1186_gb_2008_9_10_r151 crossref_primary_10_1186_s13059_023_03089_3 crossref_primary_10_1128_AEM_06540_11 crossref_primary_10_1016_j_aspen_2017_08_001 crossref_primary_10_1128_JB_01581_08 crossref_primary_10_1093_gbe_evq068 crossref_primary_10_1093_nar_gkn240 crossref_primary_10_1264_jsme2_23_182 crossref_primary_10_1016_j_syapm_2016_09_004 crossref_primary_10_1128_AEM_71_10_6335_6344_2005 crossref_primary_10_1146_annurev_micro_59_030804_121041 crossref_primary_10_1093_ecco_jcc_jjab101 crossref_primary_10_1007_s10539_010_9219_1 crossref_primary_10_1186_1471_2148_7_S1_S7 crossref_primary_10_1186_gb_2004_5_4_r27 crossref_primary_10_7554_eLife_65366 crossref_primary_10_1016_j_ympev_2004_10_021 crossref_primary_10_1109_TCBB_2015_2430860 crossref_primary_10_1101_gr_125351_111 crossref_primary_10_1186_gb_2007_8_8_r156 crossref_primary_10_1016_S0378_1097_04_00006_0 crossref_primary_10_1073_pnas_0502035102 crossref_primary_10_1016_j_biochi_2015_07_008 crossref_primary_10_1155_2020_8708305 crossref_primary_10_1080_10635150802580949 crossref_primary_10_1093_nar_gku1265 crossref_primary_10_1186_gb_2007_8_5_r71 crossref_primary_10_1101_gr_3024704 crossref_primary_10_1371_journal_pone_0063025 crossref_primary_10_1007_s00335_004_4002_8 crossref_primary_10_1038_ismej_2013_235 crossref_primary_10_1186_gb_2009_10_6_r70 crossref_primary_10_1080_10635150701546231 crossref_primary_10_3390_genes13040598 crossref_primary_10_1093_gbe_evx064 crossref_primary_10_1080_10635150500541722 crossref_primary_10_1007_s00239_006_0178_8 crossref_primary_10_1186_1471_2105_10_154 crossref_primary_10_1093_nar_gkl440 crossref_primary_10_3389_fmicb_2018_02493 crossref_primary_10_1098_rstb_2009_0032 crossref_primary_10_1098_rstb_2009_0031 crossref_primary_10_1098_rstb_2009_0033 crossref_primary_10_1093_gbe_evu119 crossref_primary_10_1128_AEM_01487_15 crossref_primary_10_1186_s13062_020_0258_5 crossref_primary_10_1186_1471_2148_5_27 crossref_primary_10_1186_gb_2009_10_6_r65 crossref_primary_10_3390_microorganisms9030624 crossref_primary_10_1186_1944_3277_10_9 crossref_primary_10_1111_gcb_12447 crossref_primary_10_3390_v9050120 crossref_primary_10_1101_gr_5322306 crossref_primary_10_1016_j_tim_2006_01_009 crossref_primary_10_1177_1177932220938064 crossref_primary_10_1186_1471_2148_5_33 crossref_primary_10_1186_1471_2148_5_34 crossref_primary_10_5352_JLS_2012_22_2_245 crossref_primary_10_1016_j_tim_2004_02_007 crossref_primary_10_3390_ijms25168861 crossref_primary_10_1128_genomeA_00767_14 crossref_primary_10_1111_mec_15656 crossref_primary_10_1128_mSystems_00001_17 crossref_primary_10_1146_annurev_ecolsys_35_112202_130205 crossref_primary_10_1186_s40793_016_0195_1 crossref_primary_10_1111_j_1751_7915_2010_00215_x crossref_primary_10_1186_1471_2148_5_36 crossref_primary_10_1371_journal_pbio_0030130 crossref_primary_10_1016_j_mib_2005_08_005 crossref_primary_10_1371_journal_pone_0000743 crossref_primary_10_1016_j_meegid_2004_09_002 crossref_primary_10_1073_pnas_0610699104 crossref_primary_10_1186_s12864_017_3616_7 crossref_primary_10_1007_s10482_015_0610_4 crossref_primary_10_1098_rsob_130010 crossref_primary_10_3390_microorganisms8081179 crossref_primary_10_1128_MMBR_00020_10 crossref_primary_10_1016_j_resmic_2009_07_006 crossref_primary_10_1093_molbev_msr239 crossref_primary_10_1093_sysbio_syv084 crossref_primary_10_1093_bioinformatics_btz745 crossref_primary_10_1186_1471_2164_6_94 crossref_primary_10_1099_mgen_0_000322 crossref_primary_10_7717_peerj_4560 crossref_primary_10_1111_mmi_12897 crossref_primary_10_1038_nrg1603 crossref_primary_10_1155_2012_394026 crossref_primary_10_1186_1471_2105_8_83 crossref_primary_10_1371_journal_pone_0024704 crossref_primary_10_3389_fmicb_2014_00660 crossref_primary_10_1021_cr0683111 crossref_primary_10_1099_ijs_0_034322_0 crossref_primary_10_1016_j_ympev_2005_02_002 crossref_primary_10_1111_j_1462_2920_2009_02085_x crossref_primary_10_1371_journal_pone_0088805 crossref_primary_10_1016_j_ympev_2005_02_008 crossref_primary_10_1016_j_zool_2005_09_006 crossref_primary_10_1086_519476 crossref_primary_10_1089_cmb_2007_A001 crossref_primary_10_1099_ijsem_0_001485 crossref_primary_10_1080_10635150701639754 crossref_primary_10_1111_1462_2920_14800 crossref_primary_10_1007_s00203_016_1245_1 crossref_primary_10_1073_pnas_0401526101 crossref_primary_10_1016_j_tree_2009_09_007 crossref_primary_10_1093_nar_gkn668 crossref_primary_10_1016_j_margen_2014_09_005 crossref_primary_10_1038_s41396_020_0601_y crossref_primary_10_3390_microorganisms9010070 crossref_primary_10_1073_pnas_1001418107 crossref_primary_10_1371_journal_pone_0053818 crossref_primary_10_1038_s41559_019_0796_3 crossref_primary_10_1007_s00239_009_9233_6 crossref_primary_10_1093_gbe_evs099 crossref_primary_10_1089_cmb_2007_A010 crossref_primary_10_1186_1471_2105_9_34 crossref_primary_10_1111_j_1096_0031_2010_00337_x crossref_primary_10_1093_molbev_msab254 crossref_primary_10_1128_JB_187_4_1305_1316_2005 crossref_primary_10_1186_1471_2180_8_13 crossref_primary_10_1016_j_biochi_2017_04_014 crossref_primary_10_1093_molbev_msi056 crossref_primary_10_1093_sysbio_syp056 crossref_primary_10_1007_s00248_009_9519_7 crossref_primary_10_1080_10635150500234609 crossref_primary_10_1364_OE_18_014416 crossref_primary_10_1371_journal_pone_0011604 crossref_primary_10_1111_j_1462_2920_2004_00668_x crossref_primary_10_1128_ecosalplus_5_4_4_1 crossref_primary_10_1099_mic_0_2006_000802_0 crossref_primary_10_1111_1462_2920_12606 crossref_primary_10_3390_d11110204 crossref_primary_10_3389_fmicb_2017_02614 crossref_primary_10_1099_ijs_0_002741_0 crossref_primary_10_1093_molbev_msh097 crossref_primary_10_3390_antibiotics10060740 crossref_primary_10_1128_AEM_03467_12 crossref_primary_10_1371_journal_pbio_0030316 crossref_primary_10_1016_j_ympev_2014_02_013 crossref_primary_10_1007_s10482_006_9061_2 crossref_primary_10_1093_gbe_evu133 crossref_primary_10_1128_MMBR_00035_13 crossref_primary_10_1016_S1049_9644_06_00126_5 crossref_primary_10_1128_AEM_00092_18 crossref_primary_10_1186_1741_7007_9_87 crossref_primary_10_1016_j_ympev_2011_08_011 crossref_primary_10_1186_1471_2105_13_S19_S3 crossref_primary_10_1073_pnas_0611553104 crossref_primary_10_1093_molbev_mst059 crossref_primary_10_1111_febs_13350 crossref_primary_10_1007_s10482_017_0852_4 crossref_primary_10_3389_fmicb_2018_00771 crossref_primary_10_1038_nrmicro780 crossref_primary_10_1371_journal_pone_0176191 crossref_primary_10_1093_molbev_msi036 crossref_primary_10_1371_journal_pone_0175541 crossref_primary_10_1099_ijsem_0_004550 crossref_primary_10_1099_mic_0_27096_0 crossref_primary_10_1109_TCBB_2012_11 crossref_primary_10_1371_journal_pone_0146423 crossref_primary_10_1099_mgen_0_000939 crossref_primary_10_1128_AEM_71_9_5107_5115_2005 crossref_primary_10_1371_journal_pcbi_1010216 crossref_primary_10_1089_cmb_2008_0061 crossref_primary_10_1371_journal_pone_0004969 crossref_primary_10_24072_pci_evolbiol_100593 crossref_primary_10_1371_journal_pone_0301871 crossref_primary_10_1016_j_syapm_2016_04_001 crossref_primary_10_1098_rstb_2008_0144 crossref_primary_10_1094_MPMI_12_14_0397_FI crossref_primary_10_1093_bib_bbaa198 crossref_primary_10_1093_femsec_fiy068 crossref_primary_10_1371_journal_pone_0085103 crossref_primary_10_1186_gb_2008_9_1_r4 crossref_primary_10_1093_gbe_evr121 crossref_primary_10_1111_j_1574_6976_2011_00274_x crossref_primary_10_1007_s13213_012_0563_z crossref_primary_10_1101_gr_3368805 crossref_primary_10_1093_gbe_evr002 crossref_primary_10_1099_ijs_0_000090 crossref_primary_10_1099_mic_0_27840_0 crossref_primary_10_1186_1471_2105_7_368 crossref_primary_10_1002_ajpa_20727 crossref_primary_10_1371_journal_pone_0013680 crossref_primary_10_1093_molbev_msi134 crossref_primary_10_1016_j_csda_2010_08_002 crossref_primary_10_1111_1462_2920_15593 crossref_primary_10_1128_JB_00183_12 crossref_primary_10_1098_rspb_2004_2864 crossref_primary_10_1128_JB_186_19_6575_6585_2004 crossref_primary_10_1016_j_gene_2017_04_019 crossref_primary_10_1093_gbe_evp044 crossref_primary_10_1080_10635150801910436 crossref_primary_10_1007_s00239_009_9226_5 crossref_primary_10_1093_gbe_evv030 crossref_primary_10_1007_s00203_019_01695_z crossref_primary_10_1016_j_ympev_2008_03_021 crossref_primary_10_1186_s12934_018_0892_0 crossref_primary_10_1890_0012_9658_2006_87_100_PCAOIB_2_0_CO_2 crossref_primary_10_1371_journal_pone_0231274 crossref_primary_10_1099_ijs_0_64099_0 crossref_primary_10_1146_annurev_micro_59_030804_121233 crossref_primary_10_1021_acs_jproteome_4c00943 crossref_primary_10_1126_science_1116238 crossref_primary_10_1007_s00284_020_02214_w crossref_primary_10_1371_journal_pcbi_0020143 crossref_primary_10_1128_JB_01480_09 crossref_primary_10_1093_molbev_msj113 crossref_primary_10_1186_1471_2148_7_141 crossref_primary_10_1007_s00284_011_9893_5 crossref_primary_10_1016_j_ijfoodmicro_2010_06_027 crossref_primary_10_1111_j_1469_185X_2012_00240_x crossref_primary_10_1080_10635150601109759 crossref_primary_10_1093_nar_gkw255 crossref_primary_10_1007_s10539_010_9210_x crossref_primary_10_1186_1471_2105_11_324 crossref_primary_10_1007_s10539_010_9217_3 crossref_primary_10_1080_10635150600999150 crossref_primary_10_1016_j_biocontrol_2005_11_008 crossref_primary_10_1186_1741_7007_2_15 |
Cites_doi | 10.1128/JB.181.1.78-82.1999 10.1038/90129 10.1126/science.1086568 10.1126/science.284.5423.2124 10.1038/35012500 10.1038/35054089 10.1093/oxfordjournals.molbev.a004046 10.1126/science.277.5331.1453 10.1038/35020000 10.1093/bioinformatics/12.6.543 10.1093/oxfordjournals.molbev.a026257 10.1093/bioinformatics/18.3.502 10.1038/35024074 10.1016/S0960-9822(02)00478-5 10.1016/S0168-9525(00)02142-9 10.1128/JB.181.17.5201-5209.1999 10.1038/35101614 10.1038/35101607 10.1128/JB.184.16.4601-4611.2002 10.1038/417459a 10.1007/s00239-001-2307-8 10.1128/MMBR.51.2.221-271.1987 10.1093/emboj/19.24.6637 10.1016/S0168-9525(02)02744-0 10.1038/35097083 10.1038/nrg1000 10.1101/gr.187002 10.1016/S0092-8674(03)00233-2 10.1093/nar/25.17.3389 10.1073/pnas.93.7.2873 10.1080/106351500750049752 10.1073/pnas.96.7.3801 10.1080/10635150390132911 10.1038/20601 10.1128/jb.179.15.4768-4777.1997 10.1093/bioinformatics/8.3.275 10.1093/oxfordjournals.molbev.a026201 10.1038/35023079 10.1038/ng986 10.1007/s002390010184 10.1007/PL00006158 10.1038/35018003 10.1093/nar/22.22.4673 10.1016/S0168-9525(01)02522-7 10.1093/nar/30.1.17 10.1126/science.7542800 10.1080/10635150290102339 10.1101/gr.8.10.1048 10.1093/oxfordjournals.molbev.a026071 10.1073/pnas.051634598 10.1093/oxfordjournals.molbev.a025878 10.1007/s002390010224 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License Copyright: © 2003 Lerat et al. 2003 |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright: © 2003 Lerat et al. 2003 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL C1K 7X8 1XC VOOES 5PM DOA |
DOI | 10.1371/journal.pbio.0000019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Bacteriology Abstracts (Microbiology B) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | From Gene Trees to Organismal Phylogeny |
EISSN | 1545-7885 |
EndPage | 109 |
ExternalDocumentID | oai_doaj_org_article_0a943aeef3484030b19500f12f4a09c9 PMC193605 oai_HAL_hal_00427440v1 12975657 10_1371_journal_pbio_0000019 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- .GJ 123 29O 2WC 53G 5VS 7X7 AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ C1A CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBS EJD EMB EMK ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HYE IAO IGS IHR ISE KQ8 M7P O5R O5S OK1 OVT P2P PATMY PIMPY QN7 RNS RPM SJN SV3 TR2 WOQ WOW XSB YZZ 36B 7XC 88E 8FE 8FH 8FI 8FJ ABUWG ADXHL AEUYN AFKRA AFPKN B0M BVXVI BWKFM CCPQU CGR CUY CVF EBD ECM EIF EMOBN EPL HMCUK IAG IOV IPNFZ ISN ISR ITC LK8 M1P M48 NPM PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 PYCSY QF4 RIG RZL TUS UKHRP ~8M 7QL C1K PUEGO 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c534t-11372c740bd5ee749fdfa8588d3a8875f16b6afd3076cfb01e43c32af6b6bd493 |
IEDL.DBID | M48 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Wed Aug 27 01:12:14 EDT 2025 Thu Aug 21 13:41:26 EDT 2025 Fri Sep 12 12:52:38 EDT 2025 Fri Sep 05 14:35:58 EDT 2025 Fri Sep 05 08:58:15 EDT 2025 Mon Jul 21 06:03:35 EDT 2025 Tue Jul 01 01:24:10 EDT 2025 Thu Apr 24 22:52:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-11372c740bd5ee749fdfa8588d3a8875f16b6afd3076cfb01e43c32af6b6bd493 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0001-8269-9430 0000-0001-6757-8796 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.0000019 |
PMID | 12975657 |
PQID | 18955242 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0a943aeef3484030b19500f12f4a09c9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_193605 hal_primary_oai_HAL_hal_00427440v1 proquest_miscellaneous_71570401 proquest_miscellaneous_18955242 pubmed_primary_12975657 crossref_citationtrail_10_1371_journal_pbio_0000019 crossref_primary_10_1371_journal_pbio_0000019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-10-01 |
PublicationDateYYYYMMDD | 2003-10-01 |
PublicationDate_xml | – month: 10 year: 2003 text: 2003-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2003 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | Jain (JOURNAL-PBIO-0000019-JAIN1) 1999; 96 Simpson (JOURNAL-PBIO-0000019-SIMPSON1) 2000; 406 Shimodaira (JOURNAL-PBIO-0000019-SHIMODAIRA1) 1999; 16 Ochman (JOURNAL-PBIO-0000019-OCHMAN2) 2000; 405 May (JOURNAL-PBIO-0000019-MAY1) 2001; 98 Doolittle (JOURNAL-PBIO-0000019-DOOLITTLE1) 1999; 284 Brown (JOURNAL-PBIO-0000019-BROWN1) 2003; 4 Parkhill (JOURNAL-PBIO-0000019-PARKHILL1) 2000; 413 Clark (JOURNAL-PBIO-0000019-CLARK1) 1999; 16 Brochier (JOURNAL-PBIO-0000019-BROCHIER1) 2000; 16 Tomii (JOURNAL-PBIO-0000019-TOMII1) 1998; 8 Ueda (JOURNAL-PBIO-0000019-UEDA1) 1999; 181 Goldman (JOURNAL-PBIO-0000019-GOLDMAN1) 2000; 49 da Silva (JOURNAL-PBIO-0000019-DA1) 2002; 417 Moran (JOURNAL-PBIO-0000019-MORAN1) 1996; 93 Galtier (JOURNAL-PBIO-0000019-GALTIER1) 1996; 12 Zwickl (JOURNAL-PBIO-0000019-ZWICKL1) 2002; 51 Daubin (JOURNAL-PBIO-0000019-DAUBIN3) 2003b; 301 Altschul (JOURNAL-PBIO-0000019-ALTSCHUL1) 1997; 25 Moya (JOURNAL-PBIO-0000019-MOYA1) 2002; 55 Tatusov (JOURNAL-PBIO-0000019-TATUSOV1) 1996; 6 Hillis (JOURNAL-PBIO-0000019-HILLIS1) 2003; 52 Brown (JOURNAL-PBIO-0000019-BROWN2) 2001; 28 Pedulla (JOURNAL-PBIO-0000019-PEDULLA1) 2003; 113 Stover (JOURNAL-PBIO-0000019-STOVER1) 2000; 406 Nelson (JOURNAL-PBIO-0000019-NELSON1) 1999; 399 Koski (JOURNAL-PBIO-0000019-KOSKI1) 2001; 52 Wolf (JOURNAL-PBIO-0000019-WOLF1) 2002; 18 Gogarten (JOURNAL-PBIO-0000019-GOGARTEN1) 2002; 19 Schmidt (JOURNAL-PBIO-0000019-SCHMIDT1) 2002; 18 Heidelberg (JOURNAL-PBIO-0000019-HEIDELBERG1) 2000; 406 Daubin (JOURNAL-PBIO-0000019-DAUBIN1) 2002; 12 Jones (JOURNAL-PBIO-0000019-JONES1) 1992; 8 Ochman (JOURNAL-PBIO-0000019-OCHMAN1) 2000; 19 van Ham (JOURNAL-PBIO-0000019-VAN1) 1997; 179 Blattner (JOURNAL-PBIO-0000019-BLATTNER1) 1997; 277 Brochier (JOURNAL-PBIO-0000019-BROCHIER2) 2002; 18 McClelland (JOURNAL-PBIO-0000019-MCCLELLAND1) 2001; 413 Spaulding (JOURNAL-PBIO-0000019-SPAULDING1) 1998; 15 Benson (JOURNAL-PBIO-0000019-BENSON1) 2002; 30 Lawrence (JOURNAL-PBIO-0000019-LAWRENCE1) 1997; 44 Nesbø (JOURNAL-PBIO-0000019-NESBO1) 2001; 53 Singer (JOURNAL-PBIO-0000019-SINGER1) 2000; 17 Shigenobu (JOURNAL-PBIO-0000019-SHIGENOBU1) 2000; 407 Thompson (JOURNAL-PBIO-0000019-THOMPSON1) 1994; 22 Yap (JOURNAL-PBIO-0000019-YAP1) 1999; 181 Fleischmann (JOURNAL-PBIO-0000019-FLEISCHMANN1) 1995; 269 Deng (JOURNAL-PBIO-0000019-DENG1) 2002; 184 Woese (JOURNAL-PBIO-0000019-WOESE1) 1987; 51 Parkhill (JOURNAL-PBIO-0000019-PARKHILL2) 2001; 413 Akman (JOURNAL-PBIO-0000019-AKMAN1) 2002; 32 Perna (JOURNAL-PBIO-0000019-PERNA1) 2001; 409 |
References_xml | – volume: 181 start-page: 78 issn: 0021-9193 year: 1999 ident: JOURNAL-PBIO-0000019-UEDA1 publication-title: J Bacteriol doi: 10.1128/JB.181.1.78-82.1999 – volume: 28 start-page: 281 issn: 1061-4036 year: 2001 ident: JOURNAL-PBIO-0000019-BROWN2 publication-title: Nat Genet doi: 10.1038/90129 – volume: 301 start-page: 829 year: 2003b ident: JOURNAL-PBIO-0000019-DAUBIN3 publication-title: Science doi: 10.1126/science.1086568 – volume: 284 start-page: 2124 issn: 0036-8075 year: 1999 ident: JOURNAL-PBIO-0000019-DOOLITTLE1 publication-title: Science doi: 10.1126/science.284.5423.2124 – volume: 405 start-page: 299 issn: 0028-0836 year: 2000 ident: JOURNAL-PBIO-0000019-OCHMAN2 publication-title: Nature doi: 10.1038/35012500 – volume: 409 start-page: 529 issn: 0028-0836 year: 2001 ident: JOURNAL-PBIO-0000019-PERNA1 publication-title: Nature doi: 10.1038/35054089 – volume: 19 start-page: 2226 issn: 0737-4038 year: 2002 ident: JOURNAL-PBIO-0000019-GOGARTEN1 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a004046 – volume: 277 start-page: 1453 issn: 0036-8075 year: 1997 ident: JOURNAL-PBIO-0000019-BLATTNER1 publication-title: Science doi: 10.1126/science.277.5331.1453 – volume: 406 start-page: 477 issn: 0028-0836 year: 2000 ident: JOURNAL-PBIO-0000019-HEIDELBERG1 publication-title: Nature doi: 10.1038/35020000 – volume: 12 start-page: 543 issn: 1460-2059 year: 1996 ident: JOURNAL-PBIO-0000019-GALTIER1 publication-title: Comput Appl Biosci doi: 10.1093/bioinformatics/12.6.543 – volume: 17 start-page: 1581 issn: 0737-4038 year: 2000 ident: JOURNAL-PBIO-0000019-SINGER1 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026257 – volume: 18 start-page: 502 issn: 1367-4803 year: 2002 ident: JOURNAL-PBIO-0000019-SCHMIDT1 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.3.502 – volume: 407 start-page: 81 issn: 0028-0836 year: 2000 ident: JOURNAL-PBIO-0000019-SHIGENOBU1 publication-title: Nature doi: 10.1038/35024074 – volume: 6 start-page: 279 issn: 0960-9822 year: 1996 ident: JOURNAL-PBIO-0000019-TATUSOV1 publication-title: Curr Biol doi: 10.1016/S0960-9822(02)00478-5 – volume: 16 start-page: 529 issn: 0168-9525 year: 2000 ident: JOURNAL-PBIO-0000019-BROCHIER1 publication-title: Trends Genet doi: 10.1016/S0168-9525(00)02142-9 – volume: 181 start-page: 5201 issn: 0021-9193 year: 1999 ident: JOURNAL-PBIO-0000019-YAP1 publication-title: J Bacteriol doi: 10.1128/JB.181.17.5201-5209.1999 – volume: 413 start-page: 852 issn: 0028-0836 year: 2001 ident: JOURNAL-PBIO-0000019-MCCLELLAND1 publication-title: Nature doi: 10.1038/35101614 – volume: 413 start-page: 848 issn: 0028-0836 year: 2001 ident: JOURNAL-PBIO-0000019-PARKHILL2 publication-title: Nature doi: 10.1038/35101607 – volume: 184 start-page: 4601 issn: 0021-9193 year: 2002 ident: JOURNAL-PBIO-0000019-DENG1 publication-title: J Bacteriol doi: 10.1128/JB.184.16.4601-4611.2002 – volume: 417 start-page: 459 issn: 0028-0836 year: 2002 ident: JOURNAL-PBIO-0000019-DA1 publication-title: Nature doi: 10.1038/417459a – volume: 55 start-page: 127 issn: 0022-2844 year: 2002 ident: JOURNAL-PBIO-0000019-MOYA1 publication-title: J Mol Evol doi: 10.1007/s00239-001-2307-8 – volume: 51 start-page: 221 issn: 0146-0749 year: 1987 ident: JOURNAL-PBIO-0000019-WOESE1 publication-title: Microbiol Rev doi: 10.1128/MMBR.51.2.221-271.1987 – volume: 19 start-page: 6637 issn: 0261-4189 year: 2000 ident: JOURNAL-PBIO-0000019-OCHMAN1 publication-title: EMBO J doi: 10.1093/emboj/19.24.6637 – volume: 18 start-page: 472 issn: 0168-9525 year: 2002 ident: JOURNAL-PBIO-0000019-WOLF1 publication-title: Trends Genet doi: 10.1016/S0168-9525(02)02744-0 – volume: 413 start-page: 523 issn: 0028-0836 year: 2000 ident: JOURNAL-PBIO-0000019-PARKHILL1 publication-title: Nature doi: 10.1038/35097083 – volume: 4 start-page: 121 year: 2003 ident: JOURNAL-PBIO-0000019-BROWN1 publication-title: Nat Rev Genet doi: 10.1038/nrg1000 – volume: 12 start-page: 1080 issn: 1088-9051 year: 2002 ident: JOURNAL-PBIO-0000019-DAUBIN1 publication-title: Genome Res doi: 10.1101/gr.187002 – volume: 113 start-page: 171 issn: 0092-8674 year: 2003 ident: JOURNAL-PBIO-0000019-PEDULLA1 publication-title: Cell doi: 10.1016/S0092-8674(03)00233-2 – volume: 25 start-page: 3389 issn: 0305-1048 year: 1997 ident: JOURNAL-PBIO-0000019-ALTSCHUL1 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.17.3389 – volume: 93 start-page: 2873 issn: 0027-8424 year: 1996 ident: JOURNAL-PBIO-0000019-MORAN1 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.7.2873 – volume: 49 start-page: 652 issn: 1063-5157 year: 2000 ident: JOURNAL-PBIO-0000019-GOLDMAN1 publication-title: Syst Biol doi: 10.1080/106351500750049752 – volume: 96 start-page: 3801 issn: 0027-8424 year: 1999 ident: JOURNAL-PBIO-0000019-JAIN1 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.7.3801 – volume: 52 start-page: 124 issn: 1063-5157 year: 2003 ident: JOURNAL-PBIO-0000019-HILLIS1 publication-title: Syst Biol doi: 10.1080/10635150390132911 – volume: 399 start-page: 323 issn: 0028-0836 year: 1999 ident: JOURNAL-PBIO-0000019-NELSON1 publication-title: Nature doi: 10.1038/20601 – volume: 179 start-page: 4768 issn: 0021-9193 year: 1997 ident: JOURNAL-PBIO-0000019-VAN1 publication-title: J Bacteriol doi: 10.1128/jb.179.15.4768-4777.1997 – volume: 8 start-page: 275 issn: 1460-2059 year: 1992 ident: JOURNAL-PBIO-0000019-JONES1 publication-title: Comput Appl Biosci doi: 10.1093/bioinformatics/8.3.275 – volume: 16 start-page: 1114 issn: 0737-4038 year: 1999 ident: JOURNAL-PBIO-0000019-SHIMODAIRA1 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026201 – volume: 406 start-page: 959 issn: 0028-0836 year: 2000 ident: JOURNAL-PBIO-0000019-STOVER1 publication-title: Nature doi: 10.1038/35023079 – volume: 32 start-page: 402 issn: 1061-4036 year: 2002 ident: JOURNAL-PBIO-0000019-AKMAN1 publication-title: Nat Genet doi: 10.1038/ng986 – volume: 52 start-page: 540 issn: 0022-2844 year: 2001 ident: JOURNAL-PBIO-0000019-KOSKI1 publication-title: J Mol Evol doi: 10.1007/s002390010184 – volume: 44 start-page: 383 issn: 0022-2844 year: 1997 ident: JOURNAL-PBIO-0000019-LAWRENCE1 publication-title: J Mol Evol doi: 10.1007/PL00006158 – volume: 406 start-page: 151 issn: 0028-0836 year: 2000 ident: JOURNAL-PBIO-0000019-SIMPSON1 publication-title: Nature doi: 10.1038/35018003 – volume: 22 start-page: 4673 issn: 0305-1048 year: 1994 ident: JOURNAL-PBIO-0000019-THOMPSON1 publication-title: Nucleic Acids Res doi: 10.1093/nar/22.22.4673 – volume: 18 start-page: 1 issn: 0168-9525 year: 2002 ident: JOURNAL-PBIO-0000019-BROCHIER2 publication-title: Trends Genet doi: 10.1016/S0168-9525(01)02522-7 – volume: 30 start-page: 17 issn: 0305-1048 year: 2002 ident: JOURNAL-PBIO-0000019-BENSON1 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.17 – volume: 269 start-page: 496 issn: 0036-8075 year: 1995 ident: JOURNAL-PBIO-0000019-FLEISCHMANN1 publication-title: Science doi: 10.1126/science.7542800 – volume: 51 start-page: 588 issn: 1063-5157 year: 2002 ident: JOURNAL-PBIO-0000019-ZWICKL1 publication-title: Syst Biol doi: 10.1080/10635150290102339 – volume: 8 start-page: 1048 issn: 1088-9051 year: 1998 ident: JOURNAL-PBIO-0000019-TOMII1 publication-title: Genome Res doi: 10.1101/gr.8.10.1048 – volume: 16 start-page: 1586 issn: 0737-4038 year: 1999 ident: JOURNAL-PBIO-0000019-CLARK1 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026071 – volume: 98 start-page: 3460 issn: 0027-8424 year: 2001 ident: JOURNAL-PBIO-0000019-MAY1 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.051634598 – volume: 15 start-page: 1506 issn: 0737-4038 year: 1998 ident: JOURNAL-PBIO-0000019-SPAULDING1 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025878 – volume: 53 start-page: 340 issn: 0022-2844 year: 2001 ident: JOURNAL-PBIO-0000019-NESBO1 publication-title: J Mol Evol doi: 10.1007/s002390010224 |
SSID | ssj0022928 |
Score | 2.3032706 |
Snippet | The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e19 |
SubjectTerms | Bacteria Bacteriology Biodiversity Computational Biology - methods Eubacteria Evolution Evolution, Molecular Gammaproteobacteria - genetics Gene Expression Regulation, Bacterial Gene Transfer Techniques Gene Transfer, Horizontal Genetics/Genomics/Gene Therapy Genome Genome, Bacterial Life Sciences Microbiology Microbiology and Parasitology Models, Genetic Multigene Family Phylogeny Prokaryotic Cells Proteobacteria |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEA-HINyLeHpqPT-C3Gs1aZKmvTcVl-U4j3tQ8EEISZu4i24ru6uw__1Nkq7uKocv91bSZJpMZjozJPMbhL4XmTS5rUVKwPqlvOAmNdpClGJy8OUs1yIAmF7-zvvX_OeNuFko9eXvhEV44Mi4E6JLzrS1jgEhkEjj65YSRzPHNSmrkLpHSjIPprpQKytDVVUPNQPqLFmXNMckPen26PjRDNuIXuhRdhaMUsDuB1Mz8Dcj37udb29PLpij3jpa6_xIfBrn_wV9ss0GWo2VJWeb6LY3bkcYhMNif-w8wdMWxwJOkxEMA95CP9vM8LDB8O17PZ614HT-wOAP4gosG25deL7To5FO_3g0B9D8gOysv6Lr3sXVeT_tCimklWB8mlJYeFZJTkwtrJW8dLXThSiKmmn4yQhHYWu0q0Hf88oZQi1nFcu0g2ZT85JtoZWmbewOwjzTQpqQqqU5WPeips7SSpSOSUcdTxCbc1JVHcq4L3bxoMLRmYRoIzJIef6rjv8JSl9GPUaUjQ_6n_lNeunrMbJDA3BSdZKjPpKcBB0NPN0FGv3TX8q3hQoknJNnmqDDuQQoUDx_mqIb2z5NFC1KIcDB-XcPSYWEfyTQ2I4S87o2n8-cC5mgfEmWliaz_KYZDgL4NzjcEIHu_g8GfEOfX68m7qGV6fjJ7oOLNTUHQZv-AmaAJFo priority: 102 providerName: Directory of Open Access Journals |
Title | From Gene Trees to Organismal Phylogeny in Prokaryotes:The Case of the γ-Proteobacteria |
URI | https://www.ncbi.nlm.nih.gov/pubmed/12975657 https://www.proquest.com/docview/18955242 https://www.proquest.com/docview/71570401 https://hal.science/hal-00427440 https://pubmed.ncbi.nlm.nih.gov/PMC193605 https://doaj.org/article/0a943aeef3484030b19500f12f4a09c9 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED-6lsFextZ9ZR-pGHt1sSzJsgdjtKMhdFvpRgN5KAjJlpawxu6SdCz__U6ykzb9oC8hKNI5Pp90J9_p9wP4kCXSpLYUUYzeL-IZN5HRFncpJsVYznItAoDp96O0P-CHQzHcgCVna6vA2a1bO88nNZie7f77s_iME_5TYG2QdDlo99yM6waP0OOAboWMkS_m46u8QpLkgW3Vxw2-jk60h-nukrLmrAKmP7qgka-YvBmOXq-qvOKmek_gcRtfkr3GIJ7Chq224WHDOLl4Bqe9aT0haDSW-HT0jMxr0hA7zSY4DHWO_Wy1IOOK4LV_6-mixmD0I8E4kRTo8UjtwvdfejLR0bFHecAVISA-6-cw6B2cfOlHLcFCVAjG5xHFG08KyWNTCmslz13pdCayrGQaFx_hKD4y7UpcB9LCmZhazgqWaIfNpuQ5ewGbVV3ZV0B4ooU04QiX5uj1s5I6SwuROyYddbwDbKlJVbTo454E40yFlJrEXUijIOX1r1r9dyBajTpv0Dfu6b_vH9Kqr8fODg2oSdVORRXrnDNtrWNomrjGGc-EGzuaOK7jvEAh70de7hUZ_b1vyrcFZhLO47-0AztLC1A4IX2WRVe2vpgpmuVCYOBzdw9JhcS1E2W8bCzm8t78OedUyA6ka7a09mfWf6nGowAKjoE47kxf33vRN_Dosh7xLWzOpxf2HcZVc9OFB3Iou7C1f3B0_LMb3k7g59cfWTdMov_lIChm |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+gene+trees+to+organismal+phylogeny+in+prokaryotes%3A+the+case+of+the+gamma-Proteobacteria&rft.jtitle=PLoS+biology&rft.au=Lerat%2C+Emmanuelle&rft.au=Daubin%2C+Vincent&rft.au=Moran%2C+Nancy+A&rft.date=2003-10-01&rft.issn=1545-7885&rft.eissn=1545-7885&rft.volume=1&rft.issue=1&rft.spage=E19&rft_id=info:doi/10.1371%2Fjournal.pbio.0000019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |