Visualization of 3D osteon morphology by synchrotron radiation micro‐CT
Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is a field nearly synonymous with 2D thin sections. That said, progressive developments in high‐resolution X‐ray imaging are enabling 3D visual...
Saved in:
Published in | Journal of anatomy Vol. 219; no. 4; pp. 481 - 489 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.10.2011
Wiley Subscription Services, Inc Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0021-8782 1469-7580 1469-7580 |
DOI | 10.1111/j.1469-7580.2011.01398.x |
Cover
Abstract | Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is a field nearly synonymous with 2D thin sections. That said, progressive developments in high‐resolution X‐ray imaging are enabling 3D visualization to reach ever smaller structures. Micro‐computed tomography (micro‐CT), employing conventional X‐ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro‐CT based upon absorption‐derived contrast. Synchrotron radiation micro‐CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non‐destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid‐femoral cortical bone specimens derived from a 20‐year‐old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60‐mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4‐μm nominal isotropic resolution. Computer‐aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X‐ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the vascular pores. The ability to discern osteon boundaries in conjunction with vascular and cellular porosity revealed a number of secondary osteon morphologies and provided a unique 3D perspective of the superimposition of secondary osteons on existing structures. Improvements in resolution and optimization of the propagation phase contrast promise to provide further improvements in structural detail in the future. |
---|---|
AbstractList | Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-μm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the vascular pores. The ability to discern osteon boundaries in conjunction with vascular and cellular porosity revealed a number of secondary osteon morphologies and provided a unique 3D perspective of the superimposition of secondary osteons on existing structures. Improvements in resolution and optimization of the propagation phase contrast promise to provide further improvements in structural detail in the future. Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology - literally the study of tissue - is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-μm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the vascular pores. The ability to discern osteon boundaries in conjunction with vascular and cellular porosity revealed a number of secondary osteon morphologies and provided a unique 3D perspective of the superimposition of secondary osteons on existing structures. Improvements in resolution and optimization of the propagation phase contrast promise to provide further improvements in structural detail in the future.Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology - literally the study of tissue - is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-μm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the vascular pores. The ability to discern osteon boundaries in conjunction with vascular and cellular porosity revealed a number of secondary osteon morphologies and provided a unique 3D perspective of the superimposition of secondary osteons on existing structures. Improvements in resolution and optimization of the propagation phase contrast promise to provide further improvements in structural detail in the future. Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology - literally the study of tissue - is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-µm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the vascular pores. The ability to discern osteon boundaries in conjunction with vascular and cellular porosity revealed a number of secondary osteon morphologies and provided a unique 3D perspective of the superimposition of secondary osteons on existing structures. Improvements in resolution and optimization of the propagation phase contrast promise to provide further improvements in structural detail in the future. [PUBLICATION ABSTRACT] Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology - literally the study of tissue - is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1h and images were acquired with 1.4- mu m nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the vascular pores. The ability to discern osteon boundaries in conjunction with vascular and cellular porosity revealed a number of secondary osteon morphologies and provided a unique 3D perspective of the superimposition of secondary osteons on existing structures. Improvements in resolution and optimization of the propagation phase contrast promise to provide further improvements in structural detail in the future. |
Author | Erickson, B. Thomas, C. D. L. Clement, J. G. Cooper, D. M. L. Peele, A.G. Hannah, K. |
Author_xml | – sequence: 1 givenname: D. M. L. surname: Cooper fullname: Cooper, D. M. L. – sequence: 2 givenname: B. surname: Erickson fullname: Erickson, B. – sequence: 3 givenname: A.G. surname: Peele fullname: Peele, A.G. – sequence: 4 givenname: K. surname: Hannah fullname: Hannah, K. – sequence: 5 givenname: C. D. L. surname: Thomas fullname: Thomas, C. D. L. – sequence: 6 givenname: J. G. surname: Clement fullname: Clement, J. G. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21644972$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAQtVAR3Rb-AorEAS4JHn_E9gGkailQVKmXwtXyJk7XqyRe7ASanvgJ_EZ-CU63LdADqi-2NW_ezHszB2iv971FKANcQDqvNwWwUuWCS1wQDFBgoEoWl4_Q4i6whxYYE8ilkGQfHcS4wQmFFXuC9gmUjClBFujki4ujad2VGZzvM99k9F3m42DTp_Nhu_atv5iy1ZTFqa_WwQ8hRYKp3S6hc1Xwv378XJ4_RY8b00b77OY-RJ_fH58vP-anZx9OlkenecUpk7mQWODaElCNXXEpKJSKlsZKQoiyxqyYIpxDZSUuFYHaMsAG140sMVhBDT1Eb3e823HV2bqy_RBMq7fBdSZM2hun_430bq0v_DdNQZWC00Tw8oYg-K-jjYPuXKxs25re-jFqKVUyh7EZ-eq_SMAkqVGYswR9cQ-68WPokxEaOAgqkiaeUM__7v2u6dt5_BGXXI0x2EZXbrh2Oklxbaqo5wXQGz3PWc9z1vMC6OsF0JeJQN4juK3xgNQ3u9TvrrXTg_P0p7Oj-UV_A04Dx7Y |
CODEN | JOANAY |
CitedBy_id | crossref_primary_10_1088_0031_9155_60_1_211 crossref_primary_10_1016_j_bone_2023_116864 crossref_primary_10_1016_j_bone_2018_05_027 crossref_primary_10_1016_j_bone_2023_116960 crossref_primary_10_1111_joa_12803 crossref_primary_10_1111_joa_12847 crossref_primary_10_1002_jor_22035 crossref_primary_10_1088_0031_9155_58_1_R1 crossref_primary_10_1016_j_bone_2013_12_034 crossref_primary_10_1007_s11914_014_0233_0 crossref_primary_10_1007_s11307_018_1246_3 crossref_primary_10_1002_ajpa_23297 crossref_primary_10_1002_ar_22845 crossref_primary_10_1007_s00198_012_2044_4 crossref_primary_10_1038_bonekey_2016_82 crossref_primary_10_3389_fendo_2015_00122 crossref_primary_10_1002_jbmr_3552 crossref_primary_10_1097_BRS_0b013e31822ffa05 crossref_primary_10_1111_1556_4029_14305 crossref_primary_10_1002_wfs2_1399 crossref_primary_10_1016_j_bone_2020_115620 crossref_primary_10_1088_0031_9155_57_24_8173 crossref_primary_10_1111_joa_12357 crossref_primary_10_1111_joa_13325 crossref_primary_10_1016_j_bone_2019_07_028 crossref_primary_10_3389_fbioe_2022_824156 crossref_primary_10_1016_j_forsciint_2013_05_016 crossref_primary_10_1089_ten_teb_2013_0493 crossref_primary_10_1002_ar_22997 crossref_primary_10_1111_joa_12430 crossref_primary_10_1118_1_3697525 crossref_primary_10_1016_j_powtec_2018_08_060 crossref_primary_10_3389_fbioe_2022_862395 crossref_primary_10_1002_sca_21180 crossref_primary_10_3389_fmats_2018_00032 crossref_primary_10_1016_j_nxmate_2023_100021 crossref_primary_10_1016_j_jmbbm_2020_103887 crossref_primary_10_7717_peerj_9878 |
Cites_doi | 10.1007/s00198-009-0855-8 10.1109/ISBI.2007.357015 10.1007/s00776-006-1104-z 10.1016/j.bone.2009.04.238 10.1016/j.bone.2009.04.248 10.1076/ejom.40.5.309.28901 10.1016/j.bone.2010.07.025 10.1364/OE.11.002289 10.1016/j.bone.2008.05.015 10.1002/ar.10014 10.1016/j.ejmp.2008.05.006 10.1139/o63-146 10.1063/1.3115402 10.1002/aja.1001490302 10.1016/j.bone.2006.01.147 10.1111/j.1469-7580.2007.00693.x 10.1111/j.1365-2818.2007.01785.x 10.1016/j.bone.2008.01.030 10.1159/000102176 10.1007/s00223-003-0071-z 10.1023/B:JMSM.0000042692.34537.8e 10.1098/rsif.2008.0539 10.1007/s00198-009-0993-z 10.1046/j.1469-7580.2003.00211.x 10.1007/BF02012540 10.1016/0021-9290(93)90023-8 10.1359/jbmr.070703 10.1159/000140331 10.1002/ar.a.20344 10.1016/S0021-9290(03)00126-X 10.1002/ar.b.10024 10.1016/S0168-583X(02)01557-4 10.1007/s00330-004-2361-x 10.1016/j.bone.2007.10.009 10.1016/8756-3282(91)90028-H 10.1152/japplphysiol.00495.2005 10.1016/0021-9290(94)00035-2 10.1007/BF02058664 10.1016/S8756-3282(01)00642-1 10.1038/384335a0 10.1002/jemt.20720 10.1159/000016659 10.1016/j.bone.2006.11.011 10.2106/00004623-195840020-00015 10.1111/j.1601-6343.2006.00376.x 10.1016/8756-3282(94)90288-7 10.1016/j.bone.2007.04.192 10.1111/j.1439-0264.2009.00973.x 10.1016/S8756-3282(01)00620-2 10.1359/jbmr.081229 10.1016/j.bone.2007.02.023 10.1016/j.biomaterials.2004.01.047 10.1359/jbmr.2002.17.11.2021 10.1007/s002239900699 10.1016/0221-8747(83)90013-9 10.1016/j.jhevol.2007.09.018 10.1016/j.bone.2009.03.654 10.1359/jbmr.2000.15.2.301 10.1007/s00223-005-0274-6 |
ContentType | Journal Article |
Copyright | 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland 2011 |
Copyright_xml | – notice: 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland – notice: 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland. – notice: Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7SS 7TK 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1111/j.1469-7580.2011.01398.x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Entomology Abstracts MEDLINE Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1469-7580 |
EndPage | 489 |
ExternalDocumentID | PMC3196753 3278451151 21644972 10_1111_j_1469_7580_2011_01398_x JOA1398 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OC 24P 29J 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABGDZ ABJNI ABLJU ABPVW ABQWH ABVKB ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACQPF ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HYE HZI HZ~ H~9 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K RCA RIG ROL RPM RX1 SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WHG WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 XOL YFH YUY ZGI ZXP ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7SS 7TK 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5348-78070de219feb587316936ae82229eaab492551ce806921de410a0df8601e73a3 |
IEDL.DBID | DR2 |
ISSN | 0021-8782 1469-7580 |
IngestDate | Thu Aug 21 18:34:42 EDT 2025 Fri Sep 05 05:51:05 EDT 2025 Thu Sep 04 15:43:12 EDT 2025 Wed Aug 13 04:38:47 EDT 2025 Thu Apr 03 06:57:06 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Wed Oct 01 05:08:25 EDT 2025 Wed Jan 22 16:21:42 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5348-78070de219feb587316936ae82229eaab492551ce806921de410a0df8601e73a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3196753 |
PMID | 21644972 |
PQID | 1517375515 |
PQPubID | 1086345 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3196753 proquest_miscellaneous_889449443 proquest_miscellaneous_1028079054 proquest_journals_1517375515 pubmed_primary_21644972 crossref_citationtrail_10_1111_j_1469_7580_2011_01398_x crossref_primary_10_1111_j_1469_7580_2011_01398_x wiley_primary_10_1111_j_1469_7580_2011_01398_x_JOA1398 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2011 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: October 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Journal of anatomy |
PublicationTitleAlternate | J Anat |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Blackwell Science Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Blackwell Science Inc |
References | 2009; 45 1993; 26 2001; 264 2002; 17 2007; 227 1991; 12 1963; 41 2004; 25 2006; 39 2007; 185 1983; 5 1999; 164 1996; 384 2008a; 42 2003; 199 2003; 274 2003; 11 2010; 21 2004; 74 2007b; 40 1996; 29 1948; 5 2000; 15 1969; 3 2002; 40 2007; 210 2008b; 43 1958; 40A 2008; 24 2007a; 80 1972; 10 1983 2003; 203 2007; 22 2006; 288 2010; 7 2009; 24 2009; 20 2002; 30 2006; 9 2003; 36 2007 1999; 65 2008; 54 2004 1977; 149 2007; 12 2010; 47 39 2009; 72 2007; 2007 2004; 14 2004; 15 1964 2008; 43 1994; 15 2007; 40 2007; 41 2006; 100 2009; 105 e_1_2_8_24_1 e_1_2_8_47_1 Johnson LC (e_1_2_8_25_1) 1964 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 Dalstra M (e_1_2_8_16_1) 2004 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Moshin S (e_1_2_8_37_1) 2002; 40 Pazzaglia UE (e_1_2_8_42_1); 39 Larrue A (e_1_2_8_28_1) 2007; 2007 e_1_2_8_2_1 e_1_2_8_4_1 Parfitt AM (e_1_2_8_40_1) 1983 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 17544983 - Bone. 2007 Aug;41(2):239-46 18602852 - Phys Med. 2008 Sep;24(3):129-48 12412810 - J Bone Miner Res. 2002 Nov;17(11):2021-9 17223618 - Bone. 2007 Apr;40(4):957-65 14961208 - Calcif Tissue Int. 2004 May;74(5):437-47 19543764 - Osteoporos Int. 2010 Apr;21(4):627-36 17101027 - Orthod Craniofac Res. 2006 Nov;9(4):199-205 17635659 - J Microsc. 2007 Jul;227(Pt 1):51-71 16141381 - J Appl Physiol (1985). 2006 Jan;100(1):274-80 19471337 - Opt Express. 2003 Sep 22;11(19):2289-302 19340510 - Osteoporos Int. 2009 Jun;20(6):1057-63 10703932 - J Bone Miner Res. 2000 Feb;15(2):301-7 17587802 - Cells Tissues Organs. 2007;185(4):285-307 1797054 - Bone. 1991;12(6):391-400 11792557 - Bone. 2002 Jan;30(1):5-7 16761291 - Anat Rec A Discov Mol Cell Evol Biol. 2006 Jul;288(7):806-16 17340226 - Calcif Tissue Int. 2007 Mar;80(3):211-9 8849809 - J Biomech. 1996 Feb;29(2):161-9 19303955 - Bone. 2009 Jul;45(1):77-83 13539066 - J Bone Joint Surg Am. 1958 Apr;40-A(2):419-34 19398046 - Bone. 2009 Aug;45(2):321-9 10485978 - Calcif Tissue Int. 1999 Oct;65(4):280-4 18045654 - J Hum Evol. 2008 Feb;54(2):272-8 16540385 - Bone. 2006 Aug;39(2):289-99 8068447 - Bone. 1994 May-Jun;15(3):269-77 19360841 - Microsc Res Tech. 2009 Sep;72(9):690-701 18625577 - Bone. 2008 Sep;43(3):452-8 19410668 - Bone. 2009 Aug;45(2):164-73 12964207 - Anat Rec B New Anat. 2003 Sep;274(1):169-79 15316744 - Eur Radiol. 2004 Sep;14(9):1550-60 4894738 - Calcif Tissue Res. 1969;3(3):211-37 8478363 - J Biomech. 1993 Apr-May;26(4-5):613-6 6374366 - Metab Bone Dis Relat Res. 1983-1984;5(3):127-30 17331174 - J Anat. 2007 Mar;210(3):239-48 18882401 - Acta Anat (Basel). 1948;5(3):291-300 19324670 - J R Soc Interface. 2010 Jan 6;7(42):49-59 10436327 - Cells Tissues Organs. 1999;164(4):192-204 11745093 - Anat Rec. 2001 Dec 1;264(4):378-86 15448414 - J Mater Sci Mater Med. 2004 Sep;15(9):1053-7 11792558 - Bone. 2002 Jan;30(1):8-13 12924817 - J Anat. 2003 Aug;203(2):161-72 19874276 - Anat Histol Embryol. 2010 Feb;39(1):17-26 17605631 - J Bone Miner Res. 2007 Oct;22(10):1557-70 13945831 - Can J Biochem Physiol. 1963 May;41:1307-10 18002856 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3918-21 20691298 - Bone. 2010 Nov;47(5):866-71 17398173 - Bone. 2007 Jun;40(6):1574-80 18063436 - Bone. 2008 Feb;42(2):250-9 15109855 - Biomaterials. 2004 Sep;25(20):4947-54 18619937 - Bone. 2008 Sep;43(3):476-82 14499294 - J Biomech. 2003 Oct;36(10):1453-9 5083910 - Calcif Tissue Res. 1972;10(2):103-12 17393269 - J Orthop Sci. 2007 Mar;12(2):141-8 19063683 - J Bone Miner Res. 2009 May;24(5):860-70 879049 - Am J Anat. 1977 Jul;149(3):301-17 15101447 - Eur J Morphol. 2002 Dec;40(5):309-15 |
References_xml | – volume: 40A start-page: 419 year: 1958 end-page: 434 article-title: The three‐dimensional anatomy of haversian systems publication-title: J Bone Joint Surg Am – volume: 149 start-page: 301 year: 1977 end-page: 332 article-title: Three‐dimensional studies of resorption spaces and developing osteons publication-title: Am J Anat – volume: 10 start-page: 103 year: 1972 end-page: 112 article-title: The rate of osteoclastic bone erosion in Haversian remodeling sites of adult dog’s rib publication-title: Calcif Tissue Res – volume: 22 start-page: 1557 year: 2007 end-page: 1570 article-title: Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro‐ and nano‐CT publication-title: J Bone Miner Res – volume: 11 start-page: 2289 year: 2003 end-page: 2302 article-title: X‐ray phase‐contrast microscopy and microtomography publication-title: Opt Express – volume: 164 start-page: 192 year: 1999 end-page: 204 article-title: Morphology of the drifting osteon publication-title: Cells Tissues Organs – volume: 20 start-page: 1057 year: 2009 end-page: 1063 article-title: Investigation of bone with synchrotron radiation imaging: from micro to nano publication-title: Osteoporos Int – volume: 15 start-page: 301 year: 2000 end-page: 307 article-title: Is BMU‐coupling a strain‐regulated phenomenon? A finite element analysis publication-title: J Bone Miner Res – volume: 42 start-page: 250 year: 2008a end-page: 259 article-title: A unified theory for osteonal and hemi‐osteonal remodeling publication-title: Bone – volume: 14 start-page: 1550 year: 2004 end-page: 1560 article-title: Synchrotron radiation in radiology: radiology techniques based on synchrotron sources publication-title: Eur Radiol – volume: 5 start-page: 291 year: 1948 end-page: 300 article-title: A contribution to the functional meaning of the substitution of primary by secondary bone tissue publication-title: Acta Anat – volume: 47 start-page: 866 year: 2010 end-page: 871 article-title: Bimodal distribution of osteocyte lacunar size in the human femoral cortex as revealed by micro‐CT publication-title: Bone – volume: 39 start-page: 17 end-page: 26 article-title: Morphometric analysis of the canal system of cortical bone: an experimental study in the rabbit femur carried out with standard histology and micro‐CT publication-title: Anat Histol Embryol – volume: 41 start-page: 1307 year: 1963 end-page: 1310 article-title: Mean formation time of human osteons publication-title: Can J Biochem Physiol – volume: 264 start-page: 378 year: 2001 end-page: 386 article-title: Super‐osteons (remodeling clusters) in the cortex of the femoral shaft: influence of age and gender publication-title: Anat Rec – volume: 40 start-page: 957 year: 2007b end-page: 965 article-title: Age‐dependent change in the 3D structure of cortical porosity at the human femoral midshaft publication-title: Bone – volume: 5 start-page: 127 year: 1983 end-page: 130 article-title: Three‐dimensional morphology of trabecular bone osteons reconstructed from serial sections publication-title: Metab Bone Dis Relat Res – volume: 274 start-page: 169 year: 2003 end-page: 179 article-title: Quantitative 3D analysis of the canal network in cortical bone by micro‐computed tomography publication-title: Anat Rec B New Anat – volume: 185 start-page: 285 year: 2007 end-page: 307 article-title: Are distributions of secondary osteon variants useful for interpreting load history in mammalian bones? publication-title: Cells Tissues Organs – start-page: 543 year: 1964 end-page: 654 – volume: 105 start-page: 12 year: 2009 article-title: Refracting Rontgen’s rays: propagation‐based x‐ray phase contrast for biomedical imaging publication-title: J Appl Phys – volume: 80 start-page: 211 year: 2007a end-page: 219 article-title: Effect of voxel size on 3D micro‐CT analysis of cortical bone porosity publication-title: Calcif Tissue Int – volume: 21 start-page: 627 year: 2010 end-page: 636 article-title: Age‐ and gender‐dependent changes in three‐dimensional microstructure of cortical and trabecular bone at the human femoral neck publication-title: Osteoporos Int – volume: 26 start-page: 613 year: 1993 end-page: 616 article-title: Calculating the probability that microcracks initiate resorption spaces publication-title: J Biomech – volume: 100 start-page: 274 year: 2006 end-page: 280 article-title: Monochromatic synchrotron radiation muCT reveals disuse‐mediated canal network rarefaction in cortical bone of growing rat tibiae publication-title: J Appl Physiol – volume: 36 start-page: 1453 year: 2003 end-page: 1459 article-title: Strain‐derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon – a proposal publication-title: J Biomech – volume: 43 start-page: 476 year: 2008b end-page: 482 article-title: Relating osteon diameter to strain publication-title: Bone – volume: 40 start-page: 309 year: 2002 end-page: 315 article-title: Three‐dimensional reconstruction of Haversian systems in ovine compact bone publication-title: Eur J Morphol – volume: 72 start-page: 690 year: 2009 end-page: 701 article-title: Simultaneous 3D visualization and quantification of murine bone and bone vasculature using micro‐computed tomography and vascular replica publication-title: Microsc Res Tech – volume: 65 start-page: 280 year: 1999 end-page: 284 article-title: Computer‐assisted 3D reconstruction of serial sections of cortical bone to determine the 3D structure of osteons publication-title: Calcif Tissue Int – volume: 9 start-page: 199 year: 2006 end-page: 205 article-title: Synchrotron radiation‐based microtomography of alveolar support tissues publication-title: Orthod Craniofac Res – volume: 43 start-page: 452 year: 2008 end-page: 458 article-title: Osteocyte morphology in fibula and calvaria – is there a role for mechanosensing? publication-title: Bone – volume: 203 start-page: 161 year: 2003 end-page: 172 article-title: Detecting microdamage in bone publication-title: J Anat – volume: 210 start-page: 239 year: 2007 end-page: 248 article-title: Porosity of human mandibular condylar bone publication-title: J Anat – volume: 384 start-page: 335 year: 1996 end-page: 338 article-title: Phase‐contrast imaging using polychromatic hard X‐rays publication-title: Nature – volume: 24 start-page: 129 year: 2008 end-page: 148 article-title: Development of phase‐contrast X‐ray imaging techniques and potential medical applications publication-title: Phys Med – volume: 45 start-page: 164 year: 2009 end-page: 173 article-title: Time‐lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution publication-title: Bone – volume: 30 start-page: 8 year: 2002 end-page: 13 article-title: Is all cortical bone remodeling initiated by microdamage? publication-title: Bone – volume: 45 start-page: 77 year: 2009 end-page: 83 article-title: The relation of femoral osteon geometry to age, sex, height and weight publication-title: Bone – volume: 2007 start-page: 3918 year: 2007 end-page: 3921 article-title: Feasibility of micro‐crack detection in human trabecular bone images from 3D synchrotron microtomography publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 12 start-page: 391 year: 1991 end-page: 400 article-title: On the significance of remodeling space and activation rate changes in bone remodeling publication-title: Bone – volume: 227 start-page: 51 year: 2007 end-page: 71 article-title: Imaging applications of synchrotron X‐ray phase‐contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre‐sized arthropod structure publication-title: J Microsc – volume: 29 start-page: 161 year: 1996 end-page: 169 article-title: Spatial organization of the haversian bone in man publication-title: J Biomech – volume: 25 start-page: 4947 year: 2004 end-page: 4954 article-title: Analysis of 3D bone ingrowth into polymer scaffolds via micro‐computed tomography imaging publication-title: Biomaterials – volume: 24 start-page: 860 year: 2009 end-page: 870 article-title: Mathematical modeling of spatio‐temporal dynamics of a single bone multicellular unit publication-title: J Bone Miner Res – volume: 288 start-page: 806 year: 2006 end-page: 816 article-title: Three‐dimensional microcomputed tomography imaging of basic multicellular unit‐related resorption spaces in human cortical bone publication-title: Anat Rec A Discov Mol Cell Evol Biol – volume: 45 start-page: 321 year: 2009 end-page: 329 article-title: Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density – is there a role for mechanosensing? publication-title: Bone – volume: 40 start-page: 1574 year: 2007 end-page: 1580 article-title: Targeted bone remodeling involves BMU steering as well as activation publication-title: Bone – volume: 15 start-page: 269 year: 1994 end-page: 277 article-title: Osteon orientation of the diaphysis of the long bones in man publication-title: Bone – start-page: 144 year: 2004 end-page: 151 – start-page: 143 year: 1983 end-page: 222 – volume: 17 start-page: 2021 year: 2002 end-page: 2029 article-title: A case for strain‐induced fluid flow as a regulator of BMU‐coupling and osteonal alignment publication-title: J Bone Miner Res – volume: 39 start-page: 289 year: 2006 end-page: 299 article-title: Time‐lapsed investigation of three‐dimensional failure and damage accumulation in trabecular bone using synchrotron light publication-title: Bone – volume: 74 start-page: 437 year: 2004 end-page: 447 article-title: Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity publication-title: Calcif Tissue Int – volume: 15 start-page: 1053 year: 2004 end-page: 1057 article-title: Phase‐contrast microtomography of thin biomaterials publication-title: J Mater Sci Mater Med – volume: 3 start-page: 211 year: 1969 end-page: 237 article-title: Tetracycline‐based histological analysis of bone remodeling publication-title: Calcif Tissue Res – volume: 12 start-page: 141 year: 2007 end-page: 148 article-title: Three‐dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements publication-title: J Orthop Sci – volume: 199 start-page: 427 year: 2003 end-page: 435 article-title: Phase‐contrast X‐ray imaging with synchrotron radiation for materials science applications publication-title: Nucl Instrum Methods Phys Res B – volume: 7 start-page: 49 year: 2010 end-page: 59 article-title: Going beyond histology. Synchrotron micro‐computed tomography as a methodology for biological tissue characterization: from tissue morphology to individual cells publication-title: J R Soc Interface – volume: 54 start-page: 272 year: 2008 end-page: 278 article-title: Nondestructive imaging of hominoid dental microstructure using phase contrast X‐ray synchrotron microtomography publication-title: J Hum Evol – volume: 41 start-page: 239 year: 2007 end-page: 246 article-title: Biphasic change and disuse‐mediated regression of canal network structure in cortical bone of growing rats publication-title: Bone – volume: 30 start-page: 5 year: 2002 end-page: 7 article-title: Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression publication-title: Bone – start-page: 968 year: 2007 end-page: 971 – ident: e_1_2_8_45_1 doi: 10.1007/s00198-009-0855-8 – ident: e_1_2_8_43_1 doi: 10.1109/ISBI.2007.357015 – ident: e_1_2_8_3_1 doi: 10.1007/s00776-006-1104-z – ident: e_1_2_8_23_1 doi: 10.1016/j.bone.2009.04.238 – ident: e_1_2_8_61_1 doi: 10.1016/j.bone.2009.04.248 – volume: 40 start-page: 309 year: 2002 ident: e_1_2_8_37_1 article-title: Three‐dimensional reconstruction of Haversian systems in ovine compact bone publication-title: Eur J Morphol doi: 10.1076/ejom.40.5.309.28901 – ident: e_1_2_8_21_1 doi: 10.1016/j.bone.2010.07.025 – ident: e_1_2_8_35_1 doi: 10.1364/OE.11.002289 – start-page: 143 volume-title: Bone Histomorphometry: Techniques and Interpretation year: 1983 ident: e_1_2_8_40_1 – ident: e_1_2_8_39_1 doi: 10.1016/j.bone.2008.05.015 – ident: e_1_2_8_4_1 doi: 10.1002/ar.10014 – ident: e_1_2_8_64_1 doi: 10.1016/j.ejmp.2008.05.006 – ident: e_1_2_8_18_1 doi: 10.1139/o63-146 – ident: e_1_2_8_20_1 doi: 10.1063/1.3115402 – ident: e_1_2_8_58_1 doi: 10.1002/aja.1001490302 – ident: e_1_2_8_59_1 doi: 10.1016/j.bone.2006.01.147 – ident: e_1_2_8_46_1 doi: 10.1111/j.1469-7580.2007.00693.x – ident: e_1_2_8_5_1 doi: 10.1111/j.1365-2818.2007.01785.x – start-page: 144 volume-title: Developments in X‐ray Tomography IV Proc. of SPIE Vol. 5535 year: 2004 ident: e_1_2_8_16_1 – ident: e_1_2_8_60_1 doi: 10.1016/j.bone.2008.01.030 – ident: e_1_2_8_52_1 doi: 10.1159/000102176 – ident: e_1_2_8_12_1 doi: 10.1007/s00223-003-0071-z – ident: e_1_2_8_48_1 doi: 10.1023/B:JMSM.0000042692.34537.8e – ident: e_1_2_8_63_1 doi: 10.1098/rsif.2008.0539 – ident: e_1_2_8_9_1 doi: 10.1007/s00198-009-0993-z – ident: e_1_2_8_29_1 doi: 10.1046/j.1469-7580.2003.00211.x – ident: e_1_2_8_24_1 doi: 10.1007/BF02012540 – ident: e_1_2_8_8_1 doi: 10.1016/0021-9290(93)90023-8 – ident: e_1_2_8_50_1 doi: 10.1359/jbmr.070703 – ident: e_1_2_8_2_1 doi: 10.1159/000140331 – ident: e_1_2_8_13_1 doi: 10.1002/ar.a.20344 – volume: 2007 start-page: 3918 year: 2007 ident: e_1_2_8_28_1 article-title: Feasibility of micro‐crack detection in human trabecular bone images from 3D synchrotron microtomography publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: e_1_2_8_7_1 doi: 10.1016/S0021-9290(03)00126-X – ident: e_1_2_8_11_1 doi: 10.1002/ar.b.10024 – ident: e_1_2_8_55_1 doi: 10.1016/S0168-583X(02)01557-4 – ident: e_1_2_8_36_1 doi: 10.1007/s00330-004-2361-x – ident: e_1_2_8_38_1 doi: 10.1016/j.bone.2007.10.009 – ident: e_1_2_8_30_1 doi: 10.1016/8756-3282(91)90028-H – ident: e_1_2_8_33_1 doi: 10.1152/japplphysiol.00495.2005 – start-page: 543 volume-title: Bone Biodynamics year: 1964 ident: e_1_2_8_25_1 – ident: e_1_2_8_44_1 doi: 10.1016/0021-9290(94)00035-2 – ident: e_1_2_8_19_1 doi: 10.1007/BF02058664 – ident: e_1_2_8_41_1 doi: 10.1016/S8756-3282(01)00642-1 – ident: e_1_2_8_62_1 doi: 10.1038/384335a0 – ident: e_1_2_8_51_1 doi: 10.1002/jemt.20720 – ident: e_1_2_8_47_1 doi: 10.1159/000016659 – ident: e_1_2_8_15_1 doi: 10.1016/j.bone.2006.11.011 – ident: e_1_2_8_10_1 doi: 10.2106/00004623-195840020-00015 – ident: e_1_2_8_17_1 doi: 10.1111/j.1601-6343.2006.00376.x – ident: e_1_2_8_22_1 doi: 10.1016/8756-3282(94)90288-7 – ident: e_1_2_8_34_1 doi: 10.1016/j.bone.2007.04.192 – volume: 39 start-page: 17 ident: e_1_2_8_42_1 article-title: Morphometric analysis of the canal system of cortical bone: an experimental study in the rabbit femur carried out with standard histology and micro‐CT publication-title: Anat Histol Embryol doi: 10.1111/j.1439-0264.2009.00973.x – ident: e_1_2_8_31_1 doi: 10.1016/S8756-3282(01)00620-2 – ident: e_1_2_8_49_1 doi: 10.1359/jbmr.081229 – ident: e_1_2_8_32_1 doi: 10.1016/j.bone.2007.02.023 – ident: e_1_2_8_26_1 doi: 10.1016/j.biomaterials.2004.01.047 – ident: e_1_2_8_54_1 doi: 10.1359/jbmr.2002.17.11.2021 – ident: e_1_2_8_56_1 doi: 10.1007/s002239900699 – ident: e_1_2_8_27_1 doi: 10.1016/0221-8747(83)90013-9 – ident: e_1_2_8_57_1 doi: 10.1016/j.jhevol.2007.09.018 – ident: e_1_2_8_6_1 doi: 10.1016/j.bone.2009.03.654 – ident: e_1_2_8_53_1 doi: 10.1359/jbmr.2000.15.2.301 – ident: e_1_2_8_14_1 doi: 10.1007/s00223-005-0274-6 – reference: 19398046 - Bone. 2009 Aug;45(2):321-9 – reference: 18045654 - J Hum Evol. 2008 Feb;54(2):272-8 – reference: 16761291 - Anat Rec A Discov Mol Cell Evol Biol. 2006 Jul;288(7):806-16 – reference: 19874276 - Anat Histol Embryol. 2010 Feb;39(1):17-26 – reference: 19543764 - Osteoporos Int. 2010 Apr;21(4):627-36 – reference: 17398173 - Bone. 2007 Jun;40(6):1574-80 – reference: 8849809 - J Biomech. 1996 Feb;29(2):161-9 – reference: 18002856 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3918-21 – reference: 13539066 - J Bone Joint Surg Am. 1958 Apr;40-A(2):419-34 – reference: 17331174 - J Anat. 2007 Mar;210(3):239-48 – reference: 12924817 - J Anat. 2003 Aug;203(2):161-72 – reference: 19303955 - Bone. 2009 Jul;45(1):77-83 – reference: 11745093 - Anat Rec. 2001 Dec 1;264(4):378-86 – reference: 5083910 - Calcif Tissue Res. 1972;10(2):103-12 – reference: 12412810 - J Bone Miner Res. 2002 Nov;17(11):2021-9 – reference: 17223618 - Bone. 2007 Apr;40(4):957-65 – reference: 19360841 - Microsc Res Tech. 2009 Sep;72(9):690-701 – reference: 15109855 - Biomaterials. 2004 Sep;25(20):4947-54 – reference: 19410668 - Bone. 2009 Aug;45(2):164-73 – reference: 18619937 - Bone. 2008 Sep;43(3):476-82 – reference: 18882401 - Acta Anat (Basel). 1948;5(3):291-300 – reference: 11792557 - Bone. 2002 Jan;30(1):5-7 – reference: 18063436 - Bone. 2008 Feb;42(2):250-9 – reference: 12964207 - Anat Rec B New Anat. 2003 Sep;274(1):169-79 – reference: 1797054 - Bone. 1991;12(6):391-400 – reference: 17101027 - Orthod Craniofac Res. 2006 Nov;9(4):199-205 – reference: 8068447 - Bone. 1994 May-Jun;15(3):269-77 – reference: 14499294 - J Biomech. 2003 Oct;36(10):1453-9 – reference: 19471337 - Opt Express. 2003 Sep 22;11(19):2289-302 – reference: 17393269 - J Orthop Sci. 2007 Mar;12(2):141-8 – reference: 18602852 - Phys Med. 2008 Sep;24(3):129-48 – reference: 14961208 - Calcif Tissue Int. 2004 May;74(5):437-47 – reference: 19340510 - Osteoporos Int. 2009 Jun;20(6):1057-63 – reference: 10436327 - Cells Tissues Organs. 1999;164(4):192-204 – reference: 17605631 - J Bone Miner Res. 2007 Oct;22(10):1557-70 – reference: 19324670 - J R Soc Interface. 2010 Jan 6;7(42):49-59 – reference: 6374366 - Metab Bone Dis Relat Res. 1983-1984;5(3):127-30 – reference: 15101447 - Eur J Morphol. 2002 Dec;40(5):309-15 – reference: 19063683 - J Bone Miner Res. 2009 May;24(5):860-70 – reference: 4894738 - Calcif Tissue Res. 1969;3(3):211-37 – reference: 13945831 - Can J Biochem Physiol. 1963 May;41:1307-10 – reference: 10703932 - J Bone Miner Res. 2000 Feb;15(2):301-7 – reference: 15316744 - Eur Radiol. 2004 Sep;14(9):1550-60 – reference: 16141381 - J Appl Physiol (1985). 2006 Jan;100(1):274-80 – reference: 8478363 - J Biomech. 1993 Apr-May;26(4-5):613-6 – reference: 16540385 - Bone. 2006 Aug;39(2):289-99 – reference: 10485978 - Calcif Tissue Int. 1999 Oct;65(4):280-4 – reference: 17587802 - Cells Tissues Organs. 2007;185(4):285-307 – reference: 17340226 - Calcif Tissue Int. 2007 Mar;80(3):211-9 – reference: 18625577 - Bone. 2008 Sep;43(3):452-8 – reference: 17544983 - Bone. 2007 Aug;41(2):239-46 – reference: 15448414 - J Mater Sci Mater Med. 2004 Sep;15(9):1053-7 – reference: 17635659 - J Microsc. 2007 Jul;227(Pt 1):51-71 – reference: 879049 - Am J Anat. 1977 Jul;149(3):301-17 – reference: 11792558 - Bone. 2002 Jan;30(1):8-13 – reference: 20691298 - Bone. 2010 Nov;47(5):866-71 |
SSID | ssj0013094 |
Score | 2.209241 |
Snippet | Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is... Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology - literally the study of tissue - is... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 481 |
SubjectTerms | Bone (cortical) Bone (trabecular) Boundaries Cement Computed tomography cortical bone Development Femur Femur - diagnostic imaging Haversian system Haversian System - diagnostic imaging Humans Image processing Imaging, Three-Dimensional Ionizing radiation Male Microscopes micro‐CT Original osteon Osteons Photons Porosity Segmentation Soft tissues synchrotron Synchrotrons X-Ray Microtomography Young Adult |
Title | Visualization of 3D osteon morphology by synchrotron radiation micro‐CT |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-7580.2011.01398.x https://www.ncbi.nlm.nih.gov/pubmed/21644972 https://www.proquest.com/docview/1517375515 https://www.proquest.com/docview/1028079054 https://www.proquest.com/docview/889449443 https://pubmed.ncbi.nlm.nih.gov/PMC3196753 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1469-7580 dateEnd: 20231001 omitProxy: true ssIdentifier: ssj0013094 issn: 0021-8782 databaseCode: DIK dateStart: 19160101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1469-7580 dateEnd: 20231001 omitProxy: true ssIdentifier: ssj0013094 issn: 0021-8782 databaseCode: GX1 dateStart: 19160101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVALS databaseName: IngentaConnect Open Access Journals customDbUrl: eissn: 1469-7580 dateEnd: 20131130 omitProxy: true ssIdentifier: ssj0013094 issn: 0021-8782 databaseCode: FIJ dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1 providerName: Ingenta – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1469-7580 dateEnd: 20231001 omitProxy: true ssIdentifier: ssj0013094 issn: 0021-8782 databaseCode: RPM dateStart: 19160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0021-8782 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1469-7580 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013094 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED9KYWMv29r989YWDfbqYFmyLT2Wbm1XaAejHWEvwlJkWrraI39g2dM-wj7jPsnuZMdd0g7KGISQ2LqQk-6kO9_d7wDeJCIVluMKcJfrWDolYmWzKh459HqqwntRUoHz8Ul-eCaPhtmwy3-iWpgWH6J_4EaaEfZrUvDSTlaVXMdo7yYdEicaM2pA9iQXWYjYfkyvAwqJ7gCZOW4AaiWp59YfWj6pbpifN7Mo_7Ruw_G0_wguF4y1WSmXg9nUDtz3FczH_8P5Y3jYWbFstxW7DVjz9Sbca_tazjfh_nEXsceLn5tw8Qm8_3QxoQrOtu6TNRUTbxmVmOCXqwaXO4xjds4m89qdjxt6SM_GhJ0QCK4odfDXj597p0_hbP_d6d5h3DVyiF0mpIoLhRvLyOPmWHmbKWqWpUVe-tBM3JelJYTEjDuvklynfOQlT8pkVCn0Fn0hSvEM1uum9i-AVYXySJo4wrmTldbS5Zl3Sno8Vm2iIygWi2Zch3JOzTa-mCVvRxuaPUOzZ8LsmW8R8J7ya4v0cQearYVcmE73JwZtqEIUyE8Wwev-NmothWLK2jczHEMRbcJGkxGwv4xRSkuJLxHB81bS-v-VopMrdZEit0sy2A8g0PDlO_XFeQAPpy0XXdQI8iBid2bVHH3YpU8v_5XwFTxIF_mTfAvWp-OZ30aDbmp3gqri-8GQ_war_Tvs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hKtpeWkpfoUBdqdeskthJ7COCouWxVKqWCvViJV5HoEJS7UPq9sRP4DfySzrjZAO7tBKqKuWwSTzRjj0zHnvG3wB8DHjE8xBHIDSJ8oWR3Jd5XPgDg6ueIrWWZ3TAuXecdE_EwWl82pQDorMwNT5Eu-FGmuHsNSk4bUgvarny0eENGihO9GZkBx3KRxSuIy3d_RLdhhQC1UAyh2gC5EJazx-_ND9X3XNA7-dR3vVv3QS19xwuZqzVeSnfO5Nx3jG_FlAf_xPvq_CscWTZdi15L2DJlmuwUpe2nK7B414TtMeH3yr38CXsfz0f0SHO-ugnqwrGdxmdMsGbywpH3LVj-ZSNpqU5G1a0T8-GBJ_gCC4pe_Dm6nqn_wpO9j71d7p-U8vBNzEX0k8l2paBRftY2DyWVC9L8SSzrp64zbKcQBLj0FgZJCoKB1aEQRYMCokLRpvyjL-G5bIq7VtgRSotkgaGoO5EoZQwSWyNFBZn1jxQHqSzUdOmATqnehsXem7BozT1nqbe06739E8PwpbyRw328QCajZlg6Eb9RxrdqJSnyE_swYf2NSouRWOy0lYTbENBbYJHEx6wv7SRUgmBF_fgTS1q7f-KcJ0rVBoht3NC2DYg3PD5N-X5mcMPJ6uLq1QPEidjD2ZVH3zepl_r_0r4Hp50-70jfbR_fPgOnkazdMpwA5bHw4ndRP9unG85vf0N9MM_Fw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9RAEJ8YjMQXEFQoIq6Jr7203W27-0jAC6CgMWCIL5t2uw0EaMn9STif_Ah-Rj-JM9te4Q5NiDG5h7t2p7nZnZmd6c78BuBdwCOeh7gCoUmUL4zkvszj0i8MRj1lai3PqMD58CjZOxEHp_Fpm_9EtTANPkT3wo00w9lrUvDropxXcuWjvxu0SJzozMge-pOPRYLBFjlIX6LbE4VAtYjMIVoAOZfV88cnzW5V9_zP-2mUd91btz_1l-FiylmTlnLRG4_ynvk-B_r4f1h_BkutG8u2G7lbgUe2WoUnTWPLySosHrZH9njxW-0uPof9r-dDKuFsCj9ZXTK-y6jGBH9c1bjebhzLJ2w4qczZoKa39GxA4AmO4IpyB3_9-Llz_AJO-u-Pd_b8tpODb2IupJ9KtCyFRetY2jyW1C1L8SSzrpu4zbKcIBLj0FgZJCoKCyvCIAuKUmK4aFOe8ZewUNWVXQdWptIiaWAI6E6USgmTxNZIYXFfzQPlQTpdNG1amHPqtnGpZ8IdpWn2NM2edrOnbzwIO8rrBurjATSbU7nQrfIPNTpRKU-Rn9iDt91tVFs6i8kqW49xDB1pEzia8ID9ZYyUSgj8cA_WGknr_leEUa5QaYTczshgN4BQw2fvVOdnDj2cbC7GqB4kTsQezKo--LRN3zb-lfANLH7e7euP-0cfXsHTaJpLGW7Cwmgwtq_RuRvlW05rfwPv0z3G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualization+of+3D+osteon+morphology+by+synchrotron+radiation+micro%E2%80%90CT&rft.jtitle=Journal+of+anatomy&rft.au=Cooper%2C+D.+M.+L.&rft.au=Erickson%2C+B.&rft.au=Peele%2C+A.G.&rft.au=Hannah%2C+K.&rft.date=2011-10-01&rft.issn=0021-8782&rft.eissn=1469-7580&rft.volume=219&rft.issue=4&rft.spage=481&rft.epage=489&rft_id=info:doi/10.1111%2Fj.1469-7580.2011.01398.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1469_7580_2011_01398_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8782&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8782&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8782&client=summon |