Visualization of 3D osteon morphology by synchrotron radiation micro‐CT

Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is a field nearly synonymous with 2D thin sections. That said, progressive developments in high‐resolution X‐ray imaging are enabling 3D visual...

Full description

Saved in:
Bibliographic Details
Published inJournal of anatomy Vol. 219; no. 4; pp. 481 - 489
Main Authors Cooper, D. M. L., Erickson, B., Peele, A.G., Hannah, K., Thomas, C. D. L., Clement, J. G.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.10.2011
Wiley Subscription Services, Inc
Blackwell Science Inc
Subjects
Online AccessGet full text
ISSN0021-8782
1469-7580
1469-7580
DOI10.1111/j.1469-7580.2011.01398.x

Cover

Abstract Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is a field nearly synonymous with 2D thin sections. That said, progressive developments in high‐resolution X‐ray imaging are enabling 3D visualization to reach ever smaller structures. Micro‐computed tomography (micro‐CT), employing conventional X‐ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro‐CT based upon absorption‐derived contrast. Synchrotron radiation micro‐CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non‐destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid‐femoral cortical bone specimens derived from a 20‐year‐old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60‐mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4‐μm nominal isotropic resolution. Computer‐aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X‐ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the vascular pores. The ability to discern osteon boundaries in conjunction with vascular and cellular porosity revealed a number of secondary osteon morphologies and provided a unique 3D perspective of the superimposition of secondary osteons on existing structures. Improvements in resolution and optimization of the propagation phase contrast promise to provide further improvements in structural detail in the future.
AbstractList Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-μm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the vascular pores. The ability to discern osteon boundaries in conjunction with vascular and cellular porosity revealed a number of secondary osteon morphologies and provided a unique 3D perspective of the superimposition of secondary osteons on existing structures. Improvements in resolution and optimization of the propagation phase contrast promise to provide further improvements in structural detail in the future.
Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology - literally the study of tissue - is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-μm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the vascular pores. The ability to discern osteon boundaries in conjunction with vascular and cellular porosity revealed a number of secondary osteon morphologies and provided a unique 3D perspective of the superimposition of secondary osteons on existing structures. Improvements in resolution and optimization of the propagation phase contrast promise to provide further improvements in structural detail in the future.Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology - literally the study of tissue - is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-μm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the vascular pores. The ability to discern osteon boundaries in conjunction with vascular and cellular porosity revealed a number of secondary osteon morphologies and provided a unique 3D perspective of the superimposition of secondary osteons on existing structures. Improvements in resolution and optimization of the propagation phase contrast promise to provide further improvements in structural detail in the future.
Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology - literally the study of tissue - is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-µm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the vascular pores. The ability to discern osteon boundaries in conjunction with vascular and cellular porosity revealed a number of secondary osteon morphologies and provided a unique 3D perspective of the superimposition of secondary osteons on existing structures. Improvements in resolution and optimization of the propagation phase contrast promise to provide further improvements in structural detail in the future. [PUBLICATION ABSTRACT]
Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology - literally the study of tissue - is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1h and images were acquired with 1.4- mu m nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the vascular pores. The ability to discern osteon boundaries in conjunction with vascular and cellular porosity revealed a number of secondary osteon morphologies and provided a unique 3D perspective of the superimposition of secondary osteons on existing structures. Improvements in resolution and optimization of the propagation phase contrast promise to provide further improvements in structural detail in the future.
Author Erickson, B.
Thomas, C. D. L.
Clement, J. G.
Cooper, D. M. L.
Peele, A.G.
Hannah, K.
Author_xml – sequence: 1
  givenname: D. M. L.
  surname: Cooper
  fullname: Cooper, D. M. L.
– sequence: 2
  givenname: B.
  surname: Erickson
  fullname: Erickson, B.
– sequence: 3
  givenname: A.G.
  surname: Peele
  fullname: Peele, A.G.
– sequence: 4
  givenname: K.
  surname: Hannah
  fullname: Hannah, K.
– sequence: 5
  givenname: C. D. L.
  surname: Thomas
  fullname: Thomas, C. D. L.
– sequence: 6
  givenname: J. G.
  surname: Clement
  fullname: Clement, J. G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21644972$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQtVAR3Rb-AorEAS4JHn_E9gGkailQVKmXwtXyJk7XqyRe7ASanvgJ_EZ-CU63LdADqi-2NW_ezHszB2iv971FKANcQDqvNwWwUuWCS1wQDFBgoEoWl4_Q4i6whxYYE8ilkGQfHcS4wQmFFXuC9gmUjClBFujki4ujad2VGZzvM99k9F3m42DTp_Nhu_atv5iy1ZTFqa_WwQ8hRYKp3S6hc1Xwv378XJ4_RY8b00b77OY-RJ_fH58vP-anZx9OlkenecUpk7mQWODaElCNXXEpKJSKlsZKQoiyxqyYIpxDZSUuFYHaMsAG140sMVhBDT1Eb3e823HV2bqy_RBMq7fBdSZM2hun_430bq0v_DdNQZWC00Tw8oYg-K-jjYPuXKxs25re-jFqKVUyh7EZ-eq_SMAkqVGYswR9cQ-68WPokxEaOAgqkiaeUM__7v2u6dt5_BGXXI0x2EZXbrh2Oklxbaqo5wXQGz3PWc9z1vMC6OsF0JeJQN4juK3xgNQ3u9TvrrXTg_P0p7Oj-UV_A04Dx7Y
CODEN JOANAY
CitedBy_id crossref_primary_10_1088_0031_9155_60_1_211
crossref_primary_10_1016_j_bone_2023_116864
crossref_primary_10_1016_j_bone_2018_05_027
crossref_primary_10_1016_j_bone_2023_116960
crossref_primary_10_1111_joa_12803
crossref_primary_10_1111_joa_12847
crossref_primary_10_1002_jor_22035
crossref_primary_10_1088_0031_9155_58_1_R1
crossref_primary_10_1016_j_bone_2013_12_034
crossref_primary_10_1007_s11914_014_0233_0
crossref_primary_10_1007_s11307_018_1246_3
crossref_primary_10_1002_ajpa_23297
crossref_primary_10_1002_ar_22845
crossref_primary_10_1007_s00198_012_2044_4
crossref_primary_10_1038_bonekey_2016_82
crossref_primary_10_3389_fendo_2015_00122
crossref_primary_10_1002_jbmr_3552
crossref_primary_10_1097_BRS_0b013e31822ffa05
crossref_primary_10_1111_1556_4029_14305
crossref_primary_10_1002_wfs2_1399
crossref_primary_10_1016_j_bone_2020_115620
crossref_primary_10_1088_0031_9155_57_24_8173
crossref_primary_10_1111_joa_12357
crossref_primary_10_1111_joa_13325
crossref_primary_10_1016_j_bone_2019_07_028
crossref_primary_10_3389_fbioe_2022_824156
crossref_primary_10_1016_j_forsciint_2013_05_016
crossref_primary_10_1089_ten_teb_2013_0493
crossref_primary_10_1002_ar_22997
crossref_primary_10_1111_joa_12430
crossref_primary_10_1118_1_3697525
crossref_primary_10_1016_j_powtec_2018_08_060
crossref_primary_10_3389_fbioe_2022_862395
crossref_primary_10_1002_sca_21180
crossref_primary_10_3389_fmats_2018_00032
crossref_primary_10_1016_j_nxmate_2023_100021
crossref_primary_10_1016_j_jmbbm_2020_103887
crossref_primary_10_7717_peerj_9878
Cites_doi 10.1007/s00198-009-0855-8
10.1109/ISBI.2007.357015
10.1007/s00776-006-1104-z
10.1016/j.bone.2009.04.238
10.1016/j.bone.2009.04.248
10.1076/ejom.40.5.309.28901
10.1016/j.bone.2010.07.025
10.1364/OE.11.002289
10.1016/j.bone.2008.05.015
10.1002/ar.10014
10.1016/j.ejmp.2008.05.006
10.1139/o63-146
10.1063/1.3115402
10.1002/aja.1001490302
10.1016/j.bone.2006.01.147
10.1111/j.1469-7580.2007.00693.x
10.1111/j.1365-2818.2007.01785.x
10.1016/j.bone.2008.01.030
10.1159/000102176
10.1007/s00223-003-0071-z
10.1023/B:JMSM.0000042692.34537.8e
10.1098/rsif.2008.0539
10.1007/s00198-009-0993-z
10.1046/j.1469-7580.2003.00211.x
10.1007/BF02012540
10.1016/0021-9290(93)90023-8
10.1359/jbmr.070703
10.1159/000140331
10.1002/ar.a.20344
10.1016/S0021-9290(03)00126-X
10.1002/ar.b.10024
10.1016/S0168-583X(02)01557-4
10.1007/s00330-004-2361-x
10.1016/j.bone.2007.10.009
10.1016/8756-3282(91)90028-H
10.1152/japplphysiol.00495.2005
10.1016/0021-9290(94)00035-2
10.1007/BF02058664
10.1016/S8756-3282(01)00642-1
10.1038/384335a0
10.1002/jemt.20720
10.1159/000016659
10.1016/j.bone.2006.11.011
10.2106/00004623-195840020-00015
10.1111/j.1601-6343.2006.00376.x
10.1016/8756-3282(94)90288-7
10.1016/j.bone.2007.04.192
10.1111/j.1439-0264.2009.00973.x
10.1016/S8756-3282(01)00620-2
10.1359/jbmr.081229
10.1016/j.bone.2007.02.023
10.1016/j.biomaterials.2004.01.047
10.1359/jbmr.2002.17.11.2021
10.1007/s002239900699
10.1016/0221-8747(83)90013-9
10.1016/j.jhevol.2007.09.018
10.1016/j.bone.2009.03.654
10.1359/jbmr.2000.15.2.301
10.1007/s00223-005-0274-6
ContentType Journal Article
Copyright 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland
2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.
Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland 2011
Copyright_xml – notice: 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland
– notice: 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.
– notice: Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7SS
7TK
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1111/j.1469-7580.2011.01398.x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Entomology Abstracts
MEDLINE
Calcium & Calcified Tissue Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1469-7580
EndPage 489
ExternalDocumentID PMC3196753
3278451151
21644972
10_1111_j_1469_7580_2011_01398_x
JOA1398
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OC
24P
29J
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABGDZ
ABJNI
ABLJU
ABPVW
ABQWH
ABVKB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACQPF
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HYE
HZI
HZ~
H~9
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RPM
RX1
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WHG
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
XOL
YFH
YUY
ZGI
ZXP
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7SS
7TK
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5348-78070de219feb587316936ae82229eaab492551ce806921de410a0df8601e73a3
IEDL.DBID DR2
ISSN 0021-8782
1469-7580
IngestDate Thu Aug 21 18:34:42 EDT 2025
Fri Sep 05 05:51:05 EDT 2025
Thu Sep 04 15:43:12 EDT 2025
Wed Aug 13 04:38:47 EDT 2025
Thu Apr 03 06:57:06 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Wed Oct 01 05:08:25 EDT 2025
Wed Jan 22 16:21:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5348-78070de219feb587316936ae82229eaab492551ce806921de410a0df8601e73a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3196753
PMID 21644972
PQID 1517375515
PQPubID 1086345
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3196753
proquest_miscellaneous_889449443
proquest_miscellaneous_1028079054
proquest_journals_1517375515
pubmed_primary_21644972
crossref_citationtrail_10_1111_j_1469_7580_2011_01398_x
crossref_primary_10_1111_j_1469_7580_2011_01398_x
wiley_primary_10_1111_j_1469_7580_2011_01398_x_JOA1398
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2011
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: October 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Journal of anatomy
PublicationTitleAlternate J Anat
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Blackwell Science Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Blackwell Science Inc
References 2009; 45
1993; 26
2001; 264
2002; 17
2007; 227
1991; 12
1963; 41
2004; 25
2006; 39
2007; 185
1983; 5
1999; 164
1996; 384
2008a; 42
2003; 199
2003; 274
2003; 11
2010; 21
2004; 74
2007b; 40
1996; 29
1948; 5
2000; 15
1969; 3
2002; 40
2007; 210
2008b; 43
1958; 40A
2008; 24
2007a; 80
1972; 10
1983
2003; 203
2007; 22
2006; 288
2010; 7
2009; 24
2009; 20
2002; 30
2006; 9
2003; 36
2007
1999; 65
2008; 54
2004
1977; 149
2007; 12
2010; 47
39
2009; 72
2007; 2007
2004; 14
2004; 15
1964
2008; 43
1994; 15
2007; 40
2007; 41
2006; 100
2009; 105
e_1_2_8_24_1
e_1_2_8_47_1
Johnson LC (e_1_2_8_25_1) 1964
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
Dalstra M (e_1_2_8_16_1) 2004
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Moshin S (e_1_2_8_37_1) 2002; 40
Pazzaglia UE (e_1_2_8_42_1); 39
Larrue A (e_1_2_8_28_1) 2007; 2007
e_1_2_8_2_1
e_1_2_8_4_1
Parfitt AM (e_1_2_8_40_1) 1983
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
17544983 - Bone. 2007 Aug;41(2):239-46
18602852 - Phys Med. 2008 Sep;24(3):129-48
12412810 - J Bone Miner Res. 2002 Nov;17(11):2021-9
17223618 - Bone. 2007 Apr;40(4):957-65
14961208 - Calcif Tissue Int. 2004 May;74(5):437-47
19543764 - Osteoporos Int. 2010 Apr;21(4):627-36
17101027 - Orthod Craniofac Res. 2006 Nov;9(4):199-205
17635659 - J Microsc. 2007 Jul;227(Pt 1):51-71
16141381 - J Appl Physiol (1985). 2006 Jan;100(1):274-80
19471337 - Opt Express. 2003 Sep 22;11(19):2289-302
19340510 - Osteoporos Int. 2009 Jun;20(6):1057-63
10703932 - J Bone Miner Res. 2000 Feb;15(2):301-7
17587802 - Cells Tissues Organs. 2007;185(4):285-307
1797054 - Bone. 1991;12(6):391-400
11792557 - Bone. 2002 Jan;30(1):5-7
16761291 - Anat Rec A Discov Mol Cell Evol Biol. 2006 Jul;288(7):806-16
17340226 - Calcif Tissue Int. 2007 Mar;80(3):211-9
8849809 - J Biomech. 1996 Feb;29(2):161-9
19303955 - Bone. 2009 Jul;45(1):77-83
13539066 - J Bone Joint Surg Am. 1958 Apr;40-A(2):419-34
19398046 - Bone. 2009 Aug;45(2):321-9
10485978 - Calcif Tissue Int. 1999 Oct;65(4):280-4
18045654 - J Hum Evol. 2008 Feb;54(2):272-8
16540385 - Bone. 2006 Aug;39(2):289-99
8068447 - Bone. 1994 May-Jun;15(3):269-77
19360841 - Microsc Res Tech. 2009 Sep;72(9):690-701
18625577 - Bone. 2008 Sep;43(3):452-8
19410668 - Bone. 2009 Aug;45(2):164-73
12964207 - Anat Rec B New Anat. 2003 Sep;274(1):169-79
15316744 - Eur Radiol. 2004 Sep;14(9):1550-60
4894738 - Calcif Tissue Res. 1969;3(3):211-37
8478363 - J Biomech. 1993 Apr-May;26(4-5):613-6
6374366 - Metab Bone Dis Relat Res. 1983-1984;5(3):127-30
17331174 - J Anat. 2007 Mar;210(3):239-48
18882401 - Acta Anat (Basel). 1948;5(3):291-300
19324670 - J R Soc Interface. 2010 Jan 6;7(42):49-59
10436327 - Cells Tissues Organs. 1999;164(4):192-204
11745093 - Anat Rec. 2001 Dec 1;264(4):378-86
15448414 - J Mater Sci Mater Med. 2004 Sep;15(9):1053-7
11792558 - Bone. 2002 Jan;30(1):8-13
12924817 - J Anat. 2003 Aug;203(2):161-72
19874276 - Anat Histol Embryol. 2010 Feb;39(1):17-26
17605631 - J Bone Miner Res. 2007 Oct;22(10):1557-70
13945831 - Can J Biochem Physiol. 1963 May;41:1307-10
18002856 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3918-21
20691298 - Bone. 2010 Nov;47(5):866-71
17398173 - Bone. 2007 Jun;40(6):1574-80
18063436 - Bone. 2008 Feb;42(2):250-9
15109855 - Biomaterials. 2004 Sep;25(20):4947-54
18619937 - Bone. 2008 Sep;43(3):476-82
14499294 - J Biomech. 2003 Oct;36(10):1453-9
5083910 - Calcif Tissue Res. 1972;10(2):103-12
17393269 - J Orthop Sci. 2007 Mar;12(2):141-8
19063683 - J Bone Miner Res. 2009 May;24(5):860-70
879049 - Am J Anat. 1977 Jul;149(3):301-17
15101447 - Eur J Morphol. 2002 Dec;40(5):309-15
References_xml – volume: 40A
  start-page: 419
  year: 1958
  end-page: 434
  article-title: The three‐dimensional anatomy of haversian systems
  publication-title: J Bone Joint Surg Am
– volume: 149
  start-page: 301
  year: 1977
  end-page: 332
  article-title: Three‐dimensional studies of resorption spaces and developing osteons
  publication-title: Am J Anat
– volume: 10
  start-page: 103
  year: 1972
  end-page: 112
  article-title: The rate of osteoclastic bone erosion in Haversian remodeling sites of adult dog’s rib
  publication-title: Calcif Tissue Res
– volume: 22
  start-page: 1557
  year: 2007
  end-page: 1570
  article-title: Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro‐ and nano‐CT
  publication-title: J Bone Miner Res
– volume: 11
  start-page: 2289
  year: 2003
  end-page: 2302
  article-title: X‐ray phase‐contrast microscopy and microtomography
  publication-title: Opt Express
– volume: 164
  start-page: 192
  year: 1999
  end-page: 204
  article-title: Morphology of the drifting osteon
  publication-title: Cells Tissues Organs
– volume: 20
  start-page: 1057
  year: 2009
  end-page: 1063
  article-title: Investigation of bone with synchrotron radiation imaging: from micro to nano
  publication-title: Osteoporos Int
– volume: 15
  start-page: 301
  year: 2000
  end-page: 307
  article-title: Is BMU‐coupling a strain‐regulated phenomenon? A finite element analysis
  publication-title: J Bone Miner Res
– volume: 42
  start-page: 250
  year: 2008a
  end-page: 259
  article-title: A unified theory for osteonal and hemi‐osteonal remodeling
  publication-title: Bone
– volume: 14
  start-page: 1550
  year: 2004
  end-page: 1560
  article-title: Synchrotron radiation in radiology: radiology techniques based on synchrotron sources
  publication-title: Eur Radiol
– volume: 5
  start-page: 291
  year: 1948
  end-page: 300
  article-title: A contribution to the functional meaning of the substitution of primary by secondary bone tissue
  publication-title: Acta Anat
– volume: 47
  start-page: 866
  year: 2010
  end-page: 871
  article-title: Bimodal distribution of osteocyte lacunar size in the human femoral cortex as revealed by micro‐CT
  publication-title: Bone
– volume: 39
  start-page: 17
  end-page: 26
  article-title: Morphometric analysis of the canal system of cortical bone: an experimental study in the rabbit femur carried out with standard histology and micro‐CT
  publication-title: Anat Histol Embryol
– volume: 41
  start-page: 1307
  year: 1963
  end-page: 1310
  article-title: Mean formation time of human osteons
  publication-title: Can J Biochem Physiol
– volume: 264
  start-page: 378
  year: 2001
  end-page: 386
  article-title: Super‐osteons (remodeling clusters) in the cortex of the femoral shaft: influence of age and gender
  publication-title: Anat Rec
– volume: 40
  start-page: 957
  year: 2007b
  end-page: 965
  article-title: Age‐dependent change in the 3D structure of cortical porosity at the human femoral midshaft
  publication-title: Bone
– volume: 5
  start-page: 127
  year: 1983
  end-page: 130
  article-title: Three‐dimensional morphology of trabecular bone osteons reconstructed from serial sections
  publication-title: Metab Bone Dis Relat Res
– volume: 274
  start-page: 169
  year: 2003
  end-page: 179
  article-title: Quantitative 3D analysis of the canal network in cortical bone by micro‐computed tomography
  publication-title: Anat Rec B New Anat
– volume: 185
  start-page: 285
  year: 2007
  end-page: 307
  article-title: Are distributions of secondary osteon variants useful for interpreting load history in mammalian bones?
  publication-title: Cells Tissues Organs
– start-page: 543
  year: 1964
  end-page: 654
– volume: 105
  start-page: 12
  year: 2009
  article-title: Refracting Rontgen’s rays: propagation‐based x‐ray phase contrast for biomedical imaging
  publication-title: J Appl Phys
– volume: 80
  start-page: 211
  year: 2007a
  end-page: 219
  article-title: Effect of voxel size on 3D micro‐CT analysis of cortical bone porosity
  publication-title: Calcif Tissue Int
– volume: 21
  start-page: 627
  year: 2010
  end-page: 636
  article-title: Age‐ and gender‐dependent changes in three‐dimensional microstructure of cortical and trabecular bone at the human femoral neck
  publication-title: Osteoporos Int
– volume: 26
  start-page: 613
  year: 1993
  end-page: 616
  article-title: Calculating the probability that microcracks initiate resorption spaces
  publication-title: J Biomech
– volume: 100
  start-page: 274
  year: 2006
  end-page: 280
  article-title: Monochromatic synchrotron radiation muCT reveals disuse‐mediated canal network rarefaction in cortical bone of growing rat tibiae
  publication-title: J Appl Physiol
– volume: 36
  start-page: 1453
  year: 2003
  end-page: 1459
  article-title: Strain‐derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon – a proposal
  publication-title: J Biomech
– volume: 43
  start-page: 476
  year: 2008b
  end-page: 482
  article-title: Relating osteon diameter to strain
  publication-title: Bone
– volume: 40
  start-page: 309
  year: 2002
  end-page: 315
  article-title: Three‐dimensional reconstruction of Haversian systems in ovine compact bone
  publication-title: Eur J Morphol
– volume: 72
  start-page: 690
  year: 2009
  end-page: 701
  article-title: Simultaneous 3D visualization and quantification of murine bone and bone vasculature using micro‐computed tomography and vascular replica
  publication-title: Microsc Res Tech
– volume: 65
  start-page: 280
  year: 1999
  end-page: 284
  article-title: Computer‐assisted 3D reconstruction of serial sections of cortical bone to determine the 3D structure of osteons
  publication-title: Calcif Tissue Int
– volume: 9
  start-page: 199
  year: 2006
  end-page: 205
  article-title: Synchrotron radiation‐based microtomography of alveolar support tissues
  publication-title: Orthod Craniofac Res
– volume: 43
  start-page: 452
  year: 2008
  end-page: 458
  article-title: Osteocyte morphology in fibula and calvaria – is there a role for mechanosensing?
  publication-title: Bone
– volume: 203
  start-page: 161
  year: 2003
  end-page: 172
  article-title: Detecting microdamage in bone
  publication-title: J Anat
– volume: 210
  start-page: 239
  year: 2007
  end-page: 248
  article-title: Porosity of human mandibular condylar bone
  publication-title: J Anat
– volume: 384
  start-page: 335
  year: 1996
  end-page: 338
  article-title: Phase‐contrast imaging using polychromatic hard X‐rays
  publication-title: Nature
– volume: 24
  start-page: 129
  year: 2008
  end-page: 148
  article-title: Development of phase‐contrast X‐ray imaging techniques and potential medical applications
  publication-title: Phys Med
– volume: 45
  start-page: 164
  year: 2009
  end-page: 173
  article-title: Time‐lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution
  publication-title: Bone
– volume: 30
  start-page: 8
  year: 2002
  end-page: 13
  article-title: Is all cortical bone remodeling initiated by microdamage?
  publication-title: Bone
– volume: 45
  start-page: 77
  year: 2009
  end-page: 83
  article-title: The relation of femoral osteon geometry to age, sex, height and weight
  publication-title: Bone
– volume: 2007
  start-page: 3918
  year: 2007
  end-page: 3921
  article-title: Feasibility of micro‐crack detection in human trabecular bone images from 3D synchrotron microtomography
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 12
  start-page: 391
  year: 1991
  end-page: 400
  article-title: On the significance of remodeling space and activation rate changes in bone remodeling
  publication-title: Bone
– volume: 227
  start-page: 51
  year: 2007
  end-page: 71
  article-title: Imaging applications of synchrotron X‐ray phase‐contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre‐sized arthropod structure
  publication-title: J Microsc
– volume: 29
  start-page: 161
  year: 1996
  end-page: 169
  article-title: Spatial organization of the haversian bone in man
  publication-title: J Biomech
– volume: 25
  start-page: 4947
  year: 2004
  end-page: 4954
  article-title: Analysis of 3D bone ingrowth into polymer scaffolds via micro‐computed tomography imaging
  publication-title: Biomaterials
– volume: 24
  start-page: 860
  year: 2009
  end-page: 870
  article-title: Mathematical modeling of spatio‐temporal dynamics of a single bone multicellular unit
  publication-title: J Bone Miner Res
– volume: 288
  start-page: 806
  year: 2006
  end-page: 816
  article-title: Three‐dimensional microcomputed tomography imaging of basic multicellular unit‐related resorption spaces in human cortical bone
  publication-title: Anat Rec A Discov Mol Cell Evol Biol
– volume: 45
  start-page: 321
  year: 2009
  end-page: 329
  article-title: Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density – is there a role for mechanosensing?
  publication-title: Bone
– volume: 40
  start-page: 1574
  year: 2007
  end-page: 1580
  article-title: Targeted bone remodeling involves BMU steering as well as activation
  publication-title: Bone
– volume: 15
  start-page: 269
  year: 1994
  end-page: 277
  article-title: Osteon orientation of the diaphysis of the long bones in man
  publication-title: Bone
– start-page: 144
  year: 2004
  end-page: 151
– start-page: 143
  year: 1983
  end-page: 222
– volume: 17
  start-page: 2021
  year: 2002
  end-page: 2029
  article-title: A case for strain‐induced fluid flow as a regulator of BMU‐coupling and osteonal alignment
  publication-title: J Bone Miner Res
– volume: 39
  start-page: 289
  year: 2006
  end-page: 299
  article-title: Time‐lapsed investigation of three‐dimensional failure and damage accumulation in trabecular bone using synchrotron light
  publication-title: Bone
– volume: 74
  start-page: 437
  year: 2004
  end-page: 447
  article-title: Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity
  publication-title: Calcif Tissue Int
– volume: 15
  start-page: 1053
  year: 2004
  end-page: 1057
  article-title: Phase‐contrast microtomography of thin biomaterials
  publication-title: J Mater Sci Mater Med
– volume: 3
  start-page: 211
  year: 1969
  end-page: 237
  article-title: Tetracycline‐based histological analysis of bone remodeling
  publication-title: Calcif Tissue Res
– volume: 12
  start-page: 141
  year: 2007
  end-page: 148
  article-title: Three‐dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements
  publication-title: J Orthop Sci
– volume: 199
  start-page: 427
  year: 2003
  end-page: 435
  article-title: Phase‐contrast X‐ray imaging with synchrotron radiation for materials science applications
  publication-title: Nucl Instrum Methods Phys Res B
– volume: 7
  start-page: 49
  year: 2010
  end-page: 59
  article-title: Going beyond histology. Synchrotron micro‐computed tomography as a methodology for biological tissue characterization: from tissue morphology to individual cells
  publication-title: J R Soc Interface
– volume: 54
  start-page: 272
  year: 2008
  end-page: 278
  article-title: Nondestructive imaging of hominoid dental microstructure using phase contrast X‐ray synchrotron microtomography
  publication-title: J Hum Evol
– volume: 41
  start-page: 239
  year: 2007
  end-page: 246
  article-title: Biphasic change and disuse‐mediated regression of canal network structure in cortical bone of growing rats
  publication-title: Bone
– volume: 30
  start-page: 5
  year: 2002
  end-page: 7
  article-title: Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression
  publication-title: Bone
– start-page: 968
  year: 2007
  end-page: 971
– ident: e_1_2_8_45_1
  doi: 10.1007/s00198-009-0855-8
– ident: e_1_2_8_43_1
  doi: 10.1109/ISBI.2007.357015
– ident: e_1_2_8_3_1
  doi: 10.1007/s00776-006-1104-z
– ident: e_1_2_8_23_1
  doi: 10.1016/j.bone.2009.04.238
– ident: e_1_2_8_61_1
  doi: 10.1016/j.bone.2009.04.248
– volume: 40
  start-page: 309
  year: 2002
  ident: e_1_2_8_37_1
  article-title: Three‐dimensional reconstruction of Haversian systems in ovine compact bone
  publication-title: Eur J Morphol
  doi: 10.1076/ejom.40.5.309.28901
– ident: e_1_2_8_21_1
  doi: 10.1016/j.bone.2010.07.025
– ident: e_1_2_8_35_1
  doi: 10.1364/OE.11.002289
– start-page: 143
  volume-title: Bone Histomorphometry: Techniques and Interpretation
  year: 1983
  ident: e_1_2_8_40_1
– ident: e_1_2_8_39_1
  doi: 10.1016/j.bone.2008.05.015
– ident: e_1_2_8_4_1
  doi: 10.1002/ar.10014
– ident: e_1_2_8_64_1
  doi: 10.1016/j.ejmp.2008.05.006
– ident: e_1_2_8_18_1
  doi: 10.1139/o63-146
– ident: e_1_2_8_20_1
  doi: 10.1063/1.3115402
– ident: e_1_2_8_58_1
  doi: 10.1002/aja.1001490302
– ident: e_1_2_8_59_1
  doi: 10.1016/j.bone.2006.01.147
– ident: e_1_2_8_46_1
  doi: 10.1111/j.1469-7580.2007.00693.x
– ident: e_1_2_8_5_1
  doi: 10.1111/j.1365-2818.2007.01785.x
– start-page: 144
  volume-title: Developments in X‐ray Tomography IV Proc. of SPIE Vol. 5535
  year: 2004
  ident: e_1_2_8_16_1
– ident: e_1_2_8_60_1
  doi: 10.1016/j.bone.2008.01.030
– ident: e_1_2_8_52_1
  doi: 10.1159/000102176
– ident: e_1_2_8_12_1
  doi: 10.1007/s00223-003-0071-z
– ident: e_1_2_8_48_1
  doi: 10.1023/B:JMSM.0000042692.34537.8e
– ident: e_1_2_8_63_1
  doi: 10.1098/rsif.2008.0539
– ident: e_1_2_8_9_1
  doi: 10.1007/s00198-009-0993-z
– ident: e_1_2_8_29_1
  doi: 10.1046/j.1469-7580.2003.00211.x
– ident: e_1_2_8_24_1
  doi: 10.1007/BF02012540
– ident: e_1_2_8_8_1
  doi: 10.1016/0021-9290(93)90023-8
– ident: e_1_2_8_50_1
  doi: 10.1359/jbmr.070703
– ident: e_1_2_8_2_1
  doi: 10.1159/000140331
– ident: e_1_2_8_13_1
  doi: 10.1002/ar.a.20344
– volume: 2007
  start-page: 3918
  year: 2007
  ident: e_1_2_8_28_1
  article-title: Feasibility of micro‐crack detection in human trabecular bone images from 3D synchrotron microtomography
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: e_1_2_8_7_1
  doi: 10.1016/S0021-9290(03)00126-X
– ident: e_1_2_8_11_1
  doi: 10.1002/ar.b.10024
– ident: e_1_2_8_55_1
  doi: 10.1016/S0168-583X(02)01557-4
– ident: e_1_2_8_36_1
  doi: 10.1007/s00330-004-2361-x
– ident: e_1_2_8_38_1
  doi: 10.1016/j.bone.2007.10.009
– ident: e_1_2_8_30_1
  doi: 10.1016/8756-3282(91)90028-H
– ident: e_1_2_8_33_1
  doi: 10.1152/japplphysiol.00495.2005
– start-page: 543
  volume-title: Bone Biodynamics
  year: 1964
  ident: e_1_2_8_25_1
– ident: e_1_2_8_44_1
  doi: 10.1016/0021-9290(94)00035-2
– ident: e_1_2_8_19_1
  doi: 10.1007/BF02058664
– ident: e_1_2_8_41_1
  doi: 10.1016/S8756-3282(01)00642-1
– ident: e_1_2_8_62_1
  doi: 10.1038/384335a0
– ident: e_1_2_8_51_1
  doi: 10.1002/jemt.20720
– ident: e_1_2_8_47_1
  doi: 10.1159/000016659
– ident: e_1_2_8_15_1
  doi: 10.1016/j.bone.2006.11.011
– ident: e_1_2_8_10_1
  doi: 10.2106/00004623-195840020-00015
– ident: e_1_2_8_17_1
  doi: 10.1111/j.1601-6343.2006.00376.x
– ident: e_1_2_8_22_1
  doi: 10.1016/8756-3282(94)90288-7
– ident: e_1_2_8_34_1
  doi: 10.1016/j.bone.2007.04.192
– volume: 39
  start-page: 17
  ident: e_1_2_8_42_1
  article-title: Morphometric analysis of the canal system of cortical bone: an experimental study in the rabbit femur carried out with standard histology and micro‐CT
  publication-title: Anat Histol Embryol
  doi: 10.1111/j.1439-0264.2009.00973.x
– ident: e_1_2_8_31_1
  doi: 10.1016/S8756-3282(01)00620-2
– ident: e_1_2_8_49_1
  doi: 10.1359/jbmr.081229
– ident: e_1_2_8_32_1
  doi: 10.1016/j.bone.2007.02.023
– ident: e_1_2_8_26_1
  doi: 10.1016/j.biomaterials.2004.01.047
– ident: e_1_2_8_54_1
  doi: 10.1359/jbmr.2002.17.11.2021
– ident: e_1_2_8_56_1
  doi: 10.1007/s002239900699
– ident: e_1_2_8_27_1
  doi: 10.1016/0221-8747(83)90013-9
– ident: e_1_2_8_57_1
  doi: 10.1016/j.jhevol.2007.09.018
– ident: e_1_2_8_6_1
  doi: 10.1016/j.bone.2009.03.654
– ident: e_1_2_8_53_1
  doi: 10.1359/jbmr.2000.15.2.301
– ident: e_1_2_8_14_1
  doi: 10.1007/s00223-005-0274-6
– reference: 19398046 - Bone. 2009 Aug;45(2):321-9
– reference: 18045654 - J Hum Evol. 2008 Feb;54(2):272-8
– reference: 16761291 - Anat Rec A Discov Mol Cell Evol Biol. 2006 Jul;288(7):806-16
– reference: 19874276 - Anat Histol Embryol. 2010 Feb;39(1):17-26
– reference: 19543764 - Osteoporos Int. 2010 Apr;21(4):627-36
– reference: 17398173 - Bone. 2007 Jun;40(6):1574-80
– reference: 8849809 - J Biomech. 1996 Feb;29(2):161-9
– reference: 18002856 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3918-21
– reference: 13539066 - J Bone Joint Surg Am. 1958 Apr;40-A(2):419-34
– reference: 17331174 - J Anat. 2007 Mar;210(3):239-48
– reference: 12924817 - J Anat. 2003 Aug;203(2):161-72
– reference: 19303955 - Bone. 2009 Jul;45(1):77-83
– reference: 11745093 - Anat Rec. 2001 Dec 1;264(4):378-86
– reference: 5083910 - Calcif Tissue Res. 1972;10(2):103-12
– reference: 12412810 - J Bone Miner Res. 2002 Nov;17(11):2021-9
– reference: 17223618 - Bone. 2007 Apr;40(4):957-65
– reference: 19360841 - Microsc Res Tech. 2009 Sep;72(9):690-701
– reference: 15109855 - Biomaterials. 2004 Sep;25(20):4947-54
– reference: 19410668 - Bone. 2009 Aug;45(2):164-73
– reference: 18619937 - Bone. 2008 Sep;43(3):476-82
– reference: 18882401 - Acta Anat (Basel). 1948;5(3):291-300
– reference: 11792557 - Bone. 2002 Jan;30(1):5-7
– reference: 18063436 - Bone. 2008 Feb;42(2):250-9
– reference: 12964207 - Anat Rec B New Anat. 2003 Sep;274(1):169-79
– reference: 1797054 - Bone. 1991;12(6):391-400
– reference: 17101027 - Orthod Craniofac Res. 2006 Nov;9(4):199-205
– reference: 8068447 - Bone. 1994 May-Jun;15(3):269-77
– reference: 14499294 - J Biomech. 2003 Oct;36(10):1453-9
– reference: 19471337 - Opt Express. 2003 Sep 22;11(19):2289-302
– reference: 17393269 - J Orthop Sci. 2007 Mar;12(2):141-8
– reference: 18602852 - Phys Med. 2008 Sep;24(3):129-48
– reference: 14961208 - Calcif Tissue Int. 2004 May;74(5):437-47
– reference: 19340510 - Osteoporos Int. 2009 Jun;20(6):1057-63
– reference: 10436327 - Cells Tissues Organs. 1999;164(4):192-204
– reference: 17605631 - J Bone Miner Res. 2007 Oct;22(10):1557-70
– reference: 19324670 - J R Soc Interface. 2010 Jan 6;7(42):49-59
– reference: 6374366 - Metab Bone Dis Relat Res. 1983-1984;5(3):127-30
– reference: 15101447 - Eur J Morphol. 2002 Dec;40(5):309-15
– reference: 19063683 - J Bone Miner Res. 2009 May;24(5):860-70
– reference: 4894738 - Calcif Tissue Res. 1969;3(3):211-37
– reference: 13945831 - Can J Biochem Physiol. 1963 May;41:1307-10
– reference: 10703932 - J Bone Miner Res. 2000 Feb;15(2):301-7
– reference: 15316744 - Eur Radiol. 2004 Sep;14(9):1550-60
– reference: 16141381 - J Appl Physiol (1985). 2006 Jan;100(1):274-80
– reference: 8478363 - J Biomech. 1993 Apr-May;26(4-5):613-6
– reference: 16540385 - Bone. 2006 Aug;39(2):289-99
– reference: 10485978 - Calcif Tissue Int. 1999 Oct;65(4):280-4
– reference: 17587802 - Cells Tissues Organs. 2007;185(4):285-307
– reference: 17340226 - Calcif Tissue Int. 2007 Mar;80(3):211-9
– reference: 18625577 - Bone. 2008 Sep;43(3):452-8
– reference: 17544983 - Bone. 2007 Aug;41(2):239-46
– reference: 15448414 - J Mater Sci Mater Med. 2004 Sep;15(9):1053-7
– reference: 17635659 - J Microsc. 2007 Jul;227(Pt 1):51-71
– reference: 879049 - Am J Anat. 1977 Jul;149(3):301-17
– reference: 11792558 - Bone. 2002 Jan;30(1):8-13
– reference: 20691298 - Bone. 2010 Nov;47(5):866-71
SSID ssj0013094
Score 2.209241
Snippet Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is...
Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology - literally the study of tissue - is...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 481
SubjectTerms Bone (cortical)
Bone (trabecular)
Boundaries
Cement
Computed tomography
cortical bone
Development
Femur
Femur - diagnostic imaging
Haversian system
Haversian System - diagnostic imaging
Humans
Image processing
Imaging, Three-Dimensional
Ionizing radiation
Male
Microscopes
micro‐CT
Original
osteon
Osteons
Photons
Porosity
Segmentation
Soft tissues
synchrotron
Synchrotrons
X-Ray Microtomography
Young Adult
Title Visualization of 3D osteon morphology by synchrotron radiation micro‐CT
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-7580.2011.01398.x
https://www.ncbi.nlm.nih.gov/pubmed/21644972
https://www.proquest.com/docview/1517375515
https://www.proquest.com/docview/1028079054
https://www.proquest.com/docview/889449443
https://pubmed.ncbi.nlm.nih.gov/PMC3196753
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1469-7580
  dateEnd: 20231001
  omitProxy: true
  ssIdentifier: ssj0013094
  issn: 0021-8782
  databaseCode: DIK
  dateStart: 19160101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1469-7580
  dateEnd: 20231001
  omitProxy: true
  ssIdentifier: ssj0013094
  issn: 0021-8782
  databaseCode: GX1
  dateStart: 19160101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  customDbUrl:
  eissn: 1469-7580
  dateEnd: 20131130
  omitProxy: true
  ssIdentifier: ssj0013094
  issn: 0021-8782
  databaseCode: FIJ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  providerName: Ingenta
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1469-7580
  dateEnd: 20231001
  omitProxy: true
  ssIdentifier: ssj0013094
  issn: 0021-8782
  databaseCode: RPM
  dateStart: 19160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0021-8782
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1469-7580
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013094
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED9KYWMv29r989YWDfbqYFmyLT2Wbm1XaAejHWEvwlJkWrraI39g2dM-wj7jPsnuZMdd0g7KGISQ2LqQk-6kO9_d7wDeJCIVluMKcJfrWDolYmWzKh459HqqwntRUoHz8Ul-eCaPhtmwy3-iWpgWH6J_4EaaEfZrUvDSTlaVXMdo7yYdEicaM2pA9iQXWYjYfkyvAwqJ7gCZOW4AaiWp59YfWj6pbpifN7Mo_7Ruw_G0_wguF4y1WSmXg9nUDtz3FczH_8P5Y3jYWbFstxW7DVjz9Sbca_tazjfh_nEXsceLn5tw8Qm8_3QxoQrOtu6TNRUTbxmVmOCXqwaXO4xjds4m89qdjxt6SM_GhJ0QCK4odfDXj597p0_hbP_d6d5h3DVyiF0mpIoLhRvLyOPmWHmbKWqWpUVe-tBM3JelJYTEjDuvklynfOQlT8pkVCn0Fn0hSvEM1uum9i-AVYXySJo4wrmTldbS5Zl3Sno8Vm2iIygWi2Zch3JOzTa-mCVvRxuaPUOzZ8LsmW8R8J7ya4v0cQearYVcmE73JwZtqEIUyE8Wwev-NmothWLK2jczHEMRbcJGkxGwv4xRSkuJLxHB81bS-v-VopMrdZEit0sy2A8g0PDlO_XFeQAPpy0XXdQI8iBid2bVHH3YpU8v_5XwFTxIF_mTfAvWp-OZ30aDbmp3gqri-8GQ_war_Tvs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hKtpeWkpfoUBdqdeskthJ7COCouWxVKqWCvViJV5HoEJS7UPq9sRP4DfySzrjZAO7tBKqKuWwSTzRjj0zHnvG3wB8DHjE8xBHIDSJ8oWR3Jd5XPgDg6ueIrWWZ3TAuXecdE_EwWl82pQDorMwNT5Eu-FGmuHsNSk4bUgvarny0eENGihO9GZkBx3KRxSuIy3d_RLdhhQC1UAyh2gC5EJazx-_ND9X3XNA7-dR3vVv3QS19xwuZqzVeSnfO5Nx3jG_FlAf_xPvq_CscWTZdi15L2DJlmuwUpe2nK7B414TtMeH3yr38CXsfz0f0SHO-ugnqwrGdxmdMsGbywpH3LVj-ZSNpqU5G1a0T8-GBJ_gCC4pe_Dm6nqn_wpO9j71d7p-U8vBNzEX0k8l2paBRftY2DyWVC9L8SSzrp64zbKcQBLj0FgZJCoKB1aEQRYMCokLRpvyjL-G5bIq7VtgRSotkgaGoO5EoZQwSWyNFBZn1jxQHqSzUdOmATqnehsXem7BozT1nqbe06739E8PwpbyRw328QCajZlg6Eb9RxrdqJSnyE_swYf2NSouRWOy0lYTbENBbYJHEx6wv7SRUgmBF_fgTS1q7f-KcJ0rVBoht3NC2DYg3PD5N-X5mcMPJ6uLq1QPEidjD2ZVH3zepl_r_0r4Hp50-70jfbR_fPgOnkazdMpwA5bHw4ndRP9unG85vf0N9MM_Fw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9RAEJ8YjMQXEFQoIq6Jr7203W27-0jAC6CgMWCIL5t2uw0EaMn9STif_Ah-Rj-JM9te4Q5NiDG5h7t2p7nZnZmd6c78BuBdwCOeh7gCoUmUL4zkvszj0i8MRj1lai3PqMD58CjZOxEHp_Fpm_9EtTANPkT3wo00w9lrUvDropxXcuWjvxu0SJzozMge-pOPRYLBFjlIX6LbE4VAtYjMIVoAOZfV88cnzW5V9_zP-2mUd91btz_1l-FiylmTlnLRG4_ynvk-B_r4f1h_BkutG8u2G7lbgUe2WoUnTWPLySosHrZH9njxW-0uPof9r-dDKuFsCj9ZXTK-y6jGBH9c1bjebhzLJ2w4qczZoKa39GxA4AmO4IpyB3_9-Llz_AJO-u-Pd_b8tpODb2IupJ9KtCyFRetY2jyW1C1L8SSzrpu4zbKcIBLj0FgZJCoKCyvCIAuKUmK4aFOe8ZewUNWVXQdWptIiaWAI6E6USgmTxNZIYXFfzQPlQTpdNG1amHPqtnGpZ8IdpWn2NM2edrOnbzwIO8rrBurjATSbU7nQrfIPNTpRKU-Rn9iDt91tVFs6i8kqW49xDB1pEzia8ID9ZYyUSgj8cA_WGknr_leEUa5QaYTczshgN4BQw2fvVOdnDj2cbC7GqB4kTsQezKo--LRN3zb-lfANLH7e7euP-0cfXsHTaJpLGW7Cwmgwtq_RuRvlW05rfwPv0z3G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualization+of+3D+osteon+morphology+by+synchrotron+radiation+micro%E2%80%90CT&rft.jtitle=Journal+of+anatomy&rft.au=Cooper%2C+D.+M.+L.&rft.au=Erickson%2C+B.&rft.au=Peele%2C+A.G.&rft.au=Hannah%2C+K.&rft.date=2011-10-01&rft.issn=0021-8782&rft.eissn=1469-7580&rft.volume=219&rft.issue=4&rft.spage=481&rft.epage=489&rft_id=info:doi/10.1111%2Fj.1469-7580.2011.01398.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1469_7580_2011_01398_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8782&client=summon