Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene

The traditional model for chromatin remodelling during transcription has focused upon the remodelling of nucleosomes at gene promoters. However, in this study, we have determined that Tup1-Ssn6 and Swi-Snf chromatin remodelling activities extend far upstream of the SUC2 gene promoter into the interg...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 35; no. 16; pp. 5520 - 5531
Main Authors Fleming, Alastair B., Pennings, Sari
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.08.2007
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4962
DOI10.1093/nar/gkm573

Cover

Abstract The traditional model for chromatin remodelling during transcription has focused upon the remodelling of nucleosomes at gene promoters. However, in this study, we have determined that Tup1-Ssn6 and Swi-Snf chromatin remodelling activities extend far upstream of the SUC2 gene promoter into the intergenic region of the Saccharomyces cerevisiae chromosome. We mapped the nucleosomal array over a 7.5 kb region that encompassed the SUC2 gene promoter and upstream region but was devoid of other transcriptionally active genes. Nucleosome positioning over this region was determined under conditions of glucose repression and derepression, and in snf2, ssn6 and snf2 ssn6 mutant strains. A map detailing remodelling events extending as much as 5 kb upstream of the SUC2 gene promoter underlines the roles of the Tup1-Ssn6 and Swi-Snf complexes in respectively organizing and disrupting nucleosome arrays. The gene specificity of these events suggests a role in gene regulation. We propose that long-range chromatin remodelling activities of Swi-Snf and Tup1-Ssn6 may ultimately influence whether the chromosomal state of the SUC2 gene is proficient for transcription. These data raise the possibility that remodelling of extensive chromatin domains may be a general property of the Swi-Snf and Tup1-Ssn6 complexes.
AbstractList The traditional model for chromatin remodelling during transcription has focused upon the remodelling of nucleosomes at gene promoters. However, in this study, we have determined that Tup1-Ssn6 and Swi-Snf chromatin remodelling activities extend far upstream of the SUC2 gene promoter into the intergenic region of the Saccharomyces cerevisiae chromosome. We mapped the nucleosomal array over a 7.5 kb region that encompassed the SUC2 gene promoter and upstream region but was devoid of other transcriptionally active genes. Nucleosome positioning over this region was determined under conditions of glucose repression and derepression, and in snf2, ssn6 and snf2 ssn6 mutant strains. A map detailing remodelling events extending as much as 5 kb upstream of the SUC2 gene promoter underlines the roles of the Tup1-Ssn6 and Swi-Snf complexes in respectively organizing and disrupting nucleosome arrays. The gene specificity of these events suggests a role in gene regulation. We propose that long-range chromatin remodelling activities of Swi-Snf and Tup1-Ssn6 may ultimately influence whether the chromosomal state of the SUC2 gene is proficient for transcription. These data raise the possibility that remodelling of extensive chromatin domains may be a general property of the Swi-Snf and Tup1-Ssn6 complexes.
The traditional model for chromatin remodelling during transcription has focused upon the remodelling of nucleosomes at gene promoters. However, in this study, we have determined that Tup1-Ssn6 and Swi-Snf chromatin remodelling activities extend far upstream of the SUC2 gene promoter into the intergenic region of the Saccharomyces cerevisiae chromosome. We mapped the nucleosomal array over a 7.5 kb region that encompassed the SUC2 gene promoter and upstream region but was devoid of other transcriptionally active genes. Nucleosome positioning over this region was determined under conditions of glucose repression and derepression, and in snf2, ssn6 and snf2 ssn6 mutant strains. A map detailing remodelling events extending as much as 5 kb upstream of the SUC2 gene promoter underlines the roles of the Tup1-Ssn6 and Swi-Snf complexes in respectively organizing and disrupting nucleosome arrays. The gene specificity of these events suggests a role in gene regulation. We propose that long-range chromatin remodelling activities of Swi-Snf and Tup1-Ssn6 may ultimately influence whether the chromosomal state of the SUC2 gene is proficient for transcription. These data raise the possibility that remodelling of extensive chromatin domains may be a general property of the Swi-Snf and Tup1-Ssn6 complexes.The traditional model for chromatin remodelling during transcription has focused upon the remodelling of nucleosomes at gene promoters. However, in this study, we have determined that Tup1-Ssn6 and Swi-Snf chromatin remodelling activities extend far upstream of the SUC2 gene promoter into the intergenic region of the Saccharomyces cerevisiae chromosome. We mapped the nucleosomal array over a 7.5 kb region that encompassed the SUC2 gene promoter and upstream region but was devoid of other transcriptionally active genes. Nucleosome positioning over this region was determined under conditions of glucose repression and derepression, and in snf2, ssn6 and snf2 ssn6 mutant strains. A map detailing remodelling events extending as much as 5 kb upstream of the SUC2 gene promoter underlines the roles of the Tup1-Ssn6 and Swi-Snf complexes in respectively organizing and disrupting nucleosome arrays. The gene specificity of these events suggests a role in gene regulation. We propose that long-range chromatin remodelling activities of Swi-Snf and Tup1-Ssn6 may ultimately influence whether the chromosomal state of the SUC2 gene is proficient for transcription. These data raise the possibility that remodelling of extensive chromatin domains may be a general property of the Swi-Snf and Tup1-Ssn6 complexes.
The traditional model for chromatin remodelling during transcription has focused upon the remodelling of nucleosomes at gene promoters. However, in this study, we have determined that Tup1-Ssn6 and Swi-Snf chromatin remodelling activities extend far upstream of the SUC2 gene promoter into the intergenic region of the Saccharomyces cerevisiae chromosome. We mapped the nucleosomal array over a 7.5 kb region that encompassed the SUC2 gene promoter and upstream region but was devoid of other transcriptionally active genes. Nucleosome positioning over this region was determined under conditions of glucose repression and derepression, and in snf2, ssn6 and snf2 ssn6 mutant strains. A map detailing remodelling events extending as much as 5 kb upstream of the SUC2 gene promoter underlines the roles of the Tup1-Ssn6 and Swi-Snf complexes in respectively organizing and disrupting nucleosome arrays. The gene specificity of these events suggests a role in gene regulation. We propose that long-range chromatin remodelling activities of Swi-Snf and Tup1-Ssn6 may ultimately influence whether the chromosomal state of the SUC2 gene is proficient for transcription. These data raise the possibility that remodelling of extensive chromatin domains may be a general property of the Swi-Snf and Tup1-Ssn6 complexes.
Author Pennings, Sari
Fleming, Alastair B.
AuthorAffiliation 1 Department of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK, 2 Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, Albuquerque, New Mexico 87131, USA and 3 Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
AuthorAffiliation_xml – name: 1 Department of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK, 2 Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, Albuquerque, New Mexico 87131, USA and 3 Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
Author_xml – sequence: 1
  givenname: Alastair B.
  surname: Fleming
  fullname: Fleming, Alastair B.
  organization: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK, Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, Albuquerque, New Mexico 87131, USA and Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
– sequence: 2
  givenname: Sari
  surname: Pennings
  fullname: Pennings, Sari
  email: Sari.Pennings@ed.ac.uk
  organization: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK, Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, Albuquerque, New Mexico 87131, USA and Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17704134$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9rFDEUxYNU7Lb64geQINgHYWwyyWRmXgqyqBVXfNgVpS8hm72ZTTuTrEmmf_z0RrcuWsQ-JSS_e7jn3nOA9px3gNBTSl5R0rJjp8JxdzFUNXuAJpSJsuCtKPfQhDBSFZTwZh8dxHhOCOW04o_QPq1rwinjE3S9GDe0mEcnsHIrPL-yxdwZHGDwK-h76zqsdLKXNlmI2DrTj-A04N67rgjKdYD1OvhBJeuwD51y9nu-e4fHTUwB1IC9wWkN-AZUTHj-eVriDhw8Rg-N6iM8uT0P0eLtm8X0tJh9evd--npW6IqxVADQpSHcUFUyw0WlTX6hS0oNU41QdUNaU3JqeA1aVbQ1K7IEZlRlBNGMsUN0spXdjMsBVhpcCqqXm2AHFW6kV1b-_ePsWnb-UpaENoK1WeDoViD4byPEJAcbdR6NcuDHKEVTiqbi5F6Q15yThrN7Qdo2WVDQDD6_A577Mbg8rdwdqRpBSZmhZ38a3Dn7veIMkC2gg48xgJHapl8ryn5tLymRP1Mkc4rkNkW55OWdkp3qv-AXW9iPm_9zxZazMcH1jlThQoqa1ZU8_Xom5x8_fBH8rJQz9gNAFOdl
CODEN NARHAD
CitedBy_id crossref_primary_10_1007_s12013_008_9015_6
crossref_primary_10_1093_nar_gkr557
crossref_primary_10_1002_yea_1460
crossref_primary_10_1186_1475_2859_13_5
crossref_primary_10_1093_nar_gkad711
crossref_primary_10_1016_j_bbagrm_2014_07_022
crossref_primary_10_7554_eLife_66739
crossref_primary_10_4161_nucl_22427
crossref_primary_10_1186_s12934_015_0223_7
crossref_primary_10_1016_j_chembiol_2010_12_001
crossref_primary_10_1093_nar_gkx028
crossref_primary_10_1128_MCB_00400_09
crossref_primary_10_1371_journal_pgen_1010876
crossref_primary_10_1101_gr_141952_112
crossref_primary_10_1534_genetics_110_120683
crossref_primary_10_1101_gad_179275_111
crossref_primary_10_1101_gad_181768_111
crossref_primary_10_1016_j_jmb_2009_02_025
Cites_doi 10.1126/science.8016655
10.1074/jbc.272.17.11193
10.1128/MCB.20.17.6380-6389.2000
10.1038/ng1917
10.1128/MCB.3.3.351
10.1016/j.molcel.2005.12.010
10.1093/nar/15.17.6937
10.1093/nar/25.21.4230
10.1038/sj.emboj.7600035
10.1128/MCB.22.6.1615-1625.2002
10.1002/j.1460-2075.1986.tb04552.x
10.1074/jbc.M410346200
10.1093/genetics/107.1.19
10.1128/MCB.10.12.6500
10.1093/emboj/20.18.5219
10.1007/BF00292708
10.1016/0092-8674(82)90384-1
10.1126/science.273.5274.513
10.1073/pnas.242536699
10.1038/370477a0
10.1016/S1097-2765(01)00158-7
10.1016/S0959-437X(00)00168-4
10.1186/1471-2156-2-5
10.1038/nature04979
10.1038/23506
10.1016/S0092-8674(00)00215-4
10.1093/emboj/20.3.520
10.1038/ng569
10.1101/gad.6.12a.2288
10.1146/annurev.genet.39.073003.113546
10.1016/S1097-2765(03)00366-6
10.1074/jbc.M309753200
10.1021/bi061289l
10.1038/35054095
10.1534/genetics.106.068932
10.1016/j.molcel.2005.05.003
10.1093/genetics/137.1.49
10.1073/pnas.97.7.3364
10.1074/jbc.M407159200
10.1038/370481a0
10.1101/gad.1039503
10.1111/j.1365-2958.1992.tb00832.x
10.1016/S1369-5274(99)80035-6
10.1128/MCB.19.2.1470
10.1016/j.gde.2004.01.007
10.1128/MCB.15.4.1999
10.1074/jbc.M104733200
10.1093/emboj/19.3.400
10.1128/MCB.16.5.1978
10.1016/S1097-2765(02)00545-2
10.1128/MCB.22.3.693-703.2002
10.1093/emboj/17.20.6028
10.1038/nrm1986
10.1093/emboj/16.20.6263
10.1074/jbc.M310849200
10.1128/MCB.00678-06
10.1101/gad.8.12.1400
10.1016/S0076-6879(99)04022-7
10.1016/S1097-2765(01)00160-5
10.1007/BF00338077
10.1128/EC.2.6.1288-1303.2003
10.1074/jbc.M007070200
10.1146/annurev.biochem.71.110601.135400
ContentType Journal Article
Copyright 2007 The Author(s) 2007
2007 The Author(s)
Copyright_xml – notice: 2007 The Author(s) 2007
– notice: 2007 The Author(s)
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1093/nar/gkm573
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
Virology and AIDS Abstracts
MEDLINE - Academic

MEDLINE
Genetics Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 5531
ExternalDocumentID PMC2018639
1340647711
17704134
10_1093_nar_gkm573
10.1093/nar/gkm573
ark_67375_HXZ_SMKW64Z2_L
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 045117
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABPTD
ABQLI
ABSMQ
ABXVV
ABZEO
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFYAG
AGKRT
AGMDO
AGQPQ
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BSCLL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
MBTAY
MVM
NTWIH
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
6.Y
AAPPN
ABQTQ
ABSAR
ACMRT
AFULF
BTTYL
F20
KC5
M49
M~E
NU-
ROX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c533t-ee1bf04f1a23f465cfee11b11f3a86a7809f241f47eca519fd0be3fa5f60c333
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 13:40:55 EDT 2025
Fri Jul 11 07:33:44 EDT 2025
Fri Sep 05 10:29:11 EDT 2025
Fri Sep 05 11:46:03 EDT 2025
Mon Jun 30 08:49:21 EDT 2025
Mon Jul 21 06:03:26 EDT 2025
Tue Jul 01 03:14:26 EDT 2025
Thu Apr 24 23:08:50 EDT 2025
Wed Aug 28 03:24:59 EDT 2024
Sat Sep 20 11:02:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-ee1bf04f1a23f465cfee11b11f3a86a7809f241f47eca519fd0be3fa5f60c333
Notes ark:/67375/HXZ-SMKW64Z2-L
istex:16EBFAC17E56AE247C39F677A9C4624473300FF8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://dx.doi.org/10.1093/nar/gkm573
PMID 17704134
PQID 200586102
PQPubID 36121
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2018639
proquest_miscellaneous_68268540
proquest_miscellaneous_47440843
proquest_miscellaneous_19885461
proquest_journals_200586102
pubmed_primary_17704134
crossref_citationtrail_10_1093_nar_gkm573
crossref_primary_10_1093_nar_gkm573
oup_primary_10_1093_nar_gkm573
istex_primary_ark_67375_HXZ_SMKW64Z2_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-08-01
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-08-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2007
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Gavin ( key 20170522210337_B62) 2001; 7
Geng ( key 20170522210337_B60) 2004; 23
Davie ( key 20170522210337_B18) 2003; 278
Bone ( key 20170522210337_B17) 2001; 254
Redd ( key 20170522210337_B14) 1997; 272
Shen ( key 20170522210337_B30) 2001; 276
Zhang ( key 20170522210337_B27) 2004; 279
Kim ( key 20170522210337_B28) 2002; 99
Carlson ( key 20170522210337_B31) 1982; 28
Perez-Ortin ( key 20170522210337_B39) 1987; 15
Kelbauskas ( key 20170522210337_B51) 2007; 46
Havas ( key 20170522210337_B12) 2000; 103
Carlson ( key 20170522210337_B33) 1984; 107
Valenzuela ( key 20170522210337_B56) 2006; 40
Gregory ( key 20170522210337_B37) 1999; 304
Iyer ( key 20170522210337_B53) 2001; 409
Malave ( key 20170522210337_B20) 2006; 84
Sarma ( key 20170522210337_B65) 2007; 175
Carlson ( key 20170522210337_B36) 1983; 3
Perez-Ortin ( key 20170522210337_B38) 1986; 205
Buck ( key 20170522210337_B46) 2006; 38
Phelan ( key 20170522210337_B10) 2000; 20
Ducker ( key 20170522210337_B63) 2000; 19
Almer ( key 20170522210337_B24) 1986; 5
Trumbly ( key 20170522210337_B32) 1992; 6
Bash ( key 20170522210337_B52) 2001; 276
Sekinger ( key 20170522210337_B48) 2005; 18
Sudarsanam ( key 20170522210337_B2) 2000; 97
Prochasson ( key 20170522210337_B4) 2003; 12
Carlson ( key 20170522210337_B44) 1999; 2
Verdone ( key 20170522210337_B26) 1996; 16
Imbalzano ( key 20170522210337_B5) 1994; 370
Flaus ( key 20170522210337_B13) 2004; 14
Whitehouse ( key 20170522210337_B11) 1999; 400
Millar ( key 20170522210337_B66) 2006; 7
Fleming ( key 20170522210337_B21) 2001; 20
Papamichos-Chronakis ( key 20170522210337_B49) 2002; 9
Vallier ( key 20170522210337_B35) 1994; 137
Zhou ( key 20170522210337_B45) 2001; 2
Neely ( key 20170522210337_B3) 2002; 22
Hirschhorn ( key 20170522210337_B41) 1992; 6
Wu ( key 20170522210337_B43) 1997; 25
Moreira ( key 20170522210337_B25) 1998; 17
Davie ( key 20170522210337_B16) 2002; 22
Matallana ( key 20170522210337_B40) 1992; 231
Owen-Hughes ( key 20170522210337_B8) 1996; 273
Becker ( key 20170522210337_B9) 2002; 71
Segal ( key 20170522210337_B50) 2006; 442
Adkins ( key 20170522210337_B47) 2006; 21
Hayes ( key 20170522210337_B1) 2001; 11
Hirschhorn ( key 20170522210337_B42) 1995; 15
Bazett-Jones ( key 20170522210337_B61) 1999; 19
Sharma ( key 20170522210337_B23) 2003; 17
Williams ( key 20170522210337_B34) 1990; 10
Kwon ( key 20170522210337_B6) 1994; 370
Kim ( key 20170522210337_B29) 2006; 26
Côté ( key 20170522210337_B7) 1994; 265
Ferrari ( key 20170522210337_B58) 2004; 279
Lieb ( key 20170522210337_B54) 2001; 28
Gavin ( key 20170522210337_B22) 1997; 16
Boukaba ( key 20170522210337_B59) 2004; 279
Horn ( key 20170522210337_B64) 2002; 9
Cooper ( key 20170522210337_B15) 1994; 8
Wu ( key 20170522210337_B19) 2001; 7
Donze ( key 20170522210337_B57) 2001; 20
Mennella ( key 20170522210337_B55) 2003; 2
12600943 - Genes Dev. 2003 Feb 15;17(4):502-15
11281938 - BMC Genet. 2001;2:5
11566885 - EMBO J. 2001 Sep 17;20(18):5219-31
1459453 - Genes Dev. 1992 Dec;6(12A):2288-98
8047170 - Nature. 1994 Aug 11;370(6489):481-5
17099712 - Nat Genet. 2006 Dec;38(12):1446-51
14525981 - J Biol Chem. 2003 Dec 12;278(50):50158-62
11163188 - Cell. 2000 Dec 22;103(7):1133-42
2247069 - Mol Cell Biol. 1990 Dec;10(12):6500-11
8662543 - Science. 1996 Jul 26;273(5274):513-6
11455386 - Nat Genet. 2001 Aug;28(4):327-34
9111019 - J Biol Chem. 1997 Apr 25;272(17):11193-7
17269656 - Biochemistry. 2007 Feb 27;46(8):2239-48
11206552 - Nature. 2001 Jan 25;409(6819):533-8
12086626 - Mol Cell. 2002 Jun;9(6):1297-305
2821486 - Nucleic Acids Res. 1987 Sep 11;15(17):6937-56
11250133 - Curr Opin Genet Dev. 2001 Apr;11(2):124-9
10938115 - Mol Cell Biol. 2000 Sep;20(17):6380-9
7926740 - Genes Dev. 1994 Jun 15;8(12):1400-10
9336451 - Nucleic Acids Res. 1997 Nov 1;25(21):4230-4
6843548 - Mol Cell Biol. 1983 Mar;3(3):351-9
7039847 - Cell. 1982 Jan;28(1):145-54
6373495 - Genetics. 1984 May;107(1):19-32
9891080 - Mol Cell Biol. 1999 Feb;19(2):1470-8
7891695 - Mol Cell Biol. 1995 Apr;15(4):1999-2009
14685262 - EMBO J. 2004 Jan 14;23(1):127-37
15471882 - J Biol Chem. 2004 Dec 31;279(53):55520-30
16862119 - Nature. 2006 Aug 17;442(7104):772-8
10725359 - Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3364-9
8047169 - Nature. 1994 Aug 11;370(6489):477-81
1538695 - Mol Gen Genet. 1992 Feb;231(3):395-400
11172717 - Mol Cell. 2001 Jan;7(1):117-26
11836537 - Nat Struct Biol. 2002 Mar;9(3):167-71
15949447 - Mol Cell. 2005 Jun 10;18(6):735-48
11865042 - Mol Cell Biol. 2002 Mar;22(6):1615-25
16455495 - Mol Cell. 2006 Feb 3;21(3):405-16
11461917 - J Biol Chem. 2001 Sep 14;276(37):35209-16
3536481 - EMBO J. 1986 Oct;5(10):2689-96
10466730 - Nature. 1999 Aug 19;400(6746):784-7
11013248 - J Biol Chem. 2001 Jan 12;276(2):861-6
12045097 - Annu Rev Biochem. 2002;71:247-73
12432091 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15381-6
11172715 - Mol Cell. 2001 Jan;7(1):97-104
15254041 - J Biol Chem. 2004 Sep 17;279(38):39240-50
14580348 - Mol Cell. 2003 Oct;12(4):983-90
14665463 - Eukaryot Cell. 2003 Dec;2(6):1288-303
15196463 - Curr Opin Genet Dev. 2004 Apr;14(2):165-73
16953792 - Annu Rev Genet. 2006;40:107-38
1310793 - Mol Microbiol. 1992 Jan;6(1):15-21
3550382 - Mol Gen Genet. 1986 Dec;205(3):422-7
11190575 - Curr Top Microbiol Immunol. 2001;254:59-78
16912715 - Nat Rev Mol Cell Biol. 2006 Sep;7(9):657-66
8016655 - Science. 1994 Jul 1;265(5168):53-60
16936817 - Biochem Cell Biol. 2006 Aug;84(4):437-43
8056322 - Genetics. 1994 May;137(1):49-54
11784848 - Mol Cell Biol. 2002 Feb;22(3):693-703
17237508 - Genetics. 2007 Mar;175(3):1127-35
10654939 - EMBO J. 2000 Feb 1;19(3):400-9
16982689 - Mol Cell Biol. 2006 Nov;26(22):8607-22
10322167 - Curr Opin Microbiol. 1999 Apr;2(2):202-7
10372371 - Methods Enzymol. 1999;304:365-76
9321405 - EMBO J. 1997 Oct 15;16(20):6263-71
8628264 - Mol Cell Biol. 1996 May;16(5):1978-88
11157758 - EMBO J. 2001 Feb 1;20(3):520-31
14670975 - J Biol Chem. 2004 Feb 27;279(9):7678-84
9774346 - EMBO J. 1998 Oct 15;17(20):6028-38
References_xml – volume: 265
  start-page: 53
  year: 1994
  ident: key 20170522210337_B7
  article-title: Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex
  publication-title: Science
  doi: 10.1126/science.8016655
– volume: 272
  start-page: 11193
  year: 1997
  ident: key 20170522210337_B14
  article-title: A complex composed of tup1 and ssn6 represses transcription in vitro
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.272.17.11193
– volume: 84
  start-page: 437
  year: 2006
  ident: key 20170522210337_B20
  article-title: Transcriptional repression by Tup1-Ssn6
  publication-title: Biochem. Cell Biol
– volume: 20
  start-page: 6380
  year: 2000
  ident: key 20170522210337_B10
  article-title: Octamer transfer and creation of stably remodeled nucleosomes by human SWI-SNF and its isolated ATPases
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.20.17.6380-6389.2000
– volume: 38
  start-page: 1446
  year: 2006
  ident: key 20170522210337_B46
  article-title: A chromatin-mediated mechanism for specification of conditional transcription factor targets
  publication-title: Nat. Genet
  doi: 10.1038/ng1917
– volume: 3
  start-page: 351
  year: 1983
  ident: key 20170522210337_B36
  article-title: Organization of the SUC gene family in Saccharomyces
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.3.3.351
– volume: 21
  start-page: 405
  year: 2006
  ident: key 20170522210337_B47
  article-title: Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.12.010
– volume: 15
  start-page: 6937
  year: 1987
  ident: key 20170522210337_B39
  article-title: Fine analysis of the chromatin structure of the yeast SUC2 gene and of its changes upon derepression. Comparison between the chromosomal and plasmid-inserted genes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/15.17.6937
– volume: 25
  start-page: 4230
  year: 1997
  ident: key 20170522210337_B43
  article-title: Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.21.4230
– volume: 23
  start-page: 127
  year: 2004
  ident: key 20170522210337_B60
  article-title: Roles of SWI/SNF and HATs throughout the dynamic transcription of a yeast glucose-repressible gene
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600035
– volume: 22
  start-page: 1615
  year: 2002
  ident: key 20170522210337_B3
  article-title: Transcription activator interactions with multiple SWI/SNF subunits
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.22.6.1615-1625.2002
– volume: 9
  start-page: 167
  year: 2002
  ident: key 20170522210337_B64
  article-title: The SIN domain of the histone octamer is essential for intramolecular folding of nucleosomal arrays
  publication-title: Nat. Struct. Biol
– volume: 5
  start-page: 2689
  year: 1986
  ident: key 20170522210337_B24
  article-title: Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1986.tb04552.x
– volume: 279
  start-page: 55520
  year: 2004
  ident: key 20170522210337_B58
  article-title: Chromatin domain boundaries delimited by a histone-binding protein in yeast
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M410346200
– volume: 107
  start-page: 19
  year: 1984
  ident: key 20170522210337_B33
  article-title: A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast
  publication-title: Genetics
  doi: 10.1093/genetics/107.1.19
– volume: 10
  start-page: 6500
  year: 1990
  ident: key 20170522210337_B34
  article-title: Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.10.12.6500
– volume: 20
  start-page: 5219
  year: 2001
  ident: key 20170522210337_B21
  article-title: Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation
  publication-title: EMBO J
  doi: 10.1093/emboj/20.18.5219
– volume: 231
  start-page: 395
  year: 1992
  ident: key 20170522210337_B40
  article-title: Chromatin structure of the yeast SUC2 promoter in regulatory mutants
  publication-title: Mol. Gen. Genet
  doi: 10.1007/BF00292708
– volume: 28
  start-page: 145
  year: 1982
  ident: key 20170522210337_B31
  article-title: Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase
  publication-title: Cell
  doi: 10.1016/0092-8674(82)90384-1
– volume: 273
  start-page: 513
  year: 1996
  ident: key 20170522210337_B8
  article-title: Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex
  publication-title: Science
  doi: 10.1126/science.273.5274.513
– volume: 99
  start-page: 15381
  year: 2002
  ident: key 20170522210337_B28
  article-title: SWI/SNF-dependent long-range remodeling of yeast HIS3 chromatin
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.242536699
– volume: 370
  start-page: 477
  year: 1994
  ident: key 20170522210337_B6
  article-title: Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex
  publication-title: Nature
  doi: 10.1038/370477a0
– volume: 7
  start-page: 97
  year: 2001
  ident: key 20170522210337_B62
  article-title: SWI/SNF chromatin remodeling requires changes in DNA topology
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00158-7
– volume: 11
  start-page: 124
  year: 2001
  ident: key 20170522210337_B1
  article-title: Nucleosomes and the chromatin fiber
  publication-title: Curr. Opin. Genet. Dev
  doi: 10.1016/S0959-437X(00)00168-4
– volume: 2
  start-page: 1471
  year: 2001
  ident: key 20170522210337_B45
  article-title: NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-2-5
– volume: 442
  start-page: 772
  year: 2006
  ident: key 20170522210337_B50
  article-title: A genomic code for nucleosome positioning
  publication-title: Nature
  doi: 10.1038/nature04979
– volume: 400
  start-page: 784
  year: 1999
  ident: key 20170522210337_B11
  article-title: Nucleosome mobilization catalysed by the yeast SWI/SNF complex
  publication-title: Nature
  doi: 10.1038/23506
– volume: 103
  start-page: 1133
  year: 2000
  ident: key 20170522210337_B12
  article-title: Generation of superhelical torsion by ATP-dependent chromatin remodeling activities
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00215-4
– volume: 20
  start-page: 520
  year: 2001
  ident: key 20170522210337_B57
  article-title: RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae
  publication-title: EMBO J
  doi: 10.1093/emboj/20.3.520
– volume: 28
  start-page: 327
  year: 2001
  ident: key 20170522210337_B54
  article-title: Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association
  publication-title: Nat. Genet
  doi: 10.1038/ng569
– volume: 6
  start-page: 2288
  year: 1992
  ident: key 20170522210337_B41
  article-title: Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure
  publication-title: Genes Dev
  doi: 10.1101/gad.6.12a.2288
– volume: 40
  start-page: 107
  year: 2006
  ident: key 20170522210337_B56
  article-title: Chromatin Insulators
  publication-title: Annu. Rev. Genet
  doi: 10.1146/annurev.genet.39.073003.113546
– volume: 12
  start-page: 983
  year: 2003
  ident: key 20170522210337_B4
  article-title: Targeting activity is required for SWI/SNF function in vivo and is accomplished through two partially redundant activator-interaction domains
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00366-6
– volume: 278
  start-page: 50158
  year: 2003
  ident: key 20170522210337_B18
  article-title: Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M309753200
– volume: 46
  start-page: 2239
  year: 2007
  ident: key 20170522210337_B51
  article-title: Sequence-dependent nucleosome structure and stability variations detected by forster resonance energy transfer
  publication-title: Biochemistry
  doi: 10.1021/bi061289l
– volume: 409
  start-page: 533
  year: 2001
  ident: key 20170522210337_B53
  article-title: Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF
  publication-title: Nature
  doi: 10.1038/35054095
– volume: 175
  start-page: 1127
  year: 2007
  ident: key 20170522210337_B65
  article-title: Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism
  publication-title: Genetics
  doi: 10.1534/genetics.106.068932
– volume: 18
  start-page: 735
  year: 2005
  ident: key 20170522210337_B48
  article-title: Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.05.003
– volume: 137
  start-page: 49
  year: 1994
  ident: key 20170522210337_B35
  article-title: Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/137.1.49
– volume: 97
  start-page: 3364
  year: 2000
  ident: key 20170522210337_B2
  article-title: Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.7.3364
– volume: 279
  start-page: 39240
  year: 2004
  ident: key 20170522210337_B27
  article-title: Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M407159200
– volume: 370
  start-page: 481
  year: 1994
  ident: key 20170522210337_B5
  article-title: Facilitated binding of TATA-binding protein to nucleosomal DNA
  publication-title: Nature
  doi: 10.1038/370481a0
– volume: 17
  start-page: 502
  year: 2003
  ident: key 20170522210337_B23
  article-title: SWI/SNF-dependent chromatin remodeling of RNR3 requires TAF(II)s and the general transcription machinery
  publication-title: Genes Dev
  doi: 10.1101/gad.1039503
– volume: 6
  start-page: 15
  year: 1992
  ident: key 20170522210337_B32
  article-title: Glucose repression in the yeast Saccharomyces cerevisiae
  publication-title: Mol. Microbiol
  doi: 10.1111/j.1365-2958.1992.tb00832.x
– volume: 2
  start-page: 202
  year: 1999
  ident: key 20170522210337_B44
  article-title: Glucose repression in yeast
  publication-title: Curr. Opin. Microbiol
  doi: 10.1016/S1369-5274(99)80035-6
– volume: 19
  start-page: 1470
  year: 1999
  ident: key 20170522210337_B61
  article-title: The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.19.2.1470
– volume: 14
  start-page: 165
  year: 2004
  ident: key 20170522210337_B13
  article-title: Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer?
  publication-title: Curr. Opin. Genet. Dev
  doi: 10.1016/j.gde.2004.01.007
– volume: 15
  start-page: 1999
  year: 1995
  ident: key 20170522210337_B42
  article-title: A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.15.4.1999
– volume: 276
  start-page: 35209
  year: 2001
  ident: key 20170522210337_B30
  article-title: DNA sequence plays a major role in determining nucleosome positions in yeast CUP1 chromatin
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M104733200
– volume: 19
  start-page: 400
  year: 2000
  ident: key 20170522210337_B63
  article-title: The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome
  publication-title: EMBO J
  doi: 10.1093/emboj/19.3.400
– volume: 254
  start-page: 59
  year: 2001
  ident: key 20170522210337_B17
  article-title: Corepressor proteins and control of transcription in yeast
  publication-title: Curr. Top. Microbiol. Immunol
– volume: 16
  start-page: 1978
  year: 1996
  ident: key 20170522210337_B26
  article-title: Chromatin remodeling during Saccharomyces cerevisiae ADH2 gene activation
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.16.5.1978
– volume: 9
  start-page: 1297
  year: 2002
  ident: key 20170522210337_B49
  article-title: Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00545-2
– volume: 22
  start-page: 693
  year: 2002
  ident: key 20170522210337_B16
  article-title: Histone-dependent association of Tup1-Ssn6 with repressed genes in vivo
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.22.3.693-703.2002
– volume: 17
  start-page: 6028
  year: 1998
  ident: key 20170522210337_B25
  article-title: Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators
  publication-title: EMBO J
  doi: 10.1093/emboj/17.20.6028
– volume: 7
  start-page: 657
  year: 2006
  ident: key 20170522210337_B66
  article-title: Genome-wide patterns of histone modifications in yeast
  publication-title: Nat. Rev. Mol. Cell Biol
  doi: 10.1038/nrm1986
– volume: 16
  start-page: 6263
  year: 1997
  ident: key 20170522210337_B22
  article-title: Interplay of yeast global transcriptional regulators Ssn6p-Tup1p and Swi-Snf and their effect on chromatin structure
  publication-title: EMBO J
  doi: 10.1093/emboj/16.20.6263
– volume: 279
  start-page: 7678
  year: 2004
  ident: key 20170522210337_B59
  article-title: A short-range gradient of histone H3 acetylation and Tup1p redistribution at the promoter of the Saccharomyces cerevisiae SUC2 gene
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M310849200
– volume: 26
  start-page: 8607
  year: 2006
  ident: key 20170522210337_B29
  article-title: Activation of Yeast HIS3 results in Gcn4p-dependent, SWI/SNF-dependent mobilization of nucleosomes over the entire gene
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.00678-06
– volume: 8
  start-page: 1400
  year: 1994
  ident: key 20170522210337_B15
  article-title: The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure
  publication-title: Genes Dev
  doi: 10.1101/gad.8.12.1400
– volume: 304
  start-page: 365
  year: 1999
  ident: key 20170522210337_B37
  article-title: Mapping chromatin structure in yeast
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(99)04022-7
– volume: 7
  start-page: 117
  year: 2001
  ident: key 20170522210337_B19
  article-title: TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00160-5
– volume: 205
  start-page: 422
  year: 1986
  ident: key 20170522210337_B38
  article-title: DNase I sensitivity of the chromatin of the yeast SUC2 gene for invertase
  publication-title: Mol. Gen. Genet
  doi: 10.1007/BF00338077
– volume: 2
  start-page: 1288
  year: 2003
  ident: key 20170522210337_B55
  article-title: Recruitment of Tup1-Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.2.6.1288-1303.2003
– volume: 276
  start-page: 861
  year: 2001
  ident: key 20170522210337_B52
  article-title: Intrinsically bent DNA in the promoter regions of the yeast GAL1-10 and GAL80 genes
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M007070200
– volume: 71
  start-page: 247
  year: 2002
  ident: key 20170522210337_B9
  article-title: ATP-dependent nucleosome remodeling
  publication-title: Annu. Rev. Biochem
  doi: 10.1146/annurev.biochem.71.110601.135400
– reference: 11206552 - Nature. 2001 Jan 25;409(6819):533-8
– reference: 11566885 - EMBO J. 2001 Sep 17;20(18):5219-31
– reference: 10372371 - Methods Enzymol. 1999;304:365-76
– reference: 8056322 - Genetics. 1994 May;137(1):49-54
– reference: 14685262 - EMBO J. 2004 Jan 14;23(1):127-37
– reference: 10725359 - Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3364-9
– reference: 11172715 - Mol Cell. 2001 Jan;7(1):97-104
– reference: 12045097 - Annu Rev Biochem. 2002;71:247-73
– reference: 16982689 - Mol Cell Biol. 2006 Nov;26(22):8607-22
– reference: 10654939 - EMBO J. 2000 Feb 1;19(3):400-9
– reference: 16912715 - Nat Rev Mol Cell Biol. 2006 Sep;7(9):657-66
– reference: 11013248 - J Biol Chem. 2001 Jan 12;276(2):861-6
– reference: 7926740 - Genes Dev. 1994 Jun 15;8(12):1400-10
– reference: 14665463 - Eukaryot Cell. 2003 Dec;2(6):1288-303
– reference: 3550382 - Mol Gen Genet. 1986 Dec;205(3):422-7
– reference: 11157758 - EMBO J. 2001 Feb 1;20(3):520-31
– reference: 16862119 - Nature. 2006 Aug 17;442(7104):772-8
– reference: 10938115 - Mol Cell Biol. 2000 Sep;20(17):6380-9
– reference: 11784848 - Mol Cell Biol. 2002 Feb;22(3):693-703
– reference: 16953792 - Annu Rev Genet. 2006;40:107-38
– reference: 1459453 - Genes Dev. 1992 Dec;6(12A):2288-98
– reference: 16455495 - Mol Cell. 2006 Feb 3;21(3):405-16
– reference: 11163188 - Cell. 2000 Dec 22;103(7):1133-42
– reference: 11836537 - Nat Struct Biol. 2002 Mar;9(3):167-71
– reference: 9321405 - EMBO J. 1997 Oct 15;16(20):6263-71
– reference: 7891695 - Mol Cell Biol. 1995 Apr;15(4):1999-2009
– reference: 15949447 - Mol Cell. 2005 Jun 10;18(6):735-48
– reference: 12600943 - Genes Dev. 2003 Feb 15;17(4):502-15
– reference: 11250133 - Curr Opin Genet Dev. 2001 Apr;11(2):124-9
– reference: 7039847 - Cell. 1982 Jan;28(1):145-54
– reference: 14525981 - J Biol Chem. 2003 Dec 12;278(50):50158-62
– reference: 17099712 - Nat Genet. 2006 Dec;38(12):1446-51
– reference: 11190575 - Curr Top Microbiol Immunol. 2001;254:59-78
– reference: 8047170 - Nature. 1994 Aug 11;370(6489):481-5
– reference: 9336451 - Nucleic Acids Res. 1997 Nov 1;25(21):4230-4
– reference: 9111019 - J Biol Chem. 1997 Apr 25;272(17):11193-7
– reference: 1310793 - Mol Microbiol. 1992 Jan;6(1):15-21
– reference: 16936817 - Biochem Cell Biol. 2006 Aug;84(4):437-43
– reference: 8047169 - Nature. 1994 Aug 11;370(6489):477-81
– reference: 6373495 - Genetics. 1984 May;107(1):19-32
– reference: 1538695 - Mol Gen Genet. 1992 Feb;231(3):395-400
– reference: 6843548 - Mol Cell Biol. 1983 Mar;3(3):351-9
– reference: 10322167 - Curr Opin Microbiol. 1999 Apr;2(2):202-7
– reference: 17237508 - Genetics. 2007 Mar;175(3):1127-35
– reference: 9774346 - EMBO J. 1998 Oct 15;17(20):6028-38
– reference: 14580348 - Mol Cell. 2003 Oct;12(4):983-90
– reference: 9891080 - Mol Cell Biol. 1999 Feb;19(2):1470-8
– reference: 3536481 - EMBO J. 1986 Oct;5(10):2689-96
– reference: 15196463 - Curr Opin Genet Dev. 2004 Apr;14(2):165-73
– reference: 15471882 - J Biol Chem. 2004 Dec 31;279(53):55520-30
– reference: 17269656 - Biochemistry. 2007 Feb 27;46(8):2239-48
– reference: 10466730 - Nature. 1999 Aug 19;400(6746):784-7
– reference: 15254041 - J Biol Chem. 2004 Sep 17;279(38):39240-50
– reference: 11281938 - BMC Genet. 2001;2:5
– reference: 11865042 - Mol Cell Biol. 2002 Mar;22(6):1615-25
– reference: 12086626 - Mol Cell. 2002 Jun;9(6):1297-305
– reference: 12432091 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15381-6
– reference: 11455386 - Nat Genet. 2001 Aug;28(4):327-34
– reference: 8628264 - Mol Cell Biol. 1996 May;16(5):1978-88
– reference: 11461917 - J Biol Chem. 2001 Sep 14;276(37):35209-16
– reference: 8016655 - Science. 1994 Jul 1;265(5168):53-60
– reference: 11172717 - Mol Cell. 2001 Jan;7(1):117-26
– reference: 8662543 - Science. 1996 Jul 26;273(5274):513-6
– reference: 14670975 - J Biol Chem. 2004 Feb 27;279(9):7678-84
– reference: 2247069 - Mol Cell Biol. 1990 Dec;10(12):6500-11
– reference: 2821486 - Nucleic Acids Res. 1987 Sep 11;15(17):6937-56
SSID ssj0014154
Score 1.9869641
Snippet The traditional model for chromatin remodelling during transcription has focused upon the remodelling of nucleosomes at gene promoters. However, in this study,...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5520
SubjectTerms Adenosine Triphosphatases
beta-Fructofuranosidase - genetics
Chromatin
Chromatin Assembly and Disassembly
DNA, Intergenic - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Gene Expression Regulation, Fungal
genes
glucose
Glucose - pharmacology
intergenic DNA
Molecular Biology
mutants
Nuclear Proteins - metabolism
nucleosomes
Nucleosomes - metabolism
Promoter Regions, Genetic
Repressor Proteins - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
TATA Box
transcription (genetics)
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic - drug effects
Yeasts
Title Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene
URI https://api.istex.fr/ark:/67375/HXZ-SMKW64Z2-L/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17704134
https://www.proquest.com/docview/200586102
https://www.proquest.com/docview/19885461
https://www.proquest.com/docview/47440843
https://www.proquest.com/docview/68268540
https://pubmed.ncbi.nlm.nih.gov/PMC2018639
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZgPMALgg1YGBRLoEk8RLNjx3Yep2pTBQwe0olqL5GT2lu11anSdj_-e85JE9ppg9f4EiW-i-473913CH0RSaxYwWWoNdcQoIxJqG3CQ-uzMBAU0TzyDc4nP8XglH8bxaNVEc38gRR-wg6crg7OL6ex9Jye4H29NQ9_jbpcAbighiSq5tTkqiUh3bh1w-088zt4e6-lbQ1Z3i-QXPM4x6_QyxVUxIeNbl-jJ8Zto51DB2Hy9A7v47p4sz4V30bP--3gth10O1zOaJjOncDajXF6MwlTZ3Fl6qk3vv0c-26G65pLFU_aKSX4qnTnYeWbDXBxUZUeyjpcrvVq4uXMt5boKS4tBuCI7_zgH5ye9iMMdmjeoOHx0bA_CFcDFsICUN4iNIbmlnBLdcQsF3Fh4QrNKbVMK6GlIokFD2-5NIUGqGfHJDfM6tgKUjDG3qItVzqzi7AgeUzyiCRGA8ThVOmxAWAlfTSlZM4D9LXd_qxYkY_7GRhXWZMEZxmoKmtUFaDPneysodx4UGq_1mInoqtLX6Qm42wwOsvSk--_BT-Lsh8B6oGa__mkvdYCstUPPPfTOWMF0DIK0KduFfTo0ynamXI5z2iiVMwFfVyCe_ZFxdnjEgKiO3gICdC7xuL-vqeUBAAG7JzcsMVOwPOCb664yUXNDw6YTgHwfP-_D99DL5qTal_O-AFtLaql-QgQa5H30FNJjnr1AUWv_tv-AGN1KN4
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tup1-Ssn6+and+Swi-Snf+remodelling+activities+influence+long-range+chromatin+organization+upstream+of+the+yeast+SUC2+gene&rft.jtitle=Nucleic+acids+research&rft.au=Fleming%2C+Alastair+B&rft.au=Pennings%2C+Sari&rft.date=2007-08-01&rft.eissn=1362-4962&rft.volume=35&rft.issue=16&rft.spage=5520&rft_id=info:doi/10.1093%2Fnar%2Fgkm573&rft_id=info%3Apmid%2F17704134&rft.externalDocID=17704134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon