Effects of Path-Finding Algorithms on the Labeling of the Centerlines of Circle of Willis Arteries
Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels’ centerlines, and a path-finding algorithm can be used to automatically detect vessel segments’ centerlines. This study compared the performance of path-finding algorithms for vessel labeling....
Saved in:
| Published in | Tomography (Ann Arbor) Vol. 9; no. 4; pp. 1423 - 1433 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
24.07.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2379-139X 2379-1381 2379-139X |
| DOI | 10.3390/tomography9040113 |
Cover
| Abstract | Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels’ centerlines, and a path-finding algorithm can be used to automatically detect vessel segments’ centerlines. This study compared the performance of path-finding algorithms for vessel labeling. Three-dimensional (3D) time-of-flight magnetic resonance angiography (MRA) images from the publicly available dataset were considered for this study. After manual annotations of the endpoints of each vessel segment, three path-finding methods were compared: (Method 1) depth-first search algorithm, (Method 2) Dijkstra’s algorithm, and (Method 3) A* algorithm. The rate of correctly found paths was quantified and compared among the three methods in each segment of the circle of Willis arteries. In the analysis of 840 vessel segments, Method 2 showed the highest accuracy (97.1%) of correctly found paths, while Method 1 and 3 showed an accuracy of 83.5% and 96.1%, respectively. The AComm artery was highly inaccurately identified in Method 1, with an accuracy of 43.2%. Incorrect paths by Method 2 were noted in the R-ICA, L-ICA, and R-PCA-P1 segments. The Dijkstra and A* algorithms showed similar accuracy in path-finding, and they were comparable in the speed of path-finding in the circle of Willis arterial segments. |
|---|---|
| AbstractList | Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels' centerlines, and a path-finding algorithm can be used to automatically detect vessel segments' centerlines. This study compared the performance of path-finding algorithms for vessel labeling. Three-dimensional (3D) time-of-flight magnetic resonance angiography (MRA) images from the publicly available dataset were considered for this study. After manual annotations of the endpoints of each vessel segment, three path-finding methods were compared: (Method 1) depth-first search algorithm, (Method 2) Dijkstra's algorithm, and (Method 3) A* algorithm. The rate of correctly found paths was quantified and compared among the three methods in each segment of the circle of Willis arteries. In the analysis of 840 vessel segments, Method 2 showed the highest accuracy (97.1%) of correctly found paths, while Method 1 and 3 showed an accuracy of 83.5% and 96.1%, respectively. The AComm artery was highly inaccurately identified in Method 1, with an accuracy of 43.2%. Incorrect paths by Method 2 were noted in the R-ICA, L-ICA, and R-PCA-P1 segments. The Dijkstra and A* algorithms showed similar accuracy in path-finding, and they were comparable in the speed of path-finding in the circle of Willis arterial segments.Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels' centerlines, and a path-finding algorithm can be used to automatically detect vessel segments' centerlines. This study compared the performance of path-finding algorithms for vessel labeling. Three-dimensional (3D) time-of-flight magnetic resonance angiography (MRA) images from the publicly available dataset were considered for this study. After manual annotations of the endpoints of each vessel segment, three path-finding methods were compared: (Method 1) depth-first search algorithm, (Method 2) Dijkstra's algorithm, and (Method 3) A* algorithm. The rate of correctly found paths was quantified and compared among the three methods in each segment of the circle of Willis arteries. In the analysis of 840 vessel segments, Method 2 showed the highest accuracy (97.1%) of correctly found paths, while Method 1 and 3 showed an accuracy of 83.5% and 96.1%, respectively. The AComm artery was highly inaccurately identified in Method 1, with an accuracy of 43.2%. Incorrect paths by Method 2 were noted in the R-ICA, L-ICA, and R-PCA-P1 segments. The Dijkstra and A* algorithms showed similar accuracy in path-finding, and they were comparable in the speed of path-finding in the circle of Willis arterial segments. Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels’ centerlines, and a path-finding algorithm can be used to automatically detect vessel segments’ centerlines. This study compared the performance of path-finding algorithms for vessel labeling. Three-dimensional (3D) time-of-flight magnetic resonance angiography (MRA) images from the publicly available dataset were considered for this study. After manual annotations of the endpoints of each vessel segment, three path-finding methods were compared: (Method 1) depth-first search algorithm, (Method 2) Dijkstra’s algorithm, and (Method 3) A* algorithm. The rate of correctly found paths was quantified and compared among the three methods in each segment of the circle of Willis arteries. In the analysis of 840 vessel segments, Method 2 showed the highest accuracy (97.1%) of correctly found paths, while Method 1 and 3 showed an accuracy of 83.5% and 96.1%, respectively. The AComm artery was highly inaccurately identified in Method 1, with an accuracy of 43.2%. Incorrect paths by Method 2 were noted in the R-ICA, L-ICA, and R-PCA-P1 segments. The Dijkstra and A* algorithms showed similar accuracy in path-finding, and they were comparable in the speed of path-finding in the circle of Willis arterial segments. |
| Audience | Academic |
| Author | Kim, Se-On Kim, Yoon-Chul |
| AuthorAffiliation | Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Republic of Korea |
| AuthorAffiliation_xml | – name: Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Republic of Korea |
| Author_xml | – sequence: 1 givenname: Se-On surname: Kim fullname: Kim, Se-On – sequence: 2 givenname: Yoon-Chul orcidid: 0000-0002-5012-0268 surname: Kim fullname: Kim, Yoon-Chul |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37489481$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAQjVAR_aA_gAuKxIVLih3nwz6h1aqllVaCAwhulmOPE1dOvNjeov33OE2puoAQsiWPZ957mnma0-xochNk2SuMLghh6F10o-u92A57hiqEMXmWnZSkZQUm7NvRk_g4Ow_hFiFUojLd9kV2TNqKsorik6y71BpkDLnT-ScRh-LKTMpMfb6yvfMmDmMqTXkcIN-IDuxcStD5v4Ypgk8ZuGevjZcW5uirsdaEfOVT2UB4mT3XwgY4f3jPsi9Xl5_X18Xm44eb9WpTyJqQWHS4hpp1mkosBaIK6k6xBpUME2hqiupKEqoZ0mlYrRBojFrZVqzFkshGCXKW3Sy6yolbvvVmFH7PnTD8PuF8z4WPJjXJWYkx1BVRoqsrTLSgRNG2Fo3ESmnKkla5aO2mrdj_ENY-CmLEZ__5H_4n0vuFtN11IyiZ_PHCHnRyWJnMwHt3lyRJ09BqVnj7oODd9x2EyEcTJFgrJnC7wEtaYUrLhtEEfbNAe5EGMpN2SVLOcL5qm7KuGMZNQl38BZWOgtHItFDapPwB4fXTGR6b_7UxCYAXgPQuBA_6v4xpf-NIE0U0brbB2H8wfwLlhuob |
| CitedBy_id | crossref_primary_10_3390_brainsci13111512 crossref_primary_10_1038_s41598_024_80574_0 crossref_primary_10_3390_jimaging10030058 crossref_primary_10_3390_s24196441 crossref_primary_10_3390_cancers16101870 |
| Cites_doi | 10.7717/peerj.453 10.1038/s41592-019-0686-2 10.1186/s12880-021-00558-8 10.1016/j.media.2019.03.007 10.1016/j.media.2019.02.007 10.1161/CIRCRESAHA.116.308427 10.1109/TMI.2022.3186731 10.3390/jcm8020237 10.3389/fnins.2019.00097 10.1145/2662117.2662122 10.1007/978-3-030-55130-8_31 10.5853/jos.2020.04399 10.1097/RLI.0b013e31818c3d6b 10.1016/j.neuroimage.2022.119425 10.1118/1.1797511 10.1148/ryai.2021200197 10.1109/TIP.2020.2999854 10.1159/000335123 10.1016/j.media.2016.03.006 10.1007/s00330-020-06917-3 10.1038/s41467-020-18606-2 10.1161/CIRCULATIONAHA.114.011147 10.1038/s41598-019-47368-1 10.1016/j.ejrad.2013.08.052 10.7717/peerj.4312 10.1161/CIRCRESAHA.121.319949 10.1016/j.bbe.2016.11.003 10.1007/s00330-019-06146-3 10.1148/rg.26si065508 10.1109/TMI.2013.2259595 10.1088/2057-1976/ac9415 10.1155/2012/782801 10.1111/j.1755-3768.2012.02576.x 10.1007/978-3-319-13072-9 10.1002/mrm.26961 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/tomography9040113 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2379-139X |
| EndPage | 1433 |
| ExternalDocumentID | oai_doaj_org_article_9211e543dab5413fa83d875a6c1ddf89 10.3390/tomography9040113 PMC10366843 A762549116 37489481 10_3390_tomography9040113 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF); Ministry of Education (MOE) grantid: 2022RIS-005 |
| GroupedDBID | 53G AAYXX AFZYC ALMA_UNASSIGNED_HOLDINGS CITATION EMOBN GROUPED_DOAJ HYE IAO IGS ITC MODMG M~E OK1 PGMZT RPM CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c533t-b15e59bf8c1ca08de5bd9602913e658054c38f90f401fd0ef107c74971c3c6da3 |
| IEDL.DBID | DOA |
| ISSN | 2379-139X 2379-1381 |
| IngestDate | Fri Oct 03 12:53:24 EDT 2025 Sun Oct 26 04:15:13 EDT 2025 Thu Aug 21 18:37:20 EDT 2025 Wed Oct 01 13:46:08 EDT 2025 Tue Nov 19 21:05:19 EST 2024 Wed Nov 13 00:20:59 EST 2024 Thu Apr 03 07:04:52 EDT 2025 Thu Oct 16 04:40:54 EDT 2025 Thu Apr 24 23:06:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | A algorithm cerebral arteries vessel segmentation graph structure magnetic resonance angiography Dijkstra algorithm depth first search |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c533t-b15e59bf8c1ca08de5bd9602913e658054c38f90f401fd0ef107c74971c3c6da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5012-0268 |
| OpenAccessLink | https://doaj.org/article/9211e543dab5413fa83d875a6c1ddf89 |
| PMID | 37489481 |
| PQID | 2841882698 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9211e543dab5413fa83d875a6c1ddf89 unpaywall_primary_10_3390_tomography9040113 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10366843 proquest_miscellaneous_2841882698 gale_infotracmisc_A762549116 gale_infotracacademiconefile_A762549116 pubmed_primary_37489481 crossref_primary_10_3390_tomography9040113 crossref_citationtrail_10_3390_tomography9040113 |
| PublicationCentury | 2000 |
| PublicationDate | 20230724 |
| PublicationDateYYYYMMDD | 2023-07-24 |
| PublicationDate_xml | – month: 7 year: 2023 text: 20230724 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Tomography (Ann Arbor) |
| PublicationTitleAlternate | Tomography |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Girard (ref_5) 2022; 130 Payer (ref_36) 2019; 54 Jeong (ref_4) 2012; 2012 Xue (ref_38) 2021; 3 ref_13 Lell (ref_7) 2006; 26 Klis (ref_11) 2020; 30 Fu (ref_35) 2020; 11 ref_19 Thamm (ref_21) 2022; 8 Sodi (ref_12) 2013; 91 Ritz (ref_1) 2014; 130 Boulogne (ref_23) 2014; 2 Wozniak (ref_32) 2017; 37 Kandil (ref_9) 2019; 9 Kim (ref_10) 2021; 23 Lell (ref_33) 2009; 44 Hu (ref_2) 2017; 120 Nazir (ref_18) 2020; 29 Blanch (ref_25) 2018; 6 ref_24 Cirillo (ref_6) 2013; 82 ref_22 Dumais (ref_17) 2022; 260 ref_20 Bogunovic (ref_14) 2013; 32 Venema (ref_34) 2004; 31 ref_29 Chen (ref_15) 2018; 79 ref_28 ref_26 Han (ref_8) 2012; 49 Livne (ref_31) 2019; 13 Krzyzewski (ref_3) 2019; 29 Virtanen (ref_27) 2020; 17 Robben (ref_16) 2016; 32 Chen (ref_30) 2022; 41 Alansary (ref_37) 2019; 53 |
| References_xml | – ident: ref_28 – volume: 2 start-page: e453 year: 2014 ident: ref_23 article-title: Scikit-Image: Image processing in Python publication-title: PeerJ doi: 10.7717/peerj.453 – volume: 17 start-page: 261 year: 2020 ident: ref_27 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – ident: ref_24 doi: 10.1186/s12880-021-00558-8 – volume: 54 start-page: 207 year: 2019 ident: ref_36 article-title: Integrating spatial configuration into heatmap regression based CNNs for landmark localization publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.03.007 – volume: 53 start-page: 156 year: 2019 ident: ref_37 article-title: Evaluating reinforcement learning agents for anatomical landmark detection publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.02.007 – volume: 120 start-page: 449 year: 2017 ident: ref_2 article-title: Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.308427 – volume: 41 start-page: 3520 year: 2022 ident: ref_30 article-title: Attention-Assisted Adversarial Model for Cerebrovascular Segmentation in 3D TOF-MRA Volumes publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3186731 – ident: ref_13 doi: 10.3390/jcm8020237 – volume: 13 start-page: 97 year: 2019 ident: ref_31 article-title: A U-Net Deep Learning Framework for High Performance Vessel Segmentation in Patients With Cerebrovascular Disease publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00097 – ident: ref_19 doi: 10.1145/2662117.2662122 – ident: ref_20 doi: 10.1007/978-3-030-55130-8_31 – volume: 23 start-page: 213 year: 2021 ident: ref_10 article-title: How Cerebral Vessel Tortuosity Affects Development and Recurrence of Aneurysm: Outer Curvature versus Bifurcation Type publication-title: J. Stroke doi: 10.5853/jos.2020.04399 – volume: 44 start-page: 38 year: 2009 ident: ref_33 article-title: Cranial computed tomography angiography with automated bone subtraction: A feasibility study publication-title: Investig. Radiol. doi: 10.1097/RLI.0b013e31818c3d6b – volume: 260 start-page: 119425 year: 2022 ident: ref_17 article-title: eICAB: A novel deep learning pipeline for Circle of Willis multiclass segmentation and analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2022.119425 – volume: 31 start-page: 2924 year: 2004 ident: ref_34 article-title: Removal of bone in CT angiography of the cervical arteries by piecewise matched mask bone elimination publication-title: Med. Phys. doi: 10.1118/1.1797511 – volume: 3 start-page: e200197 year: 2021 ident: ref_38 article-title: Landmark Detection in Cardiac MRI by Using a Convolutional Neural Network publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.2021200197 – volume: 29 start-page: 7192 year: 2020 ident: ref_18 article-title: OFF-eNET: An Optimally Fused Fully End-to-End Network for Automatic Dense Volumetric 3D Intracranial Blood Vessels Segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2999854 – volume: 49 start-page: 185 year: 2012 ident: ref_8 article-title: Twisted blood vessels: Symptoms, etiology and biomechanical mechanisms publication-title: J. Vasc. Res. doi: 10.1159/000335123 – volume: 32 start-page: 201 year: 2016 ident: ref_16 article-title: Simultaneous segmentation and anatomical labeling of the cerebral vasculature publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.03.006 – volume: 30 start-page: 5625 year: 2020 ident: ref_11 article-title: Increased tortuosity of basilar artery might be associated with higher risk of aneurysm development publication-title: Eur. Radiol. doi: 10.1007/s00330-020-06917-3 – volume: 11 start-page: 4829 year: 2020 ident: ref_35 article-title: Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network publication-title: Nat. Commun. doi: 10.1038/s41467-020-18606-2 – volume: 130 start-page: 1407 year: 2014 ident: ref_1 article-title: Cause and mechanisms of intracranial atherosclerosis publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.114.011147 – ident: ref_29 – volume: 9 start-page: 11105 year: 2019 ident: ref_9 article-title: A Novel Framework for Early Detection of Hypertension using Magnetic Resonance Angiography publication-title: Sci. Rep. doi: 10.1038/s41598-019-47368-1 – volume: 82 start-page: e853 year: 2013 ident: ref_6 article-title: Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2013.08.052 – volume: 6 start-page: e4312 year: 2018 ident: ref_25 article-title: A new Python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton publication-title: PeerJ doi: 10.7717/peerj.4312 – volume: 130 start-page: 1204 year: 2022 ident: ref_5 article-title: Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.121.319949 – volume: 37 start-page: 66 year: 2017 ident: ref_32 article-title: 3D vascular tree segmentation using a multiscale vesselness function and a level set approach publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2016.11.003 – volume: 29 start-page: 6309 year: 2019 ident: ref_3 article-title: Increased tortuosity of ACA might be associated with increased risk of ACoA aneurysm development and less aneurysm dome size: A computer-aided analysis publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06146-3 – ident: ref_22 – volume: 26 start-page: S45 year: 2006 ident: ref_7 article-title: New techniques in CT angiography publication-title: Radiographics doi: 10.1148/rg.26si065508 – volume: 32 start-page: 1587 year: 2013 ident: ref_14 article-title: Anatomical labeling of the Circle of Willis using maximum a posteriori probability estimation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2259595 – volume: 8 start-page: 065016 year: 2022 ident: ref_21 article-title: An algorithm for the labeling and interactive visualization of the cerebrovascular system of ischemic strokes publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/ac9415 – volume: 2012 start-page: 782801 year: 2012 ident: ref_4 article-title: Hemodynamics of cerebral aneurysms: Computational analyses of aneurysm progress and treatment publication-title: Comput. Math. Methods Med. doi: 10.1155/2012/782801 – volume: 91 start-page: e113 year: 2013 ident: ref_12 article-title: Computer assisted evaluation of retinal vessels tortuosity in Fabry disease publication-title: Acta Ophthalmol. doi: 10.1111/j.1755-3768.2012.02576.x – ident: ref_26 doi: 10.1007/978-3-319-13072-9 – volume: 79 start-page: 3229 year: 2018 ident: ref_15 article-title: Development of a quantitative intracranial vascular features extraction tool on 3D MRA using semiautomated open-curve active contour vessel tracing publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26961 |
| SSID | ssj0002022027 |
| Score | 2.2764828 |
| Snippet | Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels’ centerlines, and a path-finding algorithm can be... Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels' centerlines, and a path-finding algorithm can be... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1423 |
| SubjectTerms | A algorithm Algorithms Arteries cerebral arteries Circle of Willis Comparative analysis Dijkstra algorithm graph structure magnetic resonance angiography vessel segmentation |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegk4AXvgeBgYKEhATKEieOaz-hMlFNiE17oFJ5ihx_bBFdUjUpCP56zo4XLZsEgre2Pjd27nz-nT9-h9BrDg5PQmgVSU5kRGCCiJghOMqFKS2BXZJou95xdEwPF-TTMl_6szmtP1YJoXjlnHSaTXkEEGUZ85jEGGfxWpn33_1Ckt3gSSkEWfQm2qE5QPEJ2lkcn8y-uoRyrqpLUjr8Tb-rmUGYH3fNuaeE5mDGGGejecnR91930pdmqasnKG9v67X4-UOsVpemp_m9Pgdr61gN7amUb_vbrtyXv65wPv53z--jux64hrPe0h6gG7p-iG4d-a35R6jseZDbsDHhCcDKaF65CzPhbHXabKru7ByK6hDwZvhZlO4WvBW13-0Ks2Pd0q72QbWBJ9hPbjGotc-0dMztY7SYf_xycBj5BA6RBBTZRSXOdc5LwySWImFK56UCNaUcZxqQD6BFmTHDEwMaMCrRBmJROSUczCeTVIlsF03qptZPUahlrgS4I0oVI0qJUqViqonmZppqUiYBSi7UV0jPbm6TbKwKiHKsxotrGg_Q26HKuqf2-JPwB2sTg6Bl5XY_NJvTwg_ygkM0rXOSQfNyAAdGsExBPCioxEoZxgP0xlpUYX0HNE4KfwUCumhZuIoZzEwQr2NMA7Q3koQxL0fFry5ssrBF9qBcrZttWwDawBA0Uc4C9KS30aHNjmmIMBwgNrLeUafGJXV15ijHMQAdygi8hneDof_9pT37J-nn6E4KCNIunKdkD026zVa_AMTXlS_9uP4NrIRSHg priority: 102 providerName: Unpaywall |
| Title | Effects of Path-Finding Algorithms on the Labeling of the Centerlines of Circle of Willis Arteries |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37489481 https://www.proquest.com/docview/2841882698 https://pubmed.ncbi.nlm.nih.gov/PMC10366843 https://www.mdpi.com/2379-139X/9/4/113/pdf?version=1690267136 https://doaj.org/article/9211e543dab5413fa83d875a6c1ddf89 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2379-139X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002022027 issn: 2379-1381 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2379-139X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002022027 issn: 2379-1381 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2379-139X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002022027 issn: 2379-1381 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD7ICuqLeLe6LhUEQSnbNGkneRwXh0XcZR8cWJ9Cmos7MtsuMx3Ef-85aXeYuuC--NY2KW3OOUm-L5cvAO8UNngWqVVmlbCZwA4ik0GwrDShJgG7PPc03nFyWh3PxZfz8nznqC9aE9bLA_eGO1TIUHwpuDN1iQ1uMJI7xNimssy5IOPWvVyqHTL1M06vFcTq48lyE0VCe6yf0uTI8Q-79nLQg1YYw4zxUacUtftvttA7XdTfyyfvb5or8_uXWS53-qbZI3g4gMp02hfmMdzxzRO4dzJMmz-FutcoXqdtSM8Q8mWzRdzMkk6XP9rVoru4xKQmRSyYfjV13KFOWemeRn-jIpaPbx8tVvgFuooDNWv6Jkklr5_BfPb529FxNhyukFlEeF1Ws9KXqg7SMmty6XxZO2QzhWLcIypBJGe5DCoPaKDgch-QJ9qJUOhabitn-HPYa9rGv4TU29IZbCqqyknh0FGuMBMvvAqTwos6TyC_tq62g_I4HYCx1MhAyCH6hkMS-LB95aqX3fhX5k_ksm1GUsyODzCO9BBH-rY4SuA9OVxTvcafs2bYnoBFJIUsPcVeA7k0Y1UC-6OcWB_tKPntdchoSqJFbI1vN2uNSIAhoamUTOBFH0Lbf44qQEKyBOQouEaFGqc0i4soB84QhFRSoBk-buPwdqO9-h9Gew0PsJpxGusuxD7sdauNf4MgrasPYn08gLvz07Pp9z-m2zvm |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegk4AXvgeBgYKEhATKEieOaz-hMlFNiE17oFJ5ihx_bBFdUjUpCP56zo4XLZsEgre2Pjd27nz-nT9-h9BrDg5PQmgVSU5kRGCCiJghOMqFKS2BXZJou95xdEwPF-TTMl_6szmtP1YJoXjlnHSaTXkEEGUZ85jEGGfxWpn33_1Ckt3gSSkEWfQm2qE5QPEJ2lkcn8y-uoRyrqpLUjr8Tb-rmUGYH3fNuaeE5mDGGGejecnR91930pdmqasnKG9v67X4-UOsVpemp_m9Pgdr61gN7amUb_vbrtyXv65wPv53z--jux64hrPe0h6gG7p-iG4d-a35R6jseZDbsDHhCcDKaF65CzPhbHXabKru7ByK6hDwZvhZlO4WvBW13-0Ks2Pd0q72QbWBJ9hPbjGotc-0dMztY7SYf_xycBj5BA6RBBTZRSXOdc5LwySWImFK56UCNaUcZxqQD6BFmTHDEwMaMCrRBmJROSUczCeTVIlsF03qptZPUahlrgS4I0oVI0qJUqViqonmZppqUiYBSi7UV0jPbm6TbKwKiHKsxotrGg_Q26HKuqf2-JPwB2sTg6Bl5XY_NJvTwg_ygkM0rXOSQfNyAAdGsExBPCioxEoZxgP0xlpUYX0HNE4KfwUCumhZuIoZzEwQr2NMA7Q3koQxL0fFry5ssrBF9qBcrZttWwDawBA0Uc4C9KS30aHNjmmIMBwgNrLeUafGJXV15ijHMQAdygi8hneDof_9pT37J-nn6E4KCNIunKdkD026zVa_AMTXlS_9uP4NrIRSHg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Path-Finding+Algorithms+on+the+Labeling+of+the+Centerlines+of+Circle+of+Willis+Arteries&rft.jtitle=Tomography+%28Ann+Arbor%29&rft.au=Se-On+Kim&rft.au=Yoon-Chul+Kim&rft.date=2023-07-24&rft.pub=MDPI+AG&rft.issn=2379-1381&rft.eissn=2379-139X&rft.volume=9&rft.issue=4&rft.spage=1423&rft.epage=1433&rft_id=info:doi/10.3390%2Ftomography9040113&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9211e543dab5413fa83d875a6c1ddf89 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-139X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-139X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-139X&client=summon |