Effects of Path-Finding Algorithms on the Labeling of the Centerlines of Circle of Willis Arteries

Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels’ centerlines, and a path-finding algorithm can be used to automatically detect vessel segments’ centerlines. This study compared the performance of path-finding algorithms for vessel labeling....

Full description

Saved in:
Bibliographic Details
Published inTomography (Ann Arbor) Vol. 9; no. 4; pp. 1423 - 1433
Main Authors Kim, Se-On, Kim, Yoon-Chul
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.07.2023
MDPI
Subjects
Online AccessGet full text
ISSN2379-139X
2379-1381
2379-139X
DOI10.3390/tomography9040113

Cover

Abstract Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels’ centerlines, and a path-finding algorithm can be used to automatically detect vessel segments’ centerlines. This study compared the performance of path-finding algorithms for vessel labeling. Three-dimensional (3D) time-of-flight magnetic resonance angiography (MRA) images from the publicly available dataset were considered for this study. After manual annotations of the endpoints of each vessel segment, three path-finding methods were compared: (Method 1) depth-first search algorithm, (Method 2) Dijkstra’s algorithm, and (Method 3) A* algorithm. The rate of correctly found paths was quantified and compared among the three methods in each segment of the circle of Willis arteries. In the analysis of 840 vessel segments, Method 2 showed the highest accuracy (97.1%) of correctly found paths, while Method 1 and 3 showed an accuracy of 83.5% and 96.1%, respectively. The AComm artery was highly inaccurately identified in Method 1, with an accuracy of 43.2%. Incorrect paths by Method 2 were noted in the R-ICA, L-ICA, and R-PCA-P1 segments. The Dijkstra and A* algorithms showed similar accuracy in path-finding, and they were comparable in the speed of path-finding in the circle of Willis arterial segments.
AbstractList Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels' centerlines, and a path-finding algorithm can be used to automatically detect vessel segments' centerlines. This study compared the performance of path-finding algorithms for vessel labeling. Three-dimensional (3D) time-of-flight magnetic resonance angiography (MRA) images from the publicly available dataset were considered for this study. After manual annotations of the endpoints of each vessel segment, three path-finding methods were compared: (Method 1) depth-first search algorithm, (Method 2) Dijkstra's algorithm, and (Method 3) A* algorithm. The rate of correctly found paths was quantified and compared among the three methods in each segment of the circle of Willis arteries. In the analysis of 840 vessel segments, Method 2 showed the highest accuracy (97.1%) of correctly found paths, while Method 1 and 3 showed an accuracy of 83.5% and 96.1%, respectively. The AComm artery was highly inaccurately identified in Method 1, with an accuracy of 43.2%. Incorrect paths by Method 2 were noted in the R-ICA, L-ICA, and R-PCA-P1 segments. The Dijkstra and A* algorithms showed similar accuracy in path-finding, and they were comparable in the speed of path-finding in the circle of Willis arterial segments.Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels' centerlines, and a path-finding algorithm can be used to automatically detect vessel segments' centerlines. This study compared the performance of path-finding algorithms for vessel labeling. Three-dimensional (3D) time-of-flight magnetic resonance angiography (MRA) images from the publicly available dataset were considered for this study. After manual annotations of the endpoints of each vessel segment, three path-finding methods were compared: (Method 1) depth-first search algorithm, (Method 2) Dijkstra's algorithm, and (Method 3) A* algorithm. The rate of correctly found paths was quantified and compared among the three methods in each segment of the circle of Willis arteries. In the analysis of 840 vessel segments, Method 2 showed the highest accuracy (97.1%) of correctly found paths, while Method 1 and 3 showed an accuracy of 83.5% and 96.1%, respectively. The AComm artery was highly inaccurately identified in Method 1, with an accuracy of 43.2%. Incorrect paths by Method 2 were noted in the R-ICA, L-ICA, and R-PCA-P1 segments. The Dijkstra and A* algorithms showed similar accuracy in path-finding, and they were comparable in the speed of path-finding in the circle of Willis arterial segments.
Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels’ centerlines, and a path-finding algorithm can be used to automatically detect vessel segments’ centerlines. This study compared the performance of path-finding algorithms for vessel labeling. Three-dimensional (3D) time-of-flight magnetic resonance angiography (MRA) images from the publicly available dataset were considered for this study. After manual annotations of the endpoints of each vessel segment, three path-finding methods were compared: (Method 1) depth-first search algorithm, (Method 2) Dijkstra’s algorithm, and (Method 3) A* algorithm. The rate of correctly found paths was quantified and compared among the three methods in each segment of the circle of Willis arteries. In the analysis of 840 vessel segments, Method 2 showed the highest accuracy (97.1%) of correctly found paths, while Method 1 and 3 showed an accuracy of 83.5% and 96.1%, respectively. The AComm artery was highly inaccurately identified in Method 1, with an accuracy of 43.2%. Incorrect paths by Method 2 were noted in the R-ICA, L-ICA, and R-PCA-P1 segments. The Dijkstra and A* algorithms showed similar accuracy in path-finding, and they were comparable in the speed of path-finding in the circle of Willis arterial segments.
Audience Academic
Author Kim, Se-On
Kim, Yoon-Chul
AuthorAffiliation Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Republic of Korea
AuthorAffiliation_xml – name: Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Republic of Korea
Author_xml – sequence: 1
  givenname: Se-On
  surname: Kim
  fullname: Kim, Se-On
– sequence: 2
  givenname: Yoon-Chul
  orcidid: 0000-0002-5012-0268
  surname: Kim
  fullname: Kim, Yoon-Chul
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37489481$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQjVAR_aA_gAuKxIVLih3nwz6h1aqllVaCAwhulmOPE1dOvNjeov33OE2puoAQsiWPZ957mnma0-xochNk2SuMLghh6F10o-u92A57hiqEMXmWnZSkZQUm7NvRk_g4Ow_hFiFUojLd9kV2TNqKsorik6y71BpkDLnT-ScRh-LKTMpMfb6yvfMmDmMqTXkcIN-IDuxcStD5v4Ypgk8ZuGevjZcW5uirsdaEfOVT2UB4mT3XwgY4f3jPsi9Xl5_X18Xm44eb9WpTyJqQWHS4hpp1mkosBaIK6k6xBpUME2hqiupKEqoZ0mlYrRBojFrZVqzFkshGCXKW3Sy6yolbvvVmFH7PnTD8PuF8z4WPJjXJWYkx1BVRoqsrTLSgRNG2Fo3ESmnKkla5aO2mrdj_ENY-CmLEZ__5H_4n0vuFtN11IyiZ_PHCHnRyWJnMwHt3lyRJ09BqVnj7oODd9x2EyEcTJFgrJnC7wEtaYUrLhtEEfbNAe5EGMpN2SVLOcL5qm7KuGMZNQl38BZWOgtHItFDapPwB4fXTGR6b_7UxCYAXgPQuBA_6v4xpf-NIE0U0brbB2H8wfwLlhuob
CitedBy_id crossref_primary_10_3390_brainsci13111512
crossref_primary_10_1038_s41598_024_80574_0
crossref_primary_10_3390_jimaging10030058
crossref_primary_10_3390_s24196441
crossref_primary_10_3390_cancers16101870
Cites_doi 10.7717/peerj.453
10.1038/s41592-019-0686-2
10.1186/s12880-021-00558-8
10.1016/j.media.2019.03.007
10.1016/j.media.2019.02.007
10.1161/CIRCRESAHA.116.308427
10.1109/TMI.2022.3186731
10.3390/jcm8020237
10.3389/fnins.2019.00097
10.1145/2662117.2662122
10.1007/978-3-030-55130-8_31
10.5853/jos.2020.04399
10.1097/RLI.0b013e31818c3d6b
10.1016/j.neuroimage.2022.119425
10.1118/1.1797511
10.1148/ryai.2021200197
10.1109/TIP.2020.2999854
10.1159/000335123
10.1016/j.media.2016.03.006
10.1007/s00330-020-06917-3
10.1038/s41467-020-18606-2
10.1161/CIRCULATIONAHA.114.011147
10.1038/s41598-019-47368-1
10.1016/j.ejrad.2013.08.052
10.7717/peerj.4312
10.1161/CIRCRESAHA.121.319949
10.1016/j.bbe.2016.11.003
10.1007/s00330-019-06146-3
10.1148/rg.26si065508
10.1109/TMI.2013.2259595
10.1088/2057-1976/ac9415
10.1155/2012/782801
10.1111/j.1755-3768.2012.02576.x
10.1007/978-3-319-13072-9
10.1002/mrm.26961
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/tomography9040113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2379-139X
EndPage 1433
ExternalDocumentID oai_doaj_org_article_9211e543dab5413fa83d875a6c1ddf89
10.3390/tomography9040113
PMC10366843
A762549116
37489481
10_3390_tomography9040113
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF); Ministry of Education (MOE)
  grantid: 2022RIS-005
GroupedDBID 53G
AAYXX
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
EMOBN
GROUPED_DOAJ
HYE
IAO
IGS
ITC
MODMG
M~E
OK1
PGMZT
RPM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c533t-b15e59bf8c1ca08de5bd9602913e658054c38f90f401fd0ef107c74971c3c6da3
IEDL.DBID DOA
ISSN 2379-139X
2379-1381
IngestDate Fri Oct 03 12:53:24 EDT 2025
Sun Oct 26 04:15:13 EDT 2025
Thu Aug 21 18:37:20 EDT 2025
Wed Oct 01 13:46:08 EDT 2025
Tue Nov 19 21:05:19 EST 2024
Wed Nov 13 00:20:59 EST 2024
Thu Apr 03 07:04:52 EDT 2025
Thu Oct 16 04:40:54 EDT 2025
Thu Apr 24 23:06:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords A algorithm
cerebral arteries
vessel segmentation
graph structure
magnetic resonance angiography
Dijkstra algorithm
depth first search
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-b15e59bf8c1ca08de5bd9602913e658054c38f90f401fd0ef107c74971c3c6da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5012-0268
OpenAccessLink https://doaj.org/article/9211e543dab5413fa83d875a6c1ddf89
PMID 37489481
PQID 2841882698
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_9211e543dab5413fa83d875a6c1ddf89
unpaywall_primary_10_3390_tomography9040113
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10366843
proquest_miscellaneous_2841882698
gale_infotracmisc_A762549116
gale_infotracacademiconefile_A762549116
pubmed_primary_37489481
crossref_primary_10_3390_tomography9040113
crossref_citationtrail_10_3390_tomography9040113
PublicationCentury 2000
PublicationDate 20230724
PublicationDateYYYYMMDD 2023-07-24
PublicationDate_xml – month: 7
  year: 2023
  text: 20230724
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Tomography (Ann Arbor)
PublicationTitleAlternate Tomography
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Girard (ref_5) 2022; 130
Payer (ref_36) 2019; 54
Jeong (ref_4) 2012; 2012
Xue (ref_38) 2021; 3
ref_13
Lell (ref_7) 2006; 26
Klis (ref_11) 2020; 30
Fu (ref_35) 2020; 11
ref_19
Thamm (ref_21) 2022; 8
Sodi (ref_12) 2013; 91
Ritz (ref_1) 2014; 130
Boulogne (ref_23) 2014; 2
Wozniak (ref_32) 2017; 37
Kandil (ref_9) 2019; 9
Kim (ref_10) 2021; 23
Lell (ref_33) 2009; 44
Hu (ref_2) 2017; 120
Nazir (ref_18) 2020; 29
Blanch (ref_25) 2018; 6
ref_24
Cirillo (ref_6) 2013; 82
ref_22
Dumais (ref_17) 2022; 260
ref_20
Bogunovic (ref_14) 2013; 32
Venema (ref_34) 2004; 31
ref_29
Chen (ref_15) 2018; 79
ref_28
ref_26
Han (ref_8) 2012; 49
Livne (ref_31) 2019; 13
Krzyzewski (ref_3) 2019; 29
Virtanen (ref_27) 2020; 17
Robben (ref_16) 2016; 32
Chen (ref_30) 2022; 41
Alansary (ref_37) 2019; 53
References_xml – ident: ref_28
– volume: 2
  start-page: e453
  year: 2014
  ident: ref_23
  article-title: Scikit-Image: Image processing in Python
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– volume: 17
  start-page: 261
  year: 2020
  ident: ref_27
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– ident: ref_24
  doi: 10.1186/s12880-021-00558-8
– volume: 54
  start-page: 207
  year: 2019
  ident: ref_36
  article-title: Integrating spatial configuration into heatmap regression based CNNs for landmark localization
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.03.007
– volume: 53
  start-page: 156
  year: 2019
  ident: ref_37
  article-title: Evaluating reinforcement learning agents for anatomical landmark detection
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.02.007
– volume: 120
  start-page: 449
  year: 2017
  ident: ref_2
  article-title: Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.308427
– volume: 41
  start-page: 3520
  year: 2022
  ident: ref_30
  article-title: Attention-Assisted Adversarial Model for Cerebrovascular Segmentation in 3D TOF-MRA Volumes
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3186731
– ident: ref_13
  doi: 10.3390/jcm8020237
– volume: 13
  start-page: 97
  year: 2019
  ident: ref_31
  article-title: A U-Net Deep Learning Framework for High Performance Vessel Segmentation in Patients With Cerebrovascular Disease
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00097
– ident: ref_19
  doi: 10.1145/2662117.2662122
– ident: ref_20
  doi: 10.1007/978-3-030-55130-8_31
– volume: 23
  start-page: 213
  year: 2021
  ident: ref_10
  article-title: How Cerebral Vessel Tortuosity Affects Development and Recurrence of Aneurysm: Outer Curvature versus Bifurcation Type
  publication-title: J. Stroke
  doi: 10.5853/jos.2020.04399
– volume: 44
  start-page: 38
  year: 2009
  ident: ref_33
  article-title: Cranial computed tomography angiography with automated bone subtraction: A feasibility study
  publication-title: Investig. Radiol.
  doi: 10.1097/RLI.0b013e31818c3d6b
– volume: 260
  start-page: 119425
  year: 2022
  ident: ref_17
  article-title: eICAB: A novel deep learning pipeline for Circle of Willis multiclass segmentation and analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119425
– volume: 31
  start-page: 2924
  year: 2004
  ident: ref_34
  article-title: Removal of bone in CT angiography of the cervical arteries by piecewise matched mask bone elimination
  publication-title: Med. Phys.
  doi: 10.1118/1.1797511
– volume: 3
  start-page: e200197
  year: 2021
  ident: ref_38
  article-title: Landmark Detection in Cardiac MRI by Using a Convolutional Neural Network
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.2021200197
– volume: 29
  start-page: 7192
  year: 2020
  ident: ref_18
  article-title: OFF-eNET: An Optimally Fused Fully End-to-End Network for Automatic Dense Volumetric 3D Intracranial Blood Vessels Segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2999854
– volume: 49
  start-page: 185
  year: 2012
  ident: ref_8
  article-title: Twisted blood vessels: Symptoms, etiology and biomechanical mechanisms
  publication-title: J. Vasc. Res.
  doi: 10.1159/000335123
– volume: 32
  start-page: 201
  year: 2016
  ident: ref_16
  article-title: Simultaneous segmentation and anatomical labeling of the cerebral vasculature
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.03.006
– volume: 30
  start-page: 5625
  year: 2020
  ident: ref_11
  article-title: Increased tortuosity of basilar artery might be associated with higher risk of aneurysm development
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-06917-3
– volume: 11
  start-page: 4829
  year: 2020
  ident: ref_35
  article-title: Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18606-2
– volume: 130
  start-page: 1407
  year: 2014
  ident: ref_1
  article-title: Cause and mechanisms of intracranial atherosclerosis
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.114.011147
– ident: ref_29
– volume: 9
  start-page: 11105
  year: 2019
  ident: ref_9
  article-title: A Novel Framework for Early Detection of Hypertension using Magnetic Resonance Angiography
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47368-1
– volume: 82
  start-page: e853
  year: 2013
  ident: ref_6
  article-title: Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2013.08.052
– volume: 6
  start-page: e4312
  year: 2018
  ident: ref_25
  article-title: A new Python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton
  publication-title: PeerJ
  doi: 10.7717/peerj.4312
– volume: 130
  start-page: 1204
  year: 2022
  ident: ref_5
  article-title: Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.121.319949
– volume: 37
  start-page: 66
  year: 2017
  ident: ref_32
  article-title: 3D vascular tree segmentation using a multiscale vesselness function and a level set approach
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2016.11.003
– volume: 29
  start-page: 6309
  year: 2019
  ident: ref_3
  article-title: Increased tortuosity of ACA might be associated with increased risk of ACoA aneurysm development and less aneurysm dome size: A computer-aided analysis
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06146-3
– ident: ref_22
– volume: 26
  start-page: S45
  year: 2006
  ident: ref_7
  article-title: New techniques in CT angiography
  publication-title: Radiographics
  doi: 10.1148/rg.26si065508
– volume: 32
  start-page: 1587
  year: 2013
  ident: ref_14
  article-title: Anatomical labeling of the Circle of Willis using maximum a posteriori probability estimation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2259595
– volume: 8
  start-page: 065016
  year: 2022
  ident: ref_21
  article-title: An algorithm for the labeling and interactive visualization of the cerebrovascular system of ischemic strokes
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/ac9415
– volume: 2012
  start-page: 782801
  year: 2012
  ident: ref_4
  article-title: Hemodynamics of cerebral aneurysms: Computational analyses of aneurysm progress and treatment
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2012/782801
– volume: 91
  start-page: e113
  year: 2013
  ident: ref_12
  article-title: Computer assisted evaluation of retinal vessels tortuosity in Fabry disease
  publication-title: Acta Ophthalmol.
  doi: 10.1111/j.1755-3768.2012.02576.x
– ident: ref_26
  doi: 10.1007/978-3-319-13072-9
– volume: 79
  start-page: 3229
  year: 2018
  ident: ref_15
  article-title: Development of a quantitative intracranial vascular features extraction tool on 3D MRA using semiautomated open-curve active contour vessel tracing
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26961
SSID ssj0002022027
Score 2.2764828
Snippet Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels’ centerlines, and a path-finding algorithm can be...
Quantitative analysis of intracranial vessel segments typically requires the identification of the vessels' centerlines, and a path-finding algorithm can be...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1423
SubjectTerms A algorithm
Algorithms
Arteries
cerebral arteries
Circle of Willis
Comparative analysis
Dijkstra algorithm
graph structure
magnetic resonance angiography
vessel segmentation
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegk4AXvgeBgYKEhATKEieOaz-hMlFNiE17oFJ5ihx_bBFdUjUpCP56zo4XLZsEgre2Pjd27nz-nT9-h9BrDg5PQmgVSU5kRGCCiJghOMqFKS2BXZJou95xdEwPF-TTMl_6szmtP1YJoXjlnHSaTXkEEGUZ85jEGGfxWpn33_1Ckt3gSSkEWfQm2qE5QPEJ2lkcn8y-uoRyrqpLUjr8Tb-rmUGYH3fNuaeE5mDGGGejecnR91930pdmqasnKG9v67X4-UOsVpemp_m9Pgdr61gN7amUb_vbrtyXv65wPv53z--jux64hrPe0h6gG7p-iG4d-a35R6jseZDbsDHhCcDKaF65CzPhbHXabKru7ByK6hDwZvhZlO4WvBW13-0Ks2Pd0q72QbWBJ9hPbjGotc-0dMztY7SYf_xycBj5BA6RBBTZRSXOdc5LwySWImFK56UCNaUcZxqQD6BFmTHDEwMaMCrRBmJROSUczCeTVIlsF03qptZPUahlrgS4I0oVI0qJUqViqonmZppqUiYBSi7UV0jPbm6TbKwKiHKsxotrGg_Q26HKuqf2-JPwB2sTg6Bl5XY_NJvTwg_ygkM0rXOSQfNyAAdGsExBPCioxEoZxgP0xlpUYX0HNE4KfwUCumhZuIoZzEwQr2NMA7Q3koQxL0fFry5ssrBF9qBcrZttWwDawBA0Uc4C9KS30aHNjmmIMBwgNrLeUafGJXV15ijHMQAdygi8hneDof_9pT37J-nn6E4KCNIunKdkD026zVa_AMTXlS_9uP4NrIRSHg
  priority: 102
  providerName: Unpaywall
Title Effects of Path-Finding Algorithms on the Labeling of the Centerlines of Circle of Willis Arteries
URI https://www.ncbi.nlm.nih.gov/pubmed/37489481
https://www.proquest.com/docview/2841882698
https://pubmed.ncbi.nlm.nih.gov/PMC10366843
https://www.mdpi.com/2379-139X/9/4/113/pdf?version=1690267136
https://doaj.org/article/9211e543dab5413fa83d875a6c1ddf89
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2379-139X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002022027
  issn: 2379-1381
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2379-139X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002022027
  issn: 2379-1381
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2379-139X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002022027
  issn: 2379-1381
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD7ICuqLeLe6LhUEQSnbNGkneRwXh0XcZR8cWJ9Cmos7MtsuMx3Ef-85aXeYuuC--NY2KW3OOUm-L5cvAO8UNngWqVVmlbCZwA4ik0GwrDShJgG7PPc03nFyWh3PxZfz8nznqC9aE9bLA_eGO1TIUHwpuDN1iQ1uMJI7xNimssy5IOPWvVyqHTL1M06vFcTq48lyE0VCe6yf0uTI8Q-79nLQg1YYw4zxUacUtftvttA7XdTfyyfvb5or8_uXWS53-qbZI3g4gMp02hfmMdzxzRO4dzJMmz-FutcoXqdtSM8Q8mWzRdzMkk6XP9rVoru4xKQmRSyYfjV13KFOWemeRn-jIpaPbx8tVvgFuooDNWv6Jkklr5_BfPb529FxNhyukFlEeF1Ws9KXqg7SMmty6XxZO2QzhWLcIypBJGe5DCoPaKDgch-QJ9qJUOhabitn-HPYa9rGv4TU29IZbCqqyknh0FGuMBMvvAqTwos6TyC_tq62g_I4HYCx1MhAyCH6hkMS-LB95aqX3fhX5k_ksm1GUsyODzCO9BBH-rY4SuA9OVxTvcafs2bYnoBFJIUsPcVeA7k0Y1UC-6OcWB_tKPntdchoSqJFbI1vN2uNSIAhoamUTOBFH0Lbf44qQEKyBOQouEaFGqc0i4soB84QhFRSoBk-buPwdqO9-h9Gew0PsJpxGusuxD7sdauNf4MgrasPYn08gLvz07Pp9z-m2zvm
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegk4AXvgeBgYKEhATKEieOaz-hMlFNiE17oFJ5ihx_bBFdUjUpCP56zo4XLZsEgre2Pjd27nz-nT9-h9BrDg5PQmgVSU5kRGCCiJghOMqFKS2BXZJou95xdEwPF-TTMl_6szmtP1YJoXjlnHSaTXkEEGUZ85jEGGfxWpn33_1Ckt3gSSkEWfQm2qE5QPEJ2lkcn8y-uoRyrqpLUjr8Tb-rmUGYH3fNuaeE5mDGGGejecnR91930pdmqasnKG9v67X4-UOsVpemp_m9Pgdr61gN7amUb_vbrtyXv65wPv53z--jux64hrPe0h6gG7p-iG4d-a35R6jseZDbsDHhCcDKaF65CzPhbHXabKru7ByK6hDwZvhZlO4WvBW13-0Ks2Pd0q72QbWBJ9hPbjGotc-0dMztY7SYf_xycBj5BA6RBBTZRSXOdc5LwySWImFK56UCNaUcZxqQD6BFmTHDEwMaMCrRBmJROSUczCeTVIlsF03qptZPUahlrgS4I0oVI0qJUqViqonmZppqUiYBSi7UV0jPbm6TbKwKiHKsxotrGg_Q26HKuqf2-JPwB2sTg6Bl5XY_NJvTwg_ygkM0rXOSQfNyAAdGsExBPCioxEoZxgP0xlpUYX0HNE4KfwUCumhZuIoZzEwQr2NMA7Q3koQxL0fFry5ssrBF9qBcrZttWwDawBA0Uc4C9KS30aHNjmmIMBwgNrLeUafGJXV15ijHMQAdygi8hneDof_9pT37J-nn6E4KCNIunKdkD026zVa_AMTXlS_9uP4NrIRSHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Path-Finding+Algorithms+on+the+Labeling+of+the+Centerlines+of+Circle+of+Willis+Arteries&rft.jtitle=Tomography+%28Ann+Arbor%29&rft.au=Se-On+Kim&rft.au=Yoon-Chul+Kim&rft.date=2023-07-24&rft.pub=MDPI+AG&rft.issn=2379-1381&rft.eissn=2379-139X&rft.volume=9&rft.issue=4&rft.spage=1423&rft.epage=1433&rft_id=info:doi/10.3390%2Ftomography9040113&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9211e543dab5413fa83d875a6c1ddf89
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-139X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-139X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-139X&client=summon