Dynamic estimation of soft tissue stiffness for use in modeling socket, orthosis or exoskeleton interfaces with lower limb segments

Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 134; p. 110987
Main Authors Guitteny, Sacha, Lafon, Yoann, Bonnet, Vincent, Aissaoui, Rachid, Dumas, Raphael
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2022
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2022.110987

Cover

Abstract Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects. Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4 ± 1.99kN/m (median and interquartile range) and 41.5 ± 34.3Nm/deg. The results for the thigh segment were 1.79 ± 2.73kN/m and 30.5 ± 50.4Nm/deg. As previously reported in the literature dealing with the soft tissue artifact – considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6 × 6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment.
AbstractList Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects. Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4 ± 1.99kN/m (median and interquartile range) and 41.5 ± 34.3Nm/deg. The results for the thigh segment were 1.79 ± 2.73kN/m and 30.5 ± 50.4Nm/deg. As previously reported in the literature dealing with the soft tissue artifact - considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6 × 6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment.
Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects.Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4 ± 1.99kN/m (median and interquartile range) and 41.5 ± 34.3Nm/deg. The results for the thigh segment were 1.79 ± 2.73kN/m and 30.5 ± 50.4Nm/deg.As previously reported in the literature dealing with the soft tissue artifact – considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6 × 6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment.
Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects. Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4 ± 1.99kN/m (median and interquartile range) and 41.5 ± 34.3Nm/deg. The results for the thigh segment were 1.79 ± 2.73kN/m and 30.5 ± 50.4Nm/deg. As previously reported in the literature dealing with the soft tissue artifact - considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6 × 6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment.Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects. Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4 ± 1.99kN/m (median and interquartile range) and 41.5 ± 34.3Nm/deg. The results for the thigh segment were 1.79 ± 2.73kN/m and 30.5 ± 50.4Nm/deg. As previously reported in the literature dealing with the soft tissue artifact - considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6 × 6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment.
Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects. Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4±1.99kN/m (median and interquartile range) and 41.5±34.3Nm/deg. The results for the thigh segment were 1.79±2.73kN/m and 30.5±50.4Nm/deg. As previously reported in the literature dealing with the soft tissue artifact - considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6×6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment.
Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects. Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4 ± 1.99kN/m (median and interquartile range) and 41.5 ± 34.3Nm/deg. The results for the thigh segment were 1.79 ± 2.73kN/m and 30.5 ± 50.4Nm/deg. As previously reported in the literature dealing with the soft tissue artifact – considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6 × 6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment.
ArticleNumber 110987
Author Dumas, Raphael
Bonnet, Vincent
Aissaoui, Rachid
Lafon, Yoann
Guitteny, Sacha
Author_xml – sequence: 1
  givenname: Sacha
  orcidid: 0000-0002-0633-6491
  surname: Guitteny
  fullname: Guitteny, Sacha
  organization: Univ Eiffel, Univ Lyon 1, LBMC UMR_T 9406, F-69622 Lyon, France
– sequence: 2
  givenname: Yoann
  surname: Lafon
  fullname: Lafon, Yoann
  organization: Univ Eiffel, Univ Lyon 1, LBMC UMR_T 9406, F-69622 Lyon, France
– sequence: 3
  givenname: Vincent
  surname: Bonnet
  fullname: Bonnet, Vincent
  organization: LAAS/CNRS, Univ. Toulouse, F-31400 Toulouse, France
– sequence: 4
  givenname: Rachid
  surname: Aissaoui
  fullname: Aissaoui, Rachid
  organization: Laboratoire de recherche en imagerie et orthopédie (LIO), Dépt Génie des systèmes, Ecole de technologie supérieure, Montréal, Canada
– sequence: 5
  givenname: Raphael
  orcidid: 0000-0002-0368-8248
  surname: Dumas
  fullname: Dumas, Raphael
  email: raphael.dumas@univ-eiffel.fr
  organization: Univ Eiffel, Univ Lyon 1, LBMC UMR_T 9406, F-69622 Lyon, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35158112$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03592590$$DView record in HAL
BookMark eNqNkk1vEzEQhi1URNPCX6gscQGJBH_sxl4JIaryUaRIXOBsOc5s42TXLh5vS878cbyk4ZBLOdnyPPOO5n19Rk5CDEDIBWczzvj87Wa2WfrYg1vPBBNixjlrtHpCJlwrORVSsxMyYUzwaSMadkrOEDeMMVWp5hk5lTWvNediQn5_3AXbe0cBs-9t9jHQ2FKMbabZIw5AS6FtAyDSNiY6IFAfaB9X0PlwU0i3hfyGxpTXET2WC4VfEbfQQS5iPmRIrXWA9N7nNe3iPSTa-X5JEW56CBmfk6et7RBePJzn5MfnT9-vrqeLb1--Xl0upq6WMk_Vyuq6khZ0WxyoJKtbXbGlrJlSzoHQY8EKLmunGy1lw4DPl7IB3igGistz8nqvu7aduU1l3bQz0Xpzfbkw4xuTdSPqht2N7Ks9e5viz6GYY3qPDrrOBogDGjEvttZKC13Ql0foJg4plE0KVVWj12peqIsHalj2sPo3_xBFAd7tAZciYoLWOJ__BpKT9Z3hzIzJm405JG_G5M0--dI-P2o_THi08cO-EYr1dx6SQechOFj5BC6bVfSPS7w_knDlb3hnuy3s_kfgDx334J4
CitedBy_id crossref_primary_10_1007_s10409_022_22140_x
crossref_primary_10_1016_j_jbiomech_2023_111893
crossref_primary_10_1109_TMRB_2023_3310009
Cites_doi 10.1016/j.jbiomech.2017.06.002
10.1016/j.jbiomech.2006.02.013
10.1016/j.jbiomech.2020.110162
10.1007/s11999-013-3297-8
10.1109/IROS.2016.7759833
10.1016/j.gaitpost.2009.09.004
10.1016/j.mechmachtheory.2020.103937
10.1016/j.gaitpost.2010.12.007
10.1002/cnm.2936
10.1016/j.jbiomech.2020.109890
10.1016/j.jbiomech.2020.110050
10.1016/j.jbiomech.2017.09.001
10.1123/jab.2019-0362
10.3389/frobt.2018.00061
10.1016/j.gaitpost.2018.11.009
10.3389/fnbot.2021.620928
10.1177/0278364914562476
10.1016/j.jbiomech.2017.09.022
10.1177/0309364615592693
10.1016/S0021-9290(01)00222-6
10.1016/S0021-9290(03)00216-1
10.1016/S0021-9290(98)00033-5
10.1016/j.jbiomech.2014.04.029
10.1016/j.knee.2019.04.006
10.1177/036354659302100105
10.1109/TNSRE.2018.2854605
10.1016/j.humov.2006.04.003
10.1109/TBME.2013.2268938
10.1115/1.4046444
10.4015/S1016237209001283
10.1371/journal.pone.0163417
10.1097/GOX.0000000000001632
10.1016/j.jbiomech.2009.11.013
10.1115/1.4044739
10.1016/j.mechmachtheory.2006.08.006
10.1016/j.jbiomech.2010.01.002
10.1016/S0167-9457(99)00025-1
10.1123/jab.20.3.309
10.1371/journal.pone.0157010
10.1109/TNSRE.2019.2924536
10.1186/s12984-017-0247-9
10.1123/jab.2015-0155
10.1016/j.gaitpost.2004.05.002
10.1115/1.2894112
10.1115/1.4044841
10.1016/j.jbiomech.2013.10.034
10.1016/j.mechmachtheory.2020.103800
10.1016/j.jbiomech.2020.109717
10.1016/j.jbiomech.2017.04.036
10.1504/IJHFMS.2019.105434
10.3389/fnbot.2018.00018
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
DOI 10.1016/j.jbiomech.2022.110987
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Research Library Prep
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
ExternalDocumentID oai_HAL_hal_03592590v1
35158112
10_1016_j_jbiomech_2022_110987
S0021929022000446
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HEE
HMCUK
HMK
HMO
HVGLF
HZ~
H~9
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
MVM
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
VH1
WUQ
X7M
XOL
XPP
YQT
Z5R
ZGI
ZMT
~G-
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFFDN
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
F3I
LCYCR
RIG
YCJ
AAYXX
ACLOT
CITATION
~HD
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
ID FETCH-LOGICAL-c533t-7da8543ae8f0164305f840b35077cce28e8f0a2135c8983390e16b39e1970e713
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Fri Sep 12 12:47:40 EDT 2025
Sun Sep 28 01:46:51 EDT 2025
Wed Aug 13 07:59:04 EDT 2025
Wed Feb 19 02:25:02 EST 2025
Thu Apr 24 23:10:27 EDT 2025
Thu Sep 25 00:30:14 EDT 2025
Fri Feb 23 02:39:48 EST 2024
Tue Aug 26 16:32:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Femur
Soft tissue deformation
Segment compliance
Total knee replacement
Tibia
Motion capture
X-ray
Physical interface
FEMUR
TOTAL KNEE REPLACEMENT
TIBIA
RAYON X
MOTION CAPTURE
PHYSICAL INTERFACE
SEGMENT COMPLIANCE
SOFT TISSUE DEFORMATION
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-7da8543ae8f0164305f840b35077cce28e8f0a2135c8983390e16b39e1970e713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0368-8248
0000-0002-0633-6491
0000-0001-5367-711X
OpenAccessLink https://hal.science/hal-03592590
PMID 35158112
PQID 2644351576
PQPubID 1226346
ParticipantIDs hal_primary_oai_HAL_hal_03592590v1
proquest_miscellaneous_2629057828
proquest_journals_2644351576
pubmed_primary_35158112
crossref_citationtrail_10_1016_j_jbiomech_2022_110987
crossref_primary_10_1016_j_jbiomech_2022_110987
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2022_110987
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2022_110987
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
2022-03
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
– name: Elsevier
References Gruber, Ruder, Denoth, Schneider (b0140) 1998; 31
Fougeron, Rohan, Hearing, Rose, Bonnet, Pillet (b0110) 2020; 142
Pain, Challis (b0205) 2004; 20
Arch, Stanhope, Higginson (b0015) 2016; 40
Cherry, Kota, Young, Ferris (b0055) 2016; 32
Yandell, Quinlivan, Popov, Walsh, Zelik (b0270) 2017; 14
McGeehan, Adamczyk, Nichols, Hahn (b0190) 2021; 143
Hall, Diamond, Lenton, Pizzolato, Saxby (b0150) 2019; 68
Leardini, Chiari, Croce, Cappozzo (b0175) 2005; 21
Murphy (b0200) 1990
Dumas, R., Chèze, L., Verriest, J.-P., 2007. Adjustments to McConville et al. and Young et al. body segment inertial parameters. Journal of Biomechanics 40, 543–553. https://doi.org/10.1016/j.jbiomech.2006.02.013.
Akbarshahi, Schache, Fernandez, Baker, Banks, Pandy (b0005) 2010; 43
Clarys, Marfell-Jones (b0060) 1986; 58
Richard, Lamberto, Lu, Cappozzo, Dumas (b9000) 2016; 11
Alonso, Del Castillo, Pintado (b0010) 2007; 42
Grabke, Masani, Andrysek (b0135) 2019; 13
Mouzo, Michaud, Lugris, Cuadrado (b0195) 2020; 148
Brandon, Brown, Clouthier, Campbell, Richards, Deluzio (b0040) 2019; 26
Kuiken, Fey, Reissman, Finucane, Dumanian (b0160) 2018; 6
Ebert, Hambly, Joss, Ackland, Donnelly (b0095) 2014; 472
Tsai, Lu, Kuo, Hsu (b0250) 2009; 21
Zhang, Liu, Wang, Smith, Gutierrez-Farewik (b0275) 2021; 15
Shafiei, Behzadipour (b0235) 2020; 12
Torricelli, Cortés, Lete, Bertelsen, Gonzalez-Vargas, del-Ama, Dimbwadyo, Moreno, Florez, Pons (b0245) 2018; 12
Dumas, Jacquelin (b0090) 2017; 62
Gordon, Henderson, Vijayakumar (b0130) 2018; 5
Gittoes, Brewin, Kerwin (b0125) 2006; 25
Peters, Galna, Sangeux, Morris, Baker (b0215) 2010; 31
Barré, Aissaoui, Aminian, Dumas (b0025) 2017; 62
Papaioannou, Mitrogiannis, Nianios, Fiedler (b0210) 2010; 43
Karlsson, Tranberg (b0155) 1999; 18
Camomilla, Dumas, Cappozzo (b0045) 2017; 62
Liu, Daluiski, Kabo (b0185) 1995; 32
Shafiei, Behzadipour (b0230) 2020; 152
Chander, Cavatorta (b0050) 2019; 7
Fournier, Lemaire, Smith, Doumit (b0115) 2018; 26
Lim, B., Hyung, S., Kim, K., Lee, J., Jang, J., Shim, Y., 2016. Simulating gait assistance of a hip exoskeleton: Feasibility studies for ankle muscle weaknesses, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Presented at the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Daejeon, South Korea, pp. 5664–5669. https://doi.org/10.1109/IROS.2016.7759833.
Conconi, Pompili, Sancisi, Parenti-Castelli (b0065) 2021; 114
D'Isidoro, Brockmann, Ferguson (b0075) 2020; 104
Asbeck, De Rossi, Holt, Walsh (b0020) 2015; 34
Serrancoli, Falisse, Dembia, Vantilt, Tanghe, Lefeber, Jonkers, De Schutter, De Groote (b0225) 2019; 27
Erickson, Yasuda, Beynnon, Johnson, Pope (b0100) 1993; 21
Taylor, Schütz, Bergmann, List, Postolka, Hitz, Dymke, Damm, Duda, Gerber, Schwachmeyer, Hosseini Nasab, Trepczynski, Kutzner (b0240) 2017; 65
Pew, Roelker, Klute, Neptune (b0220) 2021; 37
Barré, Thiran, Jolles, Theumann, Aminian (b0030) 2013; 60
Fiorentino, Atkins, Kutschke, Bo Foreman, Anderson (b0105) 2020; 108
Gale, Yang, McGough, Fiedler, Anderst (b0120) 2020; 112
Daley, Ralston, Brown, Brand (b0070) 1993; 115
Guitteny, S., Dumas, R., Lafon, Y., 2021. A reduced finite element model for virtual prototyping of knee orthosis. Computer Methods in Biomechanics and Biomedical Engineering 24(S1), S235-S237.
LaPrè, Price, Wedge, Umberger, Sup (b0170) 2018; 34
Uchida, Seth, Pouya, Dembia, Hicks, Delp, Sandbakk (b0255) 2016; 11
Bonci, Camomilla, Dumas, Chèze, Cappozzo (b0035) 2014; 47
Wu, Siegler, Allard, Kirtley, Leardini, Rosenbaum, Whittle, D’Lima, Cristofolini, Witte, Schmid, Stokes (b0265) 2002; 35
Wakeling, Liphardt, Nigg (b0260) 2003; 36
Dumas, Camomilla, Bonci, Cheze, Cappozzo (b0080) 2014; 47
Kuo, Tsai, Lin, Lu, Hsu, Shen (b0165) 2011; 33
Mouzo (10.1016/j.jbiomech.2022.110987_b0195) 2020; 148
Kuiken (10.1016/j.jbiomech.2022.110987_b0160) 2018; 6
Dumas (10.1016/j.jbiomech.2022.110987_b0080) 2014; 47
Alonso (10.1016/j.jbiomech.2022.110987_b0010) 2007; 42
10.1016/j.jbiomech.2022.110987_b0180
Wakeling (10.1016/j.jbiomech.2022.110987_b0260) 2003; 36
Fournier (10.1016/j.jbiomech.2022.110987_b0115) 2018; 26
Richard (10.1016/j.jbiomech.2022.110987_b9000) 2016; 11
Yandell (10.1016/j.jbiomech.2022.110987_b0270) 2017; 14
10.1016/j.jbiomech.2022.110987_b0145
Kuo (10.1016/j.jbiomech.2022.110987_b0165) 2011; 33
Gordon (10.1016/j.jbiomech.2022.110987_b0130) 2018; 5
Grabke (10.1016/j.jbiomech.2022.110987_b0135) 2019; 13
Barré (10.1016/j.jbiomech.2022.110987_b0025) 2017; 62
Papaioannou (10.1016/j.jbiomech.2022.110987_b0210) 2010; 43
Fiorentino (10.1016/j.jbiomech.2022.110987_b0105) 2020; 108
Peters (10.1016/j.jbiomech.2022.110987_b0215) 2010; 31
Ebert (10.1016/j.jbiomech.2022.110987_b0095) 2014; 472
Hall (10.1016/j.jbiomech.2022.110987_b0150) 2019; 68
LaPrè (10.1016/j.jbiomech.2022.110987_b0170) 2018; 34
Serrancoli (10.1016/j.jbiomech.2022.110987_b0225) 2019; 27
Asbeck (10.1016/j.jbiomech.2022.110987_b0020) 2015; 34
Gittoes (10.1016/j.jbiomech.2022.110987_b0125) 2006; 25
Torricelli (10.1016/j.jbiomech.2022.110987_b0245) 2018; 12
Bonci (10.1016/j.jbiomech.2022.110987_b0035) 2014; 47
Pew (10.1016/j.jbiomech.2022.110987_b0220) 2021; 37
Conconi (10.1016/j.jbiomech.2022.110987_b0065) 2021; 114
Gale (10.1016/j.jbiomech.2022.110987_b0120) 2020; 112
Karlsson (10.1016/j.jbiomech.2022.110987_b0155) 1999; 18
Uchida (10.1016/j.jbiomech.2022.110987_b0255) 2016; 11
Erickson (10.1016/j.jbiomech.2022.110987_b0100) 1993; 21
Dumas (10.1016/j.jbiomech.2022.110987_b0090) 2017; 62
Wu (10.1016/j.jbiomech.2022.110987_b0265) 2002; 35
Clarys (10.1016/j.jbiomech.2022.110987_b0060) 1986; 58
Shafiei (10.1016/j.jbiomech.2022.110987_b0235) 2020; 12
10.1016/j.jbiomech.2022.110987_b0085
Taylor (10.1016/j.jbiomech.2022.110987_b0240) 2017; 65
Barré (10.1016/j.jbiomech.2022.110987_b0030) 2013; 60
McGeehan (10.1016/j.jbiomech.2022.110987_b0190) 2021; 143
Zhang (10.1016/j.jbiomech.2022.110987_b0275) 2021; 15
Liu (10.1016/j.jbiomech.2022.110987_b0185) 1995; 32
Brandon (10.1016/j.jbiomech.2022.110987_b0040) 2019; 26
Camomilla (10.1016/j.jbiomech.2022.110987_b0045) 2017; 62
Leardini (10.1016/j.jbiomech.2022.110987_b0175) 2005; 21
Daley (10.1016/j.jbiomech.2022.110987_b0070) 1993; 115
Pain (10.1016/j.jbiomech.2022.110987_b0205) 2004; 20
Gruber (10.1016/j.jbiomech.2022.110987_b0140) 1998; 31
Tsai (10.1016/j.jbiomech.2022.110987_b0250) 2009; 21
Cherry (10.1016/j.jbiomech.2022.110987_b0055) 2016; 32
Akbarshahi (10.1016/j.jbiomech.2022.110987_b0005) 2010; 43
Shafiei (10.1016/j.jbiomech.2022.110987_b0230) 2020; 152
D'Isidoro (10.1016/j.jbiomech.2022.110987_b0075) 2020; 104
Arch (10.1016/j.jbiomech.2022.110987_b0015) 2016; 40
Murphy (10.1016/j.jbiomech.2022.110987_b0200) 1990
Chander (10.1016/j.jbiomech.2022.110987_b0050) 2019; 7
Fougeron (10.1016/j.jbiomech.2022.110987_b0110) 2020; 142
References_xml – volume: 18
  start-page: 627
  year: 1999
  end-page: 635
  ident: b0155
  article-title: On skin movement artefact-resonant frequencies of skin markers attached to the leg
  publication-title: Hum. Mov. Sci.
– volume: 26
  start-page: 564
  year: 2019
  end-page: 577
  ident: b0040
  article-title: Contributions of muscles and external forces to medial knee load reduction due to osteoarthritis braces
  publication-title: Knee
– volume: 142
  start-page: 091004
  year: 2020
  ident: b0110
  article-title: Combining Freehand Ultrasound-Based Indentation and Inverse Finite Element Modelling for the Identification of Hyperelastic Material Properties of Thigh Soft Tissues
  publication-title: J. Biomech. Eng.
– volume: 31
  start-page: 439
  year: 1998
  end-page: 444
  ident: b0140
  article-title: A comparative study of impact dynamics: wobbling mass model versus rigid body models
  publication-title: J. Biomech.
– volume: 32
  start-page: 269
  year: 2016
  end-page: 277
  ident: b0055
  article-title: Running With an Elastic Lower Limb Exoskeleton
  publication-title: J. Appl. Biomech.
– volume: 34
  start-page: e2936
  year: 2018
  ident: b0170
  article-title: Approach for gait analysis in persons with limb loss including residuum and prosthesis socket dynamics
  publication-title: Int. J. Numer. Meth. Biomed. Eng.
– volume: 5
  start-page: 61
  year: 2018
  ident: b0130
  article-title: Effectively Quantifying the Performance of Lower-Limb Exoskeletons Over a Range of Walking Conditions
  publication-title: Front. Robot. AI
– reference: Guitteny, S., Dumas, R., Lafon, Y., 2021. A reduced finite element model for virtual prototyping of knee orthosis. Computer Methods in Biomechanics and Biomedical Engineering 24(S1), S235-S237.
– volume: 42
  start-page: 1153
  year: 2007
  end-page: 1169
  ident: b0010
  article-title: Motion data processing and wobbling mass modelling in the inverse dynamics of skeletal models
  publication-title: Mech. Mach. Theory
– reference: Lim, B., Hyung, S., Kim, K., Lee, J., Jang, J., Shim, Y., 2016. Simulating gait assistance of a hip exoskeleton: Feasibility studies for ankle muscle weaknesses, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Presented at the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Daejeon, South Korea, pp. 5664–5669. https://doi.org/10.1109/IROS.2016.7759833.
– volume: 58
  start-page: 761
  year: 1986
  end-page: 769
  ident: b0060
  article-title: Anthropometric Prediction of Component Tissue Masses in the Minor Limb Segments of the Human Body
  publication-title: Hum. Biol.
– volume: 27
  start-page: 1597
  year: 2019
  end-page: 1605
  ident: b0225
  article-title: Subject-Exoskeleton Contact Model Calibration Leads to Accurate Interaction Force Predictions
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 143
  year: 2021
  ident: b0190
  article-title: A Computational Gait Model With a Below-Knee Amputation and a Semi-Active Variable-Stiffness Foot Prosthesis
  publication-title: J. Biomech. Eng.
– volume: 114
  start-page: 110162
  year: 2021
  ident: b0065
  article-title: Quantification of the errors associated with marker occlusion in stereophotogrammetric systems and implications on gait analysis
  publication-title: J. Biomech.
– volume: 472
  start-page: 915
  year: 2014
  end-page: 922
  ident: b0095
  article-title: Does an Unloader Brace Reduce Knee Loading in Normally Aligned Knees?
  publication-title: Clin. Orthop. Relat. Res.
– volume: 115
  start-page: 131
  year: 1993
  end-page: 136
  ident: b0070
  article-title: A Parametric Design Evaluation of Lateral Prophylactic Knee Braces
  publication-title: J. Biomech. Eng.
– volume: 36
  start-page: 1761
  year: 2003
  end-page: 1769
  ident: b0260
  article-title: Muscle activity reduces soft-tissue resonance at heel-strike during walking
  publication-title: J. Biomech.
– volume: 68
  start-page: 55
  year: 2019
  end-page: 62
  ident: b0150
  article-title: Immediate effects of valgus knee bracing on tibiofemoral contact forces and knee muscle forces
  publication-title: Gait Posture
– volume: 47
  start-page: 476
  year: 2014
  end-page: 481
  ident: b0080
  article-title: Generalized mathematical representation of the soft tissue artefact
  publication-title: J. Biomech.
– volume: 13
  year: 2019
  ident: b0135
  article-title: Lower Limb Assistive Device Design Optimization Using Musculoskeletal Modeling: A Review
  publication-title: J. Med. Devices
– volume: 40
  start-page: 606
  year: 2016
  end-page: 616
  ident: b0015
  article-title: Passive-dynamic ankle–foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription
  publication-title: Prosthet. Orthot. Int.
– volume: 65
  start-page: 32
  year: 2017
  end-page: 39
  ident: b0240
  article-title: A comprehensive assessment of the musculoskeletal system: The CAMS-Knee data set
  publication-title: J. Biomech.
– volume: 11
  start-page: e0163417
  year: 2016
  ident: b0255
  article-title: Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running
  publication-title: PLoS ONE
– volume: 35
  start-page: 543
  year: 2002
  end-page: 548
  ident: b0265
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine
  publication-title: J. Biomech.
– volume: 21
  start-page: 223
  year: 2009
  end-page: 232
  ident: b0250
  article-title: Quantification of three-dimensional movement of skin markers relative to the underlying bones during functional activities
  publication-title: Biomed. Eng. Appl. Basis Commun.
– volume: 62
  start-page: 21
  year: 2017
  end-page: 26
  ident: b0025
  article-title: Assessment of the lower limb soft tissue artefact at marker-cluster level with a high-density marker set during walking
  publication-title: J. Biomech.
– volume: 20
  start-page: 309
  year: 2004
  end-page: 316
  ident: b0205
  article-title: Wobbling Mass Influence on Impact Ground Reaction Forces: A Simulation Model Sensitivity Analysis
  publication-title: J. Appl. Biomech.
– volume: 37
  start-page: 21
  year: 2021
  end-page: 29
  ident: b0220
  article-title: Analysis of the Relative Motion Between the Socket and Residual Limb in Transtibial Amputees While Wearing a Transverse Rotation Adapter
  publication-title: J. Appl. Biomech.
– volume: 152
  start-page: 103937
  year: 2020
  ident: b0230
  article-title: Adding backlash to the connection elements can improve the performance of a robotic exoskeleton
  publication-title: Mech. Mach. Theory
– volume: 25
  start-page: 775
  year: 2006
  end-page: 787
  ident: b0125
  article-title: Soft tissue contributions to impact forces simulated using a four-segment wobbling mass model of forefoot–heel landings
  publication-title: Hum. Mov. Sci.
– volume: 31
  start-page: 1
  year: 2010
  end-page: 8
  ident: b0215
  article-title: Quantification of soft tissue artifact in lower limb human motion analysis: A systematic review
  publication-title: Gait & Posture
– volume: 12
  year: 2018
  ident: b0245
  article-title: A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait
  publication-title: Front. Neurorobot.
– volume: 34
  start-page: 744
  year: 2015
  end-page: 762
  ident: b0020
  article-title: A biologically inspired soft exosuit for walking assistance
  publication-title: Int. J. Robot. Res.
– volume: 21
  start-page: 26
  year: 1993
  end-page: 35
  ident: b0100
  article-title: An in vitro dynamic evaluation of prophylactic knee braces during lateral impact loading
  publication-title: Am. J. Sports Med.
– volume: 104
  start-page: 109717
  year: 2020
  ident: b0075
  article-title: Effects of the soft tissue artefact on the hip joint kinematics during unrestricted activities of daily living
  publication-title: J. Biomech.
– volume: 11
  year: 2016
  ident: b9000
  article-title: Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study
  publication-title: PLoS ONE
– volume: 12
  year: 2020
  ident: b0235
  article-title: The Effects of the Connection Stiffness of Robotic Exoskeletons on the Gait Quality and Comfort
  publication-title: J. Mech. Robot.
– volume: 33
  start-page: 379
  year: 2011
  end-page: 384
  ident: b0165
  article-title: Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand
  publication-title: Gait Post.
– volume: 14
  start-page: 40
  year: 2017
  ident: b0270
  article-title: Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices
  publication-title: J. NeuroEng. Rehabil.
– volume: 21
  start-page: 212
  year: 2005
  end-page: 225
  ident: b0175
  article-title: Human movement analysis using stereophotogrammetry
  publication-title: Gait Post.
– volume: 15
  year: 2021
  ident: b0275
  article-title: Modeling and Simulation of a Human Knee Exoskeleton’s Assistive Strategies and Interaction
  publication-title: Front. Neurorobot.
– volume: 32
  start-page: 135
  year: 1995
  end-page: 140
  ident: b0185
  article-title: The effect of thigh soft-tissue stiffness on the control of anterior tibial displacement by function knee orthosis
  publication-title: J. Rehabil. Res. Dev.
– volume: 26
  start-page: 1596
  year: 2018
  end-page: 1603
  ident: b0115
  article-title: Modeling and Simulation of a Lower Extremity Powered Exoskeleton
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 47
  start-page: 2354
  year: 2014
  end-page: 2361
  ident: b0035
  article-title: A soft tissue artefact model driven by proximal and distal joint kinematics
  publication-title: J. Biomech.
– volume: 148
  start-page: 103800
  year: 2020
  ident: b0195
  article-title: Leg-orthosis contact force estimation from gait analysis
  publication-title: Mech. Mach. Theory
– volume: 62
  start-page: 1
  year: 2017
  end-page: 4
  ident: b0045
  article-title: Human movement analysis: The soft tissue artefact issue
  publication-title: J. Biomech.
– volume: 6
  start-page: e1632
  year: 2018
  ident: b0160
  article-title: Innovative Use of Thighplasty to Improve Prosthesis Fit and Function in a Transfemoral Amputee
  publication-title: Plastic and Reconstructive Surgery - Global Open
– volume: 112
  start-page: 110050
  year: 2020
  ident: b0120
  article-title: Motion of the residual femur within the socket during gait is associated with patient-reported problems in transfemoral amputees
  publication-title: J. Biomech.
– volume: 43
  start-page: 1292
  year: 2010
  end-page: 1301
  ident: b0005
  article-title: Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity
  publication-title: J. Biomech.
– volume: 60
  start-page: 3131
  year: 2013
  end-page: 3140
  ident: b0030
  article-title: Soft Tissue Artifact Assessment During Treadmill Walking in Subjects With Total Knee Arthroplasty
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 108
  start-page: 109890
  year: 2020
  ident: b0105
  article-title: Soft tissue artifact causes underestimation of hip joint kinematics and kinetics in a rigid-body musculoskeletal model
  publication-title: J. Biomech.
– volume: 7
  start-page: 119
  year: 2019
  end-page: 136
  ident: b0050
  article-title: Modelling friction at the mechanical interfacebetween the human and the exoskeleton
  publication-title: Int. J. Hum. Factors Model. Simul.
– volume: 62
  start-page: 47
  year: 2017
  end-page: 52
  ident: b0090
  article-title: Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone
  publication-title: J. Biomech.
– year: 1990
  ident: b0200
  publication-title: Geometry and the kinematics of the normal human knee
– volume: 43
  start-page: 871
  year: 2010
  end-page: 878
  ident: b0210
  article-title: Assessment of amputee socket–stump–residual bone kinematics during strenuous activities using Dynamic Roentgen Stereogrammetric Analysis
  publication-title: J. Biomech.
– reference: Dumas, R., Chèze, L., Verriest, J.-P., 2007. Adjustments to McConville et al. and Young et al. body segment inertial parameters. Journal of Biomechanics 40, 543–553. https://doi.org/10.1016/j.jbiomech.2006.02.013.
– volume: 58
  start-page: 761
  year: 1986
  ident: 10.1016/j.jbiomech.2022.110987_b0060
  article-title: Anthropometric Prediction of Component Tissue Masses in the Minor Limb Segments of the Human Body
  publication-title: Hum. Biol.
– volume: 62
  start-page: 47
  year: 2017
  ident: 10.1016/j.jbiomech.2022.110987_b0090
  article-title: Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.06.002
– ident: 10.1016/j.jbiomech.2022.110987_b0085
  doi: 10.1016/j.jbiomech.2006.02.013
– volume: 114
  start-page: 110162
  year: 2021
  ident: 10.1016/j.jbiomech.2022.110987_b0065
  article-title: Quantification of the errors associated with marker occlusion in stereophotogrammetric systems and implications on gait analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.110162
– volume: 472
  start-page: 915
  year: 2014
  ident: 10.1016/j.jbiomech.2022.110987_b0095
  article-title: Does an Unloader Brace Reduce Knee Loading in Normally Aligned Knees?
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-013-3297-8
– ident: 10.1016/j.jbiomech.2022.110987_b0180
  doi: 10.1109/IROS.2016.7759833
– volume: 143
  year: 2021
  ident: 10.1016/j.jbiomech.2022.110987_b0190
  article-title: A Computational Gait Model With a Below-Knee Amputation and a Semi-Active Variable-Stiffness Foot Prosthesis
  publication-title: J. Biomech. Eng.
– volume: 31
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.jbiomech.2022.110987_b0215
  article-title: Quantification of soft tissue artifact in lower limb human motion analysis: A systematic review
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2009.09.004
– volume: 152
  start-page: 103937
  year: 2020
  ident: 10.1016/j.jbiomech.2022.110987_b0230
  article-title: Adding backlash to the connection elements can improve the performance of a robotic exoskeleton
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103937
– volume: 33
  start-page: 379
  issue: 3
  year: 2011
  ident: 10.1016/j.jbiomech.2022.110987_b0165
  article-title: Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand
  publication-title: Gait Post.
  doi: 10.1016/j.gaitpost.2010.12.007
– volume: 34
  start-page: e2936
  issue: 4
  year: 2018
  ident: 10.1016/j.jbiomech.2022.110987_b0170
  article-title: Approach for gait analysis in persons with limb loss including residuum and prosthesis socket dynamics
  publication-title: Int. J. Numer. Meth. Biomed. Eng.
  doi: 10.1002/cnm.2936
– year: 1990
  ident: 10.1016/j.jbiomech.2022.110987_b0200
– volume: 108
  start-page: 109890
  year: 2020
  ident: 10.1016/j.jbiomech.2022.110987_b0105
  article-title: Soft tissue artifact causes underestimation of hip joint kinematics and kinetics in a rigid-body musculoskeletal model
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.109890
– volume: 112
  start-page: 110050
  year: 2020
  ident: 10.1016/j.jbiomech.2022.110987_b0120
  article-title: Motion of the residual femur within the socket during gait is associated with patient-reported problems in transfemoral amputees
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.110050
– volume: 62
  start-page: 1
  year: 2017
  ident: 10.1016/j.jbiomech.2022.110987_b0045
  article-title: Human movement analysis: The soft tissue artefact issue
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.09.001
– volume: 37
  start-page: 21
  issue: 1
  year: 2021
  ident: 10.1016/j.jbiomech.2022.110987_b0220
  article-title: Analysis of the Relative Motion Between the Socket and Residual Limb in Transtibial Amputees While Wearing a Transverse Rotation Adapter
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.2019-0362
– volume: 5
  start-page: 61
  year: 2018
  ident: 10.1016/j.jbiomech.2022.110987_b0130
  article-title: Effectively Quantifying the Performance of Lower-Limb Exoskeletons Over a Range of Walking Conditions
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2018.00061
– volume: 68
  start-page: 55
  year: 2019
  ident: 10.1016/j.jbiomech.2022.110987_b0150
  article-title: Immediate effects of valgus knee bracing on tibiofemoral contact forces and knee muscle forces
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.11.009
– volume: 15
  year: 2021
  ident: 10.1016/j.jbiomech.2022.110987_b0275
  article-title: Modeling and Simulation of a Human Knee Exoskeleton’s Assistive Strategies and Interaction
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2021.620928
– volume: 34
  start-page: 744
  issue: 6
  year: 2015
  ident: 10.1016/j.jbiomech.2022.110987_b0020
  article-title: A biologically inspired soft exosuit for walking assistance
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364914562476
– volume: 65
  start-page: 32
  year: 2017
  ident: 10.1016/j.jbiomech.2022.110987_b0240
  article-title: A comprehensive assessment of the musculoskeletal system: The CAMS-Knee data set
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.09.022
– volume: 40
  start-page: 606
  year: 2016
  ident: 10.1016/j.jbiomech.2022.110987_b0015
  article-title: Passive-dynamic ankle–foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription
  publication-title: Prosthet. Orthot. Int.
  doi: 10.1177/0309364615592693
– volume: 35
  start-page: 543
  issue: 4
  year: 2002
  ident: 10.1016/j.jbiomech.2022.110987_b0265
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00222-6
– volume: 36
  start-page: 1761
  issue: 12
  year: 2003
  ident: 10.1016/j.jbiomech.2022.110987_b0260
  article-title: Muscle activity reduces soft-tissue resonance at heel-strike during walking
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00216-1
– volume: 31
  start-page: 439
  issue: 5
  year: 1998
  ident: 10.1016/j.jbiomech.2022.110987_b0140
  article-title: A comparative study of impact dynamics: wobbling mass model versus rigid body models
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00033-5
– volume: 47
  start-page: 2354
  issue: 10
  year: 2014
  ident: 10.1016/j.jbiomech.2022.110987_b0035
  article-title: A soft tissue artefact model driven by proximal and distal joint kinematics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.04.029
– volume: 26
  start-page: 564
  issue: 3
  year: 2019
  ident: 10.1016/j.jbiomech.2022.110987_b0040
  article-title: Contributions of muscles and external forces to medial knee load reduction due to osteoarthritis braces
  publication-title: Knee
  doi: 10.1016/j.knee.2019.04.006
– volume: 21
  start-page: 26
  issue: 1
  year: 1993
  ident: 10.1016/j.jbiomech.2022.110987_b0100
  article-title: An in vitro dynamic evaluation of prophylactic knee braces during lateral impact loading
  publication-title: Am. J. Sports Med.
  doi: 10.1177/036354659302100105
– volume: 26
  start-page: 1596
  issue: 8
  year: 2018
  ident: 10.1016/j.jbiomech.2022.110987_b0115
  article-title: Modeling and Simulation of a Lower Extremity Powered Exoskeleton
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2854605
– volume: 25
  start-page: 775
  issue: 6
  year: 2006
  ident: 10.1016/j.jbiomech.2022.110987_b0125
  article-title: Soft tissue contributions to impact forces simulated using a four-segment wobbling mass model of forefoot–heel landings
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2006.04.003
– volume: 60
  start-page: 3131
  issue: 11
  year: 2013
  ident: 10.1016/j.jbiomech.2022.110987_b0030
  article-title: Soft Tissue Artifact Assessment During Treadmill Walking in Subjects With Total Knee Arthroplasty
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2268938
– volume: 142
  start-page: 091004
  issue: 9
  year: 2020
  ident: 10.1016/j.jbiomech.2022.110987_b0110
  article-title: Combining Freehand Ultrasound-Based Indentation and Inverse Finite Element Modelling for the Identification of Hyperelastic Material Properties of Thigh Soft Tissues
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4046444
– volume: 21
  start-page: 223
  issue: 03
  year: 2009
  ident: 10.1016/j.jbiomech.2022.110987_b0250
  article-title: Quantification of three-dimensional movement of skin markers relative to the underlying bones during functional activities
  publication-title: Biomed. Eng. Appl. Basis Commun.
  doi: 10.4015/S1016237209001283
– ident: 10.1016/j.jbiomech.2022.110987_b0145
– volume: 32
  start-page: 135
  year: 1995
  ident: 10.1016/j.jbiomech.2022.110987_b0185
  article-title: The effect of thigh soft-tissue stiffness on the control of anterior tibial displacement by function knee orthosis
  publication-title: J. Rehabil. Res. Dev.
– volume: 11
  start-page: e0163417
  issue: 9
  year: 2016
  ident: 10.1016/j.jbiomech.2022.110987_b0255
  article-title: Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0163417
– volume: 6
  start-page: e1632
  issue: 1
  year: 2018
  ident: 10.1016/j.jbiomech.2022.110987_b0160
  article-title: Innovative Use of Thighplasty to Improve Prosthesis Fit and Function in a Transfemoral Amputee
  publication-title: Plastic and Reconstructive Surgery - Global Open
  doi: 10.1097/GOX.0000000000001632
– volume: 43
  start-page: 871
  issue: 5
  year: 2010
  ident: 10.1016/j.jbiomech.2022.110987_b0210
  article-title: Assessment of amputee socket–stump–residual bone kinematics during strenuous activities using Dynamic Roentgen Stereogrammetric Analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.11.013
– volume: 13
  year: 2019
  ident: 10.1016/j.jbiomech.2022.110987_b0135
  article-title: Lower Limb Assistive Device Design Optimization Using Musculoskeletal Modeling: A Review
  publication-title: J. Med. Devices
  doi: 10.1115/1.4044739
– volume: 42
  start-page: 1153
  issue: 9
  year: 2007
  ident: 10.1016/j.jbiomech.2022.110987_b0010
  article-title: Motion data processing and wobbling mass modelling in the inverse dynamics of skeletal models
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2006.08.006
– volume: 43
  start-page: 1292
  issue: 7
  year: 2010
  ident: 10.1016/j.jbiomech.2022.110987_b0005
  article-title: Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.01.002
– volume: 18
  start-page: 627
  issue: 5
  year: 1999
  ident: 10.1016/j.jbiomech.2022.110987_b0155
  article-title: On skin movement artefact-resonant frequencies of skin markers attached to the leg
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/S0167-9457(99)00025-1
– volume: 20
  start-page: 309
  year: 2004
  ident: 10.1016/j.jbiomech.2022.110987_b0205
  article-title: Wobbling Mass Influence on Impact Ground Reaction Forces: A Simulation Model Sensitivity Analysis
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.20.3.309
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.jbiomech.2022.110987_b9000
  article-title: Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0157010
– volume: 27
  start-page: 1597
  issue: 8
  year: 2019
  ident: 10.1016/j.jbiomech.2022.110987_b0225
  article-title: Subject-Exoskeleton Contact Model Calibration Leads to Accurate Interaction Force Predictions
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2924536
– volume: 14
  start-page: 40
  year: 2017
  ident: 10.1016/j.jbiomech.2022.110987_b0270
  article-title: Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-017-0247-9
– volume: 32
  start-page: 269
  year: 2016
  ident: 10.1016/j.jbiomech.2022.110987_b0055
  article-title: Running With an Elastic Lower Limb Exoskeleton
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.2015-0155
– volume: 21
  start-page: 212
  issue: 2
  year: 2005
  ident: 10.1016/j.jbiomech.2022.110987_b0175
  article-title: Human movement analysis using stereophotogrammetry
  publication-title: Gait Post.
  doi: 10.1016/j.gaitpost.2004.05.002
– volume: 115
  start-page: 131
  year: 1993
  ident: 10.1016/j.jbiomech.2022.110987_b0070
  article-title: A Parametric Design Evaluation of Lateral Prophylactic Knee Braces
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2894112
– volume: 12
  year: 2020
  ident: 10.1016/j.jbiomech.2022.110987_b0235
  article-title: The Effects of the Connection Stiffness of Robotic Exoskeletons on the Gait Quality and Comfort
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4044841
– volume: 47
  start-page: 476
  issue: 2
  year: 2014
  ident: 10.1016/j.jbiomech.2022.110987_b0080
  article-title: Generalized mathematical representation of the soft tissue artefact
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.10.034
– volume: 148
  start-page: 103800
  year: 2020
  ident: 10.1016/j.jbiomech.2022.110987_b0195
  article-title: Leg-orthosis contact force estimation from gait analysis
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103800
– volume: 104
  start-page: 109717
  year: 2020
  ident: 10.1016/j.jbiomech.2022.110987_b0075
  article-title: Effects of the soft tissue artefact on the hip joint kinematics during unrestricted activities of daily living
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.109717
– volume: 62
  start-page: 21
  year: 2017
  ident: 10.1016/j.jbiomech.2022.110987_b0025
  article-title: Assessment of the lower limb soft tissue artefact at marker-cluster level with a high-density marker set during walking
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.04.036
– volume: 7
  start-page: 119
  issue: 2
  year: 2019
  ident: 10.1016/j.jbiomech.2022.110987_b0050
  article-title: Modelling friction at the mechanical interfacebetween the human and the exoskeleton
  publication-title: Int. J. Hum. Factors Model. Simul.
  doi: 10.1504/IJHFMS.2019.105434
– volume: 12
  year: 2018
  ident: 10.1016/j.jbiomech.2022.110987_b0245
  article-title: A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2018.00018
SSID ssj0007479
Score 2.452293
Snippet Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices....
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110987
SubjectTerms Biomechanical Phenomena
Biomechanics
Engineering Sciences
Exoskeleton
Exoskeleton Device
Exoskeletons
Femur
Fluoroscopy
Humans
Interfaces
Kinematics
Knee Joint
Lower Extremity
Mathematical models
Mechanics
Modelling
Motion capture
Orthoses
Orthotic Devices
Physical interface
Segment compliance
Segments
Skin
Sockets
Soft tissue deformation
Soft tissues
Stiffness coefficients
Stiffness matrix
Thigh
Tibia
Total knee replacement
Translation
X-ray
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9NADLbYkBA8oNHxI7AhgxBPhDW5NHf3hKqNqUKMJyb17ZQmF2jpkm1JJ3jmH8e-XMIegPFW5eI0kh37u7P9GeBVkVGQF4kI09jmYZKRH9SEm8NSUvDItUp1yr3DJ5_S2WnyYT6Z-wO3xpdV9j7ROeqizvmM_IADt6DgK9N35xchT43i7KofobEFtyOCKmzVcj5suJgb3pd4RCGtjq91CK_erlx_u0tIxLEj3uSyuj8Hp62vXCX5NwjqQtHxDtz3GBKnndIfwC1bjWB3WtH--ewHvkZX1emOy0dw7xrh4AjunPhU-i78POpm0SPTbHT9i1iX2JBbxtZpA2mhLNkVIiFb3DQWlxW60Tn0MLqTHED7BjnxUzfLhn6g_V433yiQEaBEJqK4LLniC_mwF9c8jw3Xy7MFNvaL66x7CKfH7z8fzkI_kSHMCRa2oSwyNUlEZlXJ1FzkK0raIC4EgUqZ5zZWvJDFkZjkSish9NhG6UJoG2k5trQffgTbVV3ZJ4Dc8BoXUhdCJYm2VjORWCJTrW2ZqbgMYNKrwuSerpynZqxNX5e2Mr0KDavQdCoM4GCQO-8IO26UkL2mTd-OSg7UUEy5UVIPkh6wdEDkv2RfklENr8gs37PpR8PXmFWRdqXjqyiAvd7mjPctjfn9JQTwYlgmr8Cpnqyy9YbvIXPnSQUqgMedrQ5_xbKKYPbTfz_8Gdzl1-3q7fZgu73c2H0CYO3iufvKfgFFnizn
  priority: 102
  providerName: ProQuest
Title Dynamic estimation of soft tissue stiffness for use in modeling socket, orthosis or exoskeleton interfaces with lower limb segments
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929022000446
https://dx.doi.org/10.1016/j.jbiomech.2022.110987
https://www.ncbi.nlm.nih.gov/pubmed/35158112
https://www.proquest.com/docview/2644351576
https://www.proquest.com/docview/2629057828
https://hal.science/hal-03592590
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1873-2380
  dateEnd: 20250730
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection (NC LIVE)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20250730
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VIiE4IEh5GEo1IMQJN7HX8e4eQ2kVHo0QolJuK8dZg0NqV7WD4MKFP87M-kGRQEXiEifeHWflWc98651vBuDpMiEnLyLhx6FN_SghO6gJN_uZJOeRahXrmLnDx7N4ehK9no_nW3DQcWE4rLK1_Y1Nd9a6PTNs7-bwLM-Z40tPW6iZKuq2JZnBHsUc1rf__VeYB8HlNswj8Ln3BZbwan_lOO5uUyIMXfJNDq37s4O68okjJf8GQ507OroFN1sciZNmqLdhyxYD2JkUtIY-_YbP0EV2ulfmA7hxIengAK4dt9vpO_DjZVOPHjnVRsNhxDLDikwz1k4jSA1ZxuYQCd3iprKYF-jK59DFqCcZgfo58uZPWeUVfUH7taw-kzMjUImcjOI846gv5Be-uOaabLjOTxdY2Y-OXXcHTo4OPxxM_bYqg58SNKx9uUzUOBKJVRmn5yJ7kdEicSEIWMo0taHihiQMxDhVWgmhRzaIF0LbQMuRpTXxXdguysLeB2TSa7iUeilUFGlrNScTi2Sstc0SFWYejDtVmLRNWc6VM9ami01bmU6FhlVoGhV6MOzlzpqkHZdKyE7TpqOkkhE15FculdS95G8T959kn9Ck6ofImb6nk7eGz3FmRVqZjr4EHux2c8609qUyDGMFQVEZe_C4bybLwNs9SWHLDfeh6c7VCpQH95q52v8VyyqC2g_-Y_QP4Tr_agLydmG7Pt_YR4TQ6sWeewTpU87lHlydvHozndHxxeHs3fufTso7NQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB21RYJyQJBCMRQYEHDCNPY6tveAUESpUpr01Eq5bR17DQmJXWoHyJn_w29kZv1BD0C59BZ5PRtLMzvzdnfmDcDzJKIgLzxh-66ObS8iPygJN9tpQMEjlqEvfa4dHh35gxPvw7g3XoOfTS0Mp1U2PtE46iSP-Yx8lwO3oOAb-G_PvtjcNYpvV5sWGpVZHOrVN9qyFW8O9ki_L1x3__3xu4FddxWwY4I2pR0kUdjzRKTDlOmlyN5T2uRMBAGjII61G_JA5DqiF4cyFEJ2teNPhNSODLqa9nQ07zpcI0GPufqDcbvBYy76OqXEsQl2dC9UJM9ez0w9vbkAcV1D9MlpfH8OhuufOCvzb5DXhL7923CrxqzYr4zsDqzprANb_Yz264sVvkSTRWqO5ztw8wLBYQeuj-qr-y34sbfKosU0Rqb1qOolMU-xoDCApdE-0kCasutFQtK4LDROMzStemgyepMcTvkK-aIpL6YF_UD9PS8-U-AkAItMfHGecoYZ8uEyzrn_G86niwkW-qOp5LsLJ1eiq3uwkeWZvg_IBbZuEshEhJ4ntZZMXOYFvpQ6jUI3taDXqELFNT06d-mYqyYPbqYaFSpWoapUaMFuK3dWEYRcKhE0mlZN-Ss5bEUx7FJJ2UrWAKkCPv8l-4yMqv1EZhUf9IeKnzGLI-2Cu18dC3Yam1O1LyvU75VnwdN2mLwQXy1Fmc6X_A6ZO3dGCC3Yrmy1_SuWDQnWP_j35E_gxuB4NFTDg6PDh7DJn17l-u3ARnm-1I8I_JWTx2bFIZxe9RL_BQ7BZ1c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61RarggCDlYSgwIOCESfyIvXtAKCJEKX2IA5Vy2zr2GhISu9QOkDP_il_HzPpBD0C59BZlPRtHMzvzzc4L4GkSkZH3fM8OXB3bfkR6UBJuttOQjEcsRSADrh0-PArGx_67SX-yAT-bWhhOq2x0olHUSR7zHXmXDbdHxjcMummdFvF-OHp9-sXmCVIcaW3GaVQisq_X38h9K17tDYnXz1x39PbDm7FdTxiwY4I5pR0mkej7XqRFyq2mSPZTcnimHoGkMI61K3ghch2vHwspPE_2tBNMPakdGfY0-Xe07yZcCenPcjpZOGmdPe5LX6eXODZBkN656uT5y7mprTfBENc1TT85pe_PhnHzE2do_g3-GjM4ugHXa_yKg0rgbsKGzjqwM8jId1-u8TmajFJzVd-Ba-eaHXZg-7AO4-_Aj-E6i5azGLnFR1U7iXmKBZkELI0kIC2kKathJFSNq0LjLEMztoc2oydJ-ZQvkINOeTEr6APq73nxmYwogVnkJhhnKWebIV8044JnweFitpxioT-aqr5bcHwpvLoNW1me6buAXGzrJqFMPOH7UmvJTcz8MJBSp5FwUwv6DStUXLdK54kdC9XkxM1Vw0LFLFQVCy3otnSnVbOQCynChtOqKYUl5a3Inl1IKVvKGixVIOi_aJ-QULWvyB3Gx4MDxd9xR0fyiHtfHQt2G5lTtV4r1O9TaMHjdpk0EoeZokznK36GxJ2nJAgL7lSy2v4U0wqC-Pf-vfkj2KbDrQ72jvbvw1V-8yrtbxe2yrOVfkA4sJw-NAcO4eSyT_gvI_Zrkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+estimation+of+soft+tissue+stiffness+for+use+in+modeling+socket%2C+orthosis+or+exoskeleton+interfaces+with+lower+limb+segments&rft.jtitle=Journal+of+biomechanics&rft.au=Guitteny%2C+Sacha&rft.au=Lafon%2C+Yoann&rft.au=Bonnet%2C+Vincent&rft.au=Aissaoui%2C+Rachid&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=134&rft_id=info:doi/10.1016%2Fj.jbiomech.2022.110987&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03592590v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon