Dynamic estimation of soft tissue stiffness for use in modeling socket, orthosis or exoskeleton interfaces with lower limb segments
Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities...
Saved in:
Published in | Journal of biomechanics Vol. 134; p. 110987 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.03.2022
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2022.110987 |
Cover
Abstract | Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects.
Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4 ± 1.99kN/m (median and interquartile range) and 41.5 ± 34.3Nm/deg. The results for the thigh segment were 1.79 ± 2.73kN/m and 30.5 ± 50.4Nm/deg.
As previously reported in the literature dealing with the soft tissue artifact – considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6 × 6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment. |
---|---|
AbstractList | Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects. Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4 ± 1.99kN/m (median and interquartile range) and 41.5 ± 34.3Nm/deg. The results for the thigh segment were 1.79 ± 2.73kN/m and 30.5 ± 50.4Nm/deg. As previously reported in the literature dealing with the soft tissue artifact - considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6 × 6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment. Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects.Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4 ± 1.99kN/m (median and interquartile range) and 41.5 ± 34.3Nm/deg. The results for the thigh segment were 1.79 ± 2.73kN/m and 30.5 ± 50.4Nm/deg.As previously reported in the literature dealing with the soft tissue artifact – considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6 × 6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment. Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects. Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4 ± 1.99kN/m (median and interquartile range) and 41.5 ± 34.3Nm/deg. The results for the thigh segment were 1.79 ± 2.73kN/m and 30.5 ± 50.4Nm/deg. As previously reported in the literature dealing with the soft tissue artifact - considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6 × 6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment.Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects. Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4 ± 1.99kN/m (median and interquartile range) and 41.5 ± 34.3Nm/deg. The results for the thigh segment were 1.79 ± 2.73kN/m and 30.5 ± 50.4Nm/deg. As previously reported in the literature dealing with the soft tissue artifact - considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6 × 6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment. Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects. Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4±1.99kN/m (median and interquartile range) and 41.5±34.3Nm/deg. The results for the thigh segment were 1.79±2.73kN/m and 30.5±50.4Nm/deg. As previously reported in the literature dealing with the soft tissue artifact - considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6×6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment. Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices. The present study aimed to estimate translational and rotational soft tissue stiffness at the thigh and shank during daily living activities performed by six subjects. Smooth orthogonal decomposition (SOD) was used on skin marker trajectories and fluoroscopy-based knee joint kinematics to compute stiffness coefficients during squatting, sitting and rising from a chair, level walking, and stair descending. On average, for all subjects and for all activities, in the anatomical directions observed, the translational and rotational stiffness coefficients for the shank were, respectively, 1.4 ± 1.99kN/m (median and interquartile range) and 41.5 ± 34.3Nm/deg. The results for the thigh segment were 1.79 ± 2.73kN/m and 30.5 ± 50.4Nm/deg. As previously reported in the literature dealing with the soft tissue artifact – considered as soft tissue deformation in this study - the computed stiffness coefficients were dependent on tasks, subjects, segments, and anatomical directions. The main advantage of SOD over previous methods lies in enabling estimation of a task-dependent 6 × 6 stiffness matrix of the interface between segments and external devices, useful in their modeling and assessment. |
ArticleNumber | 110987 |
Author | Dumas, Raphael Bonnet, Vincent Aissaoui, Rachid Lafon, Yoann Guitteny, Sacha |
Author_xml | – sequence: 1 givenname: Sacha orcidid: 0000-0002-0633-6491 surname: Guitteny fullname: Guitteny, Sacha organization: Univ Eiffel, Univ Lyon 1, LBMC UMR_T 9406, F-69622 Lyon, France – sequence: 2 givenname: Yoann surname: Lafon fullname: Lafon, Yoann organization: Univ Eiffel, Univ Lyon 1, LBMC UMR_T 9406, F-69622 Lyon, France – sequence: 3 givenname: Vincent surname: Bonnet fullname: Bonnet, Vincent organization: LAAS/CNRS, Univ. Toulouse, F-31400 Toulouse, France – sequence: 4 givenname: Rachid surname: Aissaoui fullname: Aissaoui, Rachid organization: Laboratoire de recherche en imagerie et orthopédie (LIO), Dépt Génie des systèmes, Ecole de technologie supérieure, Montréal, Canada – sequence: 5 givenname: Raphael orcidid: 0000-0002-0368-8248 surname: Dumas fullname: Dumas, Raphael email: raphael.dumas@univ-eiffel.fr organization: Univ Eiffel, Univ Lyon 1, LBMC UMR_T 9406, F-69622 Lyon, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35158112$$D View this record in MEDLINE/PubMed https://hal.science/hal-03592590$$DView record in HAL |
BookMark | eNqNkk1vEzEQhi1URNPCX6gscQGJBH_sxl4JIaryUaRIXOBsOc5s42TXLh5vS878cbyk4ZBLOdnyPPOO5n19Rk5CDEDIBWczzvj87Wa2WfrYg1vPBBNixjlrtHpCJlwrORVSsxMyYUzwaSMadkrOEDeMMVWp5hk5lTWvNediQn5_3AXbe0cBs-9t9jHQ2FKMbabZIw5AS6FtAyDSNiY6IFAfaB9X0PlwU0i3hfyGxpTXET2WC4VfEbfQQS5iPmRIrXWA9N7nNe3iPSTa-X5JEW56CBmfk6et7RBePJzn5MfnT9-vrqeLb1--Xl0upq6WMk_Vyuq6khZ0WxyoJKtbXbGlrJlSzoHQY8EKLmunGy1lw4DPl7IB3igGistz8nqvu7aduU1l3bQz0Xpzfbkw4xuTdSPqht2N7Ks9e5viz6GYY3qPDrrOBogDGjEvttZKC13Ql0foJg4plE0KVVWj12peqIsHalj2sPo3_xBFAd7tAZciYoLWOJ__BpKT9Z3hzIzJm405JG_G5M0--dI-P2o_THi08cO-EYr1dx6SQechOFj5BC6bVfSPS7w_knDlb3hnuy3s_kfgDx334J4 |
CitedBy_id | crossref_primary_10_1007_s10409_022_22140_x crossref_primary_10_1016_j_jbiomech_2023_111893 crossref_primary_10_1109_TMRB_2023_3310009 |
Cites_doi | 10.1016/j.jbiomech.2017.06.002 10.1016/j.jbiomech.2006.02.013 10.1016/j.jbiomech.2020.110162 10.1007/s11999-013-3297-8 10.1109/IROS.2016.7759833 10.1016/j.gaitpost.2009.09.004 10.1016/j.mechmachtheory.2020.103937 10.1016/j.gaitpost.2010.12.007 10.1002/cnm.2936 10.1016/j.jbiomech.2020.109890 10.1016/j.jbiomech.2020.110050 10.1016/j.jbiomech.2017.09.001 10.1123/jab.2019-0362 10.3389/frobt.2018.00061 10.1016/j.gaitpost.2018.11.009 10.3389/fnbot.2021.620928 10.1177/0278364914562476 10.1016/j.jbiomech.2017.09.022 10.1177/0309364615592693 10.1016/S0021-9290(01)00222-6 10.1016/S0021-9290(03)00216-1 10.1016/S0021-9290(98)00033-5 10.1016/j.jbiomech.2014.04.029 10.1016/j.knee.2019.04.006 10.1177/036354659302100105 10.1109/TNSRE.2018.2854605 10.1016/j.humov.2006.04.003 10.1109/TBME.2013.2268938 10.1115/1.4046444 10.4015/S1016237209001283 10.1371/journal.pone.0163417 10.1097/GOX.0000000000001632 10.1016/j.jbiomech.2009.11.013 10.1115/1.4044739 10.1016/j.mechmachtheory.2006.08.006 10.1016/j.jbiomech.2010.01.002 10.1016/S0167-9457(99)00025-1 10.1123/jab.20.3.309 10.1371/journal.pone.0157010 10.1109/TNSRE.2019.2924536 10.1186/s12984-017-0247-9 10.1123/jab.2015-0155 10.1016/j.gaitpost.2004.05.002 10.1115/1.2894112 10.1115/1.4044841 10.1016/j.jbiomech.2013.10.034 10.1016/j.mechmachtheory.2020.103800 10.1016/j.jbiomech.2020.109717 10.1016/j.jbiomech.2017.04.036 10.1504/IJHFMS.2019.105434 10.3389/fnbot.2018.00018 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. 2022. Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: 2022. Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES |
DOI | 10.1016/j.jbiomech.2022.110987 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | oai_HAL_hal_03592590v1 35158112 10_1016_j_jbiomech_2022_110987 S0021929022000446 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YQT Z5R ZGI ZMT ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFFDN AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG F3I LCYCR RIG YCJ AAYXX ACLOT CITATION ~HD ALIPV CGR CUY CVF ECM EIF NPM PKN 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c533t-7da8543ae8f0164305f840b35077cce28e8f0a2135c8983390e16b39e1970e713 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Sep 12 12:47:40 EDT 2025 Sun Sep 28 01:46:51 EDT 2025 Wed Aug 13 07:59:04 EDT 2025 Wed Feb 19 02:25:02 EST 2025 Thu Apr 24 23:10:27 EDT 2025 Thu Sep 25 00:30:14 EDT 2025 Fri Feb 23 02:39:48 EST 2024 Tue Aug 26 16:32:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Femur Soft tissue deformation Segment compliance Total knee replacement Tibia Motion capture X-ray Physical interface FEMUR TOTAL KNEE REPLACEMENT TIBIA RAYON X MOTION CAPTURE PHYSICAL INTERFACE SEGMENT COMPLIANCE SOFT TISSUE DEFORMATION |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c533t-7da8543ae8f0164305f840b35077cce28e8f0a2135c8983390e16b39e1970e713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0368-8248 0000-0002-0633-6491 0000-0001-5367-711X |
OpenAccessLink | https://hal.science/hal-03592590 |
PMID | 35158112 |
PQID | 2644351576 |
PQPubID | 1226346 |
ParticipantIDs | hal_primary_oai_HAL_hal_03592590v1 proquest_miscellaneous_2629057828 proquest_journals_2644351576 pubmed_primary_35158112 crossref_citationtrail_10_1016_j_jbiomech_2022_110987 crossref_primary_10_1016_j_jbiomech_2022_110987 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2022_110987 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2022_110987 |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 2022-03 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited – name: Elsevier |
References | Gruber, Ruder, Denoth, Schneider (b0140) 1998; 31 Fougeron, Rohan, Hearing, Rose, Bonnet, Pillet (b0110) 2020; 142 Pain, Challis (b0205) 2004; 20 Arch, Stanhope, Higginson (b0015) 2016; 40 Cherry, Kota, Young, Ferris (b0055) 2016; 32 Yandell, Quinlivan, Popov, Walsh, Zelik (b0270) 2017; 14 McGeehan, Adamczyk, Nichols, Hahn (b0190) 2021; 143 Hall, Diamond, Lenton, Pizzolato, Saxby (b0150) 2019; 68 Leardini, Chiari, Croce, Cappozzo (b0175) 2005; 21 Murphy (b0200) 1990 Dumas, R., Chèze, L., Verriest, J.-P., 2007. Adjustments to McConville et al. and Young et al. body segment inertial parameters. Journal of Biomechanics 40, 543–553. https://doi.org/10.1016/j.jbiomech.2006.02.013. Akbarshahi, Schache, Fernandez, Baker, Banks, Pandy (b0005) 2010; 43 Clarys, Marfell-Jones (b0060) 1986; 58 Richard, Lamberto, Lu, Cappozzo, Dumas (b9000) 2016; 11 Alonso, Del Castillo, Pintado (b0010) 2007; 42 Grabke, Masani, Andrysek (b0135) 2019; 13 Mouzo, Michaud, Lugris, Cuadrado (b0195) 2020; 148 Brandon, Brown, Clouthier, Campbell, Richards, Deluzio (b0040) 2019; 26 Kuiken, Fey, Reissman, Finucane, Dumanian (b0160) 2018; 6 Ebert, Hambly, Joss, Ackland, Donnelly (b0095) 2014; 472 Tsai, Lu, Kuo, Hsu (b0250) 2009; 21 Zhang, Liu, Wang, Smith, Gutierrez-Farewik (b0275) 2021; 15 Shafiei, Behzadipour (b0235) 2020; 12 Torricelli, Cortés, Lete, Bertelsen, Gonzalez-Vargas, del-Ama, Dimbwadyo, Moreno, Florez, Pons (b0245) 2018; 12 Dumas, Jacquelin (b0090) 2017; 62 Gordon, Henderson, Vijayakumar (b0130) 2018; 5 Gittoes, Brewin, Kerwin (b0125) 2006; 25 Peters, Galna, Sangeux, Morris, Baker (b0215) 2010; 31 Barré, Aissaoui, Aminian, Dumas (b0025) 2017; 62 Papaioannou, Mitrogiannis, Nianios, Fiedler (b0210) 2010; 43 Karlsson, Tranberg (b0155) 1999; 18 Camomilla, Dumas, Cappozzo (b0045) 2017; 62 Liu, Daluiski, Kabo (b0185) 1995; 32 Shafiei, Behzadipour (b0230) 2020; 152 Chander, Cavatorta (b0050) 2019; 7 Fournier, Lemaire, Smith, Doumit (b0115) 2018; 26 Lim, B., Hyung, S., Kim, K., Lee, J., Jang, J., Shim, Y., 2016. Simulating gait assistance of a hip exoskeleton: Feasibility studies for ankle muscle weaknesses, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Presented at the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Daejeon, South Korea, pp. 5664–5669. https://doi.org/10.1109/IROS.2016.7759833. Conconi, Pompili, Sancisi, Parenti-Castelli (b0065) 2021; 114 D'Isidoro, Brockmann, Ferguson (b0075) 2020; 104 Asbeck, De Rossi, Holt, Walsh (b0020) 2015; 34 Serrancoli, Falisse, Dembia, Vantilt, Tanghe, Lefeber, Jonkers, De Schutter, De Groote (b0225) 2019; 27 Erickson, Yasuda, Beynnon, Johnson, Pope (b0100) 1993; 21 Taylor, Schütz, Bergmann, List, Postolka, Hitz, Dymke, Damm, Duda, Gerber, Schwachmeyer, Hosseini Nasab, Trepczynski, Kutzner (b0240) 2017; 65 Pew, Roelker, Klute, Neptune (b0220) 2021; 37 Barré, Thiran, Jolles, Theumann, Aminian (b0030) 2013; 60 Fiorentino, Atkins, Kutschke, Bo Foreman, Anderson (b0105) 2020; 108 Gale, Yang, McGough, Fiedler, Anderst (b0120) 2020; 112 Daley, Ralston, Brown, Brand (b0070) 1993; 115 Guitteny, S., Dumas, R., Lafon, Y., 2021. A reduced finite element model for virtual prototyping of knee orthosis. Computer Methods in Biomechanics and Biomedical Engineering 24(S1), S235-S237. LaPrè, Price, Wedge, Umberger, Sup (b0170) 2018; 34 Uchida, Seth, Pouya, Dembia, Hicks, Delp, Sandbakk (b0255) 2016; 11 Bonci, Camomilla, Dumas, Chèze, Cappozzo (b0035) 2014; 47 Wu, Siegler, Allard, Kirtley, Leardini, Rosenbaum, Whittle, D’Lima, Cristofolini, Witte, Schmid, Stokes (b0265) 2002; 35 Wakeling, Liphardt, Nigg (b0260) 2003; 36 Dumas, Camomilla, Bonci, Cheze, Cappozzo (b0080) 2014; 47 Kuo, Tsai, Lin, Lu, Hsu, Shen (b0165) 2011; 33 Mouzo (10.1016/j.jbiomech.2022.110987_b0195) 2020; 148 Kuiken (10.1016/j.jbiomech.2022.110987_b0160) 2018; 6 Dumas (10.1016/j.jbiomech.2022.110987_b0080) 2014; 47 Alonso (10.1016/j.jbiomech.2022.110987_b0010) 2007; 42 10.1016/j.jbiomech.2022.110987_b0180 Wakeling (10.1016/j.jbiomech.2022.110987_b0260) 2003; 36 Fournier (10.1016/j.jbiomech.2022.110987_b0115) 2018; 26 Richard (10.1016/j.jbiomech.2022.110987_b9000) 2016; 11 Yandell (10.1016/j.jbiomech.2022.110987_b0270) 2017; 14 10.1016/j.jbiomech.2022.110987_b0145 Kuo (10.1016/j.jbiomech.2022.110987_b0165) 2011; 33 Gordon (10.1016/j.jbiomech.2022.110987_b0130) 2018; 5 Grabke (10.1016/j.jbiomech.2022.110987_b0135) 2019; 13 Barré (10.1016/j.jbiomech.2022.110987_b0025) 2017; 62 Papaioannou (10.1016/j.jbiomech.2022.110987_b0210) 2010; 43 Fiorentino (10.1016/j.jbiomech.2022.110987_b0105) 2020; 108 Peters (10.1016/j.jbiomech.2022.110987_b0215) 2010; 31 Ebert (10.1016/j.jbiomech.2022.110987_b0095) 2014; 472 Hall (10.1016/j.jbiomech.2022.110987_b0150) 2019; 68 LaPrè (10.1016/j.jbiomech.2022.110987_b0170) 2018; 34 Serrancoli (10.1016/j.jbiomech.2022.110987_b0225) 2019; 27 Asbeck (10.1016/j.jbiomech.2022.110987_b0020) 2015; 34 Gittoes (10.1016/j.jbiomech.2022.110987_b0125) 2006; 25 Torricelli (10.1016/j.jbiomech.2022.110987_b0245) 2018; 12 Bonci (10.1016/j.jbiomech.2022.110987_b0035) 2014; 47 Pew (10.1016/j.jbiomech.2022.110987_b0220) 2021; 37 Conconi (10.1016/j.jbiomech.2022.110987_b0065) 2021; 114 Gale (10.1016/j.jbiomech.2022.110987_b0120) 2020; 112 Karlsson (10.1016/j.jbiomech.2022.110987_b0155) 1999; 18 Uchida (10.1016/j.jbiomech.2022.110987_b0255) 2016; 11 Erickson (10.1016/j.jbiomech.2022.110987_b0100) 1993; 21 Dumas (10.1016/j.jbiomech.2022.110987_b0090) 2017; 62 Wu (10.1016/j.jbiomech.2022.110987_b0265) 2002; 35 Clarys (10.1016/j.jbiomech.2022.110987_b0060) 1986; 58 Shafiei (10.1016/j.jbiomech.2022.110987_b0235) 2020; 12 10.1016/j.jbiomech.2022.110987_b0085 Taylor (10.1016/j.jbiomech.2022.110987_b0240) 2017; 65 Barré (10.1016/j.jbiomech.2022.110987_b0030) 2013; 60 McGeehan (10.1016/j.jbiomech.2022.110987_b0190) 2021; 143 Zhang (10.1016/j.jbiomech.2022.110987_b0275) 2021; 15 Liu (10.1016/j.jbiomech.2022.110987_b0185) 1995; 32 Brandon (10.1016/j.jbiomech.2022.110987_b0040) 2019; 26 Camomilla (10.1016/j.jbiomech.2022.110987_b0045) 2017; 62 Leardini (10.1016/j.jbiomech.2022.110987_b0175) 2005; 21 Daley (10.1016/j.jbiomech.2022.110987_b0070) 1993; 115 Pain (10.1016/j.jbiomech.2022.110987_b0205) 2004; 20 Gruber (10.1016/j.jbiomech.2022.110987_b0140) 1998; 31 Tsai (10.1016/j.jbiomech.2022.110987_b0250) 2009; 21 Cherry (10.1016/j.jbiomech.2022.110987_b0055) 2016; 32 Akbarshahi (10.1016/j.jbiomech.2022.110987_b0005) 2010; 43 Shafiei (10.1016/j.jbiomech.2022.110987_b0230) 2020; 152 D'Isidoro (10.1016/j.jbiomech.2022.110987_b0075) 2020; 104 Arch (10.1016/j.jbiomech.2022.110987_b0015) 2016; 40 Murphy (10.1016/j.jbiomech.2022.110987_b0200) 1990 Chander (10.1016/j.jbiomech.2022.110987_b0050) 2019; 7 Fougeron (10.1016/j.jbiomech.2022.110987_b0110) 2020; 142 |
References_xml | – volume: 18 start-page: 627 year: 1999 end-page: 635 ident: b0155 article-title: On skin movement artefact-resonant frequencies of skin markers attached to the leg publication-title: Hum. Mov. Sci. – volume: 26 start-page: 564 year: 2019 end-page: 577 ident: b0040 article-title: Contributions of muscles and external forces to medial knee load reduction due to osteoarthritis braces publication-title: Knee – volume: 142 start-page: 091004 year: 2020 ident: b0110 article-title: Combining Freehand Ultrasound-Based Indentation and Inverse Finite Element Modelling for the Identification of Hyperelastic Material Properties of Thigh Soft Tissues publication-title: J. Biomech. Eng. – volume: 31 start-page: 439 year: 1998 end-page: 444 ident: b0140 article-title: A comparative study of impact dynamics: wobbling mass model versus rigid body models publication-title: J. Biomech. – volume: 32 start-page: 269 year: 2016 end-page: 277 ident: b0055 article-title: Running With an Elastic Lower Limb Exoskeleton publication-title: J. Appl. Biomech. – volume: 34 start-page: e2936 year: 2018 ident: b0170 article-title: Approach for gait analysis in persons with limb loss including residuum and prosthesis socket dynamics publication-title: Int. J. Numer. Meth. Biomed. Eng. – volume: 5 start-page: 61 year: 2018 ident: b0130 article-title: Effectively Quantifying the Performance of Lower-Limb Exoskeletons Over a Range of Walking Conditions publication-title: Front. Robot. AI – reference: Guitteny, S., Dumas, R., Lafon, Y., 2021. A reduced finite element model for virtual prototyping of knee orthosis. Computer Methods in Biomechanics and Biomedical Engineering 24(S1), S235-S237. – volume: 42 start-page: 1153 year: 2007 end-page: 1169 ident: b0010 article-title: Motion data processing and wobbling mass modelling in the inverse dynamics of skeletal models publication-title: Mech. Mach. Theory – reference: Lim, B., Hyung, S., Kim, K., Lee, J., Jang, J., Shim, Y., 2016. Simulating gait assistance of a hip exoskeleton: Feasibility studies for ankle muscle weaknesses, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Presented at the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Daejeon, South Korea, pp. 5664–5669. https://doi.org/10.1109/IROS.2016.7759833. – volume: 58 start-page: 761 year: 1986 end-page: 769 ident: b0060 article-title: Anthropometric Prediction of Component Tissue Masses in the Minor Limb Segments of the Human Body publication-title: Hum. Biol. – volume: 27 start-page: 1597 year: 2019 end-page: 1605 ident: b0225 article-title: Subject-Exoskeleton Contact Model Calibration Leads to Accurate Interaction Force Predictions publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 143 year: 2021 ident: b0190 article-title: A Computational Gait Model With a Below-Knee Amputation and a Semi-Active Variable-Stiffness Foot Prosthesis publication-title: J. Biomech. Eng. – volume: 114 start-page: 110162 year: 2021 ident: b0065 article-title: Quantification of the errors associated with marker occlusion in stereophotogrammetric systems and implications on gait analysis publication-title: J. Biomech. – volume: 472 start-page: 915 year: 2014 end-page: 922 ident: b0095 article-title: Does an Unloader Brace Reduce Knee Loading in Normally Aligned Knees? publication-title: Clin. Orthop. Relat. Res. – volume: 115 start-page: 131 year: 1993 end-page: 136 ident: b0070 article-title: A Parametric Design Evaluation of Lateral Prophylactic Knee Braces publication-title: J. Biomech. Eng. – volume: 36 start-page: 1761 year: 2003 end-page: 1769 ident: b0260 article-title: Muscle activity reduces soft-tissue resonance at heel-strike during walking publication-title: J. Biomech. – volume: 68 start-page: 55 year: 2019 end-page: 62 ident: b0150 article-title: Immediate effects of valgus knee bracing on tibiofemoral contact forces and knee muscle forces publication-title: Gait Posture – volume: 47 start-page: 476 year: 2014 end-page: 481 ident: b0080 article-title: Generalized mathematical representation of the soft tissue artefact publication-title: J. Biomech. – volume: 13 year: 2019 ident: b0135 article-title: Lower Limb Assistive Device Design Optimization Using Musculoskeletal Modeling: A Review publication-title: J. Med. Devices – volume: 40 start-page: 606 year: 2016 end-page: 616 ident: b0015 article-title: Passive-dynamic ankle–foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription publication-title: Prosthet. Orthot. Int. – volume: 65 start-page: 32 year: 2017 end-page: 39 ident: b0240 article-title: A comprehensive assessment of the musculoskeletal system: The CAMS-Knee data set publication-title: J. Biomech. – volume: 11 start-page: e0163417 year: 2016 ident: b0255 article-title: Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running publication-title: PLoS ONE – volume: 35 start-page: 543 year: 2002 end-page: 548 ident: b0265 article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine publication-title: J. Biomech. – volume: 21 start-page: 223 year: 2009 end-page: 232 ident: b0250 article-title: Quantification of three-dimensional movement of skin markers relative to the underlying bones during functional activities publication-title: Biomed. Eng. Appl. Basis Commun. – volume: 62 start-page: 21 year: 2017 end-page: 26 ident: b0025 article-title: Assessment of the lower limb soft tissue artefact at marker-cluster level with a high-density marker set during walking publication-title: J. Biomech. – volume: 20 start-page: 309 year: 2004 end-page: 316 ident: b0205 article-title: Wobbling Mass Influence on Impact Ground Reaction Forces: A Simulation Model Sensitivity Analysis publication-title: J. Appl. Biomech. – volume: 37 start-page: 21 year: 2021 end-page: 29 ident: b0220 article-title: Analysis of the Relative Motion Between the Socket and Residual Limb in Transtibial Amputees While Wearing a Transverse Rotation Adapter publication-title: J. Appl. Biomech. – volume: 152 start-page: 103937 year: 2020 ident: b0230 article-title: Adding backlash to the connection elements can improve the performance of a robotic exoskeleton publication-title: Mech. Mach. Theory – volume: 25 start-page: 775 year: 2006 end-page: 787 ident: b0125 article-title: Soft tissue contributions to impact forces simulated using a four-segment wobbling mass model of forefoot–heel landings publication-title: Hum. Mov. Sci. – volume: 31 start-page: 1 year: 2010 end-page: 8 ident: b0215 article-title: Quantification of soft tissue artifact in lower limb human motion analysis: A systematic review publication-title: Gait & Posture – volume: 12 year: 2018 ident: b0245 article-title: A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait publication-title: Front. Neurorobot. – volume: 34 start-page: 744 year: 2015 end-page: 762 ident: b0020 article-title: A biologically inspired soft exosuit for walking assistance publication-title: Int. J. Robot. Res. – volume: 21 start-page: 26 year: 1993 end-page: 35 ident: b0100 article-title: An in vitro dynamic evaluation of prophylactic knee braces during lateral impact loading publication-title: Am. J. Sports Med. – volume: 104 start-page: 109717 year: 2020 ident: b0075 article-title: Effects of the soft tissue artefact on the hip joint kinematics during unrestricted activities of daily living publication-title: J. Biomech. – volume: 11 year: 2016 ident: b9000 article-title: Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study publication-title: PLoS ONE – volume: 12 year: 2020 ident: b0235 article-title: The Effects of the Connection Stiffness of Robotic Exoskeletons on the Gait Quality and Comfort publication-title: J. Mech. Robot. – volume: 33 start-page: 379 year: 2011 end-page: 384 ident: b0165 article-title: Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand publication-title: Gait Post. – volume: 14 start-page: 40 year: 2017 ident: b0270 article-title: Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices publication-title: J. NeuroEng. Rehabil. – volume: 21 start-page: 212 year: 2005 end-page: 225 ident: b0175 article-title: Human movement analysis using stereophotogrammetry publication-title: Gait Post. – volume: 15 year: 2021 ident: b0275 article-title: Modeling and Simulation of a Human Knee Exoskeleton’s Assistive Strategies and Interaction publication-title: Front. Neurorobot. – volume: 32 start-page: 135 year: 1995 end-page: 140 ident: b0185 article-title: The effect of thigh soft-tissue stiffness on the control of anterior tibial displacement by function knee orthosis publication-title: J. Rehabil. Res. Dev. – volume: 26 start-page: 1596 year: 2018 end-page: 1603 ident: b0115 article-title: Modeling and Simulation of a Lower Extremity Powered Exoskeleton publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 47 start-page: 2354 year: 2014 end-page: 2361 ident: b0035 article-title: A soft tissue artefact model driven by proximal and distal joint kinematics publication-title: J. Biomech. – volume: 148 start-page: 103800 year: 2020 ident: b0195 article-title: Leg-orthosis contact force estimation from gait analysis publication-title: Mech. Mach. Theory – volume: 62 start-page: 1 year: 2017 end-page: 4 ident: b0045 article-title: Human movement analysis: The soft tissue artefact issue publication-title: J. Biomech. – volume: 6 start-page: e1632 year: 2018 ident: b0160 article-title: Innovative Use of Thighplasty to Improve Prosthesis Fit and Function in a Transfemoral Amputee publication-title: Plastic and Reconstructive Surgery - Global Open – volume: 112 start-page: 110050 year: 2020 ident: b0120 article-title: Motion of the residual femur within the socket during gait is associated with patient-reported problems in transfemoral amputees publication-title: J. Biomech. – volume: 43 start-page: 1292 year: 2010 end-page: 1301 ident: b0005 article-title: Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity publication-title: J. Biomech. – volume: 60 start-page: 3131 year: 2013 end-page: 3140 ident: b0030 article-title: Soft Tissue Artifact Assessment During Treadmill Walking in Subjects With Total Knee Arthroplasty publication-title: IEEE Trans. Biomed. Eng. – volume: 108 start-page: 109890 year: 2020 ident: b0105 article-title: Soft tissue artifact causes underestimation of hip joint kinematics and kinetics in a rigid-body musculoskeletal model publication-title: J. Biomech. – volume: 7 start-page: 119 year: 2019 end-page: 136 ident: b0050 article-title: Modelling friction at the mechanical interfacebetween the human and the exoskeleton publication-title: Int. J. Hum. Factors Model. Simul. – volume: 62 start-page: 47 year: 2017 end-page: 52 ident: b0090 article-title: Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone publication-title: J. Biomech. – year: 1990 ident: b0200 publication-title: Geometry and the kinematics of the normal human knee – volume: 43 start-page: 871 year: 2010 end-page: 878 ident: b0210 article-title: Assessment of amputee socket–stump–residual bone kinematics during strenuous activities using Dynamic Roentgen Stereogrammetric Analysis publication-title: J. Biomech. – reference: Dumas, R., Chèze, L., Verriest, J.-P., 2007. Adjustments to McConville et al. and Young et al. body segment inertial parameters. Journal of Biomechanics 40, 543–553. https://doi.org/10.1016/j.jbiomech.2006.02.013. – volume: 58 start-page: 761 year: 1986 ident: 10.1016/j.jbiomech.2022.110987_b0060 article-title: Anthropometric Prediction of Component Tissue Masses in the Minor Limb Segments of the Human Body publication-title: Hum. Biol. – volume: 62 start-page: 47 year: 2017 ident: 10.1016/j.jbiomech.2022.110987_b0090 article-title: Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.06.002 – ident: 10.1016/j.jbiomech.2022.110987_b0085 doi: 10.1016/j.jbiomech.2006.02.013 – volume: 114 start-page: 110162 year: 2021 ident: 10.1016/j.jbiomech.2022.110987_b0065 article-title: Quantification of the errors associated with marker occlusion in stereophotogrammetric systems and implications on gait analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.110162 – volume: 472 start-page: 915 year: 2014 ident: 10.1016/j.jbiomech.2022.110987_b0095 article-title: Does an Unloader Brace Reduce Knee Loading in Normally Aligned Knees? publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-013-3297-8 – ident: 10.1016/j.jbiomech.2022.110987_b0180 doi: 10.1109/IROS.2016.7759833 – volume: 143 year: 2021 ident: 10.1016/j.jbiomech.2022.110987_b0190 article-title: A Computational Gait Model With a Below-Knee Amputation and a Semi-Active Variable-Stiffness Foot Prosthesis publication-title: J. Biomech. Eng. – volume: 31 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.jbiomech.2022.110987_b0215 article-title: Quantification of soft tissue artifact in lower limb human motion analysis: A systematic review publication-title: Gait & Posture doi: 10.1016/j.gaitpost.2009.09.004 – volume: 152 start-page: 103937 year: 2020 ident: 10.1016/j.jbiomech.2022.110987_b0230 article-title: Adding backlash to the connection elements can improve the performance of a robotic exoskeleton publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.103937 – volume: 33 start-page: 379 issue: 3 year: 2011 ident: 10.1016/j.jbiomech.2022.110987_b0165 article-title: Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand publication-title: Gait Post. doi: 10.1016/j.gaitpost.2010.12.007 – volume: 34 start-page: e2936 issue: 4 year: 2018 ident: 10.1016/j.jbiomech.2022.110987_b0170 article-title: Approach for gait analysis in persons with limb loss including residuum and prosthesis socket dynamics publication-title: Int. J. Numer. Meth. Biomed. Eng. doi: 10.1002/cnm.2936 – year: 1990 ident: 10.1016/j.jbiomech.2022.110987_b0200 – volume: 108 start-page: 109890 year: 2020 ident: 10.1016/j.jbiomech.2022.110987_b0105 article-title: Soft tissue artifact causes underestimation of hip joint kinematics and kinetics in a rigid-body musculoskeletal model publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.109890 – volume: 112 start-page: 110050 year: 2020 ident: 10.1016/j.jbiomech.2022.110987_b0120 article-title: Motion of the residual femur within the socket during gait is associated with patient-reported problems in transfemoral amputees publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.110050 – volume: 62 start-page: 1 year: 2017 ident: 10.1016/j.jbiomech.2022.110987_b0045 article-title: Human movement analysis: The soft tissue artefact issue publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.09.001 – volume: 37 start-page: 21 issue: 1 year: 2021 ident: 10.1016/j.jbiomech.2022.110987_b0220 article-title: Analysis of the Relative Motion Between the Socket and Residual Limb in Transtibial Amputees While Wearing a Transverse Rotation Adapter publication-title: J. Appl. Biomech. doi: 10.1123/jab.2019-0362 – volume: 5 start-page: 61 year: 2018 ident: 10.1016/j.jbiomech.2022.110987_b0130 article-title: Effectively Quantifying the Performance of Lower-Limb Exoskeletons Over a Range of Walking Conditions publication-title: Front. Robot. AI doi: 10.3389/frobt.2018.00061 – volume: 68 start-page: 55 year: 2019 ident: 10.1016/j.jbiomech.2022.110987_b0150 article-title: Immediate effects of valgus knee bracing on tibiofemoral contact forces and knee muscle forces publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.11.009 – volume: 15 year: 2021 ident: 10.1016/j.jbiomech.2022.110987_b0275 article-title: Modeling and Simulation of a Human Knee Exoskeleton’s Assistive Strategies and Interaction publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2021.620928 – volume: 34 start-page: 744 issue: 6 year: 2015 ident: 10.1016/j.jbiomech.2022.110987_b0020 article-title: A biologically inspired soft exosuit for walking assistance publication-title: Int. J. Robot. Res. doi: 10.1177/0278364914562476 – volume: 65 start-page: 32 year: 2017 ident: 10.1016/j.jbiomech.2022.110987_b0240 article-title: A comprehensive assessment of the musculoskeletal system: The CAMS-Knee data set publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.09.022 – volume: 40 start-page: 606 year: 2016 ident: 10.1016/j.jbiomech.2022.110987_b0015 article-title: Passive-dynamic ankle–foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription publication-title: Prosthet. Orthot. Int. doi: 10.1177/0309364615592693 – volume: 35 start-page: 543 issue: 4 year: 2002 ident: 10.1016/j.jbiomech.2022.110987_b0265 article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00222-6 – volume: 36 start-page: 1761 issue: 12 year: 2003 ident: 10.1016/j.jbiomech.2022.110987_b0260 article-title: Muscle activity reduces soft-tissue resonance at heel-strike during walking publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00216-1 – volume: 31 start-page: 439 issue: 5 year: 1998 ident: 10.1016/j.jbiomech.2022.110987_b0140 article-title: A comparative study of impact dynamics: wobbling mass model versus rigid body models publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00033-5 – volume: 47 start-page: 2354 issue: 10 year: 2014 ident: 10.1016/j.jbiomech.2022.110987_b0035 article-title: A soft tissue artefact model driven by proximal and distal joint kinematics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.04.029 – volume: 26 start-page: 564 issue: 3 year: 2019 ident: 10.1016/j.jbiomech.2022.110987_b0040 article-title: Contributions of muscles and external forces to medial knee load reduction due to osteoarthritis braces publication-title: Knee doi: 10.1016/j.knee.2019.04.006 – volume: 21 start-page: 26 issue: 1 year: 1993 ident: 10.1016/j.jbiomech.2022.110987_b0100 article-title: An in vitro dynamic evaluation of prophylactic knee braces during lateral impact loading publication-title: Am. J. Sports Med. doi: 10.1177/036354659302100105 – volume: 26 start-page: 1596 issue: 8 year: 2018 ident: 10.1016/j.jbiomech.2022.110987_b0115 article-title: Modeling and Simulation of a Lower Extremity Powered Exoskeleton publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2854605 – volume: 25 start-page: 775 issue: 6 year: 2006 ident: 10.1016/j.jbiomech.2022.110987_b0125 article-title: Soft tissue contributions to impact forces simulated using a four-segment wobbling mass model of forefoot–heel landings publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2006.04.003 – volume: 60 start-page: 3131 issue: 11 year: 2013 ident: 10.1016/j.jbiomech.2022.110987_b0030 article-title: Soft Tissue Artifact Assessment During Treadmill Walking in Subjects With Total Knee Arthroplasty publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2268938 – volume: 142 start-page: 091004 issue: 9 year: 2020 ident: 10.1016/j.jbiomech.2022.110987_b0110 article-title: Combining Freehand Ultrasound-Based Indentation and Inverse Finite Element Modelling for the Identification of Hyperelastic Material Properties of Thigh Soft Tissues publication-title: J. Biomech. Eng. doi: 10.1115/1.4046444 – volume: 21 start-page: 223 issue: 03 year: 2009 ident: 10.1016/j.jbiomech.2022.110987_b0250 article-title: Quantification of three-dimensional movement of skin markers relative to the underlying bones during functional activities publication-title: Biomed. Eng. Appl. Basis Commun. doi: 10.4015/S1016237209001283 – ident: 10.1016/j.jbiomech.2022.110987_b0145 – volume: 32 start-page: 135 year: 1995 ident: 10.1016/j.jbiomech.2022.110987_b0185 article-title: The effect of thigh soft-tissue stiffness on the control of anterior tibial displacement by function knee orthosis publication-title: J. Rehabil. Res. Dev. – volume: 11 start-page: e0163417 issue: 9 year: 2016 ident: 10.1016/j.jbiomech.2022.110987_b0255 article-title: Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running publication-title: PLoS ONE doi: 10.1371/journal.pone.0163417 – volume: 6 start-page: e1632 issue: 1 year: 2018 ident: 10.1016/j.jbiomech.2022.110987_b0160 article-title: Innovative Use of Thighplasty to Improve Prosthesis Fit and Function in a Transfemoral Amputee publication-title: Plastic and Reconstructive Surgery - Global Open doi: 10.1097/GOX.0000000000001632 – volume: 43 start-page: 871 issue: 5 year: 2010 ident: 10.1016/j.jbiomech.2022.110987_b0210 article-title: Assessment of amputee socket–stump–residual bone kinematics during strenuous activities using Dynamic Roentgen Stereogrammetric Analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.11.013 – volume: 13 year: 2019 ident: 10.1016/j.jbiomech.2022.110987_b0135 article-title: Lower Limb Assistive Device Design Optimization Using Musculoskeletal Modeling: A Review publication-title: J. Med. Devices doi: 10.1115/1.4044739 – volume: 42 start-page: 1153 issue: 9 year: 2007 ident: 10.1016/j.jbiomech.2022.110987_b0010 article-title: Motion data processing and wobbling mass modelling in the inverse dynamics of skeletal models publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2006.08.006 – volume: 43 start-page: 1292 issue: 7 year: 2010 ident: 10.1016/j.jbiomech.2022.110987_b0005 article-title: Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.01.002 – volume: 18 start-page: 627 issue: 5 year: 1999 ident: 10.1016/j.jbiomech.2022.110987_b0155 article-title: On skin movement artefact-resonant frequencies of skin markers attached to the leg publication-title: Hum. Mov. Sci. doi: 10.1016/S0167-9457(99)00025-1 – volume: 20 start-page: 309 year: 2004 ident: 10.1016/j.jbiomech.2022.110987_b0205 article-title: Wobbling Mass Influence on Impact Ground Reaction Forces: A Simulation Model Sensitivity Analysis publication-title: J. Appl. Biomech. doi: 10.1123/jab.20.3.309 – volume: 11 issue: 6 year: 2016 ident: 10.1016/j.jbiomech.2022.110987_b9000 article-title: Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study publication-title: PLoS ONE doi: 10.1371/journal.pone.0157010 – volume: 27 start-page: 1597 issue: 8 year: 2019 ident: 10.1016/j.jbiomech.2022.110987_b0225 article-title: Subject-Exoskeleton Contact Model Calibration Leads to Accurate Interaction Force Predictions publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2924536 – volume: 14 start-page: 40 year: 2017 ident: 10.1016/j.jbiomech.2022.110987_b0270 article-title: Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices publication-title: J. NeuroEng. Rehabil. doi: 10.1186/s12984-017-0247-9 – volume: 32 start-page: 269 year: 2016 ident: 10.1016/j.jbiomech.2022.110987_b0055 article-title: Running With an Elastic Lower Limb Exoskeleton publication-title: J. Appl. Biomech. doi: 10.1123/jab.2015-0155 – volume: 21 start-page: 212 issue: 2 year: 2005 ident: 10.1016/j.jbiomech.2022.110987_b0175 article-title: Human movement analysis using stereophotogrammetry publication-title: Gait Post. doi: 10.1016/j.gaitpost.2004.05.002 – volume: 115 start-page: 131 year: 1993 ident: 10.1016/j.jbiomech.2022.110987_b0070 article-title: A Parametric Design Evaluation of Lateral Prophylactic Knee Braces publication-title: J. Biomech. Eng. doi: 10.1115/1.2894112 – volume: 12 year: 2020 ident: 10.1016/j.jbiomech.2022.110987_b0235 article-title: The Effects of the Connection Stiffness of Robotic Exoskeletons on the Gait Quality and Comfort publication-title: J. Mech. Robot. doi: 10.1115/1.4044841 – volume: 47 start-page: 476 issue: 2 year: 2014 ident: 10.1016/j.jbiomech.2022.110987_b0080 article-title: Generalized mathematical representation of the soft tissue artefact publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.10.034 – volume: 148 start-page: 103800 year: 2020 ident: 10.1016/j.jbiomech.2022.110987_b0195 article-title: Leg-orthosis contact force estimation from gait analysis publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.103800 – volume: 104 start-page: 109717 year: 2020 ident: 10.1016/j.jbiomech.2022.110987_b0075 article-title: Effects of the soft tissue artefact on the hip joint kinematics during unrestricted activities of daily living publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.109717 – volume: 62 start-page: 21 year: 2017 ident: 10.1016/j.jbiomech.2022.110987_b0025 article-title: Assessment of the lower limb soft tissue artefact at marker-cluster level with a high-density marker set during walking publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.04.036 – volume: 7 start-page: 119 issue: 2 year: 2019 ident: 10.1016/j.jbiomech.2022.110987_b0050 article-title: Modelling friction at the mechanical interfacebetween the human and the exoskeleton publication-title: Int. J. Hum. Factors Model. Simul. doi: 10.1504/IJHFMS.2019.105434 – volume: 12 year: 2018 ident: 10.1016/j.jbiomech.2022.110987_b0245 article-title: A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2018.00018 |
SSID | ssj0007479 |
Score | 2.452293 |
Snippet | Modeling the interface between the lower limb segments and a socket, orthosis or exoskeleton is crucial to the design, control, and assessment of such devices.... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110987 |
SubjectTerms | Biomechanical Phenomena Biomechanics Engineering Sciences Exoskeleton Exoskeleton Device Exoskeletons Femur Fluoroscopy Humans Interfaces Kinematics Knee Joint Lower Extremity Mathematical models Mechanics Modelling Motion capture Orthoses Orthotic Devices Physical interface Segment compliance Segments Skin Sockets Soft tissue deformation Soft tissues Stiffness coefficients Stiffness matrix Thigh Tibia Total knee replacement Translation X-ray |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9NADLbYkBA8oNHxI7AhgxBPhDW5NHf3hKqNqUKMJyb17ZQmF2jpkm1JJ3jmH8e-XMIegPFW5eI0kh37u7P9GeBVkVGQF4kI09jmYZKRH9SEm8NSUvDItUp1yr3DJ5_S2WnyYT6Z-wO3xpdV9j7ROeqizvmM_IADt6DgK9N35xchT43i7KofobEFtyOCKmzVcj5suJgb3pd4RCGtjq91CK_erlx_u0tIxLEj3uSyuj8Hp62vXCX5NwjqQtHxDtz3GBKnndIfwC1bjWB3WtH--ewHvkZX1emOy0dw7xrh4AjunPhU-i78POpm0SPTbHT9i1iX2JBbxtZpA2mhLNkVIiFb3DQWlxW60Tn0MLqTHED7BjnxUzfLhn6g_V433yiQEaBEJqK4LLniC_mwF9c8jw3Xy7MFNvaL66x7CKfH7z8fzkI_kSHMCRa2oSwyNUlEZlXJ1FzkK0raIC4EgUqZ5zZWvJDFkZjkSish9NhG6UJoG2k5trQffgTbVV3ZJ4Dc8BoXUhdCJYm2VjORWCJTrW2ZqbgMYNKrwuSerpynZqxNX5e2Mr0KDavQdCoM4GCQO-8IO26UkL2mTd-OSg7UUEy5UVIPkh6wdEDkv2RfklENr8gs37PpR8PXmFWRdqXjqyiAvd7mjPctjfn9JQTwYlgmr8Cpnqyy9YbvIXPnSQUqgMedrQ5_xbKKYPbTfz_8Gdzl1-3q7fZgu73c2H0CYO3iufvKfgFFnizn priority: 102 providerName: ProQuest |
Title | Dynamic estimation of soft tissue stiffness for use in modeling socket, orthosis or exoskeleton interfaces with lower limb segments |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929022000446 https://dx.doi.org/10.1016/j.jbiomech.2022.110987 https://www.ncbi.nlm.nih.gov/pubmed/35158112 https://www.proquest.com/docview/2644351576 https://www.proquest.com/docview/2629057828 https://hal.science/hal-03592590 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1873-2380 dateEnd: 20250730 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection (NC LIVE) customDbUrl: eissn: 1873-2380 dateEnd: 20250730 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VIiE4IEh5GEo1IMQJN7HX8e4eQ2kVHo0QolJuK8dZg0NqV7WD4MKFP87M-kGRQEXiEifeHWflWc98651vBuDpMiEnLyLhx6FN_SghO6gJN_uZJOeRahXrmLnDx7N4ehK9no_nW3DQcWE4rLK1_Y1Nd9a6PTNs7-bwLM-Z40tPW6iZKuq2JZnBHsUc1rf__VeYB8HlNswj8Ln3BZbwan_lOO5uUyIMXfJNDq37s4O68okjJf8GQ507OroFN1sciZNmqLdhyxYD2JkUtIY-_YbP0EV2ulfmA7hxIengAK4dt9vpO_DjZVOPHjnVRsNhxDLDikwz1k4jSA1ZxuYQCd3iprKYF-jK59DFqCcZgfo58uZPWeUVfUH7taw-kzMjUImcjOI846gv5Be-uOaabLjOTxdY2Y-OXXcHTo4OPxxM_bYqg58SNKx9uUzUOBKJVRmn5yJ7kdEicSEIWMo0taHihiQMxDhVWgmhRzaIF0LbQMuRpTXxXdguysLeB2TSa7iUeilUFGlrNScTi2Sstc0SFWYejDtVmLRNWc6VM9ami01bmU6FhlVoGhV6MOzlzpqkHZdKyE7TpqOkkhE15FculdS95G8T959kn9Ck6ofImb6nk7eGz3FmRVqZjr4EHux2c8609qUyDGMFQVEZe_C4bybLwNs9SWHLDfeh6c7VCpQH95q52v8VyyqC2g_-Y_QP4Tr_agLydmG7Pt_YR4TQ6sWeewTpU87lHlydvHozndHxxeHs3fufTso7NQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB21RYJyQJBCMRQYEHDCNPY6tveAUESpUpr01Eq5bR17DQmJXWoHyJn_w29kZv1BD0C59BZ5PRtLMzvzdnfmDcDzJKIgLzxh-66ObS8iPygJN9tpQMEjlqEvfa4dHh35gxPvw7g3XoOfTS0Mp1U2PtE46iSP-Yx8lwO3oOAb-G_PvtjcNYpvV5sWGpVZHOrVN9qyFW8O9ki_L1x3__3xu4FddxWwY4I2pR0kUdjzRKTDlOmlyN5T2uRMBAGjII61G_JA5DqiF4cyFEJ2teNPhNSODLqa9nQ07zpcI0GPufqDcbvBYy76OqXEsQl2dC9UJM9ez0w9vbkAcV1D9MlpfH8OhuufOCvzb5DXhL7923CrxqzYr4zsDqzprANb_Yz264sVvkSTRWqO5ztw8wLBYQeuj-qr-y34sbfKosU0Rqb1qOolMU-xoDCApdE-0kCasutFQtK4LDROMzStemgyepMcTvkK-aIpL6YF_UD9PS8-U-AkAItMfHGecoYZ8uEyzrn_G86niwkW-qOp5LsLJ1eiq3uwkeWZvg_IBbZuEshEhJ4ntZZMXOYFvpQ6jUI3taDXqELFNT06d-mYqyYPbqYaFSpWoapUaMFuK3dWEYRcKhE0mlZN-Ss5bEUx7FJJ2UrWAKkCPv8l-4yMqv1EZhUf9IeKnzGLI-2Cu18dC3Yam1O1LyvU75VnwdN2mLwQXy1Fmc6X_A6ZO3dGCC3Yrmy1_SuWDQnWP_j35E_gxuB4NFTDg6PDh7DJn17l-u3ARnm-1I8I_JWTx2bFIZxe9RL_BQ7BZ1c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61RarggCDlYSgwIOCESfyIvXtAKCJEKX2IA5Vy2zr2GhISu9QOkDP_il_HzPpBD0C59BZlPRtHMzvzzc4L4GkSkZH3fM8OXB3bfkR6UBJuttOQjEcsRSADrh0-PArGx_67SX-yAT-bWhhOq2x0olHUSR7zHXmXDbdHxjcMummdFvF-OHp9-sXmCVIcaW3GaVQisq_X38h9K17tDYnXz1x39PbDm7FdTxiwY4I5pR0mkej7XqRFyq2mSPZTcnimHoGkMI61K3ghch2vHwspPE_2tBNMPakdGfY0-Xe07yZcCenPcjpZOGmdPe5LX6eXODZBkN656uT5y7mprTfBENc1TT85pe_PhnHzE2do_g3-GjM4ugHXa_yKg0rgbsKGzjqwM8jId1-u8TmajFJzVd-Ba-eaHXZg-7AO4-_Aj-E6i5azGLnFR1U7iXmKBZkELI0kIC2kKathJFSNq0LjLEMztoc2oydJ-ZQvkINOeTEr6APq73nxmYwogVnkJhhnKWebIV8044JnweFitpxioT-aqr5bcHwpvLoNW1me6buAXGzrJqFMPOH7UmvJTcz8MJBSp5FwUwv6DStUXLdK54kdC9XkxM1Vw0LFLFQVCy3otnSnVbOQCynChtOqKYUl5a3Inl1IKVvKGixVIOi_aJ-QULWvyB3Gx4MDxd9xR0fyiHtfHQt2G5lTtV4r1O9TaMHjdpk0EoeZokznK36GxJ2nJAgL7lSy2v4U0wqC-Pf-vfkj2KbDrQ72jvbvw1V-8yrtbxe2yrOVfkA4sJw-NAcO4eSyT_gvI_Zrkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+estimation+of+soft+tissue+stiffness+for+use+in+modeling+socket%2C+orthosis+or+exoskeleton+interfaces+with+lower+limb+segments&rft.jtitle=Journal+of+biomechanics&rft.au=Guitteny%2C+Sacha&rft.au=Lafon%2C+Yoann&rft.au=Bonnet%2C+Vincent&rft.au=Aissaoui%2C+Rachid&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=134&rft_id=info:doi/10.1016%2Fj.jbiomech.2022.110987&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03592590v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |