A Validated Register-Based Algorithm to Identify Patients Diagnosed with Recurrence of Surgically Treated Stage I Lung Cancer in Denmark

Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date. Patients with early-stage...

Full description

Saved in:
Bibliographic Details
Published inClinical epidemiology Vol. 15; pp. 251 - 261
Main Authors Rasmussen, Linda Aagaard, Christensen, Niels Lyhne, Winther-Larsen, Anne, Dalton, Susanne Oksbjerg, Virgilsen, Line Flytkjær, Jensen, Henry, Vedsted, Peter
Format Journal Article
LanguageEnglish
Published New Zealand Dove Medical Press Limited 01.01.2023
Taylor & Francis Ltd
Dove
Dove Medical Press
Subjects
Online AccessGet full text
ISSN1179-1349
1179-1349
DOI10.2147/CLEP.S396738

Cover

Abstract Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date. Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm. The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%. The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates.
AbstractList Introduction: Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date. Material and Methods: Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm. Results: The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18– 46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7– 91.1), a specificity of 93.8% (95% CI: 88.5– 97.1), and a positive predictive value of 87.0% (95% CI: 76.7– 93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%. Conclusion: The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates.
Introduction: Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date. Material and Methods: Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm. Results: The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%. Conclusion: The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates. Keywords: lung neoplasms, recurrence, algorithms, validation study, registries, Denmark
Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date.IntroductionRecurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date.Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm.Material and MethodsPatients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm.The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%.ResultsThe final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%.The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates.ConclusionThe proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates.
Linda Aagaard Rasmussen,1 Niels Lyhne Christensen,2 Anne Winther-Larsen,3 Susanne Oksbjerg Dalton,4,5 Line Flytkjær Virgilsen,1 Henry Jensen,1 Peter Vedsted1 1Research Unit for General Practice, Aarhus, Denmark; 2Department of Pulmonary Medicine and Allergy, Aarhus University Hospital, Aarhus, Denmark; 3Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; 4Survivorship and Inequality in Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark; 5Department of Clinical Oncology & Palliative Care, Zealand University Hospital, Næstved, DenmarkCorrespondence: Linda Aagaard Rasmussen, Research Unit for General Practice, Bartholins Allé 2, Aarhus C, 8000, Denmark, Tel +45 8716 8365, Email linda.rasmussen@ph.au.dkIntroduction: Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date.Material and Methods: Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm.Results: The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18– 46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7– 91.1), a specificity of 93.8% (95% CI: 88.5– 97.1), and a positive predictive value of 87.0% (95% CI: 76.7– 93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%.Conclusion: The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates.Keywords: lung neoplasms, recurrence, algorithms, validation study, registries, Denmark
Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date. Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm. The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%. The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates.
Audience Academic
Author Virgilsen, Line Flytkjær
Rasmussen, Linda Aagaard
Jensen, Henry
Vedsted, Peter
Dalton, Susanne Oksbjerg
Christensen, Niels Lyhne
Winther-Larsen, Anne
Author_xml – sequence: 1
  givenname: Linda Aagaard
  orcidid: 0000-0002-9753-2008
  surname: Rasmussen
  fullname: Rasmussen, Linda Aagaard
– sequence: 2
  givenname: Niels Lyhne
  surname: Christensen
  fullname: Christensen, Niels Lyhne
– sequence: 3
  givenname: Anne
  orcidid: 0000-0002-2763-595X
  surname: Winther-Larsen
  fullname: Winther-Larsen, Anne
– sequence: 4
  givenname: Susanne Oksbjerg
  orcidid: 0000-0002-5485-2730
  surname: Dalton
  fullname: Dalton, Susanne Oksbjerg
– sequence: 5
  givenname: Line Flytkjær
  surname: Virgilsen
  fullname: Virgilsen, Line Flytkjær
– sequence: 6
  givenname: Henry
  surname: Jensen
  fullname: Jensen, Henry
– sequence: 7
  givenname: Peter
  surname: Vedsted
  fullname: Vedsted, Peter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36890800$$D View this record in MEDLINE/PubMed
BookMark eNptk1Fv0zAQxyM0xEbZG8_IEhLigQ47durkZVLpBlSqxMQGr5ZrX1KP1C52wtRvwMfmso6xAslDbOd3__P9z36aHfjgIcueM3qSMyHfzhbnFyeXvJpIXj7KjhiT1ZhxUR08GB9mxyldU3w4Z1LSJ9khn5QVLSk9yn5OyVfdOqs7sOQzNC51EMfvdMLptG1CdN1qTbpA5hZ85-otudCdw2EiZ043PgzgDUIYbPoYwRsgoSaXfWyc0W27JVcRbtUvO90AmZNF7xsy0whG4jw5A7_W8duz7HGt2wTHd99R9uX9-dXs43jx6cN8Nl2MTcF5N5aWFzXk1taF1EyauihECTSv8gqMqGFYZEWVy1JAuTSylrmUluXWFMIK1Bhl852uDfpabaLD5FsVtFO3CyE2SsfOmRaURZesoJxRWwtMvBRLAXQJhk_ALNmgNd5p9X6jtzdY7b0go2pokEKdjUq7BiF_uuM3_XIN1qCNUbd7m9j_491KNeGHqqpyIlBilL2-E4jhew-pU2uXDLSt9hD6pLDsIsdG3-7t5V_odeijR2sHSkpOuaR_qEZjwc7XAfOaQVRNpWBFXhWlQOrkPxS-FtbO4ImsHa7vBbx6ELAC3XarFNq-c8GnffDFQ0furfh9QBF4swNMDClFqP9xeLgC6u4K8F-R1PXo
Cites_doi 10.1080/0284186X.2017.1315172
10.1200/CCI.17.00163
10.1177/1403494810393562
10.1183/13993003.01721-2016
10.21873/anticanres.15577
10.2147/CLEP.S177305
10.2147/CLEP.S269962
10.3109/0284186X.2015.1062135
10.1097/MLR.0000000000000404
10.1016/S1470-2045(15)00205-3
10.2147/CLEP.S295844
10.1002/ijc.29267
10.1093/jnci/djv134
10.2147/CLEP.S9908
10.1007/s10549-017-4510-3
10.1016/j.canep.2019.01.016
10.1183/13993003.01490-2015
10.1093/jnci/djaa050
10.1080/0284186X.2018.1490028
10.2147/CLEP.S179083
10.1177/1403494810387965
10.1158/1055-9965.EPI-06-0414
10.1097/MLR.0b013e318277eb6f
10.1080/0284186X.2020.1859133
ContentType Journal Article
Copyright 2023 Rasmussen et al.
COPYRIGHT 2023 Dove Medical Press Limited
2023. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Rasmussen et al. 2023 Rasmussen et al.
Copyright_xml – notice: 2023 Rasmussen et al.
– notice: COPYRIGHT 2023 Dove Medical Press Limited
– notice: 2023. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Rasmussen et al. 2023 Rasmussen et al.
DBID AAYXX
CITATION
NPM
3V.
7XB
8C1
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.2147/CLEP.S396738
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Public Health Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
Research Library (Proquest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Public Health
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
DocumentTitleAlternate Rasmussen et al
EISSN 1179-1349
EndPage 261
ExternalDocumentID oai_doaj_org_article_d689d40310df47d3b4b4e0bec36ecb15
10.2147/clep.s396738
PMC9986467
A741529584
36890800
10_2147_CLEP_S396738
Genre Journal Article
GeographicLocations Denmark
GeographicLocations_xml – name: Denmark
GrantInformation_xml – fundername: ;
GroupedDBID ---
0YH
29B
2WC
53G
5VS
8C1
8G5
AAYXX
ABUWG
ADBBV
ADRAZ
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
C1A
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HYE
IAO
IHR
IHW
IPNFZ
ITC
KQ8
M2O
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PUEGO
RIG
RPM
TDBHL
TR2
UKHRP
VDV
ALIPV
NPM
AQTUD
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c533t-7d35fe2ddf57a17cf5548e02929ec4fe7a171592784e8bc7f7277d12dc54d4c53
IEDL.DBID M48
ISSN 1179-1349
IngestDate Tue Oct 14 19:06:27 EDT 2025
Sun Oct 26 04:12:08 EDT 2025
Tue Sep 30 17:15:41 EDT 2025
Thu Oct 02 05:57:38 EDT 2025
Fri Jul 25 03:09:22 EDT 2025
Mon Oct 20 22:27:46 EDT 2025
Mon Oct 20 16:45:29 EDT 2025
Thu May 22 21:19:42 EDT 2025
Thu Jan 02 22:52:29 EST 2025
Wed Oct 01 03:10:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords recurrence
Denmark
algorithms
registries
validation study
lung neoplasms
Language English
License https://creativecommons.org/licenses/by-nc/3.0
2023 Rasmussen et al.
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-7d35fe2ddf57a17cf5548e02929ec4fe7a171592784e8bc7f7277d12dc54d4c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2763-595X
0000-0002-9753-2008
0000-0002-5485-2730
0000-0002-7236-5856
0000-0003-4040-7334
0000-0003-2113-5599
0000-0002-4877-2697
OpenAccessLink https://doaj.org/article/d689d40310df47d3b4b4e0bec36ecb15
PMID 36890800
PQID 2787730370
PQPubID 3933188
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_d689d40310df47d3b4b4e0bec36ecb15
unpaywall_primary_10_2147_clep_s396738
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9986467
proquest_miscellaneous_2785200015
proquest_journals_2787730370
gale_infotracmisc_A741529584
gale_infotracacademiconefile_A741529584
gale_healthsolutions_A741529584
pubmed_primary_36890800
crossref_primary_10_2147_CLEP_S396738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New Zealand
PublicationPlace_xml – name: New Zealand
– name: Macclesfield
PublicationTitle Clinical epidemiology
PublicationTitleAlternate Clin Epidemiol
PublicationYear 2023
Publisher Dove Medical Press Limited
Taylor & Francis Ltd
Dove
Dove Medical Press
Publisher_xml – name: Dove Medical Press Limited
– name: Taylor & Francis Ltd
– name: Dove
– name: Dove Medical Press
References Christensen (ref24) 2018; 57
Subotic (ref5) 2016; 47
ref33
Pedersen (ref17) 2020; 12
Rasmussen (ref13) 2018; 10
Rubin (ref1) 2015; 16
ref2
Winther-Larsen (ref28) 2015; 54
Gjerstorff (ref20) 2011; 39
(ref27) 2005
Sandegaard (ref21) 2015; 7
Uno (ref11) 2018; 2
Rasmussen (ref14) 2019; 59
Pedersen (ref19) 2011; 39
(ref32) 2006
Schmidt (ref29) 2019; 11
Rasmussen (ref15) 2021; 60
ref23
ref26
Izci (ref10) 2020; 112
Rasmussen (ref16) 2021; 13
Cronin-Fenton (ref18) 2018; 167
Warren (ref9) 2015; 107
Erichsen (ref22) 2010; 2
Christensen (ref25) 2017; 56
Lash (ref12) 2015; 136
Leduc (ref3) 2017; 49
(ref31) 2008
ref4
Hassett (ref7) 2014; 52
Travis (ref30) 2006; 15
Takenaka (ref8) 2022; 42
Hassett (ref6) 2017; 55
References_xml – volume: 56
  start-page: 943
  year: 2017
  ident: ref25
  publication-title: Acta Oncol
  doi: 10.1080/0284186X.2017.1315172
– volume: 2
  start-page: 1
  year: 2018
  ident: ref11
  publication-title: JCO Clin Cancer Inform
  doi: 10.1200/CCI.17.00163
– volume: 39
  start-page: 42
  year: 2011
  ident: ref20
  publication-title: Scand J Public Health
  doi: 10.1177/1403494810393562
– volume: 49
  start-page: 1601721
  year: 2017
  ident: ref3
  publication-title: Eur Respir J
  doi: 10.1183/13993003.01721-2016
– volume: 42
  start-page: 1137
  year: 2022
  ident: ref8
  publication-title: Anticancer Res
  doi: 10.21873/anticanres.15577
– volume: 10
  start-page: 1755
  year: 2018
  ident: ref13
  publication-title: Clin Epidemiol
  doi: 10.2147/CLEP.S177305
– volume: 12
  start-page: 1083
  year: 2020
  ident: ref17
  publication-title: Clin Epidemiol
  doi: 10.2147/CLEP.S269962
– volume: 54
  start-page: 1574
  year: 2015
  ident: ref28
  publication-title: Acta Oncol
  doi: 10.3109/0284186X.2015.1062135
– volume: 55
  start-page: e88
  year: 2017
  ident: ref6
  publication-title: Med Care
  doi: 10.1097/MLR.0000000000000404
– volume: 16
  start-page: 1474
  year: 2015
  ident: ref1
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(15)00205-3
– volume: 13
  start-page: 207
  year: 2021
  ident: ref16
  publication-title: Clin Epidemiol
  doi: 10.2147/CLEP.S295844
– volume: 136
  start-page: 2210
  year: 2015
  ident: ref12
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29267
– volume: 107
  start-page: djv134
  year: 2015
  ident: ref9
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djv134
– volume-title: From Cancer Patient to Cancer Survivor: Lost in Transition. (Press NA, ed.)
  year: 2006
  ident: ref32
– volume: 2
  start-page: 51
  year: 2010
  ident: ref22
  publication-title: Clin Epidemiol
  doi: 10.2147/CLEP.S9908
– volume-title: A Proposal for Strength of Agreement Criteria for Lin’s Concordance Correlation Coefficient
  year: 2005
  ident: ref27
– volume: 167
  start-page: 517
  year: 2018
  ident: ref18
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-017-4510-3
– volume: 59
  start-page: 129
  year: 2019
  ident: ref14
  publication-title: Cancer Epidemiol
  doi: 10.1016/j.canep.2019.01.016
– volume: 47
  start-page: 374
  year: 2016
  ident: ref5
  publication-title: Eur Respir J
  doi: 10.1183/13993003.01490-2015
– ident: ref4
– volume: 112
  start-page: djaa050
  year: 2020
  ident: ref10
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djaa050
– ident: ref2
– volume: 7
  start-page: 449
  year: 2015
  ident: ref21
  publication-title: Clin Epidemiol
– volume: 57
  start-page: 1556
  year: 2018
  ident: ref24
  publication-title: Acta Oncol
  doi: 10.1080/0284186X.2018.1490028
– volume-title: Modern Epidemiology
  year: 2008
  ident: ref31
– volume: 11
  start-page: 563
  year: 2019
  ident: ref29
  publication-title: Clin Epidemiol
  doi: 10.2147/CLEP.S179083
– volume: 39
  start-page: 22
  year: 2011
  ident: ref19
  publication-title: Scand J Public Health
  doi: 10.1177/1403494810387965
– ident: ref23
– ident: ref26
– volume: 15
  start-page: 2020
  year: 2006
  ident: ref30
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-06-0414
– volume: 52
  start-page: e65
  year: 2014
  ident: ref7
  publication-title: Med Care
  doi: 10.1097/MLR.0b013e318277eb6f
– volume: 60
  start-page: 1
  year: 2021
  ident: ref15
  publication-title: Acta Oncol
  doi: 10.1080/0284186X.2020.1859133
– ident: ref33
SSID ssj0000331770
Score 2.305775
Snippet Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to...
Introduction: Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based...
Linda Aagaard Rasmussen,1 Niels Lyhne Christensen,2 Anne Winther-Larsen,3 Susanne Oksbjerg Dalton,4,5 Line Flytkjær Virgilsen,1 Henry Jensen,1 Peter Vedsted1...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 251
SubjectTerms Algorithms
Bladder cancer
Breast cancer
Cancer patients
Cancer surgery
Cancer therapies
Care and treatment
Chemotherapy
Clinical medicine
denmark
Diagnostic imaging
Disease
Endometrial cancer
Epidemiology
Health aspects
Lung cancer
lung neoplasms
Lymphatic system
Medical coding
Medical diagnosis
Medical records
Melanoma
Metastasis
Morphology
Original Research
Patients
Radiation therapy
recurrence
registries
Skin cancer
Tomography
Ultrasonic imaging
validation study
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQLyAhxJtAASPxOIVmHed13G5bFVRQRVvUmxW_2lW3ySqbFdp_wM9mxk6jhB64cI3H2fXMePyN4_lMyHtAqXJiWRJyqcqQl8yGktk8TGxpka4M8mb8ovvte3p4xr-eJ-eDq77wTJinB_aK29FpXmiOBJba8kzHkktuIvjlODVKuvJyFuXFIJlyMTiGddHdFIeUZyFy8PlT73gtz87saP_480lcpK4sZbAeOdr-28F5sDr9fXLy7rpalptf5WIxWJYOHpIHHZ6kUz-OR-SOqR6T-34zjvoaoyfk95T-BLyNyb2mPwzW_Jgm3IUFTNPp4qJu5u3lNW1r6st27YYee7rVFd3zR_FAEHdsobNyhE7K0NrSk3XjAudiQ08RfIIUgNcLQ7_QIwgidIYu1dB5RfdMdV02V0_J2cH-6eww7K5gCBXgwDYEhSfWMK1tkpWTTFlAH7mJGIAqo7g1-BAAEX69NLlUmQU4lOkJ0yrhmsM7npGtqq7MC0LzElIjyS2AAsmhbyljxIqTIjGG2SQKyIcbQ4ilZ9oQkKGgwQQaTHQGC8guWqmXQX5s9wC8RnReI_7lNQF5izYWvti0n-ViigCLFYDKAvLJSeA8B1OrsitXgMEgY9ZIcnskCfNTjZtv_Eh08WElQGEZxNY4g2G_65uxJ555q0y9djLIiRXhv33u3a4fdAzjQ6wfkGzkkCOtjFuq-aVjDy-QkD_NAvKxd91b-gYVLsXK6_vl_9D3K3KPATr0e1fbZKtt1uY1oLlWvnET9w8e4Eay
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gEkhPgmMMBIfDyFpU7StA8ItV2ngUZV7QPtzXL80U10SUlbof4H_NncxWlomMRrfE5i3_n889n3M8BbRKlp2_LYj1Il_Uhy66fcdv3YSkt0Zbhuph3db-PO0Xn09SK-2IHxJheGjlVufGLpqHWuKEa-z9Gy0BrDJPg8_-nTrVG0u7q5QkNWVyvoTyXF2C3Y5cSM1YLdwWg8OamjLkGI82USuBPwdEXP_vB4NPl4GvY6ZYrK1txUUvjfdNRbM9W_pyhvr7K5XP-Ss9nWFHV4H-5V2JL1nTE8gB2TPYS7LjDHXL7RI_jdZ98Re9NCX7MTQ_k_pvAHOJlp1p9NscnLy2u2zJlL4bVrNnHUqwt24I7loSBFb7GyKsmdlGG5ZaeronSiszU7IyCKUghkp4Z9YcfoUNiQzKtgVxk7MNm1LH48hvPD0dnwyK-uY_AVYsKln-gwtoZrbeNEthNlEYl0TcARYBkVWUMPERzRTqbppiqxCI0S3eZaxZGO8B1PoJXlmXkGrCtxmZRGFgFCGmFdmYaEG9u92Bhu48CDdxtFiLlj3RC4WiGFCVKYqBTmwYC0VMsQV3b5IC-mohp6Qne6PR0RBaq2ETYixW-aAG037BiVtmMPXpOOhUs8rUe86BPY4j1EaB58KCVozKOqlaxSF7AxxJ7VkNxrSOJYVc3ijR2JylcsxF_L9uBNXUw16fxbZvJVKUP8WAH97VNndnWjQ2wf4X4PkoZBNnqlWZJdXZZM4j0i5-8kHryvTfdGf2MXzsXC9ffz____C7jDEQO6CNUetJbFyrxEzLZMX1UD8Q9qBkIW
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6V9ABSxRtqKLBIPE4Oid8-ummrgkoV0QaV08r7SqOmduTYoPAL-NnMeB0rbi9wi7yzSWZ3Zvbb9cy3hLwDlMqH2vFtj4vU9lJH29zRke3rVCNdGeyb8Y3u19PgeOJ9ufAvtoizroXBtEqZ_zRZoOY0SZVIUVSTReAHCGARLGvxHbId-IC_e2R7cjpOfphbVGIb-fZMhjtewfMJBn_RX7pxUJegbKw9NUX_7UC8sRLdzJK8W2WLdPUrnc83lqCjB6YscFkzF2LmyVW_Knlf_L7B6_h_2j0k9xtEShNjQo_Ilsoekx1znEdNldIT8ieh3wGx4_GApN8UVg2pwt6HJVDSZD7Ni1l5eU3LnJrCX72iY0PYuqQHJpkPBPHMFzqLmhJKKJprelYVdeidr-g5wleQAvg7VfQzPYEwREdolAWdZfRAZddpcfWUTI4Oz0fHdnOJgy0ASZZ2KF1fK0dK7YfpMBQa8EukBg7AMiU8rfAhQCp8_6kiLkINgCqUQ0cK35MefMcz0svyTO0SGqWwueKeBljBPeibchfR5jD2lXK0P7DI-_X0soXh6mCwx0EzYKOTwzE7M2ZgkX2c-1YGGbbrB3kxZY3DMhlEsfSQOFVqD5Tg8JtqABbvBkrwoW-RN2g5zJSrtnGCJQjRnBhwnUU-1hIYKcCARNoUPIAyONMdyb2OJHi46DavrZM1EWbJYMBCiM5uCGq_bZuxJ2bNZSqvahlk1Rrgv31ujLlV2gX9cLdgkbBj5p1R6bZks8uafzxGSv8gtMiH1iFujTe6HWvc7sW_Cr4k9xzAkOaEa4_0yqJSrwDzlfx14-R_AZ-VWg4
  priority: 102
  providerName: Unpaywall
Title A Validated Register-Based Algorithm to Identify Patients Diagnosed with Recurrence of Surgically Treated Stage I Lung Cancer in Denmark
URI https://www.ncbi.nlm.nih.gov/pubmed/36890800
https://www.proquest.com/docview/2787730370
https://www.proquest.com/docview/2785200015
https://pubmed.ncbi.nlm.nih.gov/PMC9986467
https://www.dovepress.com/getfile.php?fileID=87829
https://doaj.org/article/d689d40310df47d3b4b4e0bec36ecb15
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: M48
  dateStart: 20090801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: 0YH
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9NAFB51OYCEEDuGEgYJyskltsexfUDISVMKaqOobVA4jexZ0grXTp1EkH_Az-Y9jxPVhAOXHGaeHb9lZr7ZvkfIW0CpqaNd32apSGyWuNpOXR3avk400pXBvBl3dE8HneMR-zr2x1tkdX6-NuDsn1M7zCc1KrODXzfLT9DgP-IxZocFH3on_eHBuRdhAsv96Y2NKaVw67XOr7FNdmHYijCvw2mN_atu2oOhs0omh6xoNtL0mYPxG-9sDFkVs_9m_31rAPv7cOWdRT5Nlj-TLLs1ch09IPdryEljEyMPyZbKH5F7Zr2OmmtIj8nvmH4DSI7zf0nPFF4LUqXdhTFO0jibgLLzy2s6L6i52auXdGgYWWf00JzWA0Fc1IWHRcX5JBQtND1flFXfmi3pBeJTkAJ8O1H0Cz2Bfob2MOpKepXTQ5VfJ-WPJ2R01L_oHdt1lgZbAFSc24H0fK1cKbUfJE4gNACUULVdwF1KMK2wEDATbnCqMBWBBsQUSMeVwmeSwTuekp28yNVzQsMEZk8p04AbUgbPJqmHcNKJfKVc7bct8m7lCD41ZBwcJjHoMI4O47XDLNJFL61lkEK7KijKCa9bJJedMJIMmVGlZqBECv-p2hDSXkeJ1PEt8hp9zM191HVHwGPEYG4EwM0i7ysJDE5wtUjqGw2gDJJqNST3GpLQhEWzehVHfNUCOBgsgO7XC0DtN-tqfBKPxeWqWFQySJvVxq99ZsJurbQH-uF0wCJBIyAbVmnW5FeXFcF4hJz9ncAi--vQ3bA3mHDKZ8beL_7jA1-Suy7gQ7N6tUd25uVCvQI8N09bZDvsOS2y2-0PhmetalUEfj-PoQxbLNSMBsP4-x_PPE8y
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFICPHGUOgiUTiZOms7jg8VyqtKaBpFbYp6W-x9pBWpHZxEVf4Bv4rfxozXMTGVuPVqz8rendmZb2Z3Zgj5ACg1rmnm214sItuLmLZjphu2ryON5crAb8YT3dNhvXfhfb30L7fI73UuDF6rXOvEXFHLVGCM_JCBZIE0uoHzZfbTxq5ReLq6bqERFa0V5FFeYqxI7DhRq1tw4eZH_Q7w-4Cx4-643bOLLgO2AKizsAPp-loxKbUfRLVAaDCwDeUwwA1KeFrhQ7D5eECnGrEINFj8QNaYFL4nPYFdI8AE7HiuF4Lzt9PqDkdnZZTHccE-B465cY8tgQ7bg-7o87kb1vOUmA1bmLcMuGsYNizjv7c2d5fJLFrdRtPphkk8fkweFViWNo3wPSFbKnlKHppAIDX5Tc_Iryb9BlgfAwuSninMN1KZ3QLjKWlzOoElXlzd0EVKTcqwXtGRKfU6px1zDRAIMVoMg0VeTEoommp6vsxypT1d0TECX6AC4DxRtE8HoMBoG8U5o9cJ7ajkJsp-PCcX98KYF2Q7SRP1itBGBG5Z7GkAJLEHY6PYRZxaC32lmPYdixysGcFnpsoHB-8IGcaRYbxgmEVayKWSBmtz5w_SbMKLrc5lvRFKD0uuSu3BJGL4pnJgr7h1JeKab5F95DE3ia6lhuFNBHcsBERokU85BeoYYLWIilQJmAxW66pQ7lUoQTeI6uu1HPFCN835351kkfflaxyJ9-0SlS5zGqzH5eDfvjRiV07ahfmhn2GRoCKQlVWpvkmur_LK5SE2A6gHFvlYiu6d9YYlnPG5We_X____fbLbG58O-KA_PHlDHjDAnyY6tke2F9lSvQW8uIjfFZuSku_3rQf-ACgSfxI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQIkhHjjUugiUTiZ2OtnDgilSaOGhiqiLeptsfeRVk3t4CSq8g_4Tfw6ZryOianErVd7VvbuzM58OzsPQt4BSk1dzQLbT0Vi-wnTdsp0bAc60ViuDM7NeKP79Sg8OPW_nAVnG-T3KhcGwypXOrFU1DIX6CNvMZAskEYvclq6CosY9fqfpz9t7CCFN62rdhpGRA7V8hqOb7NPgx7wepex_v5J98CuOgzYAmDO3I6kF2jFpNRBlLiR0GBcY-UwwAxK-FrhQ7D3eDmn4lREGqx9JF0mReBLX2DHCFD_dyIvDLFuf9x1a_-O44FljhwTa4_NgFrd4f7o47HXDstkmDUrWDYLuGkS1mziv_Ga9xbZNFleJ5PJmjHsPyIPKxRLO0bsHpMNlT0hD4wLkJrMpqfkV4d-B5SPLgVJvynMNFKFvQdmU9LOZAwLOj-_ovOcmmRhvaQjU-R1RnsmABAI0U8Mg0VZRkoommt6vChKdT1Z0hOEvEAFkHms6IAOQXXRLgpyQS8y2lPZVVJcPiOnt8KW52QzyzP1ktA4gQNZ6muAIqkPY5PUQ4TqtgOlmA4ci-yuGMGnpr4Hh3MRMowjw3jFMIvsIZdqGqzKXT7IizGvNjmXYdyWPhZbldqHSaTwTeXALvFCJVI3sMgO8pibFNdat_AOwjrWBixokQ8lBWoXYLVIqiQJmAzW6WpQbjcoQSuI5uuVHPFKK8343z1kkbf1axyJkXaZyhclDVbicvBvXxixqyftwfzwhGGRqCGQjVVpvskuzsua5W1sAxBGFnlfi-6N9YYlnPKZWe-t____DrkLu58PB0eHr8h9BsDTuMW2yea8WKjXABTn6ZtyR1Ly47ZVwB88J3x3
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6V9ABSxRtqKLBIPE4Oid8-ummrgkoV0QaV08r7SqOmduTYoPAL-NnMeB0rbi9wi7yzSWZ3Zvbb9cy3hLwDlMqH2vFtj4vU9lJH29zRke3rVCNdGeyb8Y3u19PgeOJ9ufAvtoizroXBtEqZ_zRZoOY0SZVIUVSTReAHCGARLGvxHbId-IC_e2R7cjpOfphbVGIb-fZMhjtewfMJBn_RX7pxUJegbKw9NUX_7UC8sRLdzJK8W2WLdPUrnc83lqCjB6YscFkzF2LmyVW_Knlf_L7B6_h_2j0k9xtEShNjQo_Ilsoekx1znEdNldIT8ieh3wGx4_GApN8UVg2pwt6HJVDSZD7Ni1l5eU3LnJrCX72iY0PYuqQHJpkPBPHMFzqLmhJKKJprelYVdeidr-g5wleQAvg7VfQzPYEwREdolAWdZfRAZddpcfWUTI4Oz0fHdnOJgy0ASZZ2KF1fK0dK7YfpMBQa8EukBg7AMiU8rfAhQCp8_6kiLkINgCqUQ0cK35MefMcz0svyTO0SGqWwueKeBljBPeibchfR5jD2lXK0P7DI-_X0soXh6mCwx0EzYKOTwzE7M2ZgkX2c-1YGGbbrB3kxZY3DMhlEsfSQOFVqD5Tg8JtqABbvBkrwoW-RN2g5zJSrtnGCJQjRnBhwnUU-1hIYKcCARNoUPIAyONMdyb2OJHi46DavrZM1EWbJYMBCiM5uCGq_bZuxJ2bNZSqvahlk1Rrgv31ujLlV2gX9cLdgkbBj5p1R6bZks8uafzxGSv8gtMiH1iFujTe6HWvc7sW_Cr4k9xzAkOaEa4_0yqJSrwDzlfx14-R_AZ-VWg4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Validated+Register-Based+Algorithm+to+Identify+Patients+Diagnosed+with+Recurrence+of+Surgically+Treated+Stage+I+Lung+Cancer+in+Denmark&rft.jtitle=Clinical+epidemiology&rft.au=Rasmussen%2C+Linda+Aagaard&rft.au=Christensen%2C+Niels+Lyhne&rft.au=Winther-Larsen%2C+Anne&rft.au=Dalton%2C+Susanne+Oksbjerg&rft.date=2023-01-01&rft.issn=1179-1349&rft.eissn=1179-1349&rft.volume=15&rft.spage=251&rft_id=info:doi/10.2147%2FCLEP.S396738&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-1349&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-1349&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-1349&client=summon