A Validated Register-Based Algorithm to Identify Patients Diagnosed with Recurrence of Surgically Treated Stage I Lung Cancer in Denmark
Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date. Patients with early-stage...
Saved in:
| Published in | Clinical epidemiology Vol. 15; pp. 251 - 261 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New Zealand
Dove Medical Press Limited
01.01.2023
Taylor & Francis Ltd Dove Dove Medical Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1179-1349 1179-1349 |
| DOI | 10.2147/CLEP.S396738 |
Cover
| Abstract | Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date.
Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm.
The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%.
The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates. |
|---|---|
| AbstractList | Introduction: Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date. Material and Methods: Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm. Results: The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18– 46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7– 91.1), a specificity of 93.8% (95% CI: 88.5– 97.1), and a positive predictive value of 87.0% (95% CI: 76.7– 93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%. Conclusion: The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates. Introduction: Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date. Material and Methods: Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm. Results: The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%. Conclusion: The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates. Keywords: lung neoplasms, recurrence, algorithms, validation study, registries, Denmark Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date.IntroductionRecurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date.Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm.Material and MethodsPatients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm.The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%.ResultsThe final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%.The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates.ConclusionThe proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates. Linda Aagaard Rasmussen,1 Niels Lyhne Christensen,2 Anne Winther-Larsen,3 Susanne Oksbjerg Dalton,4,5 Line Flytkjær Virgilsen,1 Henry Jensen,1 Peter Vedsted1 1Research Unit for General Practice, Aarhus, Denmark; 2Department of Pulmonary Medicine and Allergy, Aarhus University Hospital, Aarhus, Denmark; 3Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; 4Survivorship and Inequality in Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark; 5Department of Clinical Oncology & Palliative Care, Zealand University Hospital, Næstved, DenmarkCorrespondence: Linda Aagaard Rasmussen, Research Unit for General Practice, Bartholins Allé 2, Aarhus C, 8000, Denmark, Tel +45 8716 8365, Email linda.rasmussen@ph.au.dkIntroduction: Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date.Material and Methods: Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm.Results: The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18– 46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7– 91.1), a specificity of 93.8% (95% CI: 88.5– 97.1), and a positive predictive value of 87.0% (95% CI: 76.7– 93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%.Conclusion: The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates.Keywords: lung neoplasms, recurrence, algorithms, validation study, registries, Denmark Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date. Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm. The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%. The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates. |
| Audience | Academic |
| Author | Virgilsen, Line Flytkjær Rasmussen, Linda Aagaard Jensen, Henry Vedsted, Peter Dalton, Susanne Oksbjerg Christensen, Niels Lyhne Winther-Larsen, Anne |
| Author_xml | – sequence: 1 givenname: Linda Aagaard orcidid: 0000-0002-9753-2008 surname: Rasmussen fullname: Rasmussen, Linda Aagaard – sequence: 2 givenname: Niels Lyhne surname: Christensen fullname: Christensen, Niels Lyhne – sequence: 3 givenname: Anne orcidid: 0000-0002-2763-595X surname: Winther-Larsen fullname: Winther-Larsen, Anne – sequence: 4 givenname: Susanne Oksbjerg orcidid: 0000-0002-5485-2730 surname: Dalton fullname: Dalton, Susanne Oksbjerg – sequence: 5 givenname: Line Flytkjær surname: Virgilsen fullname: Virgilsen, Line Flytkjær – sequence: 6 givenname: Henry surname: Jensen fullname: Jensen, Henry – sequence: 7 givenname: Peter surname: Vedsted fullname: Vedsted, Peter |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36890800$$D View this record in MEDLINE/PubMed |
| BookMark | eNptk1Fv0zAQxyM0xEbZG8_IEhLigQ47durkZVLpBlSqxMQGr5ZrX1KP1C52wtRvwMfmso6xAslDbOd3__P9z36aHfjgIcueM3qSMyHfzhbnFyeXvJpIXj7KjhiT1ZhxUR08GB9mxyldU3w4Z1LSJ9khn5QVLSk9yn5OyVfdOqs7sOQzNC51EMfvdMLptG1CdN1qTbpA5hZ85-otudCdw2EiZ043PgzgDUIYbPoYwRsgoSaXfWyc0W27JVcRbtUvO90AmZNF7xsy0whG4jw5A7_W8duz7HGt2wTHd99R9uX9-dXs43jx6cN8Nl2MTcF5N5aWFzXk1taF1EyauihECTSv8gqMqGFYZEWVy1JAuTSylrmUluXWFMIK1Bhl852uDfpabaLD5FsVtFO3CyE2SsfOmRaURZesoJxRWwtMvBRLAXQJhk_ALNmgNd5p9X6jtzdY7b0go2pokEKdjUq7BiF_uuM3_XIN1qCNUbd7m9j_491KNeGHqqpyIlBilL2-E4jhew-pU2uXDLSt9hD6pLDsIsdG3-7t5V_odeijR2sHSkpOuaR_qEZjwc7XAfOaQVRNpWBFXhWlQOrkPxS-FtbO4ImsHa7vBbx6ELAC3XarFNq-c8GnffDFQ0furfh9QBF4swNMDClFqP9xeLgC6u4K8F-R1PXo |
| Cites_doi | 10.1080/0284186X.2017.1315172 10.1200/CCI.17.00163 10.1177/1403494810393562 10.1183/13993003.01721-2016 10.21873/anticanres.15577 10.2147/CLEP.S177305 10.2147/CLEP.S269962 10.3109/0284186X.2015.1062135 10.1097/MLR.0000000000000404 10.1016/S1470-2045(15)00205-3 10.2147/CLEP.S295844 10.1002/ijc.29267 10.1093/jnci/djv134 10.2147/CLEP.S9908 10.1007/s10549-017-4510-3 10.1016/j.canep.2019.01.016 10.1183/13993003.01490-2015 10.1093/jnci/djaa050 10.1080/0284186X.2018.1490028 10.2147/CLEP.S179083 10.1177/1403494810387965 10.1158/1055-9965.EPI-06-0414 10.1097/MLR.0b013e318277eb6f 10.1080/0284186X.2020.1859133 |
| ContentType | Journal Article |
| Copyright | 2023 Rasmussen et al. COPYRIGHT 2023 Dove Medical Press Limited 2023. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Rasmussen et al. 2023 Rasmussen et al. |
| Copyright_xml | – notice: 2023 Rasmussen et al. – notice: COPYRIGHT 2023 Dove Medical Press Limited – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Rasmussen et al. 2023 Rasmussen et al. |
| DBID | AAYXX CITATION NPM 3V. 7XB 8C1 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.2147/CLEP.S396738 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Public Health Database ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep Research Library (Proquest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Public Health Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Central Health Research Premium Collection ProQuest One Academic UKI Edition ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| DocumentTitleAlternate | Rasmussen et al |
| EISSN | 1179-1349 |
| EndPage | 261 |
| ExternalDocumentID | oai_doaj_org_article_d689d40310df47d3b4b4e0bec36ecb15 10.2147/clep.s396738 PMC9986467 A741529584 36890800 10_2147_CLEP_S396738 |
| Genre | Journal Article |
| GeographicLocations | Denmark |
| GeographicLocations_xml | – name: Denmark |
| GrantInformation_xml | – fundername: ; |
| GroupedDBID | --- 0YH 29B 2WC 53G 5VS 8C1 8G5 AAYXX ABUWG ADBBV ADRAZ AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ C1A CCPQU CITATION DIK DWQXO E3Z EBD FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HYE IAO IHR IHW IPNFZ ITC KQ8 M2O M48 M~E O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PUEGO RIG RPM TDBHL TR2 UKHRP VDV ALIPV NPM AQTUD 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c533t-7d35fe2ddf57a17cf5548e02929ec4fe7a171592784e8bc7f7277d12dc54d4c53 |
| IEDL.DBID | M48 |
| ISSN | 1179-1349 |
| IngestDate | Tue Oct 14 19:06:27 EDT 2025 Sun Oct 26 04:12:08 EDT 2025 Tue Sep 30 17:15:41 EDT 2025 Thu Oct 02 05:57:38 EDT 2025 Fri Jul 25 03:09:22 EDT 2025 Mon Oct 20 22:27:46 EDT 2025 Mon Oct 20 16:45:29 EDT 2025 Thu May 22 21:19:42 EDT 2025 Thu Jan 02 22:52:29 EST 2025 Wed Oct 01 03:10:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | recurrence Denmark algorithms registries validation study lung neoplasms |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/3.0 2023 Rasmussen et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c533t-7d35fe2ddf57a17cf5548e02929ec4fe7a171592784e8bc7f7277d12dc54d4c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2763-595X 0000-0002-9753-2008 0000-0002-5485-2730 0000-0002-7236-5856 0000-0003-4040-7334 0000-0003-2113-5599 0000-0002-4877-2697 |
| OpenAccessLink | https://doaj.org/article/d689d40310df47d3b4b4e0bec36ecb15 |
| PMID | 36890800 |
| PQID | 2787730370 |
| PQPubID | 3933188 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d689d40310df47d3b4b4e0bec36ecb15 unpaywall_primary_10_2147_clep_s396738 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9986467 proquest_miscellaneous_2785200015 proquest_journals_2787730370 gale_infotracmisc_A741529584 gale_infotracacademiconefile_A741529584 gale_healthsolutions_A741529584 pubmed_primary_36890800 crossref_primary_10_2147_CLEP_S396738 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New Zealand |
| PublicationPlace_xml | – name: New Zealand – name: Macclesfield |
| PublicationTitle | Clinical epidemiology |
| PublicationTitleAlternate | Clin Epidemiol |
| PublicationYear | 2023 |
| Publisher | Dove Medical Press Limited Taylor & Francis Ltd Dove Dove Medical Press |
| Publisher_xml | – name: Dove Medical Press Limited – name: Taylor & Francis Ltd – name: Dove – name: Dove Medical Press |
| References | Christensen (ref24) 2018; 57 Subotic (ref5) 2016; 47 ref33 Pedersen (ref17) 2020; 12 Rasmussen (ref13) 2018; 10 Rubin (ref1) 2015; 16 ref2 Winther-Larsen (ref28) 2015; 54 Gjerstorff (ref20) 2011; 39 (ref27) 2005 Sandegaard (ref21) 2015; 7 Uno (ref11) 2018; 2 Rasmussen (ref14) 2019; 59 Pedersen (ref19) 2011; 39 (ref32) 2006 Schmidt (ref29) 2019; 11 Rasmussen (ref15) 2021; 60 ref23 ref26 Izci (ref10) 2020; 112 Rasmussen (ref16) 2021; 13 Cronin-Fenton (ref18) 2018; 167 Warren (ref9) 2015; 107 Erichsen (ref22) 2010; 2 Christensen (ref25) 2017; 56 Lash (ref12) 2015; 136 Leduc (ref3) 2017; 49 (ref31) 2008 ref4 Hassett (ref7) 2014; 52 Travis (ref30) 2006; 15 Takenaka (ref8) 2022; 42 Hassett (ref6) 2017; 55 |
| References_xml | – volume: 56 start-page: 943 year: 2017 ident: ref25 publication-title: Acta Oncol doi: 10.1080/0284186X.2017.1315172 – volume: 2 start-page: 1 year: 2018 ident: ref11 publication-title: JCO Clin Cancer Inform doi: 10.1200/CCI.17.00163 – volume: 39 start-page: 42 year: 2011 ident: ref20 publication-title: Scand J Public Health doi: 10.1177/1403494810393562 – volume: 49 start-page: 1601721 year: 2017 ident: ref3 publication-title: Eur Respir J doi: 10.1183/13993003.01721-2016 – volume: 42 start-page: 1137 year: 2022 ident: ref8 publication-title: Anticancer Res doi: 10.21873/anticanres.15577 – volume: 10 start-page: 1755 year: 2018 ident: ref13 publication-title: Clin Epidemiol doi: 10.2147/CLEP.S177305 – volume: 12 start-page: 1083 year: 2020 ident: ref17 publication-title: Clin Epidemiol doi: 10.2147/CLEP.S269962 – volume: 54 start-page: 1574 year: 2015 ident: ref28 publication-title: Acta Oncol doi: 10.3109/0284186X.2015.1062135 – volume: 55 start-page: e88 year: 2017 ident: ref6 publication-title: Med Care doi: 10.1097/MLR.0000000000000404 – volume: 16 start-page: 1474 year: 2015 ident: ref1 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(15)00205-3 – volume: 13 start-page: 207 year: 2021 ident: ref16 publication-title: Clin Epidemiol doi: 10.2147/CLEP.S295844 – volume: 136 start-page: 2210 year: 2015 ident: ref12 publication-title: Int J Cancer doi: 10.1002/ijc.29267 – volume: 107 start-page: djv134 year: 2015 ident: ref9 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djv134 – volume-title: From Cancer Patient to Cancer Survivor: Lost in Transition. (Press NA, ed.) year: 2006 ident: ref32 – volume: 2 start-page: 51 year: 2010 ident: ref22 publication-title: Clin Epidemiol doi: 10.2147/CLEP.S9908 – volume-title: A Proposal for Strength of Agreement Criteria for Lin’s Concordance Correlation Coefficient year: 2005 ident: ref27 – volume: 167 start-page: 517 year: 2018 ident: ref18 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-017-4510-3 – volume: 59 start-page: 129 year: 2019 ident: ref14 publication-title: Cancer Epidemiol doi: 10.1016/j.canep.2019.01.016 – volume: 47 start-page: 374 year: 2016 ident: ref5 publication-title: Eur Respir J doi: 10.1183/13993003.01490-2015 – ident: ref4 – volume: 112 start-page: djaa050 year: 2020 ident: ref10 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djaa050 – ident: ref2 – volume: 7 start-page: 449 year: 2015 ident: ref21 publication-title: Clin Epidemiol – volume: 57 start-page: 1556 year: 2018 ident: ref24 publication-title: Acta Oncol doi: 10.1080/0284186X.2018.1490028 – volume-title: Modern Epidemiology year: 2008 ident: ref31 – volume: 11 start-page: 563 year: 2019 ident: ref29 publication-title: Clin Epidemiol doi: 10.2147/CLEP.S179083 – volume: 39 start-page: 22 year: 2011 ident: ref19 publication-title: Scand J Public Health doi: 10.1177/1403494810387965 – ident: ref23 – ident: ref26 – volume: 15 start-page: 2020 year: 2006 ident: ref30 publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-06-0414 – volume: 52 start-page: e65 year: 2014 ident: ref7 publication-title: Med Care doi: 10.1097/MLR.0b013e318277eb6f – volume: 60 start-page: 1 year: 2021 ident: ref15 publication-title: Acta Oncol doi: 10.1080/0284186X.2020.1859133 – ident: ref33 |
| SSID | ssj0000331770 |
| Score | 2.305775 |
| Snippet | Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to... Introduction: Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based... Linda Aagaard Rasmussen,1 Niels Lyhne Christensen,2 Anne Winther-Larsen,3 Susanne Oksbjerg Dalton,4,5 Line Flytkjær Virgilsen,1 Henry Jensen,1 Peter Vedsted1... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 251 |
| SubjectTerms | Algorithms Bladder cancer Breast cancer Cancer patients Cancer surgery Cancer therapies Care and treatment Chemotherapy Clinical medicine denmark Diagnostic imaging Disease Endometrial cancer Epidemiology Health aspects Lung cancer lung neoplasms Lymphatic system Medical coding Medical diagnosis Medical records Melanoma Metastasis Morphology Original Research Patients Radiation therapy recurrence registries Skin cancer Tomography Ultrasonic imaging validation study |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQLyAhxJtAASPxOIVmHed13G5bFVRQRVvUmxW_2lW3ySqbFdp_wM9mxk6jhB64cI3H2fXMePyN4_lMyHtAqXJiWRJyqcqQl8yGktk8TGxpka4M8mb8ovvte3p4xr-eJ-eDq77wTJinB_aK29FpXmiOBJba8kzHkktuIvjlODVKuvJyFuXFIJlyMTiGddHdFIeUZyFy8PlT73gtz87saP_480lcpK4sZbAeOdr-28F5sDr9fXLy7rpalptf5WIxWJYOHpIHHZ6kUz-OR-SOqR6T-34zjvoaoyfk95T-BLyNyb2mPwzW_Jgm3IUFTNPp4qJu5u3lNW1r6st27YYee7rVFd3zR_FAEHdsobNyhE7K0NrSk3XjAudiQ08RfIIUgNcLQ7_QIwgidIYu1dB5RfdMdV02V0_J2cH-6eww7K5gCBXgwDYEhSfWMK1tkpWTTFlAH7mJGIAqo7g1-BAAEX69NLlUmQU4lOkJ0yrhmsM7npGtqq7MC0LzElIjyS2AAsmhbyljxIqTIjGG2SQKyIcbQ4ilZ9oQkKGgwQQaTHQGC8guWqmXQX5s9wC8RnReI_7lNQF5izYWvti0n-ViigCLFYDKAvLJSeA8B1OrsitXgMEgY9ZIcnskCfNTjZtv_Eh08WElQGEZxNY4g2G_65uxJ555q0y9djLIiRXhv33u3a4fdAzjQ6wfkGzkkCOtjFuq-aVjDy-QkD_NAvKxd91b-gYVLsXK6_vl_9D3K3KPATr0e1fbZKtt1uY1oLlWvnET9w8e4Eay priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gEkhPgmMMBIfDyFpU7StA8ItV2ngUZV7QPtzXL80U10SUlbof4H_NncxWlomMRrfE5i3_n889n3M8BbRKlp2_LYj1Il_Uhy66fcdv3YSkt0Zbhuph3db-PO0Xn09SK-2IHxJheGjlVufGLpqHWuKEa-z9Gy0BrDJPg8_-nTrVG0u7q5QkNWVyvoTyXF2C3Y5cSM1YLdwWg8OamjLkGI82USuBPwdEXP_vB4NPl4GvY6ZYrK1txUUvjfdNRbM9W_pyhvr7K5XP-Ss9nWFHV4H-5V2JL1nTE8gB2TPYS7LjDHXL7RI_jdZ98Re9NCX7MTQ_k_pvAHOJlp1p9NscnLy2u2zJlL4bVrNnHUqwt24I7loSBFb7GyKsmdlGG5ZaeronSiszU7IyCKUghkp4Z9YcfoUNiQzKtgVxk7MNm1LH48hvPD0dnwyK-uY_AVYsKln-gwtoZrbeNEthNlEYl0TcARYBkVWUMPERzRTqbppiqxCI0S3eZaxZGO8B1PoJXlmXkGrCtxmZRGFgFCGmFdmYaEG9u92Bhu48CDdxtFiLlj3RC4WiGFCVKYqBTmwYC0VMsQV3b5IC-mohp6Qne6PR0RBaq2ETYixW-aAG037BiVtmMPXpOOhUs8rUe86BPY4j1EaB58KCVozKOqlaxSF7AxxJ7VkNxrSOJYVc3ijR2JylcsxF_L9uBNXUw16fxbZvJVKUP8WAH97VNndnWjQ2wf4X4PkoZBNnqlWZJdXZZM4j0i5-8kHryvTfdGf2MXzsXC9ffz____C7jDEQO6CNUetJbFyrxEzLZMX1UD8Q9qBkIW priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6V9ABSxRtqKLBIPE4Oid8-ummrgkoV0QaV08r7SqOmduTYoPAL-NnMeB0rbi9wi7yzSWZ3Zvbb9cy3hLwDlMqH2vFtj4vU9lJH29zRke3rVCNdGeyb8Y3u19PgeOJ9ufAvtoizroXBtEqZ_zRZoOY0SZVIUVSTReAHCGARLGvxHbId-IC_e2R7cjpOfphbVGIb-fZMhjtewfMJBn_RX7pxUJegbKw9NUX_7UC8sRLdzJK8W2WLdPUrnc83lqCjB6YscFkzF2LmyVW_Knlf_L7B6_h_2j0k9xtEShNjQo_Ilsoekx1znEdNldIT8ieh3wGx4_GApN8UVg2pwt6HJVDSZD7Ni1l5eU3LnJrCX72iY0PYuqQHJpkPBPHMFzqLmhJKKJprelYVdeidr-g5wleQAvg7VfQzPYEwREdolAWdZfRAZddpcfWUTI4Oz0fHdnOJgy0ASZZ2KF1fK0dK7YfpMBQa8EukBg7AMiU8rfAhQCp8_6kiLkINgCqUQ0cK35MefMcz0svyTO0SGqWwueKeBljBPeibchfR5jD2lXK0P7DI-_X0soXh6mCwx0EzYKOTwzE7M2ZgkX2c-1YGGbbrB3kxZY3DMhlEsfSQOFVqD5Tg8JtqABbvBkrwoW-RN2g5zJSrtnGCJQjRnBhwnUU-1hIYKcCARNoUPIAyONMdyb2OJHi46DavrZM1EWbJYMBCiM5uCGq_bZuxJ2bNZSqvahlk1Rrgv31ujLlV2gX9cLdgkbBj5p1R6bZks8uafzxGSv8gtMiH1iFujTe6HWvc7sW_Cr4k9xzAkOaEa4_0yqJSrwDzlfx14-R_AZ-VWg4 priority: 102 providerName: Unpaywall |
| Title | A Validated Register-Based Algorithm to Identify Patients Diagnosed with Recurrence of Surgically Treated Stage I Lung Cancer in Denmark |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36890800 https://www.proquest.com/docview/2787730370 https://www.proquest.com/docview/2785200015 https://pubmed.ncbi.nlm.nih.gov/PMC9986467 https://www.dovepress.com/getfile.php?fileID=87829 https://doaj.org/article/d689d40310df47d3b4b4e0bec36ecb15 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: 8C1 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1179-1349 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: M48 dateStart: 20090801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: 0YH dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9NAFB51OYCEEDuGEgYJyskltsexfUDISVMKaqOobVA4jexZ0grXTp1EkH_Az-Y9jxPVhAOXHGaeHb9lZr7ZvkfIW0CpqaNd32apSGyWuNpOXR3avk400pXBvBl3dE8HneMR-zr2x1tkdX6-NuDsn1M7zCc1KrODXzfLT9DgP-IxZocFH3on_eHBuRdhAsv96Y2NKaVw67XOr7FNdmHYijCvw2mN_atu2oOhs0omh6xoNtL0mYPxG-9sDFkVs_9m_31rAPv7cOWdRT5Nlj-TLLs1ch09IPdryEljEyMPyZbKH5F7Zr2OmmtIj8nvmH4DSI7zf0nPFF4LUqXdhTFO0jibgLLzy2s6L6i52auXdGgYWWf00JzWA0Fc1IWHRcX5JBQtND1flFXfmi3pBeJTkAJ8O1H0Cz2Bfob2MOpKepXTQ5VfJ-WPJ2R01L_oHdt1lgZbAFSc24H0fK1cKbUfJE4gNACUULVdwF1KMK2wEDATbnCqMBWBBsQUSMeVwmeSwTuekp28yNVzQsMEZk8p04AbUgbPJqmHcNKJfKVc7bct8m7lCD41ZBwcJjHoMI4O47XDLNJFL61lkEK7KijKCa9bJJedMJIMmVGlZqBECv-p2hDSXkeJ1PEt8hp9zM191HVHwGPEYG4EwM0i7ysJDE5wtUjqGw2gDJJqNST3GpLQhEWzehVHfNUCOBgsgO7XC0DtN-tqfBKPxeWqWFQySJvVxq99ZsJurbQH-uF0wCJBIyAbVmnW5FeXFcF4hJz9ncAi--vQ3bA3mHDKZ8beL_7jA1-Suy7gQ7N6tUd25uVCvQI8N09bZDvsOS2y2-0PhmetalUEfj-PoQxbLNSMBsP4-x_PPE8y |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFICPHGUOgiUTiZOms7jg8VyqtKaBpFbYp6W-x9pBWpHZxEVf4Bv4rfxozXMTGVuPVqz8rendmZb2Z3Zgj5ACg1rmnm214sItuLmLZjphu2ryON5crAb8YT3dNhvXfhfb30L7fI73UuDF6rXOvEXFHLVGCM_JCBZIE0uoHzZfbTxq5ReLq6bqERFa0V5FFeYqxI7DhRq1tw4eZH_Q7w-4Cx4-643bOLLgO2AKizsAPp-loxKbUfRLVAaDCwDeUwwA1KeFrhQ7D5eECnGrEINFj8QNaYFL4nPYFdI8AE7HiuF4Lzt9PqDkdnZZTHccE-B465cY8tgQ7bg-7o87kb1vOUmA1bmLcMuGsYNizjv7c2d5fJLFrdRtPphkk8fkweFViWNo3wPSFbKnlKHppAIDX5Tc_Iryb9BlgfAwuSninMN1KZ3QLjKWlzOoElXlzd0EVKTcqwXtGRKfU6px1zDRAIMVoMg0VeTEoommp6vsxypT1d0TECX6AC4DxRtE8HoMBoG8U5o9cJ7ajkJsp-PCcX98KYF2Q7SRP1itBGBG5Z7GkAJLEHY6PYRZxaC32lmPYdixysGcFnpsoHB-8IGcaRYbxgmEVayKWSBmtz5w_SbMKLrc5lvRFKD0uuSu3BJGL4pnJgr7h1JeKab5F95DE3ia6lhuFNBHcsBERokU85BeoYYLWIilQJmAxW66pQ7lUoQTeI6uu1HPFCN835351kkfflaxyJ9-0SlS5zGqzH5eDfvjRiV07ahfmhn2GRoCKQlVWpvkmur_LK5SE2A6gHFvlYiu6d9YYlnPG5We_X____fbLbG58O-KA_PHlDHjDAnyY6tke2F9lSvQW8uIjfFZuSku_3rQf-ACgSfxI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQIkhHjjUugiUTiZ2OtnDgilSaOGhiqiLeptsfeRVk3t4CSq8g_4Tfw6ZryOianErVd7VvbuzM58OzsPQt4BSk1dzQLbT0Vi-wnTdsp0bAc60ViuDM7NeKP79Sg8OPW_nAVnG-T3KhcGwypXOrFU1DIX6CNvMZAskEYvclq6CosY9fqfpz9t7CCFN62rdhpGRA7V8hqOb7NPgx7wepex_v5J98CuOgzYAmDO3I6kF2jFpNRBlLiR0GBcY-UwwAxK-FrhQ7D3eDmn4lREGqx9JF0mReBLX2DHCFD_dyIvDLFuf9x1a_-O44FljhwTa4_NgFrd4f7o47HXDstkmDUrWDYLuGkS1mziv_Ga9xbZNFleJ5PJmjHsPyIPKxRLO0bsHpMNlT0hD4wLkJrMpqfkV4d-B5SPLgVJvynMNFKFvQdmU9LOZAwLOj-_ovOcmmRhvaQjU-R1RnsmABAI0U8Mg0VZRkoommt6vChKdT1Z0hOEvEAFkHms6IAOQXXRLgpyQS8y2lPZVVJcPiOnt8KW52QzyzP1ktA4gQNZ6muAIqkPY5PUQ4TqtgOlmA4ci-yuGMGnpr4Hh3MRMowjw3jFMIvsIZdqGqzKXT7IizGvNjmXYdyWPhZbldqHSaTwTeXALvFCJVI3sMgO8pibFNdat_AOwjrWBixokQ8lBWoXYLVIqiQJmAzW6WpQbjcoQSuI5uuVHPFKK8343z1kkbf1axyJkXaZyhclDVbicvBvXxixqyftwfzwhGGRqCGQjVVpvskuzsua5W1sAxBGFnlfi-6N9YYlnPKZWe-t____DrkLu58PB0eHr8h9BsDTuMW2yea8WKjXABTn6ZtyR1Ly47ZVwB88J3x3 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6V9ABSxRtqKLBIPE4Oid8-ummrgkoV0QaV08r7SqOmduTYoPAL-NnMeB0rbi9wi7yzSWZ3Zvbb9cy3hLwDlMqH2vFtj4vU9lJH29zRke3rVCNdGeyb8Y3u19PgeOJ9ufAvtoizroXBtEqZ_zRZoOY0SZVIUVSTReAHCGARLGvxHbId-IC_e2R7cjpOfphbVGIb-fZMhjtewfMJBn_RX7pxUJegbKw9NUX_7UC8sRLdzJK8W2WLdPUrnc83lqCjB6YscFkzF2LmyVW_Knlf_L7B6_h_2j0k9xtEShNjQo_Ilsoekx1znEdNldIT8ieh3wGx4_GApN8UVg2pwt6HJVDSZD7Ni1l5eU3LnJrCX72iY0PYuqQHJpkPBPHMFzqLmhJKKJprelYVdeidr-g5wleQAvg7VfQzPYEwREdolAWdZfRAZddpcfWUTI4Oz0fHdnOJgy0ASZZ2KF1fK0dK7YfpMBQa8EukBg7AMiU8rfAhQCp8_6kiLkINgCqUQ0cK35MefMcz0svyTO0SGqWwueKeBljBPeibchfR5jD2lXK0P7DI-_X0soXh6mCwx0EzYKOTwzE7M2ZgkX2c-1YGGbbrB3kxZY3DMhlEsfSQOFVqD5Tg8JtqABbvBkrwoW-RN2g5zJSrtnGCJQjRnBhwnUU-1hIYKcCARNoUPIAyONMdyb2OJHi46DavrZM1EWbJYMBCiM5uCGq_bZuxJ2bNZSqvahlk1Rrgv31ujLlV2gX9cLdgkbBj5p1R6bZks8uafzxGSv8gtMiH1iFujTe6HWvc7sW_Cr4k9xzAkOaEa4_0yqJSrwDzlfx14-R_AZ-VWg4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Validated+Register-Based+Algorithm+to+Identify+Patients+Diagnosed+with+Recurrence+of+Surgically+Treated+Stage+I+Lung+Cancer+in+Denmark&rft.jtitle=Clinical+epidemiology&rft.au=Rasmussen%2C+Linda+Aagaard&rft.au=Christensen%2C+Niels+Lyhne&rft.au=Winther-Larsen%2C+Anne&rft.au=Dalton%2C+Susanne+Oksbjerg&rft.date=2023-01-01&rft.issn=1179-1349&rft.eissn=1179-1349&rft.volume=15&rft.spage=251&rft_id=info:doi/10.2147%2FCLEP.S396738&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-1349&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-1349&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-1349&client=summon |