Acute hypoxia increases the cerebral metabolic rate – a magnetic resonance imaging study
The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imagi...
Saved in:
Published in | Journal of cerebral blood flow and metabolism Vol. 36; no. 6; pp. 1046 - 1058 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0271-678X 1559-7016 1559-7016 |
DOI | 10.1177/0271678X15606460 |
Cover
Abstract | The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% (
p
<
10
-
6
), glutamate increased by 4.7% (
p
<
10
-
4
) and creatine and phosphocreatine decreased by 15.2% (p
<
10
-
3
). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. |
---|---|
AbstractList | The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O 2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% ( p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% ( p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% ( p[Formula: see text]). The N-acetylaspartate concentration was unchanged ( p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia.The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O 2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% ( p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% ( p = 0.035). Cerebral lactate concentration increased by 180.3% ( p < 10 - 6 ), glutamate increased by 4.7% ( p < 10 - 4 ) and creatine and phosphocreatine decreased by 15.2% ( p < 10 - 3 ). The N-acetylaspartate concentration was unchanged ( p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O 2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60min during normoxia, followed by 40min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% ( p =0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% ( p =0.035). Cerebral lactate concentration increased by 180.3% ( p < 10 - 6 ), glutamate increased by 4.7% ( p < 10 - 4 ) and creatine and phosphocreatine decreased by 15.2% ( p < 10 - 3 ). The N-acetylaspartate concentration was unchanged ( p =0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ( p < 10 - 6 ), glutamate increased by 4.7% ( p < 10 - 4 ) and creatine and phosphocreatine decreased by 15.2% (p < 10 - 3 ). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. |
Author | Christensen, Søren Just Law, Ian Rasmussen, Peter Aachmann-Andersen, Niels Jacob Olsen, Niels V Lisbjerg, Kristian Larsson, Henrik BW Lindberg, Ulrich Vestergaard, Mark B |
AuthorAffiliation | 4 Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark 5 Department of Neuroanaesthesia, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark 3 Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark 2 Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark 1 Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark |
AuthorAffiliation_xml | – name: 2 Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark – name: 4 Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark – name: 5 Department of Neuroanaesthesia, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark – name: 1 Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark – name: 3 Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark |
Author_xml | – sequence: 1 givenname: Mark B surname: Vestergaard fullname: Vestergaard, Mark B email: mark.bitsch.vestergaard@regionh.dk – sequence: 2 givenname: Ulrich surname: Lindberg fullname: Lindberg, Ulrich – sequence: 3 givenname: Niels Jacob surname: Aachmann-Andersen fullname: Aachmann-Andersen, Niels Jacob – sequence: 4 givenname: Kristian surname: Lisbjerg fullname: Lisbjerg, Kristian – sequence: 5 givenname: Søren Just surname: Christensen fullname: Christensen, Søren Just – sequence: 6 givenname: Ian surname: Law fullname: Law, Ian – sequence: 7 givenname: Peter surname: Rasmussen fullname: Rasmussen, Peter – sequence: 8 givenname: Niels V surname: Olsen fullname: Olsen, Niels V – sequence: 9 givenname: Henrik BW surname: Larsson fullname: Larsson, Henrik BW |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26661163$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rFTEUxYNU7Gt170qydDOaTGZuJhuhlPoHCm4siJuQydx5L2Ve8kwy4tv1O_gN_SRmeLVoQbsK3Ps7h3NzTsiRDx4Jec7ZK86lfM1qyUF2n3kLDBpgj8iKt62qJONwRFbLulr2x-QkpWvGWCfa9gk5rgGAcxAr8uXMzhnpZr8L352hztuIJmGieYPUYsQ-moluMZs-TM7SaAr98-YHNXRr1h7zMsMUvPEWqSsz59c05XnYPyWPRzMlfHb7npKrtxefzt9Xlx_ffTg_u6xsK0SuoLGCjyD7YbDc1gpAjYPhXAg1SiksoFQKB86kAlOD7dnY2mG09VjbvlajOCVvDr67ud_iYNHnklnvYkkT9zoYp__eeLfR6_BNN4o1ooFi8PLWIIavM6asty5ZnCbjMcxJ8451IKFWzcOoVKIFVcuuoC_-jHWX5_ffF4AdABtDShHHO4QzvdSr79dbJHBPYl022YXlMDf9T1gdhMmsUV-HOfpSyb_5X-eht5U |
CitedBy_id | crossref_primary_10_1186_s40659_021_00362_2 crossref_primary_10_1177_0271678X21992896 crossref_primary_10_14814_phy2_15036 crossref_primary_10_1002_mrm_29274 crossref_primary_10_1177_0271678X17719430 crossref_primary_10_1002_mrm_29272 crossref_primary_10_1113_EP087602 crossref_primary_10_1016_j_autneu_2021_102810 crossref_primary_10_3389_fcogn_2024_1468306 crossref_primary_10_1007_s11427_022_2271_x crossref_primary_10_1113_JP272404 crossref_primary_10_3389_fphys_2023_1213352 crossref_primary_10_1093_cercor_bhab294 crossref_primary_10_1016_j_neuroimage_2017_01_049 crossref_primary_10_1016_j_neuroimage_2022_119397 crossref_primary_10_1002_jmri_25442 crossref_primary_10_1002_acn3_52121 crossref_primary_10_3389_fnins_2023_1229509 crossref_primary_10_25046_aj050142 crossref_primary_10_1152_japplphysiol_00276_2018 crossref_primary_10_1007_s11682_023_00764_8 crossref_primary_10_1177_0271678X17737909 crossref_primary_10_1007_s00421_021_04864_5 crossref_primary_10_1177_0271678X18818291 crossref_primary_10_1177_0271678X19883751 crossref_primary_10_1113_EP085671 crossref_primary_10_1093_sleep_zsy001 crossref_primary_10_7717_peerj_14249 crossref_primary_10_1007_s11682_018_9963_4 crossref_primary_10_1007_s10571_024_01492_3 crossref_primary_10_1097_PCC_0000000000002016 crossref_primary_10_3389_fendo_2018_00668 crossref_primary_10_1177_0271678X19867276 crossref_primary_10_1007_s00246_018_1952_2 crossref_primary_10_1097_PCC_0000000000001483 crossref_primary_10_1371_journal_pone_0172842 crossref_primary_10_1155_2020_1593068 crossref_primary_10_3390_microorganisms11061598 crossref_primary_10_1152_japplphysiol_00869_2017 crossref_primary_10_2463_mrms_rev_2024_0028 crossref_primary_10_1177_0271678X20930827 crossref_primary_10_3389_fncel_2023_1277375 crossref_primary_10_1111_pan_14789 crossref_primary_10_1016_j_neubiorev_2016_11_023 crossref_primary_10_1177_0271678X16686093 crossref_primary_10_1002_jmri_25582 crossref_primary_10_1177_0271678X18789273 crossref_primary_10_1097_WCO_0000000000000436 crossref_primary_10_3390_ijms22158195 crossref_primary_10_1113_JP272557 |
Cites_doi | 10.1002/mrm.1072 10.1152/japplphysiol.00703.2012 10.1089/neu.2011.2067 10.1038/jcbfm.2013.110 10.1042/CS20130343 10.1159/000116149 10.1038/jcbfm.2010.42 10.1007/BF00596170 10.3389/fnene.2012.00005 10.1002/mrm.21994 10.1152/jappl.1967.23.2.183 10.1097/00000542-198903000-00024 10.1089/ham.2013.1138 10.1096/fj.11-191999 10.1038/nature07525 10.1029/RS023i004p00713 10.1002/mrm.1910240219 10.1152/jappl.1995.79.1.136 10.1113/expphysiol.2012.068015 10.1152/jappl.1994.77.2.896 10.1097/01.CCM.0000254066.37187.88 10.1002/mrm.21499 10.1523/JNEUROSCI.19-01-00034.1999 10.1148/radiol.2402050314 10.1111/j.1748-1716.1971.tb05087.x 10.1046/j.1471-4159.1999.0732477.x 10.1109/34.24792 10.1093/cercor/bht136 10.1016/j.neuron.2005.11.009 10.1016/0730-725X(93)90418-D 10.1016/0165-3806(94)00213-J 10.1152/jappl.1968.24.1.66 10.1038/jcbfm.2010.49 10.1042/bj2120365 10.1152/japplphysiol.01385.2003 10.1002/mrm.21627 10.1172/JCI101995 10.1002/mrm.23282 10.1523/JNEUROSCI.0415-11.2011 10.1038/jcbfm.2012.93 10.1038/jcbfm.2011.34 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 The Author(s) 2015. The Author(s) 2015 2015 International Society for Cerebral Blood Flow and Metabolism |
Copyright_xml | – notice: The Author(s) 2015 – notice: The Author(s) 2015. – notice: The Author(s) 2015 2015 International Society for Cerebral Blood Flow and Metabolism |
DBID | AFRWT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1177/0271678X15606460 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1559-7016 |
EndPage | 1058 |
ExternalDocumentID | PMC4904346 26661163 10_1177_0271678X15606460 10.1177_0271678X15606460 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -Q- -TM .55 .GJ 0R~ 29K 2WC 36B 39C 3O- 4.4 53G 54M 5GY 5RE 5VS 70F 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AABMB AACKU AACMV AADUE AAEWN AAGGD AAGMC AAJIQ AAJPV AAKGS AANSI AAPEO AAQGT AAQXH AAQXI AARDL AARIX AATAA AATBZ AAUAS AAVDI AAXOT AAYTG AAZBJ ABAWP ABAWZ ABCCA ABCJG ABDWY ABEIX ABFWQ ABHKI ABJNI ABJZC ABKRH ABLUO ABNCE ABPGX ABPNF ABQKF ABQNX ABQXT ABRHV ABUJY ABUWG ABVFX ABXGC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFO ACGFS ACGZU ACJER ACJTF ACLFY ACLHI ACNXM ACOFE ACOXC ACPRK ACROE ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADEBD ADEIA ADMPF ADNON ADRRZ ADTBJ ADUKL ADVBO ADZZY AECGH AENEX AEPTA AEQLS AESZF AEUHG AEWDL AEWHI AEXFG AEXNY AFEET AFFNX AFFZS AFKRA AFKRG AFMOU AFOSN AFQAA AFRWT AFUIA AFVCE AGHKR AGKLV AGNHF AGPXR AGWFA AHDMH AHMBA AIGRN AJABX AJEFB AJMMQ AJSCY AJUZI AJXAJ AJXGE ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS AMCVQ ANDLU AOIJS ARTOV AUTPY AYAKG B8M BAWUL BBNVY BBRGL BDDNI BENPR BHPHI BKIIM BKSCU BPACV BPHCQ BSEHC BVXVI BWJAD C45 CAG CBRKF CCPQU CDWPY CFDXU COF CORYS CQQTX CS3 CUTAK D-I DC- DC. DIK DOPDO DV7 E3Z EBS EE. EJD EMOBN F5P FHBDP FYUFA GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 H13 HCIFZ HMCUK HYE HZ~ J8X JSO K.F KQ8 LK8 M1P M7P O9- OK1 OVD P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO Q1R Q2X RNS RNTTT ROL RPM SASJQ SAUOL SCNPE SFC SHG SPQ SPV TEORI TR2 UKHRP W2D X7M YFH YOC ZGI ZONMY ZPPRI ZRKOI ZSSAH ZXP AAEJI AAPII AAYXX AJGYC AJHME AJVBE CITATION PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c533t-64c31f67bddc1c29669fda11339f773c6e799ed10796a26cb0f5cdfc2f2cb29f3 |
IEDL.DBID | AFRWT |
ISSN | 0271-678X 1559-7016 |
IngestDate | Thu Aug 21 13:28:06 EDT 2025 Sat Sep 27 20:47:41 EDT 2025 Thu Sep 04 18:05:51 EDT 2025 Mon Jul 21 05:21:17 EDT 2025 Thu Apr 24 22:58:37 EDT 2025 Mon Sep 08 01:39:21 EDT 2025 Tue Jun 17 22:46:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | high altitude magnetic resonance imaging Cerebral blood flow energy metabolism cerebral hemodynamics MR spectroscopy |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 3.0 License (http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). The Author(s) 2015. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c533t-64c31f67bddc1c29669fda11339f773c6e799ed10796a26cb0f5cdfc2f2cb29f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/0271678X15606460?utm_source=summon&utm_medium=discovery-provider |
PMID | 26661163 |
PQID | 1793569278 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4904346 proquest_miscellaneous_1808676294 proquest_miscellaneous_1793569278 pubmed_primary_26661163 crossref_primary_10_1177_0271678X15606460 crossref_citationtrail_10_1177_0271678X15606460 sage_journals_10_1177_0271678X15606460 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: United States – name: Sage UK: London, England |
PublicationTitle | Journal of cerebral blood flow and metabolism |
PublicationTitleAlternate | J Cereb Blood Flow Metab |
PublicationYear | 2016 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Ainslie, Subudhi 2014; 15 Jain, Abdulmalik, Propert 2012; 68 Jain, Langham, Floyd 2011; 31 Alessandri, Schwandt, Kamada 2012; 29 Lu, Ge 2008; 60 Schurr, Miller, Payne 1999; 19 Alexander, Smith, Strobel 1968; 24 Chen, Pike 2010; 30 Gordon, Choi, Rungta 2008; 456 Jansen, Backes, Nicolay 2006; 240 Tsuda, Kimura, Yoneda 1987; 27 Ainslie, Shaw, Smith 2014; 126 Samra, Turk, Arens 1989; 70 Christiansen, Henriksen, Stubgaard 1993; 11 Harik, Behmand, LaManna 1994; 77 Xu, Liu, Pascual 2012; 32 Jain, Langham, Wehrli 2010; 30 Ainslie, Poulin 2004; 97 Coles, Fryer, Coleman 2007; 35 Bergersen, Gjedde 2012; 4 Rodgers, Jain, Englund 2013; 33 Tsuji, Allred, Jensen 1995; 85 Harik, Lust, Jones 1995; 79 Grote, Zimmer, Schubert 1981; 391 Cox, Morris, Feeney 1983; 212 Holtzman, Khait, Mulkern 1999; 73 Weisskoff, Kiihne 1992; 24 Smith, Krizay, Guo 2013; 114 Cohen, Alexander, Smith 1967; 23 Wyss, Jolivet, Buck 2011; 31 Kety, Schmidt 1948; 27 Bookstein 1989; 11 Xu, Ge, Lu 2009; 62 Mintun, Raichle, Martin 1984; 25 Lauritzen, Morland, Puchades 2014; 24 Overgaard, Rasmussen, Bohm 2012; 26 Spees, Yablonskiy, Oswood 2001; 45 Langham, Magland, Floyd 2009; 61 Ogoh, Sato, Nakahara 2013; 98 Messeter, Siesjö 1971; 83 Dulla, Dobelis, Pearson 2005; 48 Goldstein, Zebker, Werner 1988; 23 bibr2-0271678X15606460 bibr45-0271678X15606460 bibr32-0271678X15606460 bibr24-0271678X15606460 bibr37-0271678X15606460 bibr28-0271678X15606460 bibr6-0271678X15606460 bibr11-0271678X15606460 bibr41-0271678X15606460 bibr15-0271678X15606460 bibr8-0271678X15606460 bibr19-0271678X15606460 bibr1-0271678X15606460 bibr22-0271678X15606460 bibr36-0271678X15606460 bibr35-0271678X15606460 bibr23-0271678X15606460 bibr5-0271678X15606460 bibr10-0271678X15606460 bibr31-0271678X15606460 bibr40-0271678X15606460 bibr14-0271678X15606460 bibr44-0271678X15606460 bibr9-0271678X15606460 bibr13-0271678X15606460 bibr18-0271678X15606460 bibr26-0271678X15606460 bibr34-0271678X15606460 bibr39-0271678X15606460 bibr21-0271678X15606460 bibr30-0271678X15606460 bibr4-0271678X15606460 Mintun MA (bibr27-0271678X15606460) 1984; 25 bibr17-0271678X15606460 bibr43-0271678X15606460 bibr20-0271678X15606460 bibr38-0271678X15606460 bibr3-0271678X15606460 bibr25-0271678X15606460 bibr33-0271678X15606460 bibr16-0271678X15606460 bibr12-0271678X15606460 bibr7-0271678X15606460 bibr29-0271678X15606460 bibr42-0271678X15606460 23838827 - J Cereb Blood Flow Metab. 2013 Oct;33(10):1514-22 6610032 - J Nucl Med. 1984 Feb;25(2):177-87 20372169 - J Cereb Blood Flow Metab. 2010 Jun;30(6):1094-9 5635772 - J Appl Physiol. 1968 Jan;24(1):66-72 1569876 - Magn Reson Med. 1992 Apr;24(2):375-83 18971930 - Nature. 2008 Dec 11;456(7223):745-9 16364904 - Neuron. 2005 Dec 22;48(6):1011-23 23696276 - Cereb Cortex. 2014 Oct;24(10):2784-95 21593331 - J Neurosci. 2011 May 18;31(20):7477-85 3113960 - Eur Neurol. 1987;27(3):155-63 6882378 - Biochem J. 1983 May 15;212(2):365-70 10582608 - J Neurochem. 1999 Dec;73(6):2477-84 23143991 - Exp Physiol. 2013 Mar;98 (3):692-8 7600667 - Brain Res Dev Brain Res. 1995 Apr 18;85(2):192-200 22457647 - Front Neuroenergetics. 2012 Mar 19;4:5 9870935 - J Neurosci. 1999 Jan 1;19(1):34-9 6031186 - J Appl Physiol. 1967 Aug;23(2):183-9 8002545 - J Appl Physiol (1985). 1994 Aug;77(2):896-901 22739621 - J Cereb Blood Flow Metab. 2012 Oct;32(10 ):1909-18 5134175 - Acta Physiol Scand. 1971 Nov;83(3):344-51 21505481 - J Cereb Blood Flow Metab. 2011 Jul;31(7):1504-12 16864664 - Radiology. 2006 Aug;240(2):318-32 22888957 - J Neurotrauma. 2012 Aug 10;29(12):2181-91 22441982 - FASEB J. 2012 Jul;26(7):3012-20 23019310 - J Appl Physiol (1985). 2013 Jan 1;114(1):11-8 24971767 - High Alt Med Biol. 2014 Jun;15(2):133-40 2493755 - Anesthesiology. 1989 Mar;70(3):523-6 24117382 - Clin Sci (Lond). 2014 May;126(9):661-70 16695569 - J Clin Invest. 1948 Jul;27(4):484-92 11283978 - Magn Reson Med. 2001 Apr;45(4):533-42 22162033 - Magn Reson Med. 2012 Sep;68(3):863-7 8423713 - Magn Reson Imaging. 1993;11(1):107-18 19353674 - Magn Reson Med. 2009 Jul;62(1):141-8 19107914 - Magn Reson Med. 2009 Mar;61(3):626-33 6812015 - Pflugers Arch. 1981 Sep;391(3):195-9 17205016 - Crit Care Med. 2007 Feb;35(2):568-78 7559210 - J Appl Physiol (1985). 1995 Jul;79(1):136-40 20407465 - J Cereb Blood Flow Metab. 2010 Sep;30(9):1598-607 18666116 - Magn Reson Med. 2008 Aug;60(2):357-63 15004003 - J Appl Physiol (1985). 2004 Jul;97(1):149-59 |
References_xml | – volume: 31 start-page: 7477 year: 2011 end-page: 7485 article-title: In vivo evidence for lactate as a neuronal energy source publication-title: J Neurosci – volume: 73 start-page: 2477 year: 1999 end-page: 2484 article-title: In vivo development of brain phosphocreatine in normal and creatine-treated rabbit pups publication-title: J Neurochem – volume: 85 start-page: 192 year: 1995 end-page: 200 article-title: Phosphocreatine and ATP regulation in the hypoxic developing rat brain publication-title: Brain Res Dev Brain Res – volume: 19 start-page: 34 year: 1999 end-page: 39 article-title: An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons publication-title: J Neurosci – volume: 11 start-page: 107 year: 1993 end-page: 118 article-title: In vivo quantification of brain metabolites by 1H-MRS using water as an internal standard publication-title: Magn Reson Imaging – volume: 456 start-page: 745 year: 2008 end-page: 749 article-title: Brain metabolism dictates the polarity of astrocyte control over arterioles publication-title: Nature – volume: 77 start-page: 896 year: 1994 end-page: 901 article-title: Hypoxia increases glucose transport at blood-brain barrier in rats publication-title: J Appl Physiol – volume: 30 start-page: 1094 year: 2010 end-page: 1099 article-title: Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI publication-title: J Cereb Blood Flow Metab – volume: 24 start-page: 66 year: 1968 end-page: 72 article-title: Cerebral carbohydrate metabolism of man during respiratory and etabolic alkalosis publication-title: J Appl Physiol – volume: 24 start-page: 375 year: 1992 end-page: 383 article-title: MRI susceptometry: image-based measurement of absolute susceptibility of MR contrast agents and human blood publication-title: Magn Reson Med – volume: 27 start-page: 484 year: 1948 end-page: 14 article-title: The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men publication-title: J Clin Invest – volume: 11 start-page: 567 year: 1989 end-page: 585 article-title: Principal warps: thin-plate splines and the decomposition of deformations publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 23 start-page: 183 year: 1967 end-page: 189 article-title: Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man publication-title: J Appl Physiol – volume: 68 start-page: 863 year: 2012 end-page: 867 article-title: Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification publication-title: Magn Reson Med – volume: 35 start-page: 568 year: 2007 end-page: 578 article-title: Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism publication-title: Crit Care Med – volume: 33 start-page: 1514 year: 2013 end-page: 22 article-title: High temporal resolution MRI quantification of global cerebral metabolic rate of oxygen consumption in response to apneic challenge publication-title: J Cereb Blood Flow Metab – volume: 24 start-page: 66 year: 1968 end-page: 72 article-title: Cerebral carbohydrate metabolism of man during respiratory and metabolic alkalosis publication-title: J Appl Physiol – volume: 4 start-page: 5 year: 2012 article-title: Is lactate a volume transmitter of metabolic states of the brain? publication-title: Front Neuroenergetics – volume: 25 start-page: 177 year: 1984 end-page: 187 article-title: Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography publication-title: J Nucl Med – volume: 98 start-page: 692 year: 2013 end-page: 698 article-title: Effect of acute hypoxia on blood flow in vertebral and internal carotid arteries publication-title: Exp Physiol – volume: 27 start-page: 155 year: 1987 end-page: 163 article-title: Effect of hypocapnia on cerebral oxygen metabolism and blood flow in ischemic cerebrovascular disorders publication-title: Eur Neurol – volume: 114 start-page: 11 year: 2013 end-page: 18 article-title: Sustained high-altitude hypoxia increases cerebral oxygen metabolism publication-title: J Appl Physiol – volume: 60 start-page: 357 year: 2008 end-page: 363 article-title: Quantitative evaluation of oxygenation in venous vessels using T2-Relaxation-Under-Spin-Tagging MRI publication-title: Magn Reson Med – volume: 70 start-page: 523 year: 1989 end-page: 526 article-title: Effect of hypocapnia on local cerebral glucose utilization in rats publication-title: Anesthesiology – volume: 32 start-page: 1909 year: 2012 end-page: 1918 article-title: Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism publication-title: J Cereb blood flow Metab – volume: 31 start-page: 1504 year: 2011 end-page: 1512 article-title: Rapid magnetic resonance measurement of global cerebral metabolic rate of oxygen consumption in humans during rest and hypercapnia publication-title: J Cereb Blood Flow Metab – volume: 48 start-page: 1011 year: 2005 end-page: 1023 article-title: Adenosine and ATP link PCO2 to cortical excitability via pH publication-title: Neuron – volume: 212 start-page: 365 year: 1983 end-page: 370 article-title: 31P-n.m.r. studies on cerebral energy metabolism under conditions of hypoglycaemia and hypoxia in vitro publication-title: Biochem J – volume: 83 start-page: 344 year: 1971 end-page: 351 article-title: The effect of acute and chronic hypercapnia upon the lactate, pyruvate, -ketoglutarate, glutamate and phosphocreatine contents of the rat brain publication-title: Acta Physiol Scand – volume: 24 start-page: 2784 year: 2014 end-page: 2795 article-title: Lactate Receptor Sites Link Neurotransmission, Neurovascular Coupling, and Brain Energy Metabolism publication-title: Cereb Cortex – volume: 391 start-page: 195 year: 1981 end-page: 199 article-title: Effects of severe arterial hypocapnia on regional blood flow regulation, tissue PO2 and metabolism in the brain cortex of cats publication-title: Pflügers Arch Eur J Physiol – volume: 30 start-page: 1598 year: 2010 end-page: 607 article-title: MRI estimation of global brain oxygen consumption rate publication-title: J Cereb blood flow Metab – volume: 126 start-page: 661 year: 2014 end-page: 670 article-title: Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia publication-title: Clin Sci (Lond) – volume: 45 start-page: 533 year: 2001 end-page: 542 article-title: Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility, T1, T2*, T2, and non-Lorentzian signal behavior publication-title: Magn Reson Med – volume: 26 start-page: 3012 year: 2012 end-page: 3020 article-title: Hypoxia and exercise provoke both lactate release and lactate oxidation by the human brain publication-title: FASEB J – volume: 29 start-page: 2181 year: 2012 end-page: 2191 article-title: The Neuroprotective Effect of Lactate Is Not Due to Improved Glutamate Uptake after Controlled Cortical Impact in Rats publication-title: J Neurotrauma – volume: 240 start-page: 318 year: 2006 end-page: 332 article-title: 1H MR spectroscopy of the brain: absolute quantification of metabolites publication-title: Radiology – volume: 62 start-page: 141 year: 2009 end-page: 148 article-title: Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI publication-title: Magn Reson Med – volume: 97 start-page: 149 year: 2004 end-page: 159 article-title: Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide publication-title: J Appl Physiol – volume: 79 start-page: 136 year: 1995 end-page: 140 article-title: Brain glucose metabolism in hypobaric hypoxia publication-title: J Appl Physiol – volume: 15 start-page: 133 year: 2014 end-page: 140 article-title: Cerebral blood flow at high altitude publication-title: High Alt Med Biol – volume: 23 start-page: 713 year: 1988 end-page: 720 article-title: Satellite radar interferometry: two-dimensional phase unwrapping publication-title: Radio Sci – volume: 61 start-page: 626 year: 2009 end-page: 633 article-title: Retrospective correction for induced magnetic field inhomogeneity in measurements of large-vessel hemoglobin oxygen saturation by MR susceptometry publication-title: Magn Reson Med – ident: bibr18-0271678X15606460 doi: 10.1002/mrm.1072 – ident: bibr29-0271678X15606460 doi: 10.1152/japplphysiol.00703.2012 – ident: bibr33-0271678X15606460 doi: 10.1089/neu.2011.2067 – ident: bibr16-0271678X15606460 doi: 10.1038/jcbfm.2013.110 – ident: bibr6-0271678X15606460 doi: 10.1042/CS20130343 – ident: bibr12-0271678X15606460 doi: 10.1159/000116149 – volume: 25 start-page: 177 year: 1984 ident: bibr27-0271678X15606460 publication-title: J Nucl Med – ident: bibr41-0271678X15606460 doi: 10.1038/jcbfm.2010.42 – ident: bibr36-0271678X15606460 doi: 10.1007/BF00596170 – ident: bibr11-0271678X15606460 doi: 10.3389/fnene.2012.00005 – ident: bibr23-0271678X15606460 doi: 10.1002/mrm.21994 – ident: bibr5-0271678X15606460 doi: 10.1152/jappl.1967.23.2.183 – ident: bibr44-0271678X15606460 doi: 10.1097/00000542-198903000-00024 – ident: bibr2-0271678X15606460 doi: 10.1089/ham.2013.1138 – ident: bibr7-0271678X15606460 doi: 10.1096/fj.11-191999 – ident: bibr9-0271678X15606460 doi: 10.1038/nature07525 – ident: bibr15-0271678X15606460 doi: 10.1029/RS023i004p00713 – ident: bibr17-0271678X15606460 doi: 10.1002/mrm.1910240219 – ident: bibr43-0271678X15606460 doi: 10.1152/jappl.1995.79.1.136 – ident: bibr24-0271678X15606460 doi: 10.1113/expphysiol.2012.068015 – ident: bibr8-0271678X15606460 doi: 10.1152/jappl.1994.77.2.896 – ident: bibr35-0271678X15606460 doi: 10.1097/01.CCM.0000254066.37187.88 – ident: bibr20-0271678X15606460 doi: 10.1002/mrm.21499 – ident: bibr32-0271678X15606460 doi: 10.1523/JNEUROSCI.19-01-00034.1999 – ident: bibr45-0271678X15606460 doi: 10.1148/radiol.2402050314 – ident: bibr37-0271678X15606460 doi: 10.1111/j.1748-1716.1971.tb05087.x – ident: bibr40-0271678X15606460 doi: 10.1046/j.1471-4159.1999.0732477.x – ident: bibr21-0271678X15606460 doi: 10.1109/34.24792 – ident: bibr10-0271678X15606460 doi: 10.1093/cercor/bht136 – ident: bibr34-0271678X15606460 doi: 10.1016/j.neuron.2005.11.009 – ident: bibr22-0271678X15606460 doi: 10.1016/0730-725X(93)90418-D – ident: bibr39-0271678X15606460 doi: 10.1016/0165-3806(94)00213-J – ident: bibr26-0271678X15606460 doi: 10.1002/mrm.21994 – ident: bibr42-0271678X15606460 doi: 10.1152/jappl.1968.24.1.66 – ident: bibr14-0271678X15606460 doi: 10.1038/jcbfm.2010.49 – ident: bibr38-0271678X15606460 doi: 10.1042/bj2120365 – ident: bibr25-0271678X15606460 doi: 10.1152/japplphysiol.01385.2003 – ident: bibr4-0271678X15606460 doi: 10.1152/japplphysiol.00703.2012 – ident: bibr30-0271678X15606460 doi: 10.1002/mrm.21627 – ident: bibr1-0271678X15606460 doi: 10.1172/JCI101995 – ident: bibr19-0271678X15606460 doi: 10.1002/mrm.23282 – ident: bibr31-0271678X15606460 doi: 10.1523/JNEUROSCI.0415-11.2011 – ident: bibr3-0271678X15606460 doi: 10.1038/jcbfm.2012.93 – ident: bibr13-0271678X15606460 doi: 10.1152/jappl.1968.24.1.66 – ident: bibr28-0271678X15606460 doi: 10.1038/jcbfm.2011.34 – reference: 22457647 - Front Neuroenergetics. 2012 Mar 19;4:5 – reference: 16864664 - Radiology. 2006 Aug;240(2):318-32 – reference: 5635772 - J Appl Physiol. 1968 Jan;24(1):66-72 – reference: 6882378 - Biochem J. 1983 May 15;212(2):365-70 – reference: 22162033 - Magn Reson Med. 2012 Sep;68(3):863-7 – reference: 15004003 - J Appl Physiol (1985). 2004 Jul;97(1):149-59 – reference: 23019310 - J Appl Physiol (1985). 2013 Jan 1;114(1):11-8 – reference: 23696276 - Cereb Cortex. 2014 Oct;24(10):2784-95 – reference: 18971930 - Nature. 2008 Dec 11;456(7223):745-9 – reference: 1569876 - Magn Reson Med. 1992 Apr;24(2):375-83 – reference: 19107914 - Magn Reson Med. 2009 Mar;61(3):626-33 – reference: 22888957 - J Neurotrauma. 2012 Aug 10;29(12):2181-91 – reference: 18666116 - Magn Reson Med. 2008 Aug;60(2):357-63 – reference: 24971767 - High Alt Med Biol. 2014 Jun;15(2):133-40 – reference: 6812015 - Pflugers Arch. 1981 Sep;391(3):195-9 – reference: 16695569 - J Clin Invest. 1948 Jul;27(4):484-92 – reference: 17205016 - Crit Care Med. 2007 Feb;35(2):568-78 – reference: 20372169 - J Cereb Blood Flow Metab. 2010 Jun;30(6):1094-9 – reference: 23838827 - J Cereb Blood Flow Metab. 2013 Oct;33(10):1514-22 – reference: 2493755 - Anesthesiology. 1989 Mar;70(3):523-6 – reference: 7559210 - J Appl Physiol (1985). 1995 Jul;79(1):136-40 – reference: 16364904 - Neuron. 2005 Dec 22;48(6):1011-23 – reference: 5134175 - Acta Physiol Scand. 1971 Nov;83(3):344-51 – reference: 7600667 - Brain Res Dev Brain Res. 1995 Apr 18;85(2):192-200 – reference: 21593331 - J Neurosci. 2011 May 18;31(20):7477-85 – reference: 20407465 - J Cereb Blood Flow Metab. 2010 Sep;30(9):1598-607 – reference: 23143991 - Exp Physiol. 2013 Mar;98 (3):692-8 – reference: 3113960 - Eur Neurol. 1987;27(3):155-63 – reference: 6610032 - J Nucl Med. 1984 Feb;25(2):177-87 – reference: 10582608 - J Neurochem. 1999 Dec;73(6):2477-84 – reference: 19353674 - Magn Reson Med. 2009 Jul;62(1):141-8 – reference: 8423713 - Magn Reson Imaging. 1993;11(1):107-18 – reference: 22739621 - J Cereb Blood Flow Metab. 2012 Oct;32(10 ):1909-18 – reference: 9870935 - J Neurosci. 1999 Jan 1;19(1):34-9 – reference: 21505481 - J Cereb Blood Flow Metab. 2011 Jul;31(7):1504-12 – reference: 8002545 - J Appl Physiol (1985). 1994 Aug;77(2):896-901 – reference: 11283978 - Magn Reson Med. 2001 Apr;45(4):533-42 – reference: 22441982 - FASEB J. 2012 Jul;26(7):3012-20 – reference: 24117382 - Clin Sci (Lond). 2014 May;126(9):661-70 – reference: 6031186 - J Appl Physiol. 1967 Aug;23(2):183-9 |
SSID | ssj0008355 |
Score | 2.4397342 |
Snippet | The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2... The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O 2... The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O 2... |
SourceID | pubmedcentral proquest pubmed crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1046 |
SubjectTerms | Adolescent Adult Brain - metabolism Brain - pathology Cerebrovascular Circulation - physiology Creatine - blood Energy Metabolism - physiology Glutamic Acid - blood Homeostasis Humans Hypoxia - metabolism Lactic Acid - blood Magnetic Resonance Imaging - methods Male Original Oxygen - blood Perfusion Young Adult |
Title | Acute hypoxia increases the cerebral metabolic rate – a magnetic resonance imaging study |
URI | https://journals.sagepub.com/doi/full/10.1177/0271678X15606460 https://www.ncbi.nlm.nih.gov/pubmed/26661163 https://www.proquest.com/docview/1793569278 https://www.proquest.com/docview/1808676294 https://pubmed.ncbi.nlm.nih.gov/PMC4904346 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1559-7016 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008355 issn: 0271-678X databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1559-7016 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008355 issn: 0271-678X databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1559-7016 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008355 issn: 0271-678X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1559-7016 dateEnd: 20240929 omitProxy: true ssIdentifier: ssj0008355 issn: 0271-678X databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB612wNcEG35CdDKSKgSh7CJkzjxCa2qLhUSHFArVlyixLHbSJts1U0k9sY78IY8CTNOsnRZUXFNnDjxjO1vPDPfALyJbX4iN64X5NoNc6PcXEeFqzX3Bde4gVqe7k-fxfll-HEWzXagHnJh-hFcvqOwKvwiu1jT7KbT6HHvZByjLeXjKjujNGARCu9921Rpd9o9FNWgK-SebivybCuKh1y5Q3bbLuwRc3k0gr3J9MvXi_XajXjEBj3i-13q4I9jc6vPzY1sC51uB1neiRSzm9f0MTzqUSebdGqyDzu6PoDDSY0Wd7ViJ8zGgdoD9gN4cDrUgDuEbxPVNppdr24W38uMlTVhzKVeMoSNTOlb8jrPWaUbVKV5qRjxTrBfP36yjFXZVU0Jkgzt-QWxemhWVrYkErOUtk_gcnp2cXru9tUYXIWQsHFFqALfiDgvCuUrjmaSNEXmo40rTRwHSuhYSl2gOSlFxoXKPROpwihuuMq5NMFTGNWLWj8HpoWRWSJ97aH1l8VJngidGJ6YWORhJpQD42FoU9VTlVPFjHnqD-zkfwnDgbfrJ246mo572r4epJXicJKDJKv1ol2mtFhFQvI4uadNgkYg7iAydOBZJ-F1jwh2hI8A14F4Q_brBsTlvXmnLq8tp3covTAIhQMnpCXpMA3--RMv_rfhS3iIGE900W2vYNTctvoIcVSTH_fKfwy7H2b-b83lGgE |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6h7aFcELQ8QnkYCVXiENh4HTs-ripWC7Q9oK1YcYkSZ9xG2s1W3azU3vgP_EN-CWNvErqsqDhnnIfHHn9fPP4G4K3y5xO5DfuDHEORWxPmGBchIo8kR1pAvU73yakcn4nP03h6q9RX04PL9y6tit7IB-tudjulJE4IXyVTdwJYCklsfUfEFHJ7sDMcff026cIwQQufv0j2oWvwZ49y6x6ba9IW0NzOl7yV9OXXodFDeNAASDZce_wR3MNqD_aHFZHn-Q07ZD6l0_8r34Pdo7ac2z58H5pVjezi5nJxXWasrBxcXOKSEQJkBq_cBvKMzbGmUTErDXMSEuzXj58sY_PsvHJnHRlR84UT6EBWzn11I-bVaR_D2ejj5GgcNoUVQkPorg6lMIPISpUXhYkMJ8ajbZFFRFe1VWpgJCqtsSBmqGXGpcn7NjaFNdxyk3NtB0-gVy0qfAYMpdVZoiPsE5HLVJInEhPLE6tkLjJpAvjQdm1qGtVxV_xilkat0PhfzgjgXdficq24cYftm9ZbKXWn2-vIKlyslqmLO7HUXCV32CTE52gx0CKAp2sPd08k3CIjwqoBqA3fdwZOlnvzSlVeeHluoftiIGQAh26UpO2I_udHPP9fw9ewO56cHKfHn06_HMB9gm5ynbT2Anr11QpfEjyq81fNRPgNUqMGfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD5CmwS8INiAhauR0CQeQhsntePHalCN24TQJipeIts5ZpHatFpTib3xH_iH_BKO3aRQKiaec5yLz_Hx98XHnwGey7A_kbu4nxqMM-NsbHBQxog8ERxpAg063R9OxPFZ9nY8GLe1OX4vTNuDi5e-rIreKCRrP7rnpeu1a4w9olIJJdmx3wUsMkGMfZdYjaSg3h2OPn0-XadighehhpHsY9_g9zrl1j0256UtsLldM_lH4VeYi0a34VYLItlw5fU7cA3rPdgf1kSgp5fskIWyzvC_fA9uHHVHuu3Dl6FdNsjOL-ezb5VmVe0h4wIXjFAgs3jhF5EnbIoNRcaksszLSLCf338wzab6a-33OzKi5zMv0oGsmoYTjlhQqL0LZ6PXp0fHcXu4QmwJ4TWxyGyaOCFNWdrEcmI9ypU6IcqqnJSpFSiVwpLYoRKaC2v6bmBLZ7nj1nDl0nuwU89qPACGwimdqwT7ROa0zE0uMHc8d1KYTAsbQa_r2sK2yuP-AIxJkXRi4385I4IX6xbzlerGFbbPOm8V1J1-vUPXOFsuCp97BkJxmV9hkxOnowlBZRHcX3l4_UTCLiIhvBqB3PD92sBLc29eqavzINGdqX6WZiKCQx8lRRfV__yIB_9r-BSuf3w1Kt6_OXn3EG4SehOrurVHsNNcLPExIaTGPGnHwS9TfQeW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acute+hypoxia+increases+the+cerebral+metabolic+rate+%E2%80%93+a+magnetic+resonance+imaging+study&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=Vestergaard%2C+Mark+B&rft.au=Lindberg%2C+Ulrich&rft.au=Aachmann-Andersen%2C+Niels+Jacob&rft.au=Lisbjerg%2C+Kristian&rft.date=2016-06-01&rft.issn=0271-678X&rft.eissn=1559-7016&rft.volume=36&rft.issue=6&rft.spage=1046&rft.epage=1058&rft_id=info:doi/10.1177%2F0271678X15606460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_0271678X15606460 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon |