Acute hypoxia increases the cerebral metabolic rate – a magnetic resonance imaging study

The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imagi...

Full description

Saved in:
Bibliographic Details
Published inJournal of cerebral blood flow and metabolism Vol. 36; no. 6; pp. 1046 - 1058
Main Authors Vestergaard, Mark B, Lindberg, Ulrich, Aachmann-Andersen, Niels Jacob, Lisbjerg, Kristian, Christensen, Søren Just, Law, Ian, Rasmussen, Peter, Olsen, Niels V, Larsson, Henrik BW
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.06.2016
Subjects
Online AccessGet full text
ISSN0271-678X
1559-7016
1559-7016
DOI10.1177/0271678X15606460

Cover

Abstract The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ( p < 10 - 6 ), glutamate increased by 4.7% ( p < 10 - 4 ) and creatine and phosphocreatine decreased by 15.2% (p < 10 - 3 ). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia.
AbstractList The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O 2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% ( p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% ( p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% ( p[Formula: see text]). The N-acetylaspartate concentration was unchanged ( p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia.
The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia.The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia.
The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O 2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% ( p  = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% ( p  = 0.035). Cerebral lactate concentration increased by 180.3% ( p < 10 - 6 ), glutamate increased by 4.7% ( p < 10 - 4 ) and creatine and phosphocreatine decreased by 15.2% ( p < 10 - 3 ). The N-acetylaspartate concentration was unchanged ( p  = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia.
The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia.
The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O 2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60min during normoxia, followed by 40min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% ( p =0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% ( p =0.035). Cerebral lactate concentration increased by 180.3% ( p < 10 - 6 ), glutamate increased by 4.7% ( p < 10 - 4 ) and creatine and phosphocreatine decreased by 15.2% ( p < 10 - 3 ). The N-acetylaspartate concentration was unchanged ( p =0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia.
The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ( p < 10 - 6 ), glutamate increased by 4.7% ( p < 10 - 4 ) and creatine and phosphocreatine decreased by 15.2% (p < 10 - 3 ). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia.
Author Christensen, Søren Just
Law, Ian
Rasmussen, Peter
Aachmann-Andersen, Niels Jacob
Olsen, Niels V
Lisbjerg, Kristian
Larsson, Henrik BW
Lindberg, Ulrich
Vestergaard, Mark B
AuthorAffiliation 4 Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
5 Department of Neuroanaesthesia, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
3 Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
2 Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
1 Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
AuthorAffiliation_xml – name: 2 Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
– name: 4 Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
– name: 5 Department of Neuroanaesthesia, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
– name: 1 Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
– name: 3 Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
Author_xml – sequence: 1
  givenname: Mark B
  surname: Vestergaard
  fullname: Vestergaard, Mark B
  email: mark.bitsch.vestergaard@regionh.dk
– sequence: 2
  givenname: Ulrich
  surname: Lindberg
  fullname: Lindberg, Ulrich
– sequence: 3
  givenname: Niels Jacob
  surname: Aachmann-Andersen
  fullname: Aachmann-Andersen, Niels Jacob
– sequence: 4
  givenname: Kristian
  surname: Lisbjerg
  fullname: Lisbjerg, Kristian
– sequence: 5
  givenname: Søren Just
  surname: Christensen
  fullname: Christensen, Søren Just
– sequence: 6
  givenname: Ian
  surname: Law
  fullname: Law, Ian
– sequence: 7
  givenname: Peter
  surname: Rasmussen
  fullname: Rasmussen, Peter
– sequence: 8
  givenname: Niels V
  surname: Olsen
  fullname: Olsen, Niels V
– sequence: 9
  givenname: Henrik BW
  surname: Larsson
  fullname: Larsson, Henrik BW
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26661163$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFTEUxYNU7Gt170qydDOaTGZuJhuhlPoHCm4siJuQydx5L2Ve8kwy4tv1O_gN_SRmeLVoQbsK3Ps7h3NzTsiRDx4Jec7ZK86lfM1qyUF2n3kLDBpgj8iKt62qJONwRFbLulr2x-QkpWvGWCfa9gk5rgGAcxAr8uXMzhnpZr8L352hztuIJmGieYPUYsQ-moluMZs-TM7SaAr98-YHNXRr1h7zMsMUvPEWqSsz59c05XnYPyWPRzMlfHb7npKrtxefzt9Xlx_ffTg_u6xsK0SuoLGCjyD7YbDc1gpAjYPhXAg1SiksoFQKB86kAlOD7dnY2mG09VjbvlajOCVvDr67ud_iYNHnklnvYkkT9zoYp__eeLfR6_BNN4o1ooFi8PLWIIavM6asty5ZnCbjMcxJ8451IKFWzcOoVKIFVcuuoC_-jHWX5_ffF4AdABtDShHHO4QzvdSr79dbJHBPYl022YXlMDf9T1gdhMmsUV-HOfpSyb_5X-eht5U
CitedBy_id crossref_primary_10_1186_s40659_021_00362_2
crossref_primary_10_1177_0271678X21992896
crossref_primary_10_14814_phy2_15036
crossref_primary_10_1002_mrm_29274
crossref_primary_10_1177_0271678X17719430
crossref_primary_10_1002_mrm_29272
crossref_primary_10_1113_EP087602
crossref_primary_10_1016_j_autneu_2021_102810
crossref_primary_10_3389_fcogn_2024_1468306
crossref_primary_10_1007_s11427_022_2271_x
crossref_primary_10_1113_JP272404
crossref_primary_10_3389_fphys_2023_1213352
crossref_primary_10_1093_cercor_bhab294
crossref_primary_10_1016_j_neuroimage_2017_01_049
crossref_primary_10_1016_j_neuroimage_2022_119397
crossref_primary_10_1002_jmri_25442
crossref_primary_10_1002_acn3_52121
crossref_primary_10_3389_fnins_2023_1229509
crossref_primary_10_25046_aj050142
crossref_primary_10_1152_japplphysiol_00276_2018
crossref_primary_10_1007_s11682_023_00764_8
crossref_primary_10_1177_0271678X17737909
crossref_primary_10_1007_s00421_021_04864_5
crossref_primary_10_1177_0271678X18818291
crossref_primary_10_1177_0271678X19883751
crossref_primary_10_1113_EP085671
crossref_primary_10_1093_sleep_zsy001
crossref_primary_10_7717_peerj_14249
crossref_primary_10_1007_s11682_018_9963_4
crossref_primary_10_1007_s10571_024_01492_3
crossref_primary_10_1097_PCC_0000000000002016
crossref_primary_10_3389_fendo_2018_00668
crossref_primary_10_1177_0271678X19867276
crossref_primary_10_1007_s00246_018_1952_2
crossref_primary_10_1097_PCC_0000000000001483
crossref_primary_10_1371_journal_pone_0172842
crossref_primary_10_1155_2020_1593068
crossref_primary_10_3390_microorganisms11061598
crossref_primary_10_1152_japplphysiol_00869_2017
crossref_primary_10_2463_mrms_rev_2024_0028
crossref_primary_10_1177_0271678X20930827
crossref_primary_10_3389_fncel_2023_1277375
crossref_primary_10_1111_pan_14789
crossref_primary_10_1016_j_neubiorev_2016_11_023
crossref_primary_10_1177_0271678X16686093
crossref_primary_10_1002_jmri_25582
crossref_primary_10_1177_0271678X18789273
crossref_primary_10_1097_WCO_0000000000000436
crossref_primary_10_3390_ijms22158195
crossref_primary_10_1113_JP272557
Cites_doi 10.1002/mrm.1072
10.1152/japplphysiol.00703.2012
10.1089/neu.2011.2067
10.1038/jcbfm.2013.110
10.1042/CS20130343
10.1159/000116149
10.1038/jcbfm.2010.42
10.1007/BF00596170
10.3389/fnene.2012.00005
10.1002/mrm.21994
10.1152/jappl.1967.23.2.183
10.1097/00000542-198903000-00024
10.1089/ham.2013.1138
10.1096/fj.11-191999
10.1038/nature07525
10.1029/RS023i004p00713
10.1002/mrm.1910240219
10.1152/jappl.1995.79.1.136
10.1113/expphysiol.2012.068015
10.1152/jappl.1994.77.2.896
10.1097/01.CCM.0000254066.37187.88
10.1002/mrm.21499
10.1523/JNEUROSCI.19-01-00034.1999
10.1148/radiol.2402050314
10.1111/j.1748-1716.1971.tb05087.x
10.1046/j.1471-4159.1999.0732477.x
10.1109/34.24792
10.1093/cercor/bht136
10.1016/j.neuron.2005.11.009
10.1016/0730-725X(93)90418-D
10.1016/0165-3806(94)00213-J
10.1152/jappl.1968.24.1.66
10.1038/jcbfm.2010.49
10.1042/bj2120365
10.1152/japplphysiol.01385.2003
10.1002/mrm.21627
10.1172/JCI101995
10.1002/mrm.23282
10.1523/JNEUROSCI.0415-11.2011
10.1038/jcbfm.2012.93
10.1038/jcbfm.2011.34
ContentType Journal Article
Copyright The Author(s) 2015
The Author(s) 2015.
The Author(s) 2015 2015 International Society for Cerebral Blood Flow and Metabolism
Copyright_xml – notice: The Author(s) 2015
– notice: The Author(s) 2015.
– notice: The Author(s) 2015 2015 International Society for Cerebral Blood Flow and Metabolism
DBID AFRWT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1177/0271678X15606460
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1559-7016
EndPage 1058
ExternalDocumentID PMC4904346
26661163
10_1177_0271678X15606460
10.1177_0271678X15606460
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-Q-
-TM
.55
.GJ
0R~
29K
2WC
36B
39C
3O-
4.4
53G
54M
5GY
5RE
5VS
70F
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AABMB
AACKU
AACMV
AADUE
AAEWN
AAGGD
AAGMC
AAJIQ
AAJPV
AAKGS
AANSI
AAPEO
AAQGT
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAUAS
AAVDI
AAXOT
AAYTG
AAZBJ
ABAWP
ABAWZ
ABCCA
ABCJG
ABDWY
ABEIX
ABFWQ
ABHKI
ABJNI
ABJZC
ABKRH
ABLUO
ABNCE
ABPGX
ABPNF
ABQKF
ABQNX
ABQXT
ABRHV
ABUJY
ABUWG
ABVFX
ABXGC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFO
ACGFS
ACGZU
ACJER
ACJTF
ACLFY
ACLHI
ACNXM
ACOFE
ACOXC
ACPRK
ACROE
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADEBD
ADEIA
ADMPF
ADNON
ADRRZ
ADTBJ
ADUKL
ADVBO
ADZZY
AECGH
AENEX
AEPTA
AEQLS
AESZF
AEUHG
AEWDL
AEWHI
AEXFG
AEXNY
AFEET
AFFNX
AFFZS
AFKRA
AFKRG
AFMOU
AFOSN
AFQAA
AFRWT
AFUIA
AFVCE
AGHKR
AGKLV
AGNHF
AGPXR
AGWFA
AHDMH
AHMBA
AIGRN
AJABX
AJEFB
AJMMQ
AJSCY
AJUZI
AJXAJ
AJXGE
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
AOIJS
ARTOV
AUTPY
AYAKG
B8M
BAWUL
BBNVY
BBRGL
BDDNI
BENPR
BHPHI
BKIIM
BKSCU
BPACV
BPHCQ
BSEHC
BVXVI
BWJAD
C45
CAG
CBRKF
CCPQU
CDWPY
CFDXU
COF
CORYS
CQQTX
CS3
CUTAK
D-I
DC-
DC.
DIK
DOPDO
DV7
E3Z
EBS
EE.
EJD
EMOBN
F5P
FHBDP
FYUFA
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
H13
HCIFZ
HMCUK
HYE
HZ~
J8X
JSO
K.F
KQ8
LK8
M1P
M7P
O9-
OK1
OVD
P2P
P6G
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q1R
Q2X
RNS
RNTTT
ROL
RPM
SASJQ
SAUOL
SCNPE
SFC
SHG
SPQ
SPV
TEORI
TR2
UKHRP
W2D
X7M
YFH
YOC
ZGI
ZONMY
ZPPRI
ZRKOI
ZSSAH
ZXP
AAEJI
AAPII
AAYXX
AJGYC
AJHME
AJVBE
CITATION
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c533t-64c31f67bddc1c29669fda11339f773c6e799ed10796a26cb0f5cdfc2f2cb29f3
IEDL.DBID AFRWT
ISSN 0271-678X
1559-7016
IngestDate Thu Aug 21 13:28:06 EDT 2025
Sat Sep 27 20:47:41 EDT 2025
Thu Sep 04 18:05:51 EDT 2025
Mon Jul 21 05:21:17 EDT 2025
Thu Apr 24 22:58:37 EDT 2025
Mon Sep 08 01:39:21 EDT 2025
Tue Jun 17 22:46:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords high altitude
magnetic resonance imaging
Cerebral blood flow
energy metabolism
cerebral hemodynamics
MR spectroscopy
Language English
License This article is distributed under the terms of the Creative Commons Attribution 3.0 License (http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
The Author(s) 2015.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-64c31f67bddc1c29669fda11339f773c6e799ed10796a26cb0f5cdfc2f2cb29f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/0271678X15606460?utm_source=summon&utm_medium=discovery-provider
PMID 26661163
PQID 1793569278
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4904346
proquest_miscellaneous_1808676294
proquest_miscellaneous_1793569278
pubmed_primary_26661163
crossref_primary_10_1177_0271678X15606460
crossref_citationtrail_10_1177_0271678X15606460
sage_journals_10_1177_0271678X15606460
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: United States
– name: Sage UK: London, England
PublicationTitle Journal of cerebral blood flow and metabolism
PublicationTitleAlternate J Cereb Blood Flow Metab
PublicationYear 2016
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Ainslie, Subudhi 2014; 15
Jain, Abdulmalik, Propert 2012; 68
Jain, Langham, Floyd 2011; 31
Alessandri, Schwandt, Kamada 2012; 29
Lu, Ge 2008; 60
Schurr, Miller, Payne 1999; 19
Alexander, Smith, Strobel 1968; 24
Chen, Pike 2010; 30
Gordon, Choi, Rungta 2008; 456
Jansen, Backes, Nicolay 2006; 240
Tsuda, Kimura, Yoneda 1987; 27
Ainslie, Shaw, Smith 2014; 126
Samra, Turk, Arens 1989; 70
Christiansen, Henriksen, Stubgaard 1993; 11
Harik, Behmand, LaManna 1994; 77
Xu, Liu, Pascual 2012; 32
Jain, Langham, Wehrli 2010; 30
Ainslie, Poulin 2004; 97
Coles, Fryer, Coleman 2007; 35
Bergersen, Gjedde 2012; 4
Rodgers, Jain, Englund 2013; 33
Tsuji, Allred, Jensen 1995; 85
Harik, Lust, Jones 1995; 79
Grote, Zimmer, Schubert 1981; 391
Cox, Morris, Feeney 1983; 212
Holtzman, Khait, Mulkern 1999; 73
Weisskoff, Kiihne 1992; 24
Smith, Krizay, Guo 2013; 114
Cohen, Alexander, Smith 1967; 23
Wyss, Jolivet, Buck 2011; 31
Kety, Schmidt 1948; 27
Bookstein 1989; 11
Xu, Ge, Lu 2009; 62
Mintun, Raichle, Martin 1984; 25
Lauritzen, Morland, Puchades 2014; 24
Overgaard, Rasmussen, Bohm 2012; 26
Spees, Yablonskiy, Oswood 2001; 45
Langham, Magland, Floyd 2009; 61
Ogoh, Sato, Nakahara 2013; 98
Messeter, Siesjö 1971; 83
Dulla, Dobelis, Pearson 2005; 48
Goldstein, Zebker, Werner 1988; 23
bibr2-0271678X15606460
bibr45-0271678X15606460
bibr32-0271678X15606460
bibr24-0271678X15606460
bibr37-0271678X15606460
bibr28-0271678X15606460
bibr6-0271678X15606460
bibr11-0271678X15606460
bibr41-0271678X15606460
bibr15-0271678X15606460
bibr8-0271678X15606460
bibr19-0271678X15606460
bibr1-0271678X15606460
bibr22-0271678X15606460
bibr36-0271678X15606460
bibr35-0271678X15606460
bibr23-0271678X15606460
bibr5-0271678X15606460
bibr10-0271678X15606460
bibr31-0271678X15606460
bibr40-0271678X15606460
bibr14-0271678X15606460
bibr44-0271678X15606460
bibr9-0271678X15606460
bibr13-0271678X15606460
bibr18-0271678X15606460
bibr26-0271678X15606460
bibr34-0271678X15606460
bibr39-0271678X15606460
bibr21-0271678X15606460
bibr30-0271678X15606460
bibr4-0271678X15606460
Mintun MA (bibr27-0271678X15606460) 1984; 25
bibr17-0271678X15606460
bibr43-0271678X15606460
bibr20-0271678X15606460
bibr38-0271678X15606460
bibr3-0271678X15606460
bibr25-0271678X15606460
bibr33-0271678X15606460
bibr16-0271678X15606460
bibr12-0271678X15606460
bibr7-0271678X15606460
bibr29-0271678X15606460
bibr42-0271678X15606460
23838827 - J Cereb Blood Flow Metab. 2013 Oct;33(10):1514-22
6610032 - J Nucl Med. 1984 Feb;25(2):177-87
20372169 - J Cereb Blood Flow Metab. 2010 Jun;30(6):1094-9
5635772 - J Appl Physiol. 1968 Jan;24(1):66-72
1569876 - Magn Reson Med. 1992 Apr;24(2):375-83
18971930 - Nature. 2008 Dec 11;456(7223):745-9
16364904 - Neuron. 2005 Dec 22;48(6):1011-23
23696276 - Cereb Cortex. 2014 Oct;24(10):2784-95
21593331 - J Neurosci. 2011 May 18;31(20):7477-85
3113960 - Eur Neurol. 1987;27(3):155-63
6882378 - Biochem J. 1983 May 15;212(2):365-70
10582608 - J Neurochem. 1999 Dec;73(6):2477-84
23143991 - Exp Physiol. 2013 Mar;98 (3):692-8
7600667 - Brain Res Dev Brain Res. 1995 Apr 18;85(2):192-200
22457647 - Front Neuroenergetics. 2012 Mar 19;4:5
9870935 - J Neurosci. 1999 Jan 1;19(1):34-9
6031186 - J Appl Physiol. 1967 Aug;23(2):183-9
8002545 - J Appl Physiol (1985). 1994 Aug;77(2):896-901
22739621 - J Cereb Blood Flow Metab. 2012 Oct;32(10 ):1909-18
5134175 - Acta Physiol Scand. 1971 Nov;83(3):344-51
21505481 - J Cereb Blood Flow Metab. 2011 Jul;31(7):1504-12
16864664 - Radiology. 2006 Aug;240(2):318-32
22888957 - J Neurotrauma. 2012 Aug 10;29(12):2181-91
22441982 - FASEB J. 2012 Jul;26(7):3012-20
23019310 - J Appl Physiol (1985). 2013 Jan 1;114(1):11-8
24971767 - High Alt Med Biol. 2014 Jun;15(2):133-40
2493755 - Anesthesiology. 1989 Mar;70(3):523-6
24117382 - Clin Sci (Lond). 2014 May;126(9):661-70
16695569 - J Clin Invest. 1948 Jul;27(4):484-92
11283978 - Magn Reson Med. 2001 Apr;45(4):533-42
22162033 - Magn Reson Med. 2012 Sep;68(3):863-7
8423713 - Magn Reson Imaging. 1993;11(1):107-18
19353674 - Magn Reson Med. 2009 Jul;62(1):141-8
19107914 - Magn Reson Med. 2009 Mar;61(3):626-33
6812015 - Pflugers Arch. 1981 Sep;391(3):195-9
17205016 - Crit Care Med. 2007 Feb;35(2):568-78
7559210 - J Appl Physiol (1985). 1995 Jul;79(1):136-40
20407465 - J Cereb Blood Flow Metab. 2010 Sep;30(9):1598-607
18666116 - Magn Reson Med. 2008 Aug;60(2):357-63
15004003 - J Appl Physiol (1985). 2004 Jul;97(1):149-59
References_xml – volume: 31
  start-page: 7477
  year: 2011
  end-page: 7485
  article-title: In vivo evidence for lactate as a neuronal energy source
  publication-title: J Neurosci
– volume: 73
  start-page: 2477
  year: 1999
  end-page: 2484
  article-title: In vivo development of brain phosphocreatine in normal and creatine-treated rabbit pups
  publication-title: J Neurochem
– volume: 85
  start-page: 192
  year: 1995
  end-page: 200
  article-title: Phosphocreatine and ATP regulation in the hypoxic developing rat brain
  publication-title: Brain Res Dev Brain Res
– volume: 19
  start-page: 34
  year: 1999
  end-page: 39
  article-title: An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons
  publication-title: J Neurosci
– volume: 11
  start-page: 107
  year: 1993
  end-page: 118
  article-title: In vivo quantification of brain metabolites by 1H-MRS using water as an internal standard
  publication-title: Magn Reson Imaging
– volume: 456
  start-page: 745
  year: 2008
  end-page: 749
  article-title: Brain metabolism dictates the polarity of astrocyte control over arterioles
  publication-title: Nature
– volume: 77
  start-page: 896
  year: 1994
  end-page: 901
  article-title: Hypoxia increases glucose transport at blood-brain barrier in rats
  publication-title: J Appl Physiol
– volume: 30
  start-page: 1094
  year: 2010
  end-page: 1099
  article-title: Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI
  publication-title: J Cereb Blood Flow Metab
– volume: 24
  start-page: 66
  year: 1968
  end-page: 72
  article-title: Cerebral carbohydrate metabolism of man during respiratory and etabolic alkalosis
  publication-title: J Appl Physiol
– volume: 24
  start-page: 375
  year: 1992
  end-page: 383
  article-title: MRI susceptometry: image-based measurement of absolute susceptibility of MR contrast agents and human blood
  publication-title: Magn Reson Med
– volume: 27
  start-page: 484
  year: 1948
  end-page: 14
  article-title: The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men
  publication-title: J Clin Invest
– volume: 11
  start-page: 567
  year: 1989
  end-page: 585
  article-title: Principal warps: thin-plate splines and the decomposition of deformations
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 23
  start-page: 183
  year: 1967
  end-page: 189
  article-title: Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man
  publication-title: J Appl Physiol
– volume: 68
  start-page: 863
  year: 2012
  end-page: 867
  article-title: Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification
  publication-title: Magn Reson Med
– volume: 35
  start-page: 568
  year: 2007
  end-page: 578
  article-title: Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism
  publication-title: Crit Care Med
– volume: 33
  start-page: 1514
  year: 2013
  end-page: 22
  article-title: High temporal resolution MRI quantification of global cerebral metabolic rate of oxygen consumption in response to apneic challenge
  publication-title: J Cereb Blood Flow Metab
– volume: 24
  start-page: 66
  year: 1968
  end-page: 72
  article-title: Cerebral carbohydrate metabolism of man during respiratory and metabolic alkalosis
  publication-title: J Appl Physiol
– volume: 4
  start-page: 5
  year: 2012
  article-title: Is lactate a volume transmitter of metabolic states of the brain?
  publication-title: Front Neuroenergetics
– volume: 25
  start-page: 177
  year: 1984
  end-page: 187
  article-title: Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography
  publication-title: J Nucl Med
– volume: 98
  start-page: 692
  year: 2013
  end-page: 698
  article-title: Effect of acute hypoxia on blood flow in vertebral and internal carotid arteries
  publication-title: Exp Physiol
– volume: 27
  start-page: 155
  year: 1987
  end-page: 163
  article-title: Effect of hypocapnia on cerebral oxygen metabolism and blood flow in ischemic cerebrovascular disorders
  publication-title: Eur Neurol
– volume: 114
  start-page: 11
  year: 2013
  end-page: 18
  article-title: Sustained high-altitude hypoxia increases cerebral oxygen metabolism
  publication-title: J Appl Physiol
– volume: 60
  start-page: 357
  year: 2008
  end-page: 363
  article-title: Quantitative evaluation of oxygenation in venous vessels using T2-Relaxation-Under-Spin-Tagging MRI
  publication-title: Magn Reson Med
– volume: 70
  start-page: 523
  year: 1989
  end-page: 526
  article-title: Effect of hypocapnia on local cerebral glucose utilization in rats
  publication-title: Anesthesiology
– volume: 32
  start-page: 1909
  year: 2012
  end-page: 1918
  article-title: Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism
  publication-title: J Cereb blood flow Metab
– volume: 31
  start-page: 1504
  year: 2011
  end-page: 1512
  article-title: Rapid magnetic resonance measurement of global cerebral metabolic rate of oxygen consumption in humans during rest and hypercapnia
  publication-title: J Cereb Blood Flow Metab
– volume: 48
  start-page: 1011
  year: 2005
  end-page: 1023
  article-title: Adenosine and ATP link PCO2 to cortical excitability via pH
  publication-title: Neuron
– volume: 212
  start-page: 365
  year: 1983
  end-page: 370
  article-title: 31P-n.m.r. studies on cerebral energy metabolism under conditions of hypoglycaemia and hypoxia in vitro
  publication-title: Biochem J
– volume: 83
  start-page: 344
  year: 1971
  end-page: 351
  article-title: The effect of acute and chronic hypercapnia upon the lactate, pyruvate, -ketoglutarate, glutamate and phosphocreatine contents of the rat brain
  publication-title: Acta Physiol Scand
– volume: 24
  start-page: 2784
  year: 2014
  end-page: 2795
  article-title: Lactate Receptor Sites Link Neurotransmission, Neurovascular Coupling, and Brain Energy Metabolism
  publication-title: Cereb Cortex
– volume: 391
  start-page: 195
  year: 1981
  end-page: 199
  article-title: Effects of severe arterial hypocapnia on regional blood flow regulation, tissue PO2 and metabolism in the brain cortex of cats
  publication-title: Pflügers Arch Eur J Physiol
– volume: 30
  start-page: 1598
  year: 2010
  end-page: 607
  article-title: MRI estimation of global brain oxygen consumption rate
  publication-title: J Cereb blood flow Metab
– volume: 126
  start-page: 661
  year: 2014
  end-page: 670
  article-title: Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia
  publication-title: Clin Sci (Lond)
– volume: 45
  start-page: 533
  year: 2001
  end-page: 542
  article-title: Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility, T1, T2*, T2, and non-Lorentzian signal behavior
  publication-title: Magn Reson Med
– volume: 26
  start-page: 3012
  year: 2012
  end-page: 3020
  article-title: Hypoxia and exercise provoke both lactate release and lactate oxidation by the human brain
  publication-title: FASEB J
– volume: 29
  start-page: 2181
  year: 2012
  end-page: 2191
  article-title: The Neuroprotective Effect of Lactate Is Not Due to Improved Glutamate Uptake after Controlled Cortical Impact in Rats
  publication-title: J Neurotrauma
– volume: 240
  start-page: 318
  year: 2006
  end-page: 332
  article-title: 1H MR spectroscopy of the brain: absolute quantification of metabolites
  publication-title: Radiology
– volume: 62
  start-page: 141
  year: 2009
  end-page: 148
  article-title: Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI
  publication-title: Magn Reson Med
– volume: 97
  start-page: 149
  year: 2004
  end-page: 159
  article-title: Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide
  publication-title: J Appl Physiol
– volume: 79
  start-page: 136
  year: 1995
  end-page: 140
  article-title: Brain glucose metabolism in hypobaric hypoxia
  publication-title: J Appl Physiol
– volume: 15
  start-page: 133
  year: 2014
  end-page: 140
  article-title: Cerebral blood flow at high altitude
  publication-title: High Alt Med Biol
– volume: 23
  start-page: 713
  year: 1988
  end-page: 720
  article-title: Satellite radar interferometry: two-dimensional phase unwrapping
  publication-title: Radio Sci
– volume: 61
  start-page: 626
  year: 2009
  end-page: 633
  article-title: Retrospective correction for induced magnetic field inhomogeneity in measurements of large-vessel hemoglobin oxygen saturation by MR susceptometry
  publication-title: Magn Reson Med
– ident: bibr18-0271678X15606460
  doi: 10.1002/mrm.1072
– ident: bibr29-0271678X15606460
  doi: 10.1152/japplphysiol.00703.2012
– ident: bibr33-0271678X15606460
  doi: 10.1089/neu.2011.2067
– ident: bibr16-0271678X15606460
  doi: 10.1038/jcbfm.2013.110
– ident: bibr6-0271678X15606460
  doi: 10.1042/CS20130343
– ident: bibr12-0271678X15606460
  doi: 10.1159/000116149
– volume: 25
  start-page: 177
  year: 1984
  ident: bibr27-0271678X15606460
  publication-title: J Nucl Med
– ident: bibr41-0271678X15606460
  doi: 10.1038/jcbfm.2010.42
– ident: bibr36-0271678X15606460
  doi: 10.1007/BF00596170
– ident: bibr11-0271678X15606460
  doi: 10.3389/fnene.2012.00005
– ident: bibr23-0271678X15606460
  doi: 10.1002/mrm.21994
– ident: bibr5-0271678X15606460
  doi: 10.1152/jappl.1967.23.2.183
– ident: bibr44-0271678X15606460
  doi: 10.1097/00000542-198903000-00024
– ident: bibr2-0271678X15606460
  doi: 10.1089/ham.2013.1138
– ident: bibr7-0271678X15606460
  doi: 10.1096/fj.11-191999
– ident: bibr9-0271678X15606460
  doi: 10.1038/nature07525
– ident: bibr15-0271678X15606460
  doi: 10.1029/RS023i004p00713
– ident: bibr17-0271678X15606460
  doi: 10.1002/mrm.1910240219
– ident: bibr43-0271678X15606460
  doi: 10.1152/jappl.1995.79.1.136
– ident: bibr24-0271678X15606460
  doi: 10.1113/expphysiol.2012.068015
– ident: bibr8-0271678X15606460
  doi: 10.1152/jappl.1994.77.2.896
– ident: bibr35-0271678X15606460
  doi: 10.1097/01.CCM.0000254066.37187.88
– ident: bibr20-0271678X15606460
  doi: 10.1002/mrm.21499
– ident: bibr32-0271678X15606460
  doi: 10.1523/JNEUROSCI.19-01-00034.1999
– ident: bibr45-0271678X15606460
  doi: 10.1148/radiol.2402050314
– ident: bibr37-0271678X15606460
  doi: 10.1111/j.1748-1716.1971.tb05087.x
– ident: bibr40-0271678X15606460
  doi: 10.1046/j.1471-4159.1999.0732477.x
– ident: bibr21-0271678X15606460
  doi: 10.1109/34.24792
– ident: bibr10-0271678X15606460
  doi: 10.1093/cercor/bht136
– ident: bibr34-0271678X15606460
  doi: 10.1016/j.neuron.2005.11.009
– ident: bibr22-0271678X15606460
  doi: 10.1016/0730-725X(93)90418-D
– ident: bibr39-0271678X15606460
  doi: 10.1016/0165-3806(94)00213-J
– ident: bibr26-0271678X15606460
  doi: 10.1002/mrm.21994
– ident: bibr42-0271678X15606460
  doi: 10.1152/jappl.1968.24.1.66
– ident: bibr14-0271678X15606460
  doi: 10.1038/jcbfm.2010.49
– ident: bibr38-0271678X15606460
  doi: 10.1042/bj2120365
– ident: bibr25-0271678X15606460
  doi: 10.1152/japplphysiol.01385.2003
– ident: bibr4-0271678X15606460
  doi: 10.1152/japplphysiol.00703.2012
– ident: bibr30-0271678X15606460
  doi: 10.1002/mrm.21627
– ident: bibr1-0271678X15606460
  doi: 10.1172/JCI101995
– ident: bibr19-0271678X15606460
  doi: 10.1002/mrm.23282
– ident: bibr31-0271678X15606460
  doi: 10.1523/JNEUROSCI.0415-11.2011
– ident: bibr3-0271678X15606460
  doi: 10.1038/jcbfm.2012.93
– ident: bibr13-0271678X15606460
  doi: 10.1152/jappl.1968.24.1.66
– ident: bibr28-0271678X15606460
  doi: 10.1038/jcbfm.2011.34
– reference: 22457647 - Front Neuroenergetics. 2012 Mar 19;4:5
– reference: 16864664 - Radiology. 2006 Aug;240(2):318-32
– reference: 5635772 - J Appl Physiol. 1968 Jan;24(1):66-72
– reference: 6882378 - Biochem J. 1983 May 15;212(2):365-70
– reference: 22162033 - Magn Reson Med. 2012 Sep;68(3):863-7
– reference: 15004003 - J Appl Physiol (1985). 2004 Jul;97(1):149-59
– reference: 23019310 - J Appl Physiol (1985). 2013 Jan 1;114(1):11-8
– reference: 23696276 - Cereb Cortex. 2014 Oct;24(10):2784-95
– reference: 18971930 - Nature. 2008 Dec 11;456(7223):745-9
– reference: 1569876 - Magn Reson Med. 1992 Apr;24(2):375-83
– reference: 19107914 - Magn Reson Med. 2009 Mar;61(3):626-33
– reference: 22888957 - J Neurotrauma. 2012 Aug 10;29(12):2181-91
– reference: 18666116 - Magn Reson Med. 2008 Aug;60(2):357-63
– reference: 24971767 - High Alt Med Biol. 2014 Jun;15(2):133-40
– reference: 6812015 - Pflugers Arch. 1981 Sep;391(3):195-9
– reference: 16695569 - J Clin Invest. 1948 Jul;27(4):484-92
– reference: 17205016 - Crit Care Med. 2007 Feb;35(2):568-78
– reference: 20372169 - J Cereb Blood Flow Metab. 2010 Jun;30(6):1094-9
– reference: 23838827 - J Cereb Blood Flow Metab. 2013 Oct;33(10):1514-22
– reference: 2493755 - Anesthesiology. 1989 Mar;70(3):523-6
– reference: 7559210 - J Appl Physiol (1985). 1995 Jul;79(1):136-40
– reference: 16364904 - Neuron. 2005 Dec 22;48(6):1011-23
– reference: 5134175 - Acta Physiol Scand. 1971 Nov;83(3):344-51
– reference: 7600667 - Brain Res Dev Brain Res. 1995 Apr 18;85(2):192-200
– reference: 21593331 - J Neurosci. 2011 May 18;31(20):7477-85
– reference: 20407465 - J Cereb Blood Flow Metab. 2010 Sep;30(9):1598-607
– reference: 23143991 - Exp Physiol. 2013 Mar;98 (3):692-8
– reference: 3113960 - Eur Neurol. 1987;27(3):155-63
– reference: 6610032 - J Nucl Med. 1984 Feb;25(2):177-87
– reference: 10582608 - J Neurochem. 1999 Dec;73(6):2477-84
– reference: 19353674 - Magn Reson Med. 2009 Jul;62(1):141-8
– reference: 8423713 - Magn Reson Imaging. 1993;11(1):107-18
– reference: 22739621 - J Cereb Blood Flow Metab. 2012 Oct;32(10 ):1909-18
– reference: 9870935 - J Neurosci. 1999 Jan 1;19(1):34-9
– reference: 21505481 - J Cereb Blood Flow Metab. 2011 Jul;31(7):1504-12
– reference: 8002545 - J Appl Physiol (1985). 1994 Aug;77(2):896-901
– reference: 11283978 - Magn Reson Med. 2001 Apr;45(4):533-42
– reference: 22441982 - FASEB J. 2012 Jul;26(7):3012-20
– reference: 24117382 - Clin Sci (Lond). 2014 May;126(9):661-70
– reference: 6031186 - J Appl Physiol. 1967 Aug;23(2):183-9
SSID ssj0008355
Score 2.4397342
Snippet The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2...
The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O 2...
The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O 2...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1046
SubjectTerms Adolescent
Adult
Brain - metabolism
Brain - pathology
Cerebrovascular Circulation - physiology
Creatine - blood
Energy Metabolism - physiology
Glutamic Acid - blood
Homeostasis
Humans
Hypoxia - metabolism
Lactic Acid - blood
Magnetic Resonance Imaging - methods
Male
Original
Oxygen - blood
Perfusion
Young Adult
Title Acute hypoxia increases the cerebral metabolic rate – a magnetic resonance imaging study
URI https://journals.sagepub.com/doi/full/10.1177/0271678X15606460
https://www.ncbi.nlm.nih.gov/pubmed/26661163
https://www.proquest.com/docview/1793569278
https://www.proquest.com/docview/1808676294
https://pubmed.ncbi.nlm.nih.gov/PMC4904346
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1559-7016
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008355
  issn: 0271-678X
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1559-7016
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008355
  issn: 0271-678X
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1559-7016
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008355
  issn: 0271-678X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1559-7016
  dateEnd: 20240929
  omitProxy: true
  ssIdentifier: ssj0008355
  issn: 0271-678X
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB612wNcEG35CdDKSKgSh7CJkzjxCa2qLhUSHFArVlyixLHbSJts1U0k9sY78IY8CTNOsnRZUXFNnDjxjO1vPDPfALyJbX4iN64X5NoNc6PcXEeFqzX3Bde4gVqe7k-fxfll-HEWzXagHnJh-hFcvqOwKvwiu1jT7KbT6HHvZByjLeXjKjujNGARCu9921Rpd9o9FNWgK-SebivybCuKh1y5Q3bbLuwRc3k0gr3J9MvXi_XajXjEBj3i-13q4I9jc6vPzY1sC51uB1neiRSzm9f0MTzqUSebdGqyDzu6PoDDSY0Wd7ViJ8zGgdoD9gN4cDrUgDuEbxPVNppdr24W38uMlTVhzKVeMoSNTOlb8jrPWaUbVKV5qRjxTrBfP36yjFXZVU0Jkgzt-QWxemhWVrYkErOUtk_gcnp2cXru9tUYXIWQsHFFqALfiDgvCuUrjmaSNEXmo40rTRwHSuhYSl2gOSlFxoXKPROpwihuuMq5NMFTGNWLWj8HpoWRWSJ97aH1l8VJngidGJ6YWORhJpQD42FoU9VTlVPFjHnqD-zkfwnDgbfrJ246mo572r4epJXicJKDJKv1ol2mtFhFQvI4uadNgkYg7iAydOBZJ-F1jwh2hI8A14F4Q_brBsTlvXmnLq8tp3covTAIhQMnpCXpMA3--RMv_rfhS3iIGE900W2vYNTctvoIcVSTH_fKfwy7H2b-b83lGgE
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6h7aFcELQ8QnkYCVXiENh4HTs-ripWC7Q9oK1YcYkSZ9xG2s1W3azU3vgP_EN-CWNvErqsqDhnnIfHHn9fPP4G4K3y5xO5DfuDHEORWxPmGBchIo8kR1pAvU73yakcn4nP03h6q9RX04PL9y6tit7IB-tudjulJE4IXyVTdwJYCklsfUfEFHJ7sDMcff026cIwQQufv0j2oWvwZ49y6x6ba9IW0NzOl7yV9OXXodFDeNAASDZce_wR3MNqD_aHFZHn-Q07ZD6l0_8r34Pdo7ac2z58H5pVjezi5nJxXWasrBxcXOKSEQJkBq_cBvKMzbGmUTErDXMSEuzXj58sY_PsvHJnHRlR84UT6EBWzn11I-bVaR_D2ejj5GgcNoUVQkPorg6lMIPISpUXhYkMJ8ajbZFFRFe1VWpgJCqtsSBmqGXGpcn7NjaFNdxyk3NtB0-gVy0qfAYMpdVZoiPsE5HLVJInEhPLE6tkLjJpAvjQdm1qGtVxV_xilkat0PhfzgjgXdficq24cYftm9ZbKXWn2-vIKlyslqmLO7HUXCV32CTE52gx0CKAp2sPd08k3CIjwqoBqA3fdwZOlnvzSlVeeHluoftiIGQAh26UpO2I_udHPP9fw9ewO56cHKfHn06_HMB9gm5ynbT2Anr11QpfEjyq81fNRPgNUqMGfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD5CmwS8INiAhauR0CQeQhsntePHalCN24TQJipeIts5ZpHatFpTib3xH_iH_BKO3aRQKiaec5yLz_Hx98XHnwGey7A_kbu4nxqMM-NsbHBQxog8ERxpAg063R9OxPFZ9nY8GLe1OX4vTNuDi5e-rIreKCRrP7rnpeu1a4w9olIJJdmx3wUsMkGMfZdYjaSg3h2OPn0-XadighehhpHsY9_g9zrl1j0256UtsLldM_lH4VeYi0a34VYLItlw5fU7cA3rPdgf1kSgp5fskIWyzvC_fA9uHHVHuu3Dl6FdNsjOL-ezb5VmVe0h4wIXjFAgs3jhF5EnbIoNRcaksszLSLCf338wzab6a-33OzKi5zMv0oGsmoYTjlhQqL0LZ6PXp0fHcXu4QmwJ4TWxyGyaOCFNWdrEcmI9ypU6IcqqnJSpFSiVwpLYoRKaC2v6bmBLZ7nj1nDl0nuwU89qPACGwimdqwT7ROa0zE0uMHc8d1KYTAsbQa_r2sK2yuP-AIxJkXRi4385I4IX6xbzlerGFbbPOm8V1J1-vUPXOFsuCp97BkJxmV9hkxOnowlBZRHcX3l4_UTCLiIhvBqB3PD92sBLc29eqavzINGdqX6WZiKCQx8lRRfV__yIB_9r-BSuf3w1Kt6_OXn3EG4SehOrurVHsNNcLPExIaTGPGnHwS9TfQeW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acute+hypoxia+increases+the+cerebral+metabolic+rate+%E2%80%93+a+magnetic+resonance+imaging+study&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=Vestergaard%2C+Mark+B&rft.au=Lindberg%2C+Ulrich&rft.au=Aachmann-Andersen%2C+Niels+Jacob&rft.au=Lisbjerg%2C+Kristian&rft.date=2016-06-01&rft.issn=0271-678X&rft.eissn=1559-7016&rft.volume=36&rft.issue=6&rft.spage=1046&rft.epage=1058&rft_id=info:doi/10.1177%2F0271678X15606460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_0271678X15606460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon