The Melanocortin System in Atlantic Salmon (Salmo salar L.) and Its Role in Appetite Control
The melanocortin system is a key neuroendocrine network involved in the control of food intake and energy homeostasis in vertebrates. Within the hypothalamus, the system comprise two main distinct neuronal cell populations that express the neuropeptides proopiomelanocortin (POMC; anorexigenic) or ag...
Saved in:
Published in | Frontiers in neuroanatomy Vol. 14; p. 48 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Frontiers Research Foundation
21.08.2020
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5129 1662-5129 |
DOI | 10.3389/fnana.2020.00048 |
Cover
Abstract | The melanocortin system is a key neuroendocrine network involved in the control of food intake and energy homeostasis in vertebrates. Within the hypothalamus, the system comprise two main distinct neuronal cell populations that express the neuropeptides proopiomelanocortin (POMC; anorexigenic) or agouti-related protein (AGRP; orexigenic). Both bind to the melanocortin-4 receptor (MC4R) in higher order neurons that controls both food intake and energy expenditure. This system is relatively well-conserved among vertebrates. However, in Atlantic salmon (Salmo salar L.), the salmonid-specific fourth round whole genome duplication lead to the presence of several paralogs genes which might result in divergent functions of the duplicated genes. In the current study, we report the first comprehensive comparative identification and characterization of Mc4r, and extend the knowledge of Pomc and Agrp in appetite control in Atlantic salmon. In silico analysis revealed multiple paralogs genes for mc4r (a1, a2, b1 and b2) in the Atlantic salmon genome, and confirmed the paralogs previously described for pomc (a1, a2 and b) and agrp (a1 and a2). All mc4r paralogs are relatively well-conserved with the human homolog, sharing at least 63% amino acid sequence identity. We analysed the mRNA expression of mc4r, pomc and agrp genes in 8 brain regions of Atlantic salmon post-smolt under 2 feeding states: normally fed and fasted for 4 days. The mc4ra2 and b1 mRNA were predominantly and equally abundant in the hypothalamus and telencephalon, the mc4rb2 in the hypothalamus and a1 in the telencephalon. All pomc genes were highly expressed in the pituitary, followed by hypothalamus and saccus vasculosus. The agrp genes showed a completely different expression pattern from each other, with prevalent expression of the agrp1 in the hypothalamus and agrp2 in the telencephalon. Fasting did not induce any significant changes in the mRNA level of mc4r, agrp or pomc paralogs in the hypothalamus or in other highly expressed regions between fed and fasted state. The identification and wide distribution of multiple paralogs of mc4r, pomc and agrp in Atlantic salmon brain provide new insights and give rise to new questions of the melanocortin system in the appetite regulation in Atlantic salmon. |
---|---|
AbstractList | The melanocortin system is a key neuroendocrine network involved in the control of food intake and energy homeostasis in vertebrates. Within the hypothalamus, the system comprise two main distinct neuronal cell populations that express the neuropeptides proopiomelanocortin (POMC; anorexigenic) or agouti-related protein (AGRP; orexigenic). Both bind to the melanocortin-4 receptor (MC4R) in higher order neurons that controls both food intake and energy expenditure. This system is relatively well-conserved among vertebrates. However, in Atlantic salmon (Salmo salar L.), the salmonid-specific fourth round whole genome duplication lead to the presence of several paralogs genes which might result in divergent functions of the duplicated genes. In the current study, we report the first comprehensive comparative identification and characterization of Mc4r, and extend the knowledge of Pomc and Agrp in appetite control in Atlantic salmon. In silico analysis revealed multiple paralogs genes for mc4r (a1, a2, b1 and b2) in the Atlantic salmon genome, and confirmed the paralogs previously described for pomc (a1, a2 and b) and agrp (a1 and a2). All mc4r paralogs are relatively well-conserved with the human homolog, sharing at least 63% amino acid sequence identity. We analysed the mRNA expression of mc4r, pomc and agrp genes in 8 brain regions of Atlantic salmon post-smolt under 2 feeding states: normally fed and fasted for 4 days. The mc4ra2 and b1 mRNA were predominantly and equally abundant in the hypothalamus and telencephalon, the mc4rb2 in the hypothalamus and a1 in the telencephalon. All pomc genes were highly expressed in the pituitary, followed by hypothalamus and saccus vasculosus. The agrp genes showed a completely different expression pattern from each other, with prevalent expression of the agrp1 in the hypothalamus and agrp2 in the telencephalon. Fasting did not induce any significant changes in the mRNA level of mc4r, agrp or pomc paralogs in the hypothalamus or in other highly expressed regions between fed and fasted state. The identification and wide distribution of multiple paralogs of mc4r, pomc and agrp in Atlantic salmon brain provide new insights and give rise to new questions of the melanocortin system in the appetite regulation in Atlantic salmon. The melanocortin system is a key neuroendocrine network involved in the control of food intake and energy homeostasis in vertebrates. Within the hypothalamus, the system comprises two main distinct neuronal cell populations that express the neuropeptides proopiomelanocortin (POMC; anorexigenic) or agouti-related protein (AGRP; orexigenic). Both bind to the melanocortin-4 receptor (MC4R) in higher order neurons that control both food intake and energy expenditure. This system is relatively well-conserved among vertebrates. However, in Atlantic salmon ( Salmo salar L.), the salmonid-specific fourth round whole-genome duplication led to the presence of several paralog genes which might result in divergent functions of the duplicated genes. In the current study, we report the first comprehensive comparative identification and characterization of Mc4r and extend the knowledge of Pomc and Agrp in appetite control in Atlantic salmon. In silico analysis revealed multiple paralogs for mc4r ( a1 , a2 , b1 , and b2 ) in the Atlantic salmon genome and confirmed the paralogs previously described for pomc ( a1 , a2 , and b ) and agrp ( 1 and 2 ). All Mc4r paralogs are relatively well-conserved with the human homolog, sharing at least 63% amino acid sequence identity. We analyzed the mRNA expression of mc4r , pomc , and agrp genes in eight brain regions of Atlantic salmon post-smolt under two feeding states: normally fed and fasted for 4 days. The mc4ra2 and b1 mRNAs were predominantly and equally abundant in the hypothalamus and telencephalon, the mc4rb2 in the hypothalamus, and a1 in the telencephalon. All pomc genes were highly expressed in the pituitary, followed by the hypothalamus and saccus vasculosus. The agrp genes showed a completely different expression pattern from each other, with prevalent expression of the agrp1 in the hypothalamus and agrp2 in the telencephalon. Fasting did not induce any significant changes in the mRNA level of mc4r , agrp , or pomc paralogs in the hypothalamus or in other highly expressed regions between fed and fasted states. The identification and wide distribution of multiple paralogs of mc4r , pomc , and agrp in Atlantic salmon brain provide new insights and give rise to new questions of the melanocortin system in the appetite regulation in Atlantic salmon. The melanocortin system is a key neuroendocrine network involved in the control of food intake and energy homeostasis in vertebrates. Within the hypothalamus, the system comprises two main distinct neuronal cell populations that express the neuropeptides proopiomelanocortin (POMC; anorexigenic) or agouti-related protein (AGRP; orexigenic). Both bind to the melanocortin-4 receptor (MC4R) in higher order neurons that control both food intake and energy expenditure. This system is relatively well-conserved among vertebrates. However, in Atlantic salmon (Salmo salar L.), the salmonid-specific fourth round whole-genome duplication led to the presence of several paralog genes which might result in divergent functions of the duplicated genes. In the current study, we report the first comprehensive comparative identification and characterization of Mc4r and extend the knowledge of Pomc and Agrp in appetite control in Atlantic salmon. In silico analysis revealed multiple paralogs for mc4r (a1, a2, b1, and b2) in the Atlantic salmon genome and confirmed the paralogs previously described for pomc (a1, a2, and b) and agrp (1 and 2). All Mc4r paralogs are relatively well-conserved with the human homolog, sharing at least 63% amino acid sequence identity. We analyzed the mRNA expression of mc4r, pomc, and agrp genes in eight brain regions of Atlantic salmon post-smolt under two feeding states: normally fed and fasted for 4 days. The mc4ra2 and b1 mRNAs were predominantly and equally abundant in the hypothalamus and telencephalon, the mc4rb2 in the hypothalamus, and a1 in the telencephalon. All pomc genes were highly expressed in the pituitary, followed by the hypothalamus and saccus vasculosus. The agrp genes showed a completely different expression pattern from each other, with prevalent expression of the agrp1 in the hypothalamus and agrp2 in the telencephalon. Fasting did not induce any significant changes in the mRNA level of mc4r, agrp, or pomc paralogs in the hypothalamus or in other highly expressed regions between fed and fasted states. The identification and wide distribution of multiple paralogs of mc4r, pomc, and agrp in Atlantic salmon brain provide new insights and give rise to new questions of the melanocortin system in the appetite regulation in Atlantic salmon. The melanocortin system is a key neuroendocrine network involved in the control of food intake and energy homeostasis in vertebrates. Within the hypothalamus, the system comprises two main distinct neuronal cell populations that express the neuropeptides proopiomelanocortin (POMC; anorexigenic) or agouti-related protein (AGRP; orexigenic). Both bind to the melanocortin-4 receptor (MC4R) in higher order neurons that control both food intake and energy expenditure. This system is relatively well-conserved among vertebrates. However, in Atlantic salmon (Salmo salar L.), the salmonid-specific fourth round whole-genome duplication led to the presence of several paralog genes which might result in divergent functions of the duplicated genes. In the current study, we report the first comprehensive comparative identification and characterization of Mc4r and extend the knowledge of Pomc and Agrp in appetite control in Atlantic salmon. In silico analysis revealed multiple paralogs for mc4r (a1, a2, b1, and b2) in the Atlantic salmon genome and confirmed the paralogs previously described for pomc (a1, a2, and b) and agrp (1 and 2). All Mc4r paralogs are relatively well-conserved with the human homolog, sharing at least 63% amino acid sequence identity. We analyzed the mRNA expression of mc4r, pomc, and agrp genes in eight brain regions of Atlantic salmon post-smolt under two feeding states: normally fed and fasted for 4 days. The mc4ra2 and b1 mRNAs were predominantly and equally abundant in the hypothalamus and telencephalon, the mc4rb2 in the hypothalamus, and a1 in the telencephalon. All pomc genes were highly expressed in the pituitary, followed by the hypothalamus and saccus vasculosus. The agrp genes showed a completely different expression pattern from each other, with prevalent expression of the agrp1 in the hypothalamus and agrp2 in the telencephalon. Fasting did not induce any significant changes in the mRNA level of mc4r, agrp, or pomc paralogs in the hypothalamus or in other highly expressed regions between fed and fasted states. The identification and wide distribution of multiple paralogs of mc4r, pomc, and agrp in Atlantic salmon brain provide new insights and give rise to new questions of the melanocortin system in the appetite regulation in Atlantic salmon.The melanocortin system is a key neuroendocrine network involved in the control of food intake and energy homeostasis in vertebrates. Within the hypothalamus, the system comprises two main distinct neuronal cell populations that express the neuropeptides proopiomelanocortin (POMC; anorexigenic) or agouti-related protein (AGRP; orexigenic). Both bind to the melanocortin-4 receptor (MC4R) in higher order neurons that control both food intake and energy expenditure. This system is relatively well-conserved among vertebrates. However, in Atlantic salmon (Salmo salar L.), the salmonid-specific fourth round whole-genome duplication led to the presence of several paralog genes which might result in divergent functions of the duplicated genes. In the current study, we report the first comprehensive comparative identification and characterization of Mc4r and extend the knowledge of Pomc and Agrp in appetite control in Atlantic salmon. In silico analysis revealed multiple paralogs for mc4r (a1, a2, b1, and b2) in the Atlantic salmon genome and confirmed the paralogs previously described for pomc (a1, a2, and b) and agrp (1 and 2). All Mc4r paralogs are relatively well-conserved with the human homolog, sharing at least 63% amino acid sequence identity. We analyzed the mRNA expression of mc4r, pomc, and agrp genes in eight brain regions of Atlantic salmon post-smolt under two feeding states: normally fed and fasted for 4 days. The mc4ra2 and b1 mRNAs were predominantly and equally abundant in the hypothalamus and telencephalon, the mc4rb2 in the hypothalamus, and a1 in the telencephalon. All pomc genes were highly expressed in the pituitary, followed by the hypothalamus and saccus vasculosus. The agrp genes showed a completely different expression pattern from each other, with prevalent expression of the agrp1 in the hypothalamus and agrp2 in the telencephalon. Fasting did not induce any significant changes in the mRNA level of mc4r, agrp, or pomc paralogs in the hypothalamus or in other highly expressed regions between fed and fasted states. The identification and wide distribution of multiple paralogs of mc4r, pomc, and agrp in Atlantic salmon brain provide new insights and give rise to new questions of the melanocortin system in the appetite regulation in Atlantic salmon. |
Author | Murashita, Koji Lai, Floriana Rønnestad, Ivar Kalananthan, Tharmini Gomes, Ana S. Handeland, Sigurd |
AuthorAffiliation | 2 Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency , Tamaki , Japan 1 Department of Biological Sciences, University of Bergen , Bergen , Norway 3 Norwegian Research Center, NORCE Environment , Bergen , Norway |
AuthorAffiliation_xml | – name: 1 Department of Biological Sciences, University of Bergen , Bergen , Norway – name: 2 Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency , Tamaki , Japan – name: 3 Norwegian Research Center, NORCE Environment , Bergen , Norway |
Author_xml | – sequence: 1 givenname: Tharmini surname: Kalananthan fullname: Kalananthan, Tharmini – sequence: 2 givenname: Floriana surname: Lai fullname: Lai, Floriana – sequence: 3 givenname: Ana S. surname: Gomes fullname: Gomes, Ana S. – sequence: 4 givenname: Koji surname: Murashita fullname: Murashita, Koji – sequence: 5 givenname: Sigurd surname: Handeland fullname: Handeland, Sigurd – sequence: 6 givenname: Ivar surname: Rønnestad fullname: Rønnestad, Ivar |
BookMark | eNp1UsFqGzEQFSWlSdzeexT0kh7saiWtVroUgmkTg0uhSW8FMdbOJjK7kruSA_n7yutQmkBPMxrNe5p5eufkJMSAhLyv2EIIbT51AQIsOONswRiT-hU5q5Ti87ri5uSf_JScp7RlTHFV12_IqeCmEVKJM_Lr9h7pN-whRBfH7AO9eUwZB1qyy1zK2Tt6A_0QA72YIk3Qw0jXi48UQktXOdEfsccJsNth9hnpMoY8xv4ted1Bn_DdU5yRn1-_3C6v5-vvV6vl5XruaiHyXDh0YCqtjRa8aduNMQqwRala1WnHKpRMgVaszCycBMdqJXjFteiwnLiYkdWRt42wtbvRDzA-2gjeToU43lkou7kerWg4MxVuBICR3LUb1SBA1XGnjNZSFq7PR67dfjNg67BsAv0z0uc3wd_bu_hgG9lUTdF0Ri6eCMb4e48p28Enh33REuM-WS6lUqqW5vDWhxet27gfQ5GqdInaiMboAyE7drkxpjRi93eYitmDDexkA3uwgZ1sUCDqBcT5DNkfvgV8_3_gH_Cgt4U |
CitedBy_id | crossref_primary_10_1016_j_aquaculture_2022_738917 crossref_primary_10_1016_j_aqrep_2024_102041 crossref_primary_10_1016_j_ygcen_2021_113719 crossref_primary_10_1002_cne_25415 crossref_primary_10_1371_journal_pone_0316629 crossref_primary_10_1016_j_mce_2021_111229 crossref_primary_10_1016_j_aquaculture_2022_739204 crossref_primary_10_1016_j_peptides_2021_170623 crossref_primary_10_3389_fnmol_2023_1038341 crossref_primary_10_1371_journal_pone_0307212 crossref_primary_10_1007_s10499_022_00911_w crossref_primary_10_3389_fmars_2023_1183967 crossref_primary_10_3389_fnbeh_2023_1162494 crossref_primary_10_1007_s42995_021_00106_x crossref_primary_10_3390_ani14243638 crossref_primary_10_1242_jeb_246504 crossref_primary_10_3389_fphys_2021_666670 crossref_primary_10_3390_biom13081248 crossref_primary_10_1371_journal_pone_0311146 crossref_primary_10_1016_j_ygcen_2023_114228 crossref_primary_10_3389_fmars_2021_763766 crossref_primary_10_1002_aff2_153 |
Cites_doi | 10.1073/pnas.1510802112 10.1385/ENDO:22:3:257 10.1016/j.jmb.2010.06.028 10.3389/fphys.2014.00480 10.3389/fendo.2019.00515 10.7717/peerj.3273 10.1016/j.ygcen.2005.01.010 10.1007/s10695-015-0074-75 10.1210/en.2003-2453 10.1016/j.mce.2015.06.024 10.1093/gbe/evu131 10.1002/cne.24268 10.1016/j.peptides.2010.07.019 10.1016/j.ygcen.2008.11.003 10.1073/pnas.1016785108 10.1016/j.cbpa.2015.01.009 10.1677/joe.1.06283 10.1111/j.1365-2109.1992.tb00770.x 10.1371/journal.pone.0128603 10.1530/JME-16-0014.60 10.1016/j.ygcen.2013.03.024 10.1007/s11033-011-0970-974 10.1016/j.ygcen.2007.05.010 10.1016/j.ygcen.2006.03.001 10.1093/molbev/msg173 10.1016/j.ygcen.2011.02.027 10.1016/0165-0173(90)90012-D 10.1210/en.2002-2213 10.1007/s10695-011-9538-9534 10.1016/j.yhbeh.2016.04.005 10.1210/er.2009-2037 10.1038/35078085 10.1016/j.ygcen.2009.03.015 10.1016/j.ygcen.2014.02.009 10.1530/JME-13-0055 10.3389/fendo.2019.00705 10.1093/nar/gkz322 10.1016/S0304-3940(02)01381-1382 10.1530/JME-17-0320 10.1093/molbev/mst012 10.3389/fnins.2016.00540 10.1093/iob/oby003 10.1093/icb/45.2.263 10.1371/journal.pone.0138857 10.1111/j.1365-2095.2011.00918.x 10.1038/nature17164 10.1021/bi0478704 10.17352/2455-815X.000014 10.3390/ijms17060783 10.1523/JNEUROSCI.5369-03.2004 10.1016/j.cub.2019.05.021 10.3389/fphys.2020.00061 10.1242/jeb.048439 10.3389/fendo.2019.00254 10.3389/fphys.2018.01901 10.16288/j.yczz.16-087 10.1152/ajpregu.90948.2008 10.1046/j.1365-2095.2003.00256.x 10.1016/j.cbpa.2010.09.001 10.3389/fendo.2017.00073 10.1152/ajpregu.00283.2017 10.1016/j.gene.2013.06.003 10.1016/j.ygcen.2009.12.004 10.1096/fj.06-7503com 10.1016/S0167-0115(03)00144-147 10.1038/srep44777 10.1016/S0044-8486(00)00444-440 10.1523/JNEUROSCI.4861-12.2014 10.3389/fendo.2015.00143 10.1111/j.1439-0426.2006.00805.x 10.1016/j.ygcen.2005.09.020 10.1006/mpev.1994.1007 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Kalananthan, Lai, Gomes, Murashita, Handeland and Rønnestad. Copyright © 2020 Kalananthan, Lai, Gomes, Murashita, Handeland and Rønnestad. 2020 Kalananthan, Lai, Gomes, Murashita, Handeland and Rønnestad |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Kalananthan, Lai, Gomes, Murashita, Handeland and Rønnestad. – notice: Copyright © 2020 Kalananthan, Lai, Gomes, Murashita, Handeland and Rønnestad. 2020 Kalananthan, Lai, Gomes, Murashita, Handeland and Rønnestad |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnana.2020.00048 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - Not for CDI Discovery url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5129 |
ExternalDocumentID | oai_doaj_org_article_372091eb3aa942cdb67eaa1f2c698844 PMC7471746 10_3389_fnana_2020_00048 |
GeographicLocations | Norway |
GeographicLocations_xml | – name: Norway |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z EBS EJD EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c533t-3ceca918898327ddb996aede46d6f8c01e406a8607343c4ac056321283fe4ac23 |
IEDL.DBID | M48 |
ISSN | 1662-5129 |
IngestDate | Wed Aug 27 01:03:55 EDT 2025 Thu Aug 21 18:10:40 EDT 2025 Fri Sep 05 09:32:51 EDT 2025 Fri Jul 25 11:40:16 EDT 2025 Tue Jul 01 01:58:31 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c533t-3ceca918898327ddb996aede46d6f8c01e406a8607343c4ac056321283fe4ac23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Sebastiano Vilella, University of Salento, Italy; Flavio S. J. De Souza, Molecular Biology and Neurosciences (IFIBYNE), Argentina These authors share first authorship Edited by: Livia D’Angelo, University of Naples Federico II, Italy |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnana.2020.00048 |
PMID | 32973463 |
PQID | 2435937986 |
PQPubID | 4424405 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_372091eb3aa942cdb67eaa1f2c698844 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7471746 proquest_miscellaneous_2446665494 proquest_journals_2435937986 crossref_primary_10_3389_fnana_2020_00048 crossref_citationtrail_10_3389_fnana_2020_00048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-21 |
PublicationDateYYYYMMDD | 2020-08-21 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Frontiers in neuroanatomy |
PublicationYear | 2020 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Volkoff (B65) 2016; 10 Attia (B4) 2012; 38 Lien (B37) 2016; 533 Striberny (B60) 2015; 10 Schjolden (B54) 2009; 160 Wei (B69) 2013; 527 Sánchez (B53) 2009; 296 Murashita (B42) 2009; 162 Zhang (B73) 2019; 10 Froese (B20) 2006; 22 Shainer (B56) 2019; 29 Hansen (B26) 1992; 23 Kojima (B34) 2010; 167 Baver (B5) 2014; 34 Hall (B25) 2011 Rønnestad (B52) 2017; 8 Comesaña (B12) 2017; 314 Fjelldal (B19) 2012; 18 Rodrigues (B51) 2013; 51 Cerdá-Reverter (B7) 2003; 144 Nuzzaci (B45) 2015; 6 Warren (B68) 2014; 6 Song (B59) 2003; 22 Kang (B29) 2010; 31 Agulleiro (B1) 2014; 205 Kalananthan (B28) 2020; 11 Cowley (B14) 2001; 411 Song (B58) 2007; 21 David (B16) 2003; 20 Larhammar (B35) 1994; 3 Porter (B49) 2017; 525 Endal (B18) 2000; 191 Kim (B31) 2015; 413 Hall (B24) 2013; 30 Nordgarden (B44) 2003; 9 McGuffin (B39) 2019; 47 Riediger (B50) 2003; 341 Cerdá-Reverter (B9); 115 Dunn (B17) 1990; 15 Nicholas (B43) 1997; 4 Gomes (B23) 2015; 183 Aspiras (B3) 2015; 112 Metz (B40) 2006; 148 Heyder (B27) 2019; 10 Otero-Rodiño (B48) 2019; 10 Ghamari-Langroudi (B21) 2011; 108 Gilmour (B22) 2005; 45 Murashita (B41) 2011; 158 Kim (B30) 2014; 5 Zhong (B74) 2013; 192 Koch (B33) 2019; 1 Chai (B10) 2005; 44 Soengas (B57) 2018; 60 Liu (B38) 2016; 38 Takahashi (B61) 2005; 141 Wan (B67) 2012; 39 Leder (B36) 2006; 188 Bouret (B6) 2004; 24 Conde-Sieira (B13) 2010; 213 Takahashi (B62) 2006; 148 Dalmolin (B15) 2015; 41 Yan (B72) 2016; 17 Valen (B64) 2011; 171 Otero-Rodiño (B47) 2015; 10 White (B71) 2016; 84 Opazo (B46) 2019; 10 Cerdá-Reverter (B8); 144 Shainer (B55) 2017; 7 Waagbø (B66) 2017; 5 Anderson (B2) 2016; 56 Wen (B70) 2017; 3 Chapman (B11) 2010; 401 Kobayashi (B32) 2008; 155 Tao (B63) 2010; 31 |
References_xml | – volume: 112 start-page: 9668 year: 2015 ident: B3 article-title: Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1510802112 – volume: 22 start-page: 257 year: 2003 ident: B59 article-title: Agouti-Related Protein (AGRP) Is Conserved and Regulated by Metabolic State in the Zebrafish, Danio rerio. publication-title: Endocrine doi: 10.1385/ENDO:22:3:257 – volume: 401 start-page: 433 year: 2010 ident: B11 article-title: Interactions of the melanocortin-4 receptor with the peptide agonist NDP-MSH. publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.06.028 – volume: 5 year: 2014 ident: B30 article-title: Hormonal regulation of the hypothalamic melanocortin system. publication-title: Front. Physiol. doi: 10.3389/fphys.2014.00480 – volume: 10 year: 2019 ident: B27 article-title: Signal transduction and pathogenic modifications at the melanocortin-4 receptor: a structural perspective. publication-title: Front. Endocrinol. doi: 10.3389/fendo.2019.00515 – volume: 5 year: 2017 ident: B66 article-title: Short-term starvation at low temperature prior to harvest does not impact the health and acute stress response of adult Atlantic salmon. publication-title: PeerJ doi: 10.7717/peerj.3273 – volume: 141 start-page: 291 year: 2005 ident: B61 article-title: Nucleotide sequence and expression of three subtypes of proopiomelanocortin mRNA in barfin flounder. publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2005.01.010 – volume: 41 start-page: 1131 year: 2015 ident: B15 article-title: Food intake and appetite control in a GH-transgenic zebrafish. publication-title: Fish Physiol. Biochem. doi: 10.1007/s10695-015-0074-75 – volume: 144 start-page: 4552 year: 2003 ident: B7 article-title: Endogenous melanocortin antagonist in fish: structure, brain mapping, and regulation by fasting of the goldfish agouti-related protein gene. publication-title: Endocrinology doi: 10.1210/en.2003-2453 – volume: 413 start-page: 178 year: 2015 ident: B31 article-title: Effects of chronic growth hormone overexpression on appetite-regulating brain gene expression in coho salmon. publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2015.06.024 – volume: 6 start-page: 1790 year: 2014 ident: B68 article-title: Extensive local gene duplication and functional divergence among paralogs in Atlantic Salmon. publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evu131 – volume: 525 start-page: 3126 year: 2017 ident: B49 article-title: Distribution and female reproductive state differences in orexigenic and anorexigenic neurons in the brain of the mouth brooding African cichlid fish, Astatotilapia burtoni. publication-title: J. Comp. Neurol. doi: 10.1002/cne.24268 – volume: 31 start-page: 2130 year: 2010 ident: B29 article-title: The anorexigenic effect of cholecystokinin octapeptide in a goldfish model is mediated by the vagal afferent and subsequently through the melanocortin- and corticotropin-releasing hormone-signaling pathways. publication-title: Peptides doi: 10.1016/j.peptides.2010.07.019 – volume: 160 start-page: 134 year: 2009 ident: B54 article-title: Melanocortin peptides affect the motivation to feed in rainbow trout (Oncorhynchus mykiss). publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2008.11.003 – volume: 108 start-page: 355 year: 2011 ident: B21 article-title: Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1016785108 – volume: 183 start-page: 116 year: 2015 ident: B23 article-title: Neuroendocrine control of appetite in Atlantic halibut (Hippoglossus hippoglossus): changes during metamorphosis and effects of feeding. publication-title: Comp. Biochem. Physiol. -Part A Mol. Integr. Physiol. doi: 10.1016/j.cbpa.2015.01.009 – volume: 188 start-page: 355 year: 2006 ident: B36 article-title: The pro-opiomelanocortin genes in rainbow trout (Oncorhynchus mykiss): duplications, splice variants, and differential expression. publication-title: J. Endocrinol. doi: 10.1677/joe.1.06283 – volume: 23 start-page: 275 year: 1992 ident: B26 article-title: Growth and sexual maturation in Atlantic salmon, Salmo salar L., reared in sea cages at two different light regimes. publication-title: Aquac. Fish. Manag. doi: 10.1111/j.1365-2109.1992.tb00770.x – volume: 10 year: 2015 ident: B47 article-title: Evidence for the presence of glucosensor mechanisms not dependent on glucokinase in hypothalamus and hindbrain of rainbow trout (Oncorhynchus mykiss). publication-title: PLoS One doi: 10.1371/journal.pone.0128603 – volume: 56 start-page: 1 year: 2016 ident: B2 article-title: 60 years of POMC: regulation of feeding and energy homeostasis by α-MSH. publication-title: J. Mol. Endocrinol. doi: 10.1530/JME-16-0014.60 – volume: 192 start-page: 81 year: 2013 ident: B74 article-title: Increased food intake in growth hormone-transgenic common carp (Cyprinus carpio L.) may be mediated by upregulating Agouti-related protein (AgRP). publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2013.03.024 – volume: 39 start-page: 2215 year: 2012 ident: B67 article-title: Molecular characterization of CART, AgRP, and MC4R genes and their expression with fasting and re-feeding in common carp (Cyprinus carpio). publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-011-0970-974 – volume: 155 start-page: 280 year: 2008 ident: B32 article-title: Food deprivation increases the expression of melanocortin-4 receptor in the liver of barfin flounder. Verasper moseri. publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2007.05.010 – volume: 148 start-page: 150 year: 2006 ident: B40 article-title: Molecular biology and physiology of the melanocortin system in fish: a review. publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2006.03.001 – volume: 20 start-page: 1425 year: 2003 ident: B16 article-title: Recent duplication of the common carp (Cyprinus carpio L.) Genome as revealed by analyses of microsatellite loci. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msg173 – volume: 171 start-page: 359 year: 2011 ident: B64 article-title: Postprandial effects on appetite-related neuropeptide expression in the brain of Atlantic salmon, Salmo salar. publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2011.02.027 – volume: 15 start-page: 71 year: 1990 ident: B17 article-title: Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? publication-title: Brain Res. Rev. doi: 10.1016/0165-0173(90)90012-D – volume: 144 start-page: 2336 ident: B8 article-title: Molecular cloning, pharmacological characterization, and brain mapping of the melanocortin 4 receptor in the goldfish: involvement in the control of food intake. publication-title: Endocrinology doi: 10.1210/en.2002-2213 – volume: 38 start-page: 107 year: 2012 ident: B4 article-title: Demand feeding and welfare in farmed fish. publication-title: Fish Physiol. Biochem. doi: 10.1007/s10695-011-9538-9534 – volume: 84 start-page: 18 year: 2016 ident: B71 article-title: Regulation of feeding behavior and food intake by appetite-regulating peptides in wild-type and growth hormone-transgenic coho salmon. publication-title: Horm. Behav. doi: 10.1016/j.yhbeh.2016.04.005 – volume: 31 start-page: 506 year: 2010 ident: B63 article-title: The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. publication-title: Endocr. Rev. doi: 10.1210/er.2009-2037 – volume: 411 start-page: 480 year: 2001 ident: B14 article-title: Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. publication-title: Nature doi: 10.1038/35078085 – volume: 162 start-page: 160 year: 2009 ident: B42 article-title: Characterization, tissue distribution, and regulation of agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) in Atlantic salmon (Salmo salar). publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2009.03.015 – volume: 205 start-page: 251 year: 2014 ident: B1 article-title: Characterization, tissue distribution and regulation by fasting of the agouti family of peptides in the sea bass (Dicentrarchus labrax). publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2014.02.009 – volume: 51 start-page: 23 year: 2013 ident: B51 article-title: Structural determinants regulating cell surface targeting of melanocortin receptors. publication-title: J. Mol. Endocrinol. doi: 10.1530/JME-13-0055 – volume: 10 year: 2019 ident: B73 article-title: Melanocortin-4 receptor in spotted sea bass, lateolabrax maculatus: cloning, tissue distribution, physiology, and pharmacology. publication-title: Front. Endocrinol. doi: 10.3389/fendo.2019.00705 – volume: 47 start-page: 408 year: 2019 ident: B39 article-title: IntFOLD: an integrated web resource for high performance protein structure and function prediction. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz322 – volume: 341 start-page: 151 year: 2003 ident: B50 article-title: Site-specific effects of ghrelin on the neuronal activity in the hypothalamic arcuate nucleus. publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(02)01381-1382 – volume: 60 start-page: R171 year: 2018 ident: B57 article-title: Central regulation of food intake in fish: an evolutionary perspective. publication-title: J. Mol. Endocrinol. doi: 10.1530/JME-17-0320 – volume: 30 start-page: 1229 year: 2013 ident: B24 article-title: Building phylogenetic trees from molecular data with MEGA. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst012 – volume: 10 year: 2016 ident: B65 article-title: The neuroendocrine regulation of food intake in fish: a review of current knowledge. publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00540 – volume: 1 start-page: 1 year: 2019 ident: B33 article-title: The expression of agrp1, a hypothalamic appetite-stimulating neuropeptide, reveals hydrodynamic-induced starvation in a larval fish. publication-title: Integr. Org. Biol. doi: 10.1093/iob/oby003 – volume: 4 year: 1997 ident: B43 article-title: GeneDoc: analysis and visualization of genetic variation. publication-title: Embnew. News – volume: 45 start-page: 263 year: 2005 ident: B22 article-title: Physiological causes and consequences of social status in salmonid fish. publication-title: Integr. Comp. Biol. doi: 10.1093/icb/45.2.263 – volume: 10 year: 2015 ident: B60 article-title: Seasonal differences in relative gene expression of putative central appetite regulators in arctic charr (Salvelinus alpinus) do not reflect its annual feeding cycle. publication-title: PLoS One doi: 10.1371/journal.pone.0138857 – volume: 18 start-page: 610 year: 2012 ident: B19 article-title: Continuous light induces bone resorption and affects vertebral morphology in Atlantic salmon (Salmo salar L.) fed a phosphorous deficient diet. publication-title: Aquac. Nutr. doi: 10.1111/j.1365-2095.2011.00918.x – volume: 533 start-page: 200 year: 2016 ident: B37 article-title: The Atlantic salmon genome provides insights into rediploidization. publication-title: Nature doi: 10.1038/nature17164 – volume: 44 start-page: 3418 year: 2005 ident: B10 article-title: Receptor-antagonist interactions in the complexes of agouti and agouti-related protein with human melanocortin 1 and 4 receptors. publication-title: Biochemistry doi: 10.1021/bi0478704 – volume: 3 start-page: 1 year: 2017 ident: B70 article-title: International journal of agricultural science and food technology DOI CC By Melanocortin-4 receptor in fish: a review. publication-title: Int. J. Agri. Sci. Food Technol. doi: 10.17352/2455-815X.000014 – volume: 17 year: 2016 ident: B72 article-title: Goldfish leptin-AI and leptin-AII: function and central mechanism in feeding control. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17060783 – volume: 24 start-page: 2797 year: 2004 ident: B6 article-title: Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5369-03.2004 – volume: 29 year: 2019 ident: B56 article-title: Agouti-related protein 2 is a new player in the teleost stress response system. publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.05.021 – volume: 11 year: 2020 ident: B28 article-title: Hypothalamic agrp and pomc mRNA responses to gastrointestinal fullness and fasting in Atlantic salmon (Salmo salar. L.). publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00061 – volume: 213 start-page: 3858 year: 2010 ident: B13 article-title: Effect of different glycaemic conditions on gene expression of neuropeptides involved in control of food intake in rainbow trout. Interaction with stress. publication-title: J. Exp. Biol. doi: 10.1242/jeb.048439 – volume: 10 year: 2019 ident: B48 article-title: Sensing glucose in the central melanocortin circuits of rainbow trout: a morphological study. publication-title: Front. Endocrinol. doi: 10.3389/fendo.2019.00254 – volume: 10 year: 2019 ident: B46 article-title: Fasting Upregulates npy, agrp, and ghsr without Increasing Ghrelin Levels in Zebrafish (Danio rerio) larvae. publication-title: Front. Physiol. doi: 10.3389/fphys.2018.01901 – volume: 38 start-page: 821 year: 2016 ident: B38 article-title: Effects of starvation on the expression of feeding related neuropeptides in the larval zebrafish hypothalamus. publication-title: Yi Chuan doi: 10.16288/j.yczz.16-087 – volume: 296 start-page: 1293 year: 2009 ident: B53 article-title: Phosphodiesterase inhibitor-dependent inverse agonism of agouti-related protein on melanocortin 4 receptor in sea bass (Dicentrarchus labrax). publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.90948.2008 – volume: 9 start-page: 287 year: 2003 ident: B44 article-title: Seasonally changing metabolism in Atlantic salmon (Salmo salar L.) I - Growth and feed conversion ratio. publication-title: Aquac. Nutr. doi: 10.1046/j.1365-2095.2003.00256.x – volume: 158 start-page: 79 year: 2011 ident: B41 article-title: Leptin reduces Atlantic salmon growth through the central pro-opiomelanocortin pathway. publication-title: Comp. Biochem. Physiol. A Mol. Integr. Physiol. doi: 10.1016/j.cbpa.2010.09.001 – start-page: 843 year: 2011 ident: B25 article-title: Dietary balances; regulation of feeding; obesity and starvation; vitamins and minerals publication-title: Guyton and Hall Textbook of Medical Physiology – volume: 8 year: 2017 ident: B52 article-title: Appetite-controlling endocrine systems in teleosts. publication-title: Front. Endocrinol. doi: 10.3389/fendo.2017.00073 – volume: 314 start-page: 201 year: 2017 ident: B12 article-title: Evidence for the presence in rainbow trout brain of amino acid-sensing systems involved in the control of food intake. publication-title: Am. J. Physiol. - Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00283.2017 – volume: 527 start-page: 193 year: 2013 ident: B69 article-title: Characterization, tissue distribution and regulation of agouti-related protein (AgRP) in a cyprinid fish (Schizothorax prenanti). publication-title: Gene doi: 10.1016/j.gene.2013.06.003 – volume: 167 start-page: 366 year: 2010 ident: B34 article-title: Relationship between α-melanocyte-stimulating hormone- and neuropeptide Y-containing neurons in the goldfish hypothalamus. publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2009.12.004 – volume: 21 start-page: 2042 year: 2007 ident: B58 article-title: Creation of a genetic model of obesity in a teleost. publication-title: FASEB J. doi: 10.1096/fj.06-7503com – volume: 115 start-page: 101 ident: B9 article-title: The central melanocortin system regulates food intake in goldfish. publication-title: Regul. Pept. doi: 10.1016/S0167-0115(03)00144-147 – volume: 7 start-page: 1 year: 2017 ident: B55 article-title: Novel hypophysiotropic AgRP2 neurons and pineal cells revealed by BAC transgenesis in zebrafish. publication-title: Sci. Rep. doi: 10.1038/srep44777 – volume: 191 start-page: 337 year: 2000 ident: B18 article-title: Effects of continuous additional light on growth and sexual maturity in Atlantic salmon, Salmo salar, reared in sea cages. publication-title: Aquaculture doi: 10.1016/S0044-8486(00)00444-440 – volume: 34 start-page: 5486 year: 2014 ident: B5 article-title: Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4861-12.2014 – volume: 6 year: 2015 ident: B45 article-title: Plasticity of the melanocortin system: determinants and possible consequences on food intake. publication-title: Front. Endocrinol. doi: 10.3389/fendo.2015.00143 – volume: 22 start-page: 241 year: 2006 ident: B20 article-title: Cube law, condition factor and weight – length relationships: history, meta-analysis and recommendations. publication-title: J. Appl. Ichthyol. doi: 10.1111/j.1439-0426.2006.00805.x – volume: 148 start-page: 85 year: 2006 ident: B62 article-title: Evolution of melanocortin systems in fish. publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2005.09.020 – volume: 3 start-page: 59 year: 1994 ident: B35 article-title: Molecular genetic aspects of tetraploidy in the Common carp Cyprinus carpio. publication-title: Mol. Phylogenet. Evol. doi: 10.1006/mpev.1994.1007 |
SSID | ssj0062655 |
Score | 2.3610265 |
Snippet | The melanocortin system is a key neuroendocrine network involved in the control of food intake and energy homeostasis in vertebrates. Within the hypothalamus,... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 48 |
SubjectTerms | Agouti-related protein agouti-related protein (agrp) Amino acid sequence Appetite Aquaculture Atlantic salmon Brain Carp Conserved sequence Energy balance Energy expenditure Feeds Food Food intake Gene duplication Gene expression Genomes Homeostasis Hypothalamus Melanocortin Melanocortin MC4 receptors melanocortin system melanocortin-4 receptor (mc4r) Neuroanatomy Neurons Neuropeptides Oxygen saturation Peptides Pituitary Proopiomelanocortin proopiomelanocortin (pomc) Salmo salar Salmon Telencephalon Trout Zebrafish |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iyYv4idMpEUT0UNc2WZoc51BUnAc_wIMQ0nygMLPh6sH_3pe0G_aiF09t0zS0Ly99v1-T_h5CRxCRFIQGluTEFAlEfJ0IJ1jiCuJIqktA6OHn5NEdu3qiN8_95x-pvsKasFoeuDZcL2RRERlQPqUEzbUpWWGVylyumeCcRiXQVKRzMlW_gwGl9_v1pCRQMNFzXvkgMpSnUZ2Tt4JQ1OpvAcz28sgf8eZyDa02QBEP6htcR0vWb6DNgQeS_P6Fj3Fcuhm_iW-iF-hsPLJj5SdAJqs3j2shcgx7gwqKoQ38oMbgcvgkbvFMAaXFt2enWHmDr6sZvp-MbbxgOg1_nlk8rFexb6Gny4vH4VXSpE1INGC3KiHaaiUyzgWM1sKYEiiNssZSZpjjOs0sBHHFGQxuSjRVGjAQgQjGibNwlJNttOwn3u4gTMpSlKawpqCGZqUWzuYaIIThhjiwZAf15naUutEUD6ktxhK4RbC8jJaXwfIyWr6DThdXTGs9jV_qnoeuWdQLStixAPxDNv4h__KPDurOO1Y2w3MmcwCJgMsEZx10uDgNAyvMlihvJ5-hDmUhNbOAJoqWQ7RuqH3Gv71Gie5A9QvKdv_jCfbQSrBJ-JCdZ120XH182n1AQlV5EJ3-G5djB3U priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdGd-GCgIEoDORJE2KH0CZ2HfuAUDdtGohVaDBpByTL8ceYVJyyZgf-e95zkm657JTEdpz42e_LH79HyD5oJAOqQWQFc2UGGt9mKiiRhZIFNrUVWOh4OPlsIU4v-NfL2eUWWfRnYXBbZS8Tk6B2tcU58kkBeh1UqZLi8-pvhlGjcHW1D6FhutAK7lOCGHtEtkEkz6Yjsn14vPh-3stmsN5ns3axElwzNQnRRAQfKqYJtVMOlFPC8B8YnsNtk_f00MlT8qQzIOm87fFnZMvH52RnHsF5_vOPvqdpS2eaK98hv2AQ0DO_NLEGJ7O5jrQFKKdwN28gGeqgP8wS2kY_pCtdG3B16bePB9RER780a3peL316YbXCE2meHrW721-Qi5Pjn0enWRdOIbNg0zUZs94alUupgItL5ypwdYx3ngsngrTT3INyN1IA03NmubFgGzEgo2TBw1PBXpJRrKN_RSirKlW50ruSO55XVgVfWDAtnHQsACXHZNLTUdsOaxxDXiw1-BxIeZ0or5HyOlF-TA42b6xanI0Hyh5i12zKIUJ2SqhvrnTHcBqj76jcV8wYxQvrKlF6Y_JQWKGk5HxMdvuO1R3brvXdIBuTvU02MByuopjo61sswwWGbFZQRTkYEIMfGubE698JuhunAEouXj_88TfkMbYWp66LfJeMmptb_xZsn6Z61w3o_wOCBYg priority: 102 providerName: ProQuest |
Title | The Melanocortin System in Atlantic Salmon (Salmo salar L.) and Its Role in Appetite Control |
URI | https://www.proquest.com/docview/2435937986 https://www.proquest.com/docview/2446665494 https://pubmed.ncbi.nlm.nih.gov/PMC7471746 https://doaj.org/article/372091eb3aa942cdb67eaa1f2c698844 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_avvgiahVP6xFBxD5se7uJ2eRB5Fpaq9gi1YN7EEI2H1pYs-fdFux_70x273ShiC_7mYTdyQy_3-RjhpAXgEgGoEFkBXNlBohvMxWUyELJApvYChg6bk4-OxenM_5h_nr-Z3t0L8DVja4d5pOaLev9Xz-v34LBv0GPE_D2IEQTMYRQMUmxN-Vtsp1mi3AhH9_MKQBzTzlQcyHA_QKY6yYtb2xhAFIplv-AgA6XT_6FRyf3yN2eSNJp1_P3yS0fH5CdaQQn-sc1fUnT0s40Zr5DvoIy0DNfm9iAs9leRtoFKqdwNW3hMbRBP5saVJK-Sme6MiAX-nF_j5ro6Pt2RS-a2qcKiwXuTPP0qFvl_pDMTo6_HJ1mfVqFzAK3azNmvTUql1KBNZfOVeDyGO88F04EaSe5B5A3UoDxc2a5scCRGCCcZMHDXcEeka3YRP-YUFZVqnKldyV3PK-sCr6wQDGcdCyAJEfkYC1HbfuY45j6otbge6DkdZK8RsnrJPkR2dvUWHTxNv5R9hC7ZlMOI2WnB83ym-4NT2MWHpX7ihmjeGFdJUpvTB4KK5SUnI_I7rpj9Vr7dAEkEnibkmJEnm9eg-HhbIqJvrnCMlxg6mYFTZQDhRh80PBNvPyeQnjjUEDJxZP_aP0puYO_jOPYRb5LttrllX8GRKitxmT78Pj808U4DSTA8d08Hyed_w3k8QnS |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9AAXBBREoICRANHDkuza8a4PFUpfSmgSodJKPSAZr-2FSsEbmq1Q_xy_rTPObmAvvfW0L-9rPPY3M7a_IeQtIJIGaBBRwmwaAeKbSBZSREXKCtY3OVjouDh5OhOjM_75fHC-Qf42a2FwWmXTJ4aO2pYGY-S9BHAdoFRm4tPid4RZo3B0tUmhoevUCnY3UIzVCzuO3fUfcOGWu-MDqO93SXJ0eLo_iuosA5EBU6eKmHFGyzjLJCh3am0OHoB21nFhRZGZfuwA83QmoC1wZrg2YDIw6PAzVjg4QuIDgIBNjgGUDtncO5x9OWmwALyFwWA1OAquoOwVXnskO0r6gSU0a4FhyBnQMnTb0zT_w72jh-RBbbDS4UrDHpEN5x-TraEHZ_3XNX1PwxTSEJvfIt9A6ejUzbUvwamtLjxdEaJT2BtWcBqeQb_qOciSfghbutTgWtPJxx2qvaXjaklPyrkLNywWuALO0f3VbPon5OxOBPuUdHzp3TNCWZ7L3KbOptzyODeycIkBU8ZmlhUgyS7pNXJUpuY2xxQbcwU-DkpeBckrlLwKku-SnfUdixWvxy1l97Bq1uWQkTucKC9_qLqBK8z2I2OXM60lT4zNReq0jovECJllnHfJdlOxqu4mluqfUnfJm_VlaOA4aqO9K6-wDBeYIlrCI9KWQrQ-qH3FX_wMVOEYcki5eH77y1-Te6PT6URNxrPjF-Q-_jmGzZN4m3Sqyyv3EuyuKn9VKzcl3--6Pd0A7xRB3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTUK8IGAgCgOMBIg9hDax69gPE-o-qpVt1TSYtAckz_EHm9Q5Zc2E9i_yV3F2kkJe9ranpomTNuc7_-5nn-8Qeg-IpAAaWJIRkyeA-DoRTrDE5cSRgS7AQw-bk4-mbP-Ufj0bnq2gP-1emBBW2Y6JcaA2pQ5z5P0McB2gVHDWd01YxPHu-Mv8VxIqSIWV1rachmrKLJitmG6s2eRxYG9_A51bbE12oe8_ZNl47_vOftJUHEg0uD1VQrTVSqScC1D03JgC2ICyxlJmmON6kFrAP8UZ2AUlmioN7gOBwZ8TZ-FbSIIAcLCWA-oDEVzb3psen7S4AMxhOKwXSoEWir7zyofER9kgZgzlHWCM9QM6Tm83ZPM_DBw_Ro8a5xWPam17glasf4rWRx6I-9Ut_ohjOGmcp19HP0AB8ZGdKV8Cwa0uPa6To2M4GlVwGp6Bv6kZyBJ_ip94oYBm48PPm1h5gyfVAp-UMxtvmM_DbjiLd-rI-mfo9F4E-xyt-tLbFwiTohCFya3JqaFpoYWzmQa3xnBDHEiyh_qtHKVu8pyHchszCXwnSF5GycsgeRkl30ObyzvmdY6PO9puh65ZtgvZueOJ8vqnbIxdhso_IrUFUUrQTJuC5Vap1GWaCc4p7aGNtmNlM2Qs5D8F76F3y8tg7GEFR3lb3oQ2lIVy0QIekXcUovOHulf85UVMGx6mH3LKXt7942_RA7AreTiZHrxCD8OLhxn0LN1Aq9X1jX0NLlhVvGl0G6Pz-zanv_FRRiM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Melanocortin+System+in+Atlantic+Salmon+%28Salmo+salar+L.%29+and+Its+Role+in+Appetite+Control&rft.jtitle=Frontiers+in+neuroanatomy&rft.au=Kalananthan%2C+Tharmini&rft.au=Lai%2C+Floriana&rft.au=Gomes%2C+Ana+S&rft.au=Murashita%2C+Koji&rft.date=2020-08-21&rft.issn=1662-5129&rft.eissn=1662-5129&rft.volume=14&rft.spage=48&rft_id=info:doi/10.3389%2Ffnana.2020.00048&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5129&client=summon |