Small Molecule Mesengenic Induction of Human Induced Pluripotent Stem Cells to Generate Mesenchymal Stem/Stromal Cells
The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent...
Saved in:
Published in | Stem cells translational medicine Vol. 1; no. 2; pp. 83 - 95 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
AlphaMed Press
01.02.2012
Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 2157-6564 2157-6580 |
DOI | 10.5966/sctm.2011-0022 |
Cover
Abstract | The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single‐step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial‐like monolayer cells were generated by culturing ESCs/iPSCs in serum‐free medium containing the transforming growth factor‐β pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes (MSX2, NCAM, HOXA2) and downregulation of pluripotency genes (OCT4, LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC‐like morphology was associated with increased expression of genes, reflecting epithelial‐to‐mesenchymal transition. Both ESC‐ and iPSC‐derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N‐cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES‐MSCs and iPS‐MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES‐MSCs derived by other methods. We conclude that treatment with SB431542 in two‐dimensional cultures followed by culture‐induced epithelial‐to‐mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs. |
---|---|
AbstractList | The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes (MSX2, NCAM, HOXA2) and downregulation of pluripotency genes (OCT4, LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes, reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N-cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs. The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes (MSX2, NCAM, HOXA2) and downregulation of pluripotency genes (OCT4, LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes, reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N-cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs.The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes (MSX2, NCAM, HOXA2) and downregulation of pluripotency genes (OCT4, LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes, reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N-cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs. The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes ( MSX2, NCAM, HOXA2 ) and downregulation of pluripotency genes ( OCT4, LEFTY1/2 ). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes, reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N-cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs. |
Author | Pelekanos, Rebecca A. Ellis, Rebecca L. Chen, Yen Shun Horne, Rachel Fisk, Nicholas M. Wolvetang, Ernst J. |
Author_xml | – sequence: 1 givenname: Yen Shun surname: Chen fullname: Chen, Yen Shun – sequence: 2 givenname: Rebecca A. surname: Pelekanos fullname: Pelekanos, Rebecca A. email: r.pelekanos@uq.edu.au – sequence: 3 givenname: Rebecca L. surname: Ellis fullname: Ellis, Rebecca L. – sequence: 4 givenname: Rachel surname: Horne fullname: Horne, Rachel – sequence: 5 givenname: Ernst J. surname: Wolvetang fullname: Wolvetang, Ernst J. – sequence: 6 givenname: Nicholas M. surname: Fisk fullname: Fisk, Nicholas M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23197756$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFDEYxoNUbK29epSAFy-7zcckmbkIsmhbaFHYeg7ZzLttSiZZk0xl_3sz3XXRgphLvn7vk_fJ8xodhRgAobeUzEUn5Xm2ZZgzQumMEMZeoBNGhZpJ0ZKjw1o2x-gs5wdSh-xkx8grdMw47ZQS8gQ9LgfjPb6JHuzoAd9AhnAHwVl8FfrRFhcDjmt8OQ4m7I6gx9_8mNwmFggFLwsMeAHeZ1wivoAAyZS9kL3fVvkn5HxZUpw2T-gb9HJtfIaz_XyKvn_5fLu4nF1_vbhafLqeWcE5nwmqqATbMsWJtI0RVol-xZWSihvCm6ZfCWpoRRWFaskaCc2qY4YIuQZo-Sn6uNPdjKsBelsbTsbrTXKDSVsdjdN_3wR3r-_io-ay_nBLq8CHvUCKP0bIRQ8u22rBBIhj1pQxWt9vKKno-2foQxxTqPY0Y22rqiDrKvXuz44OrfyOpALzHWBTzDnB-oBQoqfY9RS7nmLXU-y1oHlWYF0xU3DVkfP_Lmt3ZT-dh-1_HtHLxS2vO16dcP4Lz9nCyw |
CitedBy_id | crossref_primary_10_1089_scd_2022_0300 crossref_primary_10_3390_ijms22052410 crossref_primary_10_1093_stmcls_sxae034 crossref_primary_10_3389_fcell_2021_717772 crossref_primary_10_1007_s12020_015_0647_1 crossref_primary_10_4252_wjsc_v6_i1_24 crossref_primary_10_1089_scd_2018_0010 crossref_primary_10_1016_j_mtbio_2024_101111 crossref_primary_10_1177_0022034515599769 crossref_primary_10_1016_j_semarthrit_2016_02_008 crossref_primary_10_1007_s00535_015_1040_9 crossref_primary_10_1007_s10565_017_9382_0 crossref_primary_10_21769_BioProtoc_3080 crossref_primary_10_1089_ten_teb_2015_0559 crossref_primary_10_1155_2016_1319578 crossref_primary_10_1007_s00018_019_03445_2 crossref_primary_10_1183_16000617_0042_2021 crossref_primary_10_1016_j_scr_2017_11_010 crossref_primary_10_1155_2018_2601945 crossref_primary_10_1002_sctm_15_0327 crossref_primary_10_5483_BMBRep_2019_52_12_045 crossref_primary_10_1177_09636897231218383 crossref_primary_10_1007_s00018_019_03358_0 crossref_primary_10_1155_2012_741416 crossref_primary_10_1007_s12015_023_10592_4 crossref_primary_10_1016_j_reth_2014_12_001 crossref_primary_10_1002_advs_202001365 crossref_primary_10_1007_s12015_014_9581_5 crossref_primary_10_3389_fcell_2021_611921 crossref_primary_10_1002_term_2697 crossref_primary_10_1186_s13287_015_0137_7 crossref_primary_10_1016_j_biomaterials_2018_09_028 crossref_primary_10_1002_cbf_3129 crossref_primary_10_1186_1471_2121_15_15 crossref_primary_10_1093_stcltm_szac078 crossref_primary_10_3389_fcell_2022_1005926 crossref_primary_10_1126_sciadv_adi2387 crossref_primary_10_4252_wjsc_v6_i4_467 crossref_primary_10_1016_j_dental_2015_11_019 crossref_primary_10_1089_scd_2014_0409 crossref_primary_10_4252_wjsc_v13_i12_1826 crossref_primary_10_1155_2017_7541734 crossref_primary_10_3390_ijms20081922 crossref_primary_10_1089_scd_2014_0488 crossref_primary_10_1016_j_stemcr_2014_07_003 crossref_primary_10_3389_fimmu_2017_01991 crossref_primary_10_4252_wjsc_v11_i5_270 crossref_primary_10_1016_j_stemcr_2017_03_001 crossref_primary_10_4252_wjsc_v13_i8_1094 crossref_primary_10_1155_2017_1960965 crossref_primary_10_1016_j_acthis_2023_152119 crossref_primary_10_1016_j_placenta_2014_09_001 crossref_primary_10_1016_j_scr_2020_101990 crossref_primary_10_1002_sctm_21_0151 crossref_primary_10_1002_biot_201700414 crossref_primary_10_1155_2013_259187 crossref_primary_10_1089_scd_2013_0554 crossref_primary_10_1155_2019_3298432 crossref_primary_10_1016_j_tvjl_2014_09_024 crossref_primary_10_1155_2020_8867349 crossref_primary_10_1089_scd_2019_0203 crossref_primary_10_1186_s13287_020_01619_5 crossref_primary_10_1002_stem_2964 crossref_primary_10_1089_scd_2020_0144 crossref_primary_10_1089_ten_tea_2022_0164 crossref_primary_10_1186_s13578_020_00516_x crossref_primary_10_3390_cells11060988 crossref_primary_10_1155_2019_5654324 crossref_primary_10_1016_j_stemcr_2015_09_023 crossref_primary_10_1186_s12885_022_09229_5 crossref_primary_10_3389_fendo_2019_00932 crossref_primary_10_1016_j_scr_2016_04_016 crossref_primary_10_1038_mt_2015_100 crossref_primary_10_1038_srep02243 crossref_primary_10_1016_j_scr_2015_02_007 crossref_primary_10_1007_s13770_018_0173_3 crossref_primary_10_1002_bies_201200087 crossref_primary_10_15252_embr_201949115 crossref_primary_10_3390_cells9030582 crossref_primary_10_1038_s41598_025_89370_w crossref_primary_10_3389_fbioe_2021_623886 crossref_primary_10_1186_s13287_022_03113_6 crossref_primary_10_1007_s12015_021_10258_z crossref_primary_10_1074_jbc_M114_620641 crossref_primary_10_1155_2020_2863501 crossref_primary_10_1002_sctm_17_0260 crossref_primary_10_1002_stem_2993 crossref_primary_10_1002_smll_201202340 crossref_primary_10_3892_mmr_2022_12745 crossref_primary_10_1155_2024_4073485 crossref_primary_10_1089_ten_tea_2016_0485 crossref_primary_10_4264_numa_75_2_61 crossref_primary_10_1002_cbin_11790 crossref_primary_10_1038_mt_2012_117 crossref_primary_10_1155_2016_9013089 crossref_primary_10_1155_2018_7878201 crossref_primary_10_1007_s40610_016_0041_7 crossref_primary_10_1016_j_heliyon_2022_e12683 crossref_primary_10_3389_fcell_2021_716907 crossref_primary_10_4012_dmj_2019_263 crossref_primary_10_1186_s13287_024_03678_4 crossref_primary_10_1002_term_3116 crossref_primary_10_1016_j_jdsr_2022_03_002 crossref_primary_10_1055_s_0042_1758786 crossref_primary_10_1016_j_jcyt_2015_07_008 crossref_primary_10_1016_j_ocarto_2022_100263 crossref_primary_10_1186_s13287_019_1209_x crossref_primary_10_1016_j_yexmp_2014_08_001 crossref_primary_10_1002_stem_1607 crossref_primary_10_3389_fbioe_2022_841778 crossref_primary_10_1016_j_jdsr_2024_01_001 crossref_primary_10_3390_ijms22031404 crossref_primary_10_1038_s41467_020_16646_2 crossref_primary_10_1371_journal_pone_0110496 crossref_primary_10_1111_jcmm_12839 crossref_primary_10_3390_biomedicines11092550 crossref_primary_10_1016_j_gdata_2014_10_016 crossref_primary_10_1016_j_stemcr_2018_06_019 crossref_primary_10_1089_ten_teb_2013_0530 crossref_primary_10_1186_s40824_023_00371_0 crossref_primary_10_3390_biomedicines10092281 crossref_primary_10_1016_j_bbrc_2019_06_093 crossref_primary_10_1038_srep32007 crossref_primary_10_1371_journal_pone_0144226 crossref_primary_10_1177_0963689718780194 crossref_primary_10_1371_journal_pone_0068451 crossref_primary_10_1089_scd_2013_0111 crossref_primary_10_5966_sctm_2015_0311 crossref_primary_10_1017_S096719941300049X crossref_primary_10_1002_advs_202308975 crossref_primary_10_1016_j_actbio_2015_02_011 crossref_primary_10_1089_scd_2013_0477 crossref_primary_10_1152_ajprenal_00136_2016 crossref_primary_10_1016_j_reth_2024_12_008 crossref_primary_10_1089_scd_2013_0634 crossref_primary_10_1177_0022034513498258 crossref_primary_10_1016_j_bpobgyn_2015_08_007 crossref_primary_10_1016_j_scr_2020_101831 crossref_primary_10_1016_j_ymeth_2015_09_016 crossref_primary_10_1038_s41598_017_13971_3 crossref_primary_10_1089_scd_2012_0267 crossref_primary_10_1016_j_canlet_2017_11_025 crossref_primary_10_1038_s41413_019_0069_4 crossref_primary_10_1155_2018_6726185 |
Cites_doi | 10.1089/scd.2007.0154 10.1038/nbt761 10.1089/ten.tea.2008.0351 10.1002/jbmr.34 10.1038/cr.2010.11 10.1089/scd.2010.0070 10.1172/JCI39104 10.1634/stemcells.2005-0648 10.1182/blood-2007-08-105809 10.1002/stem.199 10.1634/stemcells.2008-0456 10.3181/0712-RM-356 10.1080/14653240600855905 10.1007/s00441-011-1249-8 10.1242/jcs.050393 10.1111/j.1432-0436.2008.00279.x 10.1016/j.exphem.2006.09.003 10.1089/scd.2009.0485 10.1089/scd.2009.0497 10.1016/j.scr.2009.05.002 10.1016/j.ydbio.2007.10.003 10.1159/000151746 10.1111/j.1474-9726.2008.00377.x 10.1038/nmeth.1393 10.1634/stemcells.22-6-972 10.1172/JCI36183 10.1152/ajpheart.00019.2005 10.1371/journal.pmed.0020161 10.1002/stem.569 10.1089/ten.tec.2009.0432 10.1634/stemcells.2006-0179 10.1093/molehr/gal091 10.1172/JCI38019 10.1385/SCR:1:2:119 10.1016/j.bone.2006.05.003 10.1038/nature09228 10.1089/clo.2009.0024 10.1016/j.stem.2008.07.011 10.1038/cr.2009.5 10.1016/j.stem.2008.07.001 10.1073/pnas.1002077107 10.1016/j.stem.2011.01.001 10.1016/j.stem.2010.04.015 10.1002/9780470151808.sc01c02s2 10.1002/jcb.22978 10.1038/nbt.1605 10.1634/stemcells.2006-0208 10.1634/stemcells.2005-0342 10.1016/j.stem.2009.09.012 10.1038/74447 10.1007/s12015-010-9138-1 10.1083/jcb.200305147 10.1016/j.mad.2007.12.002 10.1073/pnas.0809680106 10.1016/j.stem.2010.04.014 10.1038/nbt1318 10.1016/j.tem.2005.01.003 10.1016/j.stem.2010.12.002 10.1126/science.1151526 10.1038/nbt.1529 10.1074/jbc.M109.077347 |
ContentType | Journal Article |
Copyright | 2013 AlphaMed Press 2012. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. AlphaMed Press 1066-5099/2012/$30.00/0 2012 |
Copyright_xml | – notice: 2013 AlphaMed Press – notice: 2012. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: AlphaMed Press 1066-5099/2012/$30.00/0 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.5966/sctm.2011-0022 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2157-6580 |
EndPage | 95 |
ExternalDocumentID | PMC3659681 23197756 10_5966_sctm_2011_0022 SCT320132283 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 1OC 24P 53G 5RE 7X7 8FE 8FH 8FI 8FJ AAHHS AAKDD AAPXW AAVAP ABEJV ABPTD ABUWG ABXVV ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN AEEZP AENEX AEQDE AFKRA AIWBW AJAOE AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMNDL AOIJS AVUZU BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU DIK EBD EBS EJD EMOBN FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE HZ~ LK8 M7P O9- OK1 OVD PIMPY PQQKQ PROAC RHI ROX RPM SV3 TOX UKHRP WIN AAYXX ABGNP CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c5333-51716ec827306c4a5c75db377673a0344db51a133371e197ca6e4b92a056fee83 |
IEDL.DBID | 7X7 |
ISSN | 2157-6564 |
IngestDate | Thu Aug 21 14:18:15 EDT 2025 Thu Sep 04 17:14:33 EDT 2025 Sat Sep 20 13:20:30 EDT 2025 Wed Mar 05 09:28:15 EST 2025 Tue Jul 01 03:57:50 EDT 2025 Thu Apr 24 22:55:32 EDT 2025 Wed Jan 22 16:24:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5333-51716ec827306c4a5c75db377673a0344db51a133371e197ca6e4b92a056fee83 |
Notes | Contributed equally as first authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2288759629?pq-origsite=%requestingapplication% |
PMID | 23197756 |
PQID | 2288759629 |
PQPubID | 4370291 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3659681 proquest_miscellaneous_1221133410 proquest_journals_2288759629 pubmed_primary_23197756 crossref_primary_10_5966_sctm_2011_0022 crossref_citationtrail_10_5966_sctm_2011_0022 wiley_primary_10_5966_sctm_2011_0022_SCT320132283 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2012 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: February 2012 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Stem cells translational medicine |
PublicationTitleAlternate | Stem Cells Transl Med |
PublicationYear | 2012 |
Publisher | AlphaMed Press Oxford University Press |
Publisher_xml | – name: AlphaMed Press – name: Oxford University Press |
References | 2004; 22 2010; 16 2010; 107 2010; 19 2006; 39 2010; 465 2008; 7 2008; 105 2008; 76 2008; 3 2009; 119 2007; 35 2011; 112 2009; 11 2010; 20 2000; 18 2010; 25 2006; 24 2010; 29 2010; 28 2011; 20 2009; 122 2008; 313 2008; 233 2009; 19 2008; 111 2010; 7 2007; 25 2009; 15 2010; 6 2003; 163 2008; 18 2008; 17 2009 2008 2006; 8 2008; 129 2007 2010; 285 2009; 27 2011; 8 2007; 13 2011; 346 2002; 20 2005; 289 2009; 189 2005; 1 2009; 6 2009; 5 2005; 2 2005; 16 2007; 318 Xu (2021122217015106200_ref13) 2004; 22 Karlsson (2021122217015106200_ref33) 2009 Zhang (2021122217015106200_ref57) 2011; 8 Evseenko (2021122217015106200_ref16) 2010; 107 Yu (2021122217015106200_ref41) 2011; 8 Smith (2021122217015106200_ref46) 2008; 313 Xu (2021122217015106200_ref44) 2002; 20 Sanchez (2021122217015106200_ref14) 2010; 29 Morganstein (2021122217015106200_ref37) 2010; 20 Samavarchi-Tehrani (2021122217015106200_ref18) 2010; 7 Yu (2021122217015106200_ref27) 2007; 318 Osakada (2021122217015106200_ref23) 2009; 122 Chambers (2021122217015106200_ref25) 2009; 27 Barlow (2021122217015106200_ref34) 2008; 17 Lin (2021122217015106200_ref52) 2009; 6 Leskel ä (2021122217015106200_ref59) 2006; 39 Brown (2021122217015106200_ref7) 2009; 189 Kim (2021122217015106200_ref36) 2011; 346 Zhou (2021122217015106200_ref4) 2008; 7 Mahmood (2021122217015106200_ref10) 2010; 25 Boyd (2021122217015106200_ref19) 2009; 15 Rebelatto (2021122217015106200_ref38) 2008; 233 Pera (2021122217015106200_ref54) 2010; 465 Ullmann (2021122217015106200_ref48) 2007; 13 Hudson (2021122217015106200_ref62) 2011; 20 Hsieh (2021122217015106200_ref35) 2010; 19 Vallier (2021122217015106200_ref21) 2005; 1 James (2021122217015106200_ref47) 2010; 28 Kern (2021122217015106200_ref2) 2006; 24 Ludwig (2021122217015106200_ref30) 2007 Galvin (2021122217015106200_ref43) 2010; 285 Kluth (2021122217015106200_ref58) 2010; 19 Harrison (2021122217015106200_ref53) 2005; 16 Bieback (2021122217015106200_ref1) 2008; 18 Guillot (2021122217015106200_ref60) 2008; 76 Xu (2021122217015106200_ref26) 2008; 3 Karlsen (2021122217015106200_ref63) 2011; 112 Zhang (2021122217015106200_ref6) 2005; 289 Jiang (2021122217015106200_ref42) 2008; 3 Hannan (2021122217015106200_ref20) 2009; 11 Stolzing (2021122217015106200_ref3) 2008; 129 Barberi (2021122217015106200_ref9) 2005; 2 Dvash (2021122217015106200_ref40) 2007; 25 Ichida (2021122217015106200_ref51) 2009; 5 Hwang (2021122217015106200_ref8) 2008; 105 Olivier (2021122217015106200_ref11) 2006; 24 Dominici (2021122217015106200_ref31) 2006; 8 Watabe (2021122217015106200_ref24) 2003; 163 Frith (2021122217015106200_ref61) 2010; 16 Xu (2021122217015106200_ref15) 2009; 19 Zhang (2021122217015106200_ref39) 2009; 27 Guillot (2021122217015106200_ref5) 2007; 25 Trivedi (2021122217015106200_ref12) 2007; 35 Reubinoff (2021122217015106200_ref28) 2000; 18 Kim (2021122217015106200_ref45) 2010; 6 Zeisberg (2021122217015106200_ref50) 2009; 119 Acloque (2021122217015106200_ref55) 2009; 119 Li (2021122217015106200_ref17) 2010; 7 Vallier (2021122217015106200_ref22) 2009; 27 Adewumi (2021122217015106200_ref32) 2007; 25 Guillot (2021122217015106200_ref56) 2008; 111 Costa (2021122217015106200_ref29) 2008 Kalluri (2021122217015106200_ref49) 2009; 119 19487818 - J Clin Invest. 2009 Jun;119(6):1420-8 20081865 - Nat Biotechnol. 2010 Feb;28(2):161-6 18334717 - Biomed Mater Eng. 2008;18(1 Suppl):S71-6 16410387 - Stem Cells. 2006 May;24(5):1294-301 20200949 - J Bone Miner Res. 2010 Jun;25(6):1216-33 18445775 - Exp Biol Med (Maywood). 2008 Jul;233(7):901-13 19252484 - Nat Biotechnol. 2009 Mar;27(3):275-80 16923606 - Cytotherapy. 2006;8(4):315-7 21732483 - Stem Cells. 2011 Feb;29(2):251-62 21268090 - J Cell Biochem. 2011 Feb;112(2):684-93 20427282 - J Biol Chem. 2010 Jun 25;285(26):19747-56 20446813 - Stem Cells Dev. 2011 Jan;20(1):77-87 14676305 - J Cell Biol. 2003 Dec 22;163(6):1303-11 20367285 - Stem Cells Dev. 2010 Dec;19(12):1895-910 20643952 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13742-7 19688839 - Stem Cells. 2009 Nov;27(11):2655-66 19487820 - J Clin Invest. 2009 Jun;119(6):1438-49 18241911 - Mech Ageing Dev. 2008 Mar;129(3):163-73 18682241 - Cell Stem Cell. 2008 Aug 7;3(2):196-206 20535200 - Nature. 2010 Jun 10;465(7299):713-20 10748519 - Nat Biotechnol. 2000 Apr;18(4):399-404 15971941 - PLoS Med. 2005 Jun;2(6):e161 16782420 - Bone. 2006 Nov;39(5):1026-34 19196144 - Tissue Eng Part A. 2009 Aug;15(8):1897-907 20331358 - Stem Cells Dev. 2010 Oct;19(10):1471-83 19153598 - Cell Res. 2009 Feb;19(2):156-72 20621051 - Cell Stem Cell. 2010 Jul 2;7(1):64-77 18832592 - Stem Cells. 2009 Jan;27(1):126-37 16644919 - Stem Cells. 2006 Aug;24(8):1914-22 18022151 - Dev Biol. 2008 Jan 1;313(1):107-17 21362572 - Cell Stem Cell. 2011 Mar 4;8(3):326-34 17142846 - Stem Cell Rev. 2005;1(2):119-30 17198883 - Exp Hematol. 2007 Jan;35(1):146-54 19811095 - Tissue Eng Part C Methods. 2010 Aug;16(4):735-49 19671662 - J Cell Sci. 2009 Sep 1;122(Pt 17):3169-79 20101261 - Cell Res. 2010 Apr;20(4):434-44 12426580 - Nat Biotechnol. 2002 Dec;20(12):1261-4 21185252 - Cell Stem Cell. 2011 Jan 7;8(1):31-45 16219813 - Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H2089-96 17038673 - Stem Cells. 2007 Feb;25(2):465-72 18248663 - Aging Cell. 2008 Jun;7(3):335-43 18682233 - Cell Stem Cell. 2008 Aug 7;3(2):127-8 17124009 - Stem Cells. 2007 Mar;25(3):646-54 19515621 - Stem Cell Res. 2009 Jul;3(1):39-50 20376579 - Stem Cell Rev. 2010 Jun;6(2):270-81 21987220 - Cell Tissue Res. 2011 Oct;346(1):53-64 15536188 - Stem Cells. 2004;22(6):972-80 18728355 - Cells Tissues Organs. 2009;189(1-4):256-60 19095799 - Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20641-6 19006451 - Stem Cells Dev. 2008 Dec;17(6):1095-107 20621050 - Cell Stem Cell. 2010 Jul 2;7(1):51-63 19818703 - Cell Stem Cell. 2009 Nov 6;5(5):491-503 17572666 - Nat Biotechnol. 2007 Jul;25(7):803-16 18029452 - Science. 2007 Dec 21;318(5858):1917-20 19487819 - J Clin Invest. 2009 Jun;119(6):1429-37 17090644 - Mol Hum Reprod. 2007 Jan;13(1):21-32 18557767 - Differentiation. 2008 Nov;76(9):946-57 18785163 - Curr Protoc Stem Cell Biol. 2007 Sep;Chapter 1:Unit 1C.2 19751112 - Cloning Stem Cells. 2009 Sep;11(3):427-35 18770627 - Curr Protoc Stem Cell Biol. 2008 May;Chapter 1:Unit 1C.1.1-1C.1.7 19838168 - Nat Methods. 2009 Nov;6(11):805-8 15734148 - Trends Endocrinol Metab. 2005 Mar;16(2):73-8 17967940 - Blood. 2008 Feb 1;111(3):1717-25 |
References_xml | – year: 2009 article-title: Human embryonic stem cell-derived mesenchymal progenitors: Potential in regenerative medicine publication-title: Stem Cell Res – year: 2007 article-title: Defined, feeder-independent medium for human embryonic stem cell culture publication-title: Curr Protoc Stem Cell Biol – volume: 27 start-page: 126 year: 2009 end-page: 137 article-title: Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells publication-title: Stem Cells – volume: 28 start-page: 161 year: 2010 end-page: 166 article-title: Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFβ inhibition is Id1 dependent publication-title: Nat Biotechnol – start-page: 1C.1.1 year: 2008 end-page: 1C.1.7 article-title: Expansion of human embryonic stem cells in vitro publication-title: Curr Protoc Stem Cell Biol – volume: 25 start-page: 646 year: 2007 end-page: 654 article-title: Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC publication-title: Stem Cells – volume: 129 start-page: 163 year: 2008 end-page: 173 article-title: Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies publication-title: Mech Ageing Dev – volume: 7 start-page: 64 year: 2010 end-page: 77 article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming publication-title: Cell Stem Cell – volume: 318 start-page: 1917 year: 2007 end-page: 1920 article-title: Induced pluripotent stem cell lines derived from human somatic cells publication-title: Science – volume: 19 start-page: 1471 year: 2010 end-page: 1483 article-title: DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood publication-title: Stem Cells Dev – volume: 25 start-page: 1216 year: 2010 end-page: 1233 article-title: Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-β/activin/nodal signaling using SB-431542 publication-title: J Bone Miner Res – volume: 20 start-page: 434 year: 2010 end-page: 444 article-title: Human fetal mesenchymal stem cells differentiate into brown and white adipocytes: A role for ERRα in human UCP1 expression publication-title: Cell Res – volume: 3 start-page: 127 year: 2008 end-page: 128 article-title: TGFβ and SMADs talk to NANOG in human embryonic stem cells publication-title: Cell Stem Cell – volume: 289 start-page: H2089 year: 2005 end-page: H2096 article-title: Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy publication-title: Am J Physiol Heart Circ Physiol – volume: 19 start-page: 156 year: 2009 end-page: 172 article-title: TGF-β-induced epithelial to mesenchymal transition publication-title: Cell Res – volume: 163 start-page: 1303 year: 2003 end-page: 1311 article-title: TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells publication-title: J Cell Biol – volume: 8 start-page: 315 year: 2006 end-page: 317 article-title: Minimal criteria for defining multipotent mesenchymal stromal cells: The International Society for Cellular Therapy position statement publication-title: Cytotherapy – volume: 27 start-page: 2655 year: 2009 end-page: 2666 article-title: Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells publication-title: Stem Cells – volume: 233 start-page: 901 year: 2008 end-page: 913 article-title: Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue publication-title: Exp Biol Med (Maywood) – volume: 107 start-page: 13742 year: 2010 end-page: 13747 article-title: Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells publication-title: Proc Natl Acad Sci U S A – volume: 7 start-page: 51 year: 2010 end-page: 63 article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts publication-title: Cell Stem Cell – volume: 1 start-page: 119 year: 2005 end-page: 130 article-title: Human embryonic stem cells: An in vitro model to study mechanisms controlling pluripotency in early mammalian development publication-title: Stem Cell Rev – volume: 6 start-page: 805 year: 2009 end-page: 808 article-title: A chemical platform for improved induction of human iPSCs publication-title: Nat Methods – volume: 105 start-page: 20641 year: 2008 end-page: 20646 article-title: In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells publication-title: Proc Natl Acad Sci U S A – volume: 2 start-page: e161 year: 2005 article-title: Derivation of multipotent mesenchymal precursors from human embryonic stem cells publication-title: PLoS Med – volume: 27 start-page: 275 year: 2009 end-page: 280 article-title: Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling publication-title: Nat Biotechnol – volume: 119 start-page: 1429 year: 2009 end-page: 1437 article-title: Biomarkers for epithelial-mesenchymal transitions publication-title: J Clin Invest – volume: 39 start-page: 1026 year: 2006 end-page: 1034 article-title: Estrogen receptor α genotype confers interindividual variability of response to estrogen and testosterone in mesenchymal-stem-cell-derived osteoblasts publication-title: Bone – volume: 15 start-page: 1897 year: 2009 end-page: 1907 article-title: Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells publication-title: Tissue Eng Part A – volume: 25 start-page: 465 year: 2007 end-page: 472 article-title: Molecular analysis of LEFTY-expressing cells in early human embryoid bodies publication-title: Stem Cells – volume: 119 start-page: 1420 year: 2009 end-page: 1428 article-title: The basics of epithelial-mesenchymal transition publication-title: J Clin Invest – volume: 20 start-page: 77 year: 2011 end-page: 87 article-title: A defined medium and substrate for expansion of human mesenchymal stromal cell progenitors that enriches for osteo- and chondrogenic precursors publication-title: Stem Cells Dev – volume: 35 start-page: 146 year: 2007 end-page: 154 article-title: Simultaneous generation of CD34+ primitive hematopoietic cells and CD73+ mesenchymal stem cells from human embryonic stem cells cocultured with murine OP9 stromal cells publication-title: Exp Hematol – volume: 29 start-page: 251 year: 2010 end-page: 262 article-title: Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease publication-title: Stem Cells – volume: 465 start-page: 713 year: 2010 end-page: 720 article-title: Extrinsic regulation of pluripotent stem cells publication-title: Nature – volume: 112 start-page: 684 year: 2011 end-page: 693 article-title: Effect of three-dimensional culture and incubator gas concentration on phenotype and differentiation capability of human mesenchymal stem cells publication-title: J Cell Biochem – volume: 20 start-page: 1261 year: 2002 end-page: 1264 article-title: BMP4 initiates human embryonic stem cell differentiation to trophoblast publication-title: Nat Biotechnol – volume: 17 start-page: 1095 year: 2008 end-page: 1107 article-title: Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells publication-title: Stem Cells Dev – volume: 7 start-page: 335 year: 2008 end-page: 343 article-title: Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts publication-title: Aging Cell – volume: 3 start-page: 196 year: 2008 end-page: 206 article-title: NANOG is a direct target of TGFβ/activin-mediated SMAD signaling in human ESCs publication-title: Cell Stem Cell – volume: 18 start-page: S71 year: 2008 end-page: S76 article-title: Comparing mesenchymal stromal cells from different human tissues: Bone marrow, adipose tissue and umbilical cord blood publication-title: Biomed Mater Eng – volume: 25 start-page: 803 year: 2007 end-page: 816 article-title: Characterization of human embryonic stem cell lines by the International Stem Cell Initiative publication-title: Nat Biotechnol – volume: 346 start-page: 53 year: 2011 end-page: 64 article-title: Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: A comparative analysis of their potential as placenta-derived stem cells publication-title: Cell Tissue Res – volume: 13 start-page: 21 year: 2007 end-page: 32 article-title: Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions publication-title: Mol Hum Reprod – volume: 24 start-page: 1294 year: 2006 end-page: 1301 article-title: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue publication-title: Stem Cells – volume: 16 start-page: 735 year: 2010 end-page: 749 article-title: Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential publication-title: Tissue Eng Part C Methods – volume: 285 start-page: 19747 year: 2010 end-page: 19756 article-title: Nodal signaling regulates the bone morphogenic protein pluripotency pathway in mouse embryonic stem cells publication-title: J Biol Chem – volume: 8 start-page: 31 year: 2011 end-page: 45 article-title: A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects publication-title: Cell Stem Cell – volume: 18 start-page: 399 year: 2000 end-page: 404 article-title: Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro publication-title: Nat Biotechnol – volume: 19 start-page: 1895 year: 2010 end-page: 1910 article-title: Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord publication-title: Stem Cells Dev – volume: 22 start-page: 972 year: 2004 end-page: 980 article-title: Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth publication-title: Stem Cells – volume: 122 start-page: 3169 year: 2009 end-page: 3179 article-title: In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction publication-title: J Cell Sci – volume: 16 start-page: 73 year: 2005 end-page: 78 article-title: Antagonists of activin signaling: Mechanisms and potential biological applications publication-title: Trends Endocrinol Metab – volume: 189 start-page: 256 year: 2009 end-page: 260 article-title: The derivation of mesenchymal stem cells from human embryonic stem cells publication-title: Cells Tissues Organs – volume: 8 start-page: 326 year: 2011 end-page: 334 article-title: FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation publication-title: Cell Stem Cell – volume: 5 start-page: 491 year: 2009 end-page: 503 article-title: A small-molecule inhibitor of TGF-β signaling replaces sox2 in reprogramming by inducing nanog publication-title: Cell Stem Cell – volume: 119 start-page: 1438 year: 2009 end-page: 1449 article-title: Epithelial-mesenchymal transitions: The importance of changing cell state in development and disease publication-title: J Clin Invest – volume: 6 start-page: 270 year: 2010 end-page: 281 article-title: Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity publication-title: Stem Cell Rev – volume: 111 start-page: 1717 year: 2008 end-page: 1725 article-title: Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice publication-title: Blood – volume: 76 start-page: 946 year: 2008 end-page: 957 article-title: Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources publication-title: Differentiation – volume: 313 start-page: 107 year: 2008 end-page: 117 article-title: Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm publication-title: Dev Biol – volume: 24 start-page: 1914 year: 2006 end-page: 1922 article-title: Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells publication-title: Stem Cells – volume: 11 start-page: 427 year: 2009 end-page: 435 article-title: BMP-11 and myostatin support undifferentiated growth of human embryonic stem cells in feeder-free cultures publication-title: Cloning Stem Cells – volume: 17 start-page: 1095 year: 2008 ident: 2021122217015106200_ref34 article-title: Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells publication-title: Stem Cells Dev doi: 10.1089/scd.2007.0154 – volume: 20 start-page: 1261 year: 2002 ident: 2021122217015106200_ref44 article-title: BMP4 initiates human embryonic stem cell differentiation to trophoblast publication-title: Nat Biotechnol doi: 10.1038/nbt761 – volume: 15 start-page: 1897 year: 2009 ident: 2021122217015106200_ref19 article-title: Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2008.0351 – volume: 25 start-page: 1216 year: 2010 ident: 2021122217015106200_ref10 article-title: Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-β/activin/nodal signaling using SB-431542 publication-title: J Bone Miner Res doi: 10.1002/jbmr.34 – volume: 20 start-page: 434 year: 2010 ident: 2021122217015106200_ref37 article-title: Human fetal mesenchymal stem cells differentiate into brown and white adipocytes: A role for ERRα in human UCP1 expression publication-title: Cell Res doi: 10.1038/cr.2010.11 – volume: 19 start-page: 1471 year: 2010 ident: 2021122217015106200_ref58 article-title: DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood publication-title: Stem Cells Dev doi: 10.1089/scd.2010.0070 – volume: 18 start-page: S71 year: 2008 ident: 2021122217015106200_ref1 article-title: Comparing mesenchymal stromal cells from different human tissues: Bone marrow, adipose tissue and umbilical cord blood publication-title: Biomed Mater Eng – volume: 119 start-page: 1420 year: 2009 ident: 2021122217015106200_ref49 article-title: The basics of epithelial-mesenchymal transition publication-title: J Clin Invest doi: 10.1172/JCI39104 – volume: 24 start-page: 1914 year: 2006 ident: 2021122217015106200_ref11 article-title: Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells publication-title: Stem Cells doi: 10.1634/stemcells.2005-0648 – volume: 111 start-page: 1717 year: 2008 ident: 2021122217015106200_ref56 article-title: Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice publication-title: Blood doi: 10.1182/blood-2007-08-105809 – volume: 27 start-page: 2655 year: 2009 ident: 2021122217015106200_ref22 article-title: Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells publication-title: Stem Cells doi: 10.1002/stem.199 – volume: 27 start-page: 126 year: 2009 ident: 2021122217015106200_ref39 article-title: Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells publication-title: Stem Cells doi: 10.1634/stemcells.2008-0456 – volume: 233 start-page: 901 year: 2008 ident: 2021122217015106200_ref38 article-title: Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue publication-title: Exp Biol Med (Maywood) doi: 10.3181/0712-RM-356 – volume: 8 start-page: 315 year: 2006 ident: 2021122217015106200_ref31 article-title: Minimal criteria for defining multipotent mesenchymal stromal cells: The International Society for Cellular Therapy position statement publication-title: Cytotherapy doi: 10.1080/14653240600855905 – volume: 346 start-page: 53 year: 2011 ident: 2021122217015106200_ref36 article-title: Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: A comparative analysis of their potential as placenta-derived stem cells publication-title: Cell Tissue Res doi: 10.1007/s00441-011-1249-8 – volume: 122 start-page: 3169 year: 2009 ident: 2021122217015106200_ref23 article-title: In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction publication-title: J Cell Sci doi: 10.1242/jcs.050393 – volume: 76 start-page: 946 year: 2008 ident: 2021122217015106200_ref60 article-title: Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources publication-title: Differentiation doi: 10.1111/j.1432-0436.2008.00279.x – volume: 35 start-page: 146 year: 2007 ident: 2021122217015106200_ref12 article-title: Simultaneous generation of CD34+ primitive hematopoietic cells and CD73+ mesenchymal stem cells from human embryonic stem cells cocultured with murine OP9 stromal cells publication-title: Exp Hematol doi: 10.1016/j.exphem.2006.09.003 – volume: 19 start-page: 1895 year: 2010 ident: 2021122217015106200_ref35 article-title: Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord publication-title: Stem Cells Dev doi: 10.1089/scd.2009.0485 – volume: 20 start-page: 77 year: 2011 ident: 2021122217015106200_ref62 article-title: A defined medium and substrate for expansion of human mesenchymal stromal cell progenitors that enriches for osteo- and chondrogenic precursors publication-title: Stem Cells Dev doi: 10.1089/scd.2009.0497 – start-page: 1C.1.1 year: 2008 ident: 2021122217015106200_ref29 article-title: Expansion of human embryonic stem cells in vitro publication-title: Curr Protoc Stem Cell Biol – year: 2009 ident: 2021122217015106200_ref33 article-title: Human embryonic stem cell-derived mesenchymal progenitors: Potential in regenerative medicine publication-title: Stem Cell Res doi: 10.1016/j.scr.2009.05.002 – volume: 313 start-page: 107 year: 2008 ident: 2021122217015106200_ref46 article-title: Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm publication-title: Dev Biol doi: 10.1016/j.ydbio.2007.10.003 – volume: 189 start-page: 256 year: 2009 ident: 2021122217015106200_ref7 article-title: The derivation of mesenchymal stem cells from human embryonic stem cells publication-title: Cells Tissues Organs doi: 10.1159/000151746 – volume: 7 start-page: 335 year: 2008 ident: 2021122217015106200_ref4 article-title: Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts publication-title: Aging Cell doi: 10.1111/j.1474-9726.2008.00377.x – volume: 6 start-page: 805 year: 2009 ident: 2021122217015106200_ref52 article-title: A chemical platform for improved induction of human iPSCs publication-title: Nat Methods doi: 10.1038/nmeth.1393 – volume: 22 start-page: 972 year: 2004 ident: 2021122217015106200_ref13 article-title: Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth publication-title: Stem Cells doi: 10.1634/stemcells.22-6-972 – volume: 119 start-page: 1429 year: 2009 ident: 2021122217015106200_ref50 article-title: Biomarkers for epithelial-mesenchymal transitions publication-title: J Clin Invest doi: 10.1172/JCI36183 – volume: 289 start-page: H2089 year: 2005 ident: 2021122217015106200_ref6 article-title: Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00019.2005 – volume: 2 start-page: e161 year: 2005 ident: 2021122217015106200_ref9 article-title: Derivation of multipotent mesenchymal precursors from human embryonic stem cells publication-title: PLoS Med doi: 10.1371/journal.pmed.0020161 – volume: 29 start-page: 251 year: 2010 ident: 2021122217015106200_ref14 article-title: Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease publication-title: Stem Cells doi: 10.1002/stem.569 – volume: 16 start-page: 735 year: 2010 ident: 2021122217015106200_ref61 article-title: Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential publication-title: Tissue Eng Part C Methods doi: 10.1089/ten.tec.2009.0432 – volume: 25 start-page: 465 year: 2007 ident: 2021122217015106200_ref40 article-title: Molecular analysis of LEFTY-expressing cells in early human embryoid bodies publication-title: Stem Cells doi: 10.1634/stemcells.2006-0179 – volume: 13 start-page: 21 year: 2007 ident: 2021122217015106200_ref48 article-title: Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions publication-title: Mol Hum Reprod doi: 10.1093/molehr/gal091 – volume: 119 start-page: 1438 year: 2009 ident: 2021122217015106200_ref55 article-title: Epithelial-mesenchymal transitions: The importance of changing cell state in development and disease publication-title: J Clin Invest doi: 10.1172/JCI38019 – volume: 1 start-page: 119 year: 2005 ident: 2021122217015106200_ref21 article-title: Human embryonic stem cells: An in vitro model to study mechanisms controlling pluripotency in early mammalian development publication-title: Stem Cell Rev doi: 10.1385/SCR:1:2:119 – volume: 39 start-page: 1026 year: 2006 ident: 2021122217015106200_ref59 article-title: Estrogen receptor α genotype confers interindividual variability of response to estrogen and testosterone in mesenchymal-stem-cell-derived osteoblasts publication-title: Bone doi: 10.1016/j.bone.2006.05.003 – volume: 465 start-page: 713 year: 2010 ident: 2021122217015106200_ref54 article-title: Extrinsic regulation of pluripotent stem cells publication-title: Nature doi: 10.1038/nature09228 – volume: 11 start-page: 427 year: 2009 ident: 2021122217015106200_ref20 article-title: BMP-11 and myostatin support undifferentiated growth of human embryonic stem cells in feeder-free cultures publication-title: Cloning Stem Cells doi: 10.1089/clo.2009.0024 – volume: 3 start-page: 127 year: 2008 ident: 2021122217015106200_ref42 article-title: TGFβ and SMADs talk to NANOG in human embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.07.011 – volume: 19 start-page: 156 year: 2009 ident: 2021122217015106200_ref15 article-title: TGF-β-induced epithelial to mesenchymal transition publication-title: Cell Res doi: 10.1038/cr.2009.5 – volume: 3 start-page: 196 year: 2008 ident: 2021122217015106200_ref26 article-title: NANOG is a direct target of TGFβ/activin-mediated SMAD signaling in human ESCs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.07.001 – volume: 107 start-page: 13742 year: 2010 ident: 2021122217015106200_ref16 article-title: Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1002077107 – volume: 8 start-page: 326 year: 2011 ident: 2021122217015106200_ref41 article-title: FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.01.001 – volume: 7 start-page: 64 year: 2010 ident: 2021122217015106200_ref18 article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.04.015 – year: 2007 ident: 2021122217015106200_ref30 article-title: Defined, feeder-independent medium for human embryonic stem cell culture publication-title: Curr Protoc Stem Cell Biol doi: 10.1002/9780470151808.sc01c02s2 – volume: 112 start-page: 684 year: 2011 ident: 2021122217015106200_ref63 article-title: Effect of three-dimensional culture and incubator gas concentration on phenotype and differentiation capability of human mesenchymal stem cells publication-title: J Cell Biochem doi: 10.1002/jcb.22978 – volume: 28 start-page: 161 year: 2010 ident: 2021122217015106200_ref47 article-title: Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFβ inhibition is Id1 dependent publication-title: Nat Biotechnol doi: 10.1038/nbt.1605 – volume: 25 start-page: 646 year: 2007 ident: 2021122217015106200_ref5 article-title: Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC publication-title: Stem Cells doi: 10.1634/stemcells.2006-0208 – volume: 24 start-page: 1294 year: 2006 ident: 2021122217015106200_ref2 article-title: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue publication-title: Stem Cells doi: 10.1634/stemcells.2005-0342 – volume: 5 start-page: 491 year: 2009 ident: 2021122217015106200_ref51 article-title: A small-molecule inhibitor of TGF-β signaling replaces sox2 in reprogramming by inducing nanog publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.09.012 – volume: 18 start-page: 399 year: 2000 ident: 2021122217015106200_ref28 article-title: Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro publication-title: Nat Biotechnol doi: 10.1038/74447 – volume: 6 start-page: 270 year: 2010 ident: 2021122217015106200_ref45 article-title: Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity publication-title: Stem Cell Rev doi: 10.1007/s12015-010-9138-1 – volume: 163 start-page: 1303 year: 2003 ident: 2021122217015106200_ref24 article-title: TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells publication-title: J Cell Biol doi: 10.1083/jcb.200305147 – volume: 129 start-page: 163 year: 2008 ident: 2021122217015106200_ref3 article-title: Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies publication-title: Mech Ageing Dev doi: 10.1016/j.mad.2007.12.002 – volume: 105 start-page: 20641 year: 2008 ident: 2021122217015106200_ref8 article-title: In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0809680106 – volume: 7 start-page: 51 year: 2010 ident: 2021122217015106200_ref17 article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.04.014 – volume: 25 start-page: 803 year: 2007 ident: 2021122217015106200_ref32 article-title: Characterization of human embryonic stem cell lines by the International Stem Cell Initiative publication-title: Nat Biotechnol doi: 10.1038/nbt1318 – volume: 16 start-page: 73 year: 2005 ident: 2021122217015106200_ref53 article-title: Antagonists of activin signaling: Mechanisms and potential biological applications publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2005.01.003 – volume: 8 start-page: 31 year: 2011 ident: 2021122217015106200_ref57 article-title: A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.12.002 – volume: 318 start-page: 1917 year: 2007 ident: 2021122217015106200_ref27 article-title: Induced pluripotent stem cell lines derived from human somatic cells publication-title: Science doi: 10.1126/science.1151526 – volume: 27 start-page: 275 year: 2009 ident: 2021122217015106200_ref25 article-title: Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling publication-title: Nat Biotechnol doi: 10.1038/nbt.1529 – volume: 285 start-page: 19747 year: 2010 ident: 2021122217015106200_ref43 article-title: Nodal signaling regulates the bone morphogenic protein pluripotency pathway in mouse embryonic stem cells publication-title: J Biol Chem doi: 10.1074/jbc.M109.077347 – reference: 18770627 - Curr Protoc Stem Cell Biol. 2008 May;Chapter 1:Unit 1C.1.1-1C.1.7 – reference: 21185252 - Cell Stem Cell. 2011 Jan 7;8(1):31-45 – reference: 19153598 - Cell Res. 2009 Feb;19(2):156-72 – reference: 18682241 - Cell Stem Cell. 2008 Aug 7;3(2):196-206 – reference: 19095799 - Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20641-6 – reference: 17572666 - Nat Biotechnol. 2007 Jul;25(7):803-16 – reference: 20081865 - Nat Biotechnol. 2010 Feb;28(2):161-6 – reference: 15536188 - Stem Cells. 2004;22(6):972-80 – reference: 18728355 - Cells Tissues Organs. 2009;189(1-4):256-60 – reference: 17038673 - Stem Cells. 2007 Feb;25(2):465-72 – reference: 20535200 - Nature. 2010 Jun 10;465(7299):713-20 – reference: 18785163 - Curr Protoc Stem Cell Biol. 2007 Sep;Chapter 1:Unit 1C.2 – reference: 20376579 - Stem Cell Rev. 2010 Jun;6(2):270-81 – reference: 18445775 - Exp Biol Med (Maywood). 2008 Jul;233(7):901-13 – reference: 18557767 - Differentiation. 2008 Nov;76(9):946-57 – reference: 18022151 - Dev Biol. 2008 Jan 1;313(1):107-17 – reference: 16923606 - Cytotherapy. 2006;8(4):315-7 – reference: 20427282 - J Biol Chem. 2010 Jun 25;285(26):19747-56 – reference: 17198883 - Exp Hematol. 2007 Jan;35(1):146-54 – reference: 19487818 - J Clin Invest. 2009 Jun;119(6):1420-8 – reference: 19196144 - Tissue Eng Part A. 2009 Aug;15(8):1897-907 – reference: 17090644 - Mol Hum Reprod. 2007 Jan;13(1):21-32 – reference: 15734148 - Trends Endocrinol Metab. 2005 Mar;16(2):73-8 – reference: 18832592 - Stem Cells. 2009 Jan;27(1):126-37 – reference: 19811095 - Tissue Eng Part C Methods. 2010 Aug;16(4):735-49 – reference: 20200949 - J Bone Miner Res. 2010 Jun;25(6):1216-33 – reference: 21987220 - Cell Tissue Res. 2011 Oct;346(1):53-64 – reference: 19252484 - Nat Biotechnol. 2009 Mar;27(3):275-80 – reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20 – reference: 20331358 - Stem Cells Dev. 2010 Oct;19(10):1471-83 – reference: 20446813 - Stem Cells Dev. 2011 Jan;20(1):77-87 – reference: 19515621 - Stem Cell Res. 2009 Jul;3(1):39-50 – reference: 19487820 - J Clin Invest. 2009 Jun;119(6):1438-49 – reference: 16782420 - Bone. 2006 Nov;39(5):1026-34 – reference: 12426580 - Nat Biotechnol. 2002 Dec;20(12):1261-4 – reference: 18241911 - Mech Ageing Dev. 2008 Mar;129(3):163-73 – reference: 19671662 - J Cell Sci. 2009 Sep 1;122(Pt 17):3169-79 – reference: 17124009 - Stem Cells. 2007 Mar;25(3):646-54 – reference: 19751112 - Cloning Stem Cells. 2009 Sep;11(3):427-35 – reference: 19688839 - Stem Cells. 2009 Nov;27(11):2655-66 – reference: 20101261 - Cell Res. 2010 Apr;20(4):434-44 – reference: 20621051 - Cell Stem Cell. 2010 Jul 2;7(1):64-77 – reference: 20643952 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13742-7 – reference: 14676305 - J Cell Biol. 2003 Dec 22;163(6):1303-11 – reference: 15971941 - PLoS Med. 2005 Jun;2(6):e161 – reference: 20621050 - Cell Stem Cell. 2010 Jul 2;7(1):51-63 – reference: 21362572 - Cell Stem Cell. 2011 Mar 4;8(3):326-34 – reference: 19487819 - J Clin Invest. 2009 Jun;119(6):1429-37 – reference: 10748519 - Nat Biotechnol. 2000 Apr;18(4):399-404 – reference: 21732483 - Stem Cells. 2011 Feb;29(2):251-62 – reference: 19818703 - Cell Stem Cell. 2009 Nov 6;5(5):491-503 – reference: 16410387 - Stem Cells. 2006 May;24(5):1294-301 – reference: 18248663 - Aging Cell. 2008 Jun;7(3):335-43 – reference: 17142846 - Stem Cell Rev. 2005;1(2):119-30 – reference: 18682233 - Cell Stem Cell. 2008 Aug 7;3(2):127-8 – reference: 20367285 - Stem Cells Dev. 2010 Dec;19(12):1895-910 – reference: 19006451 - Stem Cells Dev. 2008 Dec;17(6):1095-107 – reference: 16644919 - Stem Cells. 2006 Aug;24(8):1914-22 – reference: 17967940 - Blood. 2008 Feb 1;111(3):1717-25 – reference: 16219813 - Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H2089-96 – reference: 21268090 - J Cell Biochem. 2011 Feb;112(2):684-93 – reference: 18334717 - Biomed Mater Eng. 2008;18(1 Suppl):S71-6 – reference: 19838168 - Nat Methods. 2009 Nov;6(11):805-8 |
SSID | ssj0000696920 |
Score | 2.3637545 |
Snippet | The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 83 |
SubjectTerms | Antigens, CD - genetics Antigens, CD - metabolism Benzamides - pharmacology Biomarkers - metabolism Bone marrow Cadherins Cadherins - genetics Cadherins - metabolism Cell adhesion & migration Cell culture Cell Culture Techniques - methods Cell Differentiation Cell Proliferation Cell Shape Cells, Cultured Culture Media, Serum-Free Cytology Data analysis Differentiation Dioxoles - pharmacology Embryo cells Embryonic stem cells Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Epithelial-Mesenchymal Transition Fetuses Fibroblasts Gene Expression Regulation Growth factors Humans Immunohistochemistry Immunophenotyping Induced pluripotent stem cells Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - drug effects Induced Pluripotent Stem Cells - metabolism Inhibitory postsynaptic potentials Mesenchymal stem cells Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - metabolism Mesenchyme Mesoderm - cytology Mesoderm - metabolism Msx2 protein Neural cell adhesion molecule Oct-4 protein Octamer Transcription Factor-3 - genetics Octamer Transcription Factor-3 - metabolism Original and Reviews Pluripotency Pluripotent stem cells Regenerative Medicine - methods Stem cells Stromal cells Time Factors Transforming growth factor Transforming growth factor-b Vimentin Vimentin - genetics Vimentin - metabolism |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-evvhyeOhpT-_IwYFPOdvmo5vHYzkRYUVYBd9Ckk1R6Lbidg_uv7-ZpBYXkQPf2mY6KZ1M5pev3xDyI3dSICs4E5ZbJpzXTMtas5xjWhxkvKpxRXd2pS5uxeWdvHtxij_xQ4wTbugZsb9GB7cuZiGRgNBjWsJ--TPN8EEc-kB2ANlzbOOluB5nWXKllY7cjFBxxQC8iMTciErONlVsRqZXcPP1rsmXaDaGo_M98nHAkfRXMvwnshXaffJnvrRNQ2cp5W2gMzxaBC3kwVNM0RGPMNCupnHmPj0KC3rdrKHn6AA893TehyWdhqZZ0b6jiZO6HxT5-7-gPoqczfunDm-i6AG5Pf99M71gQ2IF5gHdcSaRIyf4CUCXXHlhpa_kwnEk9uEWOQAXThYWRq-8KkKhK29VEE6XFtBSHcKEfybbbdeGI0KVyuuC21DWuRXSCdDiXW2rPGju4DYj7PmnGj-wjmPyi8bA6AONYNAIBo1g0AgZOR3lHxPfxpuSJ882MoPfrUxZQqeJCYV0Rr6PxeAxuAxi29CtV6YoYdDLIXrnGTlMJh2rArQLgFiqjFQbxh4FkI17s6R9uI-s3FxBvZMiI0VsFv_5ejOf3vAyLnRN-Jd3vHNMduGyTBvIT8h2_7QOXwEf9e5bdIF_QZwI5w priority: 102 providerName: Wiley-Blackwell |
Title | Small Molecule Mesengenic Induction of Human Induced Pluripotent Stem Cells to Generate Mesenchymal Stem/Stromal Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.5966%2Fsctm.2011-0022 https://www.ncbi.nlm.nih.gov/pubmed/23197756 https://www.proquest.com/docview/2288759629 https://www.proquest.com/docview/1221133410 https://pubmed.ncbi.nlm.nih.gov/PMC3659681 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1da9swFL2sLYO9jH3PXRc0GOxJqyzJdvw0ttBSBilhaSFvRlZkWnDsrnEG_fe9V3K8hbLtUdZFsn31cXQlnQPwUZSJJlZwro0yXJc253lS5VwoksUhxquKdnSn5-nZpf6-SBZ9wG3dH6vcjol-oF62lmLkx1JidyCpmPzLzU9OqlG0u9pLaOzBQYxIhKQbskU2xFhEmqe5Z2bEajOO0EUH3kYsh-7NdKvPIUQopNydlx6AzYdnJv_Esn4yOn0GT3sUyb4Gtz-HR655AY-DruTdS_g1X5m6ZtMgfevYlK4YYUu5toykOvxVBtZWzEfwwyO3ZLN6gyNIiyC6Y_POrdjE1fWadS0L3NRdX5C9usPivcnxvLttKeFNX8Hl6cnF5Iz3AgvcIspTPCGuHGfHCGFEarVJbJYsS0UEP8oQF-CyTGKDq1iVxS7OM2tSp8tcGkRNlXNj9Rr2m7Zxb4GlqahiZZyshNFJqbEUW1YmEy5XJSYj4NvfW9iefZxEMOoCVyHkjoLcUZA7CnJHBJ8G-5vAu_FXy6Ott4q-_62L360lgg9DNvYc2g4xjWs36yKWuPhVOIuLCN4E5w5VIepFYJykEWQ7bh8MiJV7N6e5vvLs3CrFesdxBLFvIP95-2I-uVDSb3iN1eG_P-UdPEFLGc6MH8F-d7tx7xESdeUI9qSejXzrH8HBt5Pz2Y-RDy_cA9gEC7c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQvE99kDDASiCezxM5H84AQKkwdWyekdlLfguM62qQ0GWsK6j_F38idnQSqCXjaY-KLneTu7J999u8AXvl5FBIrOA-VVDzMdcrTqEi5LyktDjFeFRTRHZ_Eo9Pw8yyabcHP7iwMbavs-kTbUc9rTWvk-0KgO1CqmPT9xTdOWaMoutql0HBmcWTWP3DKtnx3-BH1-1qIg0_T4Yi3WQW4RmgjeUQEMUYPcNz2Yx2qSCfRPJfEaiMVEeDN8yhQOHWTSWCCNNEqNmGeCoVQoTBmILHeG3AzpBAj-k8yS_o1HT9O49QyQeJnJhyhUuh4IvG96ZxOs3jrliR9ITbHwSvg9uoezT-xsx38Du7CTota2QdnZvdgy1T34ZbLY7l-AN8nC1WWbOxS7Ro2piNNaJnnmlFqEHt0gtUFsxEDd8vM2ZdyhT1WjaC9YZPGLNjQlOWSNTVzXNhNW5E-W2P1VmR_0lzWdGFFH8Lptfz6R7Bd1ZV5AiyO_SKQyojCV2GUh1iLzguV-CaVOV56wLvfm-mW7ZySbpQZznpIHRmpIyN1ZKQOD9708heO5-OvknudtrLW35fZb-v04GVfjJ5K4RdVmXq1zAKBk22JqMH34LFTbt8UomwE4lHsQbKh9l6AWMA3S6rzM8sGLmNsdxB4EFgD-c_bZ5PhVAobYBvI3X9_ygu4PZqOj7Pjw5Ojp3AHnxJuv_oebDeXK_MM4ViTP7c-wODrdTvdL8kTQuo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTSBeEN9kDDASiCfTxM5H8zAh6FZtjFYV3aS9BcdxtElpsq0pqP8ifxV3ThqoJuBpj2muTuLz2b_z-X4H8MZNA59YwbmvpOJ-qmMeB3nMXUllcYjxKqeI7mgcHpz4n0-D0w34ucqFoWOVqznRTtRZpWmPvCcEmgOViol7eXssYrI3_HBxyamCFEVaV-U0VFtmIdu1dGNtkseRWf5Ad26-e7iHun8rxHD_eHDA24oDXCPskTwg8hij-7imu6H2VaCjIEslMd5IReR4WRp4Ct06GXnGiyOtQuOnsVAII3Jj-hLbvQVbEa766AhufdofT752Oz5uGIex5YnETog4Aim_YZHEr6Isnnr2vtmwdIVYXyWvQd_rJzj_RNZ2aRzeh3stpmUfm0H4ADZM-RBuN1Uul4_g-3SmioKNmkK8ho0o4QnH7blmVDjEJlawKmc2ntD8ZDI2KRY4n1UI6Ws2rc2MDUxRzFldsYYpu24b0mdLbN6K9Kb1VUUXVvQxnNxI5z-BzbIqzTNgYejmnlRG5K7yg9THVnSaq8g1sUzx0gG-6t5Et1zoVJKjSNAnInUkpI6E1JGQOhx418lfNCwgf5XcWWkraWeDefJ77DrwuruNdkzBGVWaajFPPIGuuERM4TrwtFFu9yjE4AjTg9CBaE3tnQBxhK_fKc_PLFe4DPG5fc8Bzw6Q_7x9Mh0cS2HDb325_e9PeQV30ACTL4fjo-dwF_8kmsPsO7BZXy3MC8RqdfqyNQIG327a7n4BqtVNxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+Molecule+Mesengenic+Induction+of+Human+Induced+Pluripotent+Stem+Cells+to+Generate+Mesenchymal+Stem%2FStromal+Cells&rft.jtitle=Stem+cells+translational+medicine&rft.au=Chen%2C+Yen+Shun&rft.au=Pelekanos%2C+Rebecca+A&rft.au=Ellis%2C+Rebecca+L&rft.au=Horne%2C+Rachel&rft.date=2012-02-01&rft.pub=Oxford+University+Press&rft.issn=2157-6564&rft.eissn=2157-6580&rft.volume=1&rft.issue=2&rft.spage=83&rft.epage=95&rft_id=info:doi/10.5966%2Fsctm.2011-0022&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-6564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-6564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-6564&client=summon |