Small Molecule Mesengenic Induction of Human Induced Pluripotent Stem Cells to Generate Mesenchymal Stem/Stromal Cells

The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent...

Full description

Saved in:
Bibliographic Details
Published inStem cells translational medicine Vol. 1; no. 2; pp. 83 - 95
Main Authors Chen, Yen Shun, Pelekanos, Rebecca A., Ellis, Rebecca L., Horne, Rachel, Wolvetang, Ernst J., Fisk, Nicholas M.
Format Journal Article
LanguageEnglish
Published United States AlphaMed Press 01.02.2012
Oxford University Press
Subjects
Online AccessGet full text
ISSN2157-6564
2157-6580
DOI10.5966/sctm.2011-0022

Cover

Abstract The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single‐step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial‐like monolayer cells were generated by culturing ESCs/iPSCs in serum‐free medium containing the transforming growth factor‐β pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes (MSX2, NCAM, HOXA2) and downregulation of pluripotency genes (OCT4, LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC‐like morphology was associated with increased expression of genes, reflecting epithelial‐to‐mesenchymal transition. Both ESC‐ and iPSC‐derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N‐cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES‐MSCs and iPS‐MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES‐MSCs derived by other methods. We conclude that treatment with SB431542 in two‐dimensional cultures followed by culture‐induced epithelial‐to‐mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs.
AbstractList The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes (MSX2, NCAM, HOXA2) and downregulation of pluripotency genes (OCT4, LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes, reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N-cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs.
The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes (MSX2, NCAM, HOXA2) and downregulation of pluripotency genes (OCT4, LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes, reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N-cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs.The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes (MSX2, NCAM, HOXA2) and downregulation of pluripotency genes (OCT4, LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes, reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N-cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs.
The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes ( MSX2, NCAM, HOXA2 ) and downregulation of pluripotency genes ( OCT4, LEFTY1/2 ). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes, reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N-cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs.
Author Pelekanos, Rebecca A.
Ellis, Rebecca L.
Chen, Yen Shun
Horne, Rachel
Fisk, Nicholas M.
Wolvetang, Ernst J.
Author_xml – sequence: 1
  givenname: Yen Shun
  surname: Chen
  fullname: Chen, Yen Shun
– sequence: 2
  givenname: Rebecca A.
  surname: Pelekanos
  fullname: Pelekanos, Rebecca A.
  email: r.pelekanos@uq.edu.au
– sequence: 3
  givenname: Rebecca L.
  surname: Ellis
  fullname: Ellis, Rebecca L.
– sequence: 4
  givenname: Rachel
  surname: Horne
  fullname: Horne, Rachel
– sequence: 5
  givenname: Ernst J.
  surname: Wolvetang
  fullname: Wolvetang, Ernst J.
– sequence: 6
  givenname: Nicholas M.
  surname: Fisk
  fullname: Fisk, Nicholas M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23197756$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rFDEYxoNUbK29epSAFy-7zcckmbkIsmhbaFHYeg7ZzLttSiZZk0xl_3sz3XXRgphLvn7vk_fJ8xodhRgAobeUzEUn5Xm2ZZgzQumMEMZeoBNGhZpJ0ZKjw1o2x-gs5wdSh-xkx8grdMw47ZQS8gQ9LgfjPb6JHuzoAd9AhnAHwVl8FfrRFhcDjmt8OQ4m7I6gx9_8mNwmFggFLwsMeAHeZ1wivoAAyZS9kL3fVvkn5HxZUpw2T-gb9HJtfIaz_XyKvn_5fLu4nF1_vbhafLqeWcE5nwmqqATbMsWJtI0RVol-xZWSihvCm6ZfCWpoRRWFaskaCc2qY4YIuQZo-Sn6uNPdjKsBelsbTsbrTXKDSVsdjdN_3wR3r-_io-ay_nBLq8CHvUCKP0bIRQ8u22rBBIhj1pQxWt9vKKno-2foQxxTqPY0Y22rqiDrKvXuz44OrfyOpALzHWBTzDnB-oBQoqfY9RS7nmLXU-y1oHlWYF0xU3DVkfP_Lmt3ZT-dh-1_HtHLxS2vO16dcP4Lz9nCyw
CitedBy_id crossref_primary_10_1089_scd_2022_0300
crossref_primary_10_3390_ijms22052410
crossref_primary_10_1093_stmcls_sxae034
crossref_primary_10_3389_fcell_2021_717772
crossref_primary_10_1007_s12020_015_0647_1
crossref_primary_10_4252_wjsc_v6_i1_24
crossref_primary_10_1089_scd_2018_0010
crossref_primary_10_1016_j_mtbio_2024_101111
crossref_primary_10_1177_0022034515599769
crossref_primary_10_1016_j_semarthrit_2016_02_008
crossref_primary_10_1007_s00535_015_1040_9
crossref_primary_10_1007_s10565_017_9382_0
crossref_primary_10_21769_BioProtoc_3080
crossref_primary_10_1089_ten_teb_2015_0559
crossref_primary_10_1155_2016_1319578
crossref_primary_10_1007_s00018_019_03445_2
crossref_primary_10_1183_16000617_0042_2021
crossref_primary_10_1016_j_scr_2017_11_010
crossref_primary_10_1155_2018_2601945
crossref_primary_10_1002_sctm_15_0327
crossref_primary_10_5483_BMBRep_2019_52_12_045
crossref_primary_10_1177_09636897231218383
crossref_primary_10_1007_s00018_019_03358_0
crossref_primary_10_1155_2012_741416
crossref_primary_10_1007_s12015_023_10592_4
crossref_primary_10_1016_j_reth_2014_12_001
crossref_primary_10_1002_advs_202001365
crossref_primary_10_1007_s12015_014_9581_5
crossref_primary_10_3389_fcell_2021_611921
crossref_primary_10_1002_term_2697
crossref_primary_10_1186_s13287_015_0137_7
crossref_primary_10_1016_j_biomaterials_2018_09_028
crossref_primary_10_1002_cbf_3129
crossref_primary_10_1186_1471_2121_15_15
crossref_primary_10_1093_stcltm_szac078
crossref_primary_10_3389_fcell_2022_1005926
crossref_primary_10_1126_sciadv_adi2387
crossref_primary_10_4252_wjsc_v6_i4_467
crossref_primary_10_1016_j_dental_2015_11_019
crossref_primary_10_1089_scd_2014_0409
crossref_primary_10_4252_wjsc_v13_i12_1826
crossref_primary_10_1155_2017_7541734
crossref_primary_10_3390_ijms20081922
crossref_primary_10_1089_scd_2014_0488
crossref_primary_10_1016_j_stemcr_2014_07_003
crossref_primary_10_3389_fimmu_2017_01991
crossref_primary_10_4252_wjsc_v11_i5_270
crossref_primary_10_1016_j_stemcr_2017_03_001
crossref_primary_10_4252_wjsc_v13_i8_1094
crossref_primary_10_1155_2017_1960965
crossref_primary_10_1016_j_acthis_2023_152119
crossref_primary_10_1016_j_placenta_2014_09_001
crossref_primary_10_1016_j_scr_2020_101990
crossref_primary_10_1002_sctm_21_0151
crossref_primary_10_1002_biot_201700414
crossref_primary_10_1155_2013_259187
crossref_primary_10_1089_scd_2013_0554
crossref_primary_10_1155_2019_3298432
crossref_primary_10_1016_j_tvjl_2014_09_024
crossref_primary_10_1155_2020_8867349
crossref_primary_10_1089_scd_2019_0203
crossref_primary_10_1186_s13287_020_01619_5
crossref_primary_10_1002_stem_2964
crossref_primary_10_1089_scd_2020_0144
crossref_primary_10_1089_ten_tea_2022_0164
crossref_primary_10_1186_s13578_020_00516_x
crossref_primary_10_3390_cells11060988
crossref_primary_10_1155_2019_5654324
crossref_primary_10_1016_j_stemcr_2015_09_023
crossref_primary_10_1186_s12885_022_09229_5
crossref_primary_10_3389_fendo_2019_00932
crossref_primary_10_1016_j_scr_2016_04_016
crossref_primary_10_1038_mt_2015_100
crossref_primary_10_1038_srep02243
crossref_primary_10_1016_j_scr_2015_02_007
crossref_primary_10_1007_s13770_018_0173_3
crossref_primary_10_1002_bies_201200087
crossref_primary_10_15252_embr_201949115
crossref_primary_10_3390_cells9030582
crossref_primary_10_1038_s41598_025_89370_w
crossref_primary_10_3389_fbioe_2021_623886
crossref_primary_10_1186_s13287_022_03113_6
crossref_primary_10_1007_s12015_021_10258_z
crossref_primary_10_1074_jbc_M114_620641
crossref_primary_10_1155_2020_2863501
crossref_primary_10_1002_sctm_17_0260
crossref_primary_10_1002_stem_2993
crossref_primary_10_1002_smll_201202340
crossref_primary_10_3892_mmr_2022_12745
crossref_primary_10_1155_2024_4073485
crossref_primary_10_1089_ten_tea_2016_0485
crossref_primary_10_4264_numa_75_2_61
crossref_primary_10_1002_cbin_11790
crossref_primary_10_1038_mt_2012_117
crossref_primary_10_1155_2016_9013089
crossref_primary_10_1155_2018_7878201
crossref_primary_10_1007_s40610_016_0041_7
crossref_primary_10_1016_j_heliyon_2022_e12683
crossref_primary_10_3389_fcell_2021_716907
crossref_primary_10_4012_dmj_2019_263
crossref_primary_10_1186_s13287_024_03678_4
crossref_primary_10_1002_term_3116
crossref_primary_10_1016_j_jdsr_2022_03_002
crossref_primary_10_1055_s_0042_1758786
crossref_primary_10_1016_j_jcyt_2015_07_008
crossref_primary_10_1016_j_ocarto_2022_100263
crossref_primary_10_1186_s13287_019_1209_x
crossref_primary_10_1016_j_yexmp_2014_08_001
crossref_primary_10_1002_stem_1607
crossref_primary_10_3389_fbioe_2022_841778
crossref_primary_10_1016_j_jdsr_2024_01_001
crossref_primary_10_3390_ijms22031404
crossref_primary_10_1038_s41467_020_16646_2
crossref_primary_10_1371_journal_pone_0110496
crossref_primary_10_1111_jcmm_12839
crossref_primary_10_3390_biomedicines11092550
crossref_primary_10_1016_j_gdata_2014_10_016
crossref_primary_10_1016_j_stemcr_2018_06_019
crossref_primary_10_1089_ten_teb_2013_0530
crossref_primary_10_1186_s40824_023_00371_0
crossref_primary_10_3390_biomedicines10092281
crossref_primary_10_1016_j_bbrc_2019_06_093
crossref_primary_10_1038_srep32007
crossref_primary_10_1371_journal_pone_0144226
crossref_primary_10_1177_0963689718780194
crossref_primary_10_1371_journal_pone_0068451
crossref_primary_10_1089_scd_2013_0111
crossref_primary_10_5966_sctm_2015_0311
crossref_primary_10_1017_S096719941300049X
crossref_primary_10_1002_advs_202308975
crossref_primary_10_1016_j_actbio_2015_02_011
crossref_primary_10_1089_scd_2013_0477
crossref_primary_10_1152_ajprenal_00136_2016
crossref_primary_10_1016_j_reth_2024_12_008
crossref_primary_10_1089_scd_2013_0634
crossref_primary_10_1177_0022034513498258
crossref_primary_10_1016_j_bpobgyn_2015_08_007
crossref_primary_10_1016_j_scr_2020_101831
crossref_primary_10_1016_j_ymeth_2015_09_016
crossref_primary_10_1038_s41598_017_13971_3
crossref_primary_10_1089_scd_2012_0267
crossref_primary_10_1016_j_canlet_2017_11_025
crossref_primary_10_1038_s41413_019_0069_4
crossref_primary_10_1155_2018_6726185
Cites_doi 10.1089/scd.2007.0154
10.1038/nbt761
10.1089/ten.tea.2008.0351
10.1002/jbmr.34
10.1038/cr.2010.11
10.1089/scd.2010.0070
10.1172/JCI39104
10.1634/stemcells.2005-0648
10.1182/blood-2007-08-105809
10.1002/stem.199
10.1634/stemcells.2008-0456
10.3181/0712-RM-356
10.1080/14653240600855905
10.1007/s00441-011-1249-8
10.1242/jcs.050393
10.1111/j.1432-0436.2008.00279.x
10.1016/j.exphem.2006.09.003
10.1089/scd.2009.0485
10.1089/scd.2009.0497
10.1016/j.scr.2009.05.002
10.1016/j.ydbio.2007.10.003
10.1159/000151746
10.1111/j.1474-9726.2008.00377.x
10.1038/nmeth.1393
10.1634/stemcells.22-6-972
10.1172/JCI36183
10.1152/ajpheart.00019.2005
10.1371/journal.pmed.0020161
10.1002/stem.569
10.1089/ten.tec.2009.0432
10.1634/stemcells.2006-0179
10.1093/molehr/gal091
10.1172/JCI38019
10.1385/SCR:1:2:119
10.1016/j.bone.2006.05.003
10.1038/nature09228
10.1089/clo.2009.0024
10.1016/j.stem.2008.07.011
10.1038/cr.2009.5
10.1016/j.stem.2008.07.001
10.1073/pnas.1002077107
10.1016/j.stem.2011.01.001
10.1016/j.stem.2010.04.015
10.1002/9780470151808.sc01c02s2
10.1002/jcb.22978
10.1038/nbt.1605
10.1634/stemcells.2006-0208
10.1634/stemcells.2005-0342
10.1016/j.stem.2009.09.012
10.1038/74447
10.1007/s12015-010-9138-1
10.1083/jcb.200305147
10.1016/j.mad.2007.12.002
10.1073/pnas.0809680106
10.1016/j.stem.2010.04.014
10.1038/nbt1318
10.1016/j.tem.2005.01.003
10.1016/j.stem.2010.12.002
10.1126/science.1151526
10.1038/nbt.1529
10.1074/jbc.M109.077347
ContentType Journal Article
Copyright 2013 AlphaMed Press
2012. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
AlphaMed Press 1066-5099/2012/$30.00/0 2012
Copyright_xml – notice: 2013 AlphaMed Press
– notice: 2012. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: AlphaMed Press 1066-5099/2012/$30.00/0 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.5966/sctm.2011-0022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2157-6580
EndPage 95
ExternalDocumentID PMC3659681
23197756
10_5966_sctm_2011_0022
SCT320132283
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
1OC
24P
53G
5RE
7X7
8FE
8FH
8FI
8FJ
AAHHS
AAKDD
AAPXW
AAVAP
ABEJV
ABPTD
ABUWG
ABXVV
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJAOE
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMNDL
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
DIK
EBD
EBS
EJD
EMOBN
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
HZ~
LK8
M7P
O9-
OK1
OVD
PIMPY
PQQKQ
PROAC
RHI
ROX
RPM
SV3
TOX
UKHRP
WIN
AAYXX
ABGNP
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c5333-51716ec827306c4a5c75db377673a0344db51a133371e197ca6e4b92a056fee83
IEDL.DBID 7X7
ISSN 2157-6564
IngestDate Thu Aug 21 14:18:15 EDT 2025
Thu Sep 04 17:14:33 EDT 2025
Sat Sep 20 13:20:30 EDT 2025
Wed Mar 05 09:28:15 EST 2025
Tue Jul 01 03:57:50 EDT 2025
Thu Apr 24 22:55:32 EDT 2025
Wed Jan 22 16:24:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5333-51716ec827306c4a5c75db377673a0344db51a133371e197ca6e4b92a056fee83
Notes Contributed equally as first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2288759629?pq-origsite=%requestingapplication%
PMID 23197756
PQID 2288759629
PQPubID 4370291
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3659681
proquest_miscellaneous_1221133410
proquest_journals_2288759629
pubmed_primary_23197756
crossref_primary_10_5966_sctm_2011_0022
crossref_citationtrail_10_5966_sctm_2011_0022
wiley_primary_10_5966_sctm_2011_0022_SCT320132283
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2012
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: February 2012
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Stem cells translational medicine
PublicationTitleAlternate Stem Cells Transl Med
PublicationYear 2012
Publisher AlphaMed Press
Oxford University Press
Publisher_xml – name: AlphaMed Press
– name: Oxford University Press
References 2004; 22
2010; 16
2010; 107
2010; 19
2006; 39
2010; 465
2008; 7
2008; 105
2008; 76
2008; 3
2009; 119
2007; 35
2011; 112
2009; 11
2010; 20
2000; 18
2010; 25
2006; 24
2010; 29
2010; 28
2011; 20
2009; 122
2008; 313
2008; 233
2009; 19
2008; 111
2010; 7
2007; 25
2009; 15
2010; 6
2003; 163
2008; 18
2008; 17
2009
2008
2006; 8
2008; 129
2007
2010; 285
2009; 27
2011; 8
2007; 13
2011; 346
2002; 20
2005; 289
2009; 189
2005; 1
2009; 6
2009; 5
2005; 2
2005; 16
2007; 318
Xu (2021122217015106200_ref13) 2004; 22
Karlsson (2021122217015106200_ref33) 2009
Zhang (2021122217015106200_ref57) 2011; 8
Evseenko (2021122217015106200_ref16) 2010; 107
Yu (2021122217015106200_ref41) 2011; 8
Smith (2021122217015106200_ref46) 2008; 313
Xu (2021122217015106200_ref44) 2002; 20
Sanchez (2021122217015106200_ref14) 2010; 29
Morganstein (2021122217015106200_ref37) 2010; 20
Samavarchi-Tehrani (2021122217015106200_ref18) 2010; 7
Yu (2021122217015106200_ref27) 2007; 318
Osakada (2021122217015106200_ref23) 2009; 122
Chambers (2021122217015106200_ref25) 2009; 27
Barlow (2021122217015106200_ref34) 2008; 17
Lin (2021122217015106200_ref52) 2009; 6
Leskel ä (2021122217015106200_ref59) 2006; 39
Brown (2021122217015106200_ref7) 2009; 189
Kim (2021122217015106200_ref36) 2011; 346
Zhou (2021122217015106200_ref4) 2008; 7
Mahmood (2021122217015106200_ref10) 2010; 25
Boyd (2021122217015106200_ref19) 2009; 15
Rebelatto (2021122217015106200_ref38) 2008; 233
Pera (2021122217015106200_ref54) 2010; 465
Ullmann (2021122217015106200_ref48) 2007; 13
Hudson (2021122217015106200_ref62) 2011; 20
Hsieh (2021122217015106200_ref35) 2010; 19
Vallier (2021122217015106200_ref21) 2005; 1
James (2021122217015106200_ref47) 2010; 28
Kern (2021122217015106200_ref2) 2006; 24
Ludwig (2021122217015106200_ref30) 2007
Galvin (2021122217015106200_ref43) 2010; 285
Kluth (2021122217015106200_ref58) 2010; 19
Harrison (2021122217015106200_ref53) 2005; 16
Bieback (2021122217015106200_ref1) 2008; 18
Guillot (2021122217015106200_ref60) 2008; 76
Xu (2021122217015106200_ref26) 2008; 3
Karlsen (2021122217015106200_ref63) 2011; 112
Zhang (2021122217015106200_ref6) 2005; 289
Jiang (2021122217015106200_ref42) 2008; 3
Hannan (2021122217015106200_ref20) 2009; 11
Stolzing (2021122217015106200_ref3) 2008; 129
Barberi (2021122217015106200_ref9) 2005; 2
Dvash (2021122217015106200_ref40) 2007; 25
Ichida (2021122217015106200_ref51) 2009; 5
Hwang (2021122217015106200_ref8) 2008; 105
Olivier (2021122217015106200_ref11) 2006; 24
Dominici (2021122217015106200_ref31) 2006; 8
Watabe (2021122217015106200_ref24) 2003; 163
Frith (2021122217015106200_ref61) 2010; 16
Xu (2021122217015106200_ref15) 2009; 19
Zhang (2021122217015106200_ref39) 2009; 27
Guillot (2021122217015106200_ref5) 2007; 25
Trivedi (2021122217015106200_ref12) 2007; 35
Reubinoff (2021122217015106200_ref28) 2000; 18
Kim (2021122217015106200_ref45) 2010; 6
Zeisberg (2021122217015106200_ref50) 2009; 119
Acloque (2021122217015106200_ref55) 2009; 119
Li (2021122217015106200_ref17) 2010; 7
Vallier (2021122217015106200_ref22) 2009; 27
Adewumi (2021122217015106200_ref32) 2007; 25
Guillot (2021122217015106200_ref56) 2008; 111
Costa (2021122217015106200_ref29) 2008
Kalluri (2021122217015106200_ref49) 2009; 119
19487818 - J Clin Invest. 2009 Jun;119(6):1420-8
20081865 - Nat Biotechnol. 2010 Feb;28(2):161-6
18334717 - Biomed Mater Eng. 2008;18(1 Suppl):S71-6
16410387 - Stem Cells. 2006 May;24(5):1294-301
20200949 - J Bone Miner Res. 2010 Jun;25(6):1216-33
18445775 - Exp Biol Med (Maywood). 2008 Jul;233(7):901-13
19252484 - Nat Biotechnol. 2009 Mar;27(3):275-80
16923606 - Cytotherapy. 2006;8(4):315-7
21732483 - Stem Cells. 2011 Feb;29(2):251-62
21268090 - J Cell Biochem. 2011 Feb;112(2):684-93
20427282 - J Biol Chem. 2010 Jun 25;285(26):19747-56
20446813 - Stem Cells Dev. 2011 Jan;20(1):77-87
14676305 - J Cell Biol. 2003 Dec 22;163(6):1303-11
20367285 - Stem Cells Dev. 2010 Dec;19(12):1895-910
20643952 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13742-7
19688839 - Stem Cells. 2009 Nov;27(11):2655-66
19487820 - J Clin Invest. 2009 Jun;119(6):1438-49
18241911 - Mech Ageing Dev. 2008 Mar;129(3):163-73
18682241 - Cell Stem Cell. 2008 Aug 7;3(2):196-206
20535200 - Nature. 2010 Jun 10;465(7299):713-20
10748519 - Nat Biotechnol. 2000 Apr;18(4):399-404
15971941 - PLoS Med. 2005 Jun;2(6):e161
16782420 - Bone. 2006 Nov;39(5):1026-34
19196144 - Tissue Eng Part A. 2009 Aug;15(8):1897-907
20331358 - Stem Cells Dev. 2010 Oct;19(10):1471-83
19153598 - Cell Res. 2009 Feb;19(2):156-72
20621051 - Cell Stem Cell. 2010 Jul 2;7(1):64-77
18832592 - Stem Cells. 2009 Jan;27(1):126-37
16644919 - Stem Cells. 2006 Aug;24(8):1914-22
18022151 - Dev Biol. 2008 Jan 1;313(1):107-17
21362572 - Cell Stem Cell. 2011 Mar 4;8(3):326-34
17142846 - Stem Cell Rev. 2005;1(2):119-30
17198883 - Exp Hematol. 2007 Jan;35(1):146-54
19811095 - Tissue Eng Part C Methods. 2010 Aug;16(4):735-49
19671662 - J Cell Sci. 2009 Sep 1;122(Pt 17):3169-79
20101261 - Cell Res. 2010 Apr;20(4):434-44
12426580 - Nat Biotechnol. 2002 Dec;20(12):1261-4
21185252 - Cell Stem Cell. 2011 Jan 7;8(1):31-45
16219813 - Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H2089-96
17038673 - Stem Cells. 2007 Feb;25(2):465-72
18248663 - Aging Cell. 2008 Jun;7(3):335-43
18682233 - Cell Stem Cell. 2008 Aug 7;3(2):127-8
17124009 - Stem Cells. 2007 Mar;25(3):646-54
19515621 - Stem Cell Res. 2009 Jul;3(1):39-50
20376579 - Stem Cell Rev. 2010 Jun;6(2):270-81
21987220 - Cell Tissue Res. 2011 Oct;346(1):53-64
15536188 - Stem Cells. 2004;22(6):972-80
18728355 - Cells Tissues Organs. 2009;189(1-4):256-60
19095799 - Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20641-6
19006451 - Stem Cells Dev. 2008 Dec;17(6):1095-107
20621050 - Cell Stem Cell. 2010 Jul 2;7(1):51-63
19818703 - Cell Stem Cell. 2009 Nov 6;5(5):491-503
17572666 - Nat Biotechnol. 2007 Jul;25(7):803-16
18029452 - Science. 2007 Dec 21;318(5858):1917-20
19487819 - J Clin Invest. 2009 Jun;119(6):1429-37
17090644 - Mol Hum Reprod. 2007 Jan;13(1):21-32
18557767 - Differentiation. 2008 Nov;76(9):946-57
18785163 - Curr Protoc Stem Cell Biol. 2007 Sep;Chapter 1:Unit 1C.2
19751112 - Cloning Stem Cells. 2009 Sep;11(3):427-35
18770627 - Curr Protoc Stem Cell Biol. 2008 May;Chapter 1:Unit 1C.1.1-1C.1.7
19838168 - Nat Methods. 2009 Nov;6(11):805-8
15734148 - Trends Endocrinol Metab. 2005 Mar;16(2):73-8
17967940 - Blood. 2008 Feb 1;111(3):1717-25
References_xml – year: 2009
  article-title: Human embryonic stem cell-derived mesenchymal progenitors: Potential in regenerative medicine
  publication-title: Stem Cell Res
– year: 2007
  article-title: Defined, feeder-independent medium for human embryonic stem cell culture
  publication-title: Curr Protoc Stem Cell Biol
– volume: 27
  start-page: 126
  year: 2009
  end-page: 137
  article-title: Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells
  publication-title: Stem Cells
– volume: 28
  start-page: 161
  year: 2010
  end-page: 166
  article-title: Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFβ inhibition is Id1 dependent
  publication-title: Nat Biotechnol
– start-page: 1C.1.1
  year: 2008
  end-page: 1C.1.7
  article-title: Expansion of human embryonic stem cells in vitro
  publication-title: Curr Protoc Stem Cell Biol
– volume: 25
  start-page: 646
  year: 2007
  end-page: 654
  article-title: Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC
  publication-title: Stem Cells
– volume: 129
  start-page: 163
  year: 2008
  end-page: 173
  article-title: Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies
  publication-title: Mech Ageing Dev
– volume: 7
  start-page: 64
  year: 2010
  end-page: 77
  article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
  publication-title: Cell Stem Cell
– volume: 318
  start-page: 1917
  year: 2007
  end-page: 1920
  article-title: Induced pluripotent stem cell lines derived from human somatic cells
  publication-title: Science
– volume: 19
  start-page: 1471
  year: 2010
  end-page: 1483
  article-title: DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood
  publication-title: Stem Cells Dev
– volume: 25
  start-page: 1216
  year: 2010
  end-page: 1233
  article-title: Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-β/activin/nodal signaling using SB-431542
  publication-title: J Bone Miner Res
– volume: 20
  start-page: 434
  year: 2010
  end-page: 444
  article-title: Human fetal mesenchymal stem cells differentiate into brown and white adipocytes: A role for ERRα in human UCP1 expression
  publication-title: Cell Res
– volume: 3
  start-page: 127
  year: 2008
  end-page: 128
  article-title: TGFβ and SMADs talk to NANOG in human embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 289
  start-page: H2089
  year: 2005
  end-page: H2096
  article-title: Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 19
  start-page: 156
  year: 2009
  end-page: 172
  article-title: TGF-β-induced epithelial to mesenchymal transition
  publication-title: Cell Res
– volume: 163
  start-page: 1303
  year: 2003
  end-page: 1311
  article-title: TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells
  publication-title: J Cell Biol
– volume: 8
  start-page: 315
  year: 2006
  end-page: 317
  article-title: Minimal criteria for defining multipotent mesenchymal stromal cells: The International Society for Cellular Therapy position statement
  publication-title: Cytotherapy
– volume: 27
  start-page: 2655
  year: 2009
  end-page: 2666
  article-title: Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells
  publication-title: Stem Cells
– volume: 233
  start-page: 901
  year: 2008
  end-page: 913
  article-title: Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue
  publication-title: Exp Biol Med (Maywood)
– volume: 107
  start-page: 13742
  year: 2010
  end-page: 13747
  article-title: Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 7
  start-page: 51
  year: 2010
  end-page: 63
  article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
  publication-title: Cell Stem Cell
– volume: 1
  start-page: 119
  year: 2005
  end-page: 130
  article-title: Human embryonic stem cells: An in vitro model to study mechanisms controlling pluripotency in early mammalian development
  publication-title: Stem Cell Rev
– volume: 6
  start-page: 805
  year: 2009
  end-page: 808
  article-title: A chemical platform for improved induction of human iPSCs
  publication-title: Nat Methods
– volume: 105
  start-page: 20641
  year: 2008
  end-page: 20646
  article-title: In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 2
  start-page: e161
  year: 2005
  article-title: Derivation of multipotent mesenchymal precursors from human embryonic stem cells
  publication-title: PLoS Med
– volume: 27
  start-page: 275
  year: 2009
  end-page: 280
  article-title: Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling
  publication-title: Nat Biotechnol
– volume: 119
  start-page: 1429
  year: 2009
  end-page: 1437
  article-title: Biomarkers for epithelial-mesenchymal transitions
  publication-title: J Clin Invest
– volume: 39
  start-page: 1026
  year: 2006
  end-page: 1034
  article-title: Estrogen receptor α genotype confers interindividual variability of response to estrogen and testosterone in mesenchymal-stem-cell-derived osteoblasts
  publication-title: Bone
– volume: 15
  start-page: 1897
  year: 2009
  end-page: 1907
  article-title: Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells
  publication-title: Tissue Eng Part A
– volume: 25
  start-page: 465
  year: 2007
  end-page: 472
  article-title: Molecular analysis of LEFTY-expressing cells in early human embryoid bodies
  publication-title: Stem Cells
– volume: 119
  start-page: 1420
  year: 2009
  end-page: 1428
  article-title: The basics of epithelial-mesenchymal transition
  publication-title: J Clin Invest
– volume: 20
  start-page: 77
  year: 2011
  end-page: 87
  article-title: A defined medium and substrate for expansion of human mesenchymal stromal cell progenitors that enriches for osteo- and chondrogenic precursors
  publication-title: Stem Cells Dev
– volume: 35
  start-page: 146
  year: 2007
  end-page: 154
  article-title: Simultaneous generation of CD34+ primitive hematopoietic cells and CD73+ mesenchymal stem cells from human embryonic stem cells cocultured with murine OP9 stromal cells
  publication-title: Exp Hematol
– volume: 29
  start-page: 251
  year: 2010
  end-page: 262
  article-title: Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease
  publication-title: Stem Cells
– volume: 465
  start-page: 713
  year: 2010
  end-page: 720
  article-title: Extrinsic regulation of pluripotent stem cells
  publication-title: Nature
– volume: 112
  start-page: 684
  year: 2011
  end-page: 693
  article-title: Effect of three-dimensional culture and incubator gas concentration on phenotype and differentiation capability of human mesenchymal stem cells
  publication-title: J Cell Biochem
– volume: 20
  start-page: 1261
  year: 2002
  end-page: 1264
  article-title: BMP4 initiates human embryonic stem cell differentiation to trophoblast
  publication-title: Nat Biotechnol
– volume: 17
  start-page: 1095
  year: 2008
  end-page: 1107
  article-title: Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells
  publication-title: Stem Cells Dev
– volume: 7
  start-page: 335
  year: 2008
  end-page: 343
  article-title: Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts
  publication-title: Aging Cell
– volume: 3
  start-page: 196
  year: 2008
  end-page: 206
  article-title: NANOG is a direct target of TGFβ/activin-mediated SMAD signaling in human ESCs
  publication-title: Cell Stem Cell
– volume: 18
  start-page: S71
  year: 2008
  end-page: S76
  article-title: Comparing mesenchymal stromal cells from different human tissues: Bone marrow, adipose tissue and umbilical cord blood
  publication-title: Biomed Mater Eng
– volume: 25
  start-page: 803
  year: 2007
  end-page: 816
  article-title: Characterization of human embryonic stem cell lines by the International Stem Cell Initiative
  publication-title: Nat Biotechnol
– volume: 346
  start-page: 53
  year: 2011
  end-page: 64
  article-title: Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: A comparative analysis of their potential as placenta-derived stem cells
  publication-title: Cell Tissue Res
– volume: 13
  start-page: 21
  year: 2007
  end-page: 32
  article-title: Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions
  publication-title: Mol Hum Reprod
– volume: 24
  start-page: 1294
  year: 2006
  end-page: 1301
  article-title: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue
  publication-title: Stem Cells
– volume: 16
  start-page: 735
  year: 2010
  end-page: 749
  article-title: Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential
  publication-title: Tissue Eng Part C Methods
– volume: 285
  start-page: 19747
  year: 2010
  end-page: 19756
  article-title: Nodal signaling regulates the bone morphogenic protein pluripotency pathway in mouse embryonic stem cells
  publication-title: J Biol Chem
– volume: 8
  start-page: 31
  year: 2011
  end-page: 45
  article-title: A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects
  publication-title: Cell Stem Cell
– volume: 18
  start-page: 399
  year: 2000
  end-page: 404
  article-title: Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro
  publication-title: Nat Biotechnol
– volume: 19
  start-page: 1895
  year: 2010
  end-page: 1910
  article-title: Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord
  publication-title: Stem Cells Dev
– volume: 22
  start-page: 972
  year: 2004
  end-page: 980
  article-title: Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth
  publication-title: Stem Cells
– volume: 122
  start-page: 3169
  year: 2009
  end-page: 3179
  article-title: In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction
  publication-title: J Cell Sci
– volume: 16
  start-page: 73
  year: 2005
  end-page: 78
  article-title: Antagonists of activin signaling: Mechanisms and potential biological applications
  publication-title: Trends Endocrinol Metab
– volume: 189
  start-page: 256
  year: 2009
  end-page: 260
  article-title: The derivation of mesenchymal stem cells from human embryonic stem cells
  publication-title: Cells Tissues Organs
– volume: 8
  start-page: 326
  year: 2011
  end-page: 334
  article-title: FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation
  publication-title: Cell Stem Cell
– volume: 5
  start-page: 491
  year: 2009
  end-page: 503
  article-title: A small-molecule inhibitor of TGF-β signaling replaces sox2 in reprogramming by inducing nanog
  publication-title: Cell Stem Cell
– volume: 119
  start-page: 1438
  year: 2009
  end-page: 1449
  article-title: Epithelial-mesenchymal transitions: The importance of changing cell state in development and disease
  publication-title: J Clin Invest
– volume: 6
  start-page: 270
  year: 2010
  end-page: 281
  article-title: Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity
  publication-title: Stem Cell Rev
– volume: 111
  start-page: 1717
  year: 2008
  end-page: 1725
  article-title: Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice
  publication-title: Blood
– volume: 76
  start-page: 946
  year: 2008
  end-page: 957
  article-title: Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources
  publication-title: Differentiation
– volume: 313
  start-page: 107
  year: 2008
  end-page: 117
  article-title: Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm
  publication-title: Dev Biol
– volume: 24
  start-page: 1914
  year: 2006
  end-page: 1922
  article-title: Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells
  publication-title: Stem Cells
– volume: 11
  start-page: 427
  year: 2009
  end-page: 435
  article-title: BMP-11 and myostatin support undifferentiated growth of human embryonic stem cells in feeder-free cultures
  publication-title: Cloning Stem Cells
– volume: 17
  start-page: 1095
  year: 2008
  ident: 2021122217015106200_ref34
  article-title: Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2007.0154
– volume: 20
  start-page: 1261
  year: 2002
  ident: 2021122217015106200_ref44
  article-title: BMP4 initiates human embryonic stem cell differentiation to trophoblast
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt761
– volume: 15
  start-page: 1897
  year: 2009
  ident: 2021122217015106200_ref19
  article-title: Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2008.0351
– volume: 25
  start-page: 1216
  year: 2010
  ident: 2021122217015106200_ref10
  article-title: Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-β/activin/nodal signaling using SB-431542
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.34
– volume: 20
  start-page: 434
  year: 2010
  ident: 2021122217015106200_ref37
  article-title: Human fetal mesenchymal stem cells differentiate into brown and white adipocytes: A role for ERRα in human UCP1 expression
  publication-title: Cell Res
  doi: 10.1038/cr.2010.11
– volume: 19
  start-page: 1471
  year: 2010
  ident: 2021122217015106200_ref58
  article-title: DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2010.0070
– volume: 18
  start-page: S71
  year: 2008
  ident: 2021122217015106200_ref1
  article-title: Comparing mesenchymal stromal cells from different human tissues: Bone marrow, adipose tissue and umbilical cord blood
  publication-title: Biomed Mater Eng
– volume: 119
  start-page: 1420
  year: 2009
  ident: 2021122217015106200_ref49
  article-title: The basics of epithelial-mesenchymal transition
  publication-title: J Clin Invest
  doi: 10.1172/JCI39104
– volume: 24
  start-page: 1914
  year: 2006
  ident: 2021122217015106200_ref11
  article-title: Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2005-0648
– volume: 111
  start-page: 1717
  year: 2008
  ident: 2021122217015106200_ref56
  article-title: Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice
  publication-title: Blood
  doi: 10.1182/blood-2007-08-105809
– volume: 27
  start-page: 2655
  year: 2009
  ident: 2021122217015106200_ref22
  article-title: Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.199
– volume: 27
  start-page: 126
  year: 2009
  ident: 2021122217015106200_ref39
  article-title: Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-0456
– volume: 233
  start-page: 901
  year: 2008
  ident: 2021122217015106200_ref38
  article-title: Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue
  publication-title: Exp Biol Med (Maywood)
  doi: 10.3181/0712-RM-356
– volume: 8
  start-page: 315
  year: 2006
  ident: 2021122217015106200_ref31
  article-title: Minimal criteria for defining multipotent mesenchymal stromal cells: The International Society for Cellular Therapy position statement
  publication-title: Cytotherapy
  doi: 10.1080/14653240600855905
– volume: 346
  start-page: 53
  year: 2011
  ident: 2021122217015106200_ref36
  article-title: Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: A comparative analysis of their potential as placenta-derived stem cells
  publication-title: Cell Tissue Res
  doi: 10.1007/s00441-011-1249-8
– volume: 122
  start-page: 3169
  year: 2009
  ident: 2021122217015106200_ref23
  article-title: In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction
  publication-title: J Cell Sci
  doi: 10.1242/jcs.050393
– volume: 76
  start-page: 946
  year: 2008
  ident: 2021122217015106200_ref60
  article-title: Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources
  publication-title: Differentiation
  doi: 10.1111/j.1432-0436.2008.00279.x
– volume: 35
  start-page: 146
  year: 2007
  ident: 2021122217015106200_ref12
  article-title: Simultaneous generation of CD34+ primitive hematopoietic cells and CD73+ mesenchymal stem cells from human embryonic stem cells cocultured with murine OP9 stromal cells
  publication-title: Exp Hematol
  doi: 10.1016/j.exphem.2006.09.003
– volume: 19
  start-page: 1895
  year: 2010
  ident: 2021122217015106200_ref35
  article-title: Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2009.0485
– volume: 20
  start-page: 77
  year: 2011
  ident: 2021122217015106200_ref62
  article-title: A defined medium and substrate for expansion of human mesenchymal stromal cell progenitors that enriches for osteo- and chondrogenic precursors
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2009.0497
– start-page: 1C.1.1
  year: 2008
  ident: 2021122217015106200_ref29
  article-title: Expansion of human embryonic stem cells in vitro
  publication-title: Curr Protoc Stem Cell Biol
– year: 2009
  ident: 2021122217015106200_ref33
  article-title: Human embryonic stem cell-derived mesenchymal progenitors: Potential in regenerative medicine
  publication-title: Stem Cell Res
  doi: 10.1016/j.scr.2009.05.002
– volume: 313
  start-page: 107
  year: 2008
  ident: 2021122217015106200_ref46
  article-title: Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2007.10.003
– volume: 189
  start-page: 256
  year: 2009
  ident: 2021122217015106200_ref7
  article-title: The derivation of mesenchymal stem cells from human embryonic stem cells
  publication-title: Cells Tissues Organs
  doi: 10.1159/000151746
– volume: 7
  start-page: 335
  year: 2008
  ident: 2021122217015106200_ref4
  article-title: Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2008.00377.x
– volume: 6
  start-page: 805
  year: 2009
  ident: 2021122217015106200_ref52
  article-title: A chemical platform for improved induction of human iPSCs
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1393
– volume: 22
  start-page: 972
  year: 2004
  ident: 2021122217015106200_ref13
  article-title: Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth
  publication-title: Stem Cells
  doi: 10.1634/stemcells.22-6-972
– volume: 119
  start-page: 1429
  year: 2009
  ident: 2021122217015106200_ref50
  article-title: Biomarkers for epithelial-mesenchymal transitions
  publication-title: J Clin Invest
  doi: 10.1172/JCI36183
– volume: 289
  start-page: H2089
  year: 2005
  ident: 2021122217015106200_ref6
  article-title: Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00019.2005
– volume: 2
  start-page: e161
  year: 2005
  ident: 2021122217015106200_ref9
  article-title: Derivation of multipotent mesenchymal precursors from human embryonic stem cells
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0020161
– volume: 29
  start-page: 251
  year: 2010
  ident: 2021122217015106200_ref14
  article-title: Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease
  publication-title: Stem Cells
  doi: 10.1002/stem.569
– volume: 16
  start-page: 735
  year: 2010
  ident: 2021122217015106200_ref61
  article-title: Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential
  publication-title: Tissue Eng Part C Methods
  doi: 10.1089/ten.tec.2009.0432
– volume: 25
  start-page: 465
  year: 2007
  ident: 2021122217015106200_ref40
  article-title: Molecular analysis of LEFTY-expressing cells in early human embryoid bodies
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2006-0179
– volume: 13
  start-page: 21
  year: 2007
  ident: 2021122217015106200_ref48
  article-title: Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions
  publication-title: Mol Hum Reprod
  doi: 10.1093/molehr/gal091
– volume: 119
  start-page: 1438
  year: 2009
  ident: 2021122217015106200_ref55
  article-title: Epithelial-mesenchymal transitions: The importance of changing cell state in development and disease
  publication-title: J Clin Invest
  doi: 10.1172/JCI38019
– volume: 1
  start-page: 119
  year: 2005
  ident: 2021122217015106200_ref21
  article-title: Human embryonic stem cells: An in vitro model to study mechanisms controlling pluripotency in early mammalian development
  publication-title: Stem Cell Rev
  doi: 10.1385/SCR:1:2:119
– volume: 39
  start-page: 1026
  year: 2006
  ident: 2021122217015106200_ref59
  article-title: Estrogen receptor α genotype confers interindividual variability of response to estrogen and testosterone in mesenchymal-stem-cell-derived osteoblasts
  publication-title: Bone
  doi: 10.1016/j.bone.2006.05.003
– volume: 465
  start-page: 713
  year: 2010
  ident: 2021122217015106200_ref54
  article-title: Extrinsic regulation of pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature09228
– volume: 11
  start-page: 427
  year: 2009
  ident: 2021122217015106200_ref20
  article-title: BMP-11 and myostatin support undifferentiated growth of human embryonic stem cells in feeder-free cultures
  publication-title: Cloning Stem Cells
  doi: 10.1089/clo.2009.0024
– volume: 3
  start-page: 127
  year: 2008
  ident: 2021122217015106200_ref42
  article-title: TGFβ and SMADs talk to NANOG in human embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.07.011
– volume: 19
  start-page: 156
  year: 2009
  ident: 2021122217015106200_ref15
  article-title: TGF-β-induced epithelial to mesenchymal transition
  publication-title: Cell Res
  doi: 10.1038/cr.2009.5
– volume: 3
  start-page: 196
  year: 2008
  ident: 2021122217015106200_ref26
  article-title: NANOG is a direct target of TGFβ/activin-mediated SMAD signaling in human ESCs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.07.001
– volume: 107
  start-page: 13742
  year: 2010
  ident: 2021122217015106200_ref16
  article-title: Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1002077107
– volume: 8
  start-page: 326
  year: 2011
  ident: 2021122217015106200_ref41
  article-title: FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.01.001
– volume: 7
  start-page: 64
  year: 2010
  ident: 2021122217015106200_ref18
  article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.04.015
– year: 2007
  ident: 2021122217015106200_ref30
  article-title: Defined, feeder-independent medium for human embryonic stem cell culture
  publication-title: Curr Protoc Stem Cell Biol
  doi: 10.1002/9780470151808.sc01c02s2
– volume: 112
  start-page: 684
  year: 2011
  ident: 2021122217015106200_ref63
  article-title: Effect of three-dimensional culture and incubator gas concentration on phenotype and differentiation capability of human mesenchymal stem cells
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.22978
– volume: 28
  start-page: 161
  year: 2010
  ident: 2021122217015106200_ref47
  article-title: Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFβ inhibition is Id1 dependent
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1605
– volume: 25
  start-page: 646
  year: 2007
  ident: 2021122217015106200_ref5
  article-title: Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2006-0208
– volume: 24
  start-page: 1294
  year: 2006
  ident: 2021122217015106200_ref2
  article-title: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2005-0342
– volume: 5
  start-page: 491
  year: 2009
  ident: 2021122217015106200_ref51
  article-title: A small-molecule inhibitor of TGF-β signaling replaces sox2 in reprogramming by inducing nanog
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.09.012
– volume: 18
  start-page: 399
  year: 2000
  ident: 2021122217015106200_ref28
  article-title: Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro
  publication-title: Nat Biotechnol
  doi: 10.1038/74447
– volume: 6
  start-page: 270
  year: 2010
  ident: 2021122217015106200_ref45
  article-title: Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity
  publication-title: Stem Cell Rev
  doi: 10.1007/s12015-010-9138-1
– volume: 163
  start-page: 1303
  year: 2003
  ident: 2021122217015106200_ref24
  article-title: TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200305147
– volume: 129
  start-page: 163
  year: 2008
  ident: 2021122217015106200_ref3
  article-title: Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies
  publication-title: Mech Ageing Dev
  doi: 10.1016/j.mad.2007.12.002
– volume: 105
  start-page: 20641
  year: 2008
  ident: 2021122217015106200_ref8
  article-title: In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0809680106
– volume: 7
  start-page: 51
  year: 2010
  ident: 2021122217015106200_ref17
  article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.04.014
– volume: 25
  start-page: 803
  year: 2007
  ident: 2021122217015106200_ref32
  article-title: Characterization of human embryonic stem cell lines by the International Stem Cell Initiative
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1318
– volume: 16
  start-page: 73
  year: 2005
  ident: 2021122217015106200_ref53
  article-title: Antagonists of activin signaling: Mechanisms and potential biological applications
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2005.01.003
– volume: 8
  start-page: 31
  year: 2011
  ident: 2021122217015106200_ref57
  article-title: A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.12.002
– volume: 318
  start-page: 1917
  year: 2007
  ident: 2021122217015106200_ref27
  article-title: Induced pluripotent stem cell lines derived from human somatic cells
  publication-title: Science
  doi: 10.1126/science.1151526
– volume: 27
  start-page: 275
  year: 2009
  ident: 2021122217015106200_ref25
  article-title: Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1529
– volume: 285
  start-page: 19747
  year: 2010
  ident: 2021122217015106200_ref43
  article-title: Nodal signaling regulates the bone morphogenic protein pluripotency pathway in mouse embryonic stem cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.077347
– reference: 18770627 - Curr Protoc Stem Cell Biol. 2008 May;Chapter 1:Unit 1C.1.1-1C.1.7
– reference: 21185252 - Cell Stem Cell. 2011 Jan 7;8(1):31-45
– reference: 19153598 - Cell Res. 2009 Feb;19(2):156-72
– reference: 18682241 - Cell Stem Cell. 2008 Aug 7;3(2):196-206
– reference: 19095799 - Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20641-6
– reference: 17572666 - Nat Biotechnol. 2007 Jul;25(7):803-16
– reference: 20081865 - Nat Biotechnol. 2010 Feb;28(2):161-6
– reference: 15536188 - Stem Cells. 2004;22(6):972-80
– reference: 18728355 - Cells Tissues Organs. 2009;189(1-4):256-60
– reference: 17038673 - Stem Cells. 2007 Feb;25(2):465-72
– reference: 20535200 - Nature. 2010 Jun 10;465(7299):713-20
– reference: 18785163 - Curr Protoc Stem Cell Biol. 2007 Sep;Chapter 1:Unit 1C.2
– reference: 20376579 - Stem Cell Rev. 2010 Jun;6(2):270-81
– reference: 18445775 - Exp Biol Med (Maywood). 2008 Jul;233(7):901-13
– reference: 18557767 - Differentiation. 2008 Nov;76(9):946-57
– reference: 18022151 - Dev Biol. 2008 Jan 1;313(1):107-17
– reference: 16923606 - Cytotherapy. 2006;8(4):315-7
– reference: 20427282 - J Biol Chem. 2010 Jun 25;285(26):19747-56
– reference: 17198883 - Exp Hematol. 2007 Jan;35(1):146-54
– reference: 19487818 - J Clin Invest. 2009 Jun;119(6):1420-8
– reference: 19196144 - Tissue Eng Part A. 2009 Aug;15(8):1897-907
– reference: 17090644 - Mol Hum Reprod. 2007 Jan;13(1):21-32
– reference: 15734148 - Trends Endocrinol Metab. 2005 Mar;16(2):73-8
– reference: 18832592 - Stem Cells. 2009 Jan;27(1):126-37
– reference: 19811095 - Tissue Eng Part C Methods. 2010 Aug;16(4):735-49
– reference: 20200949 - J Bone Miner Res. 2010 Jun;25(6):1216-33
– reference: 21987220 - Cell Tissue Res. 2011 Oct;346(1):53-64
– reference: 19252484 - Nat Biotechnol. 2009 Mar;27(3):275-80
– reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20
– reference: 20331358 - Stem Cells Dev. 2010 Oct;19(10):1471-83
– reference: 20446813 - Stem Cells Dev. 2011 Jan;20(1):77-87
– reference: 19515621 - Stem Cell Res. 2009 Jul;3(1):39-50
– reference: 19487820 - J Clin Invest. 2009 Jun;119(6):1438-49
– reference: 16782420 - Bone. 2006 Nov;39(5):1026-34
– reference: 12426580 - Nat Biotechnol. 2002 Dec;20(12):1261-4
– reference: 18241911 - Mech Ageing Dev. 2008 Mar;129(3):163-73
– reference: 19671662 - J Cell Sci. 2009 Sep 1;122(Pt 17):3169-79
– reference: 17124009 - Stem Cells. 2007 Mar;25(3):646-54
– reference: 19751112 - Cloning Stem Cells. 2009 Sep;11(3):427-35
– reference: 19688839 - Stem Cells. 2009 Nov;27(11):2655-66
– reference: 20101261 - Cell Res. 2010 Apr;20(4):434-44
– reference: 20621051 - Cell Stem Cell. 2010 Jul 2;7(1):64-77
– reference: 20643952 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13742-7
– reference: 14676305 - J Cell Biol. 2003 Dec 22;163(6):1303-11
– reference: 15971941 - PLoS Med. 2005 Jun;2(6):e161
– reference: 20621050 - Cell Stem Cell. 2010 Jul 2;7(1):51-63
– reference: 21362572 - Cell Stem Cell. 2011 Mar 4;8(3):326-34
– reference: 19487819 - J Clin Invest. 2009 Jun;119(6):1429-37
– reference: 10748519 - Nat Biotechnol. 2000 Apr;18(4):399-404
– reference: 21732483 - Stem Cells. 2011 Feb;29(2):251-62
– reference: 19818703 - Cell Stem Cell. 2009 Nov 6;5(5):491-503
– reference: 16410387 - Stem Cells. 2006 May;24(5):1294-301
– reference: 18248663 - Aging Cell. 2008 Jun;7(3):335-43
– reference: 17142846 - Stem Cell Rev. 2005;1(2):119-30
– reference: 18682233 - Cell Stem Cell. 2008 Aug 7;3(2):127-8
– reference: 20367285 - Stem Cells Dev. 2010 Dec;19(12):1895-910
– reference: 19006451 - Stem Cells Dev. 2008 Dec;17(6):1095-107
– reference: 16644919 - Stem Cells. 2006 Aug;24(8):1914-22
– reference: 17967940 - Blood. 2008 Feb 1;111(3):1717-25
– reference: 16219813 - Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H2089-96
– reference: 21268090 - J Cell Biochem. 2011 Feb;112(2):684-93
– reference: 18334717 - Biomed Mater Eng. 2008;18(1 Suppl):S71-6
– reference: 19838168 - Nat Methods. 2009 Nov;6(11):805-8
SSID ssj0000696920
Score 2.3637545
Snippet The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 83
SubjectTerms Antigens, CD - genetics
Antigens, CD - metabolism
Benzamides - pharmacology
Biomarkers - metabolism
Bone marrow
Cadherins
Cadherins - genetics
Cadherins - metabolism
Cell adhesion & migration
Cell culture
Cell Culture Techniques - methods
Cell Differentiation
Cell Proliferation
Cell Shape
Cells, Cultured
Culture Media, Serum-Free
Cytology
Data analysis
Differentiation
Dioxoles - pharmacology
Embryo cells
Embryonic stem cells
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Epithelial-Mesenchymal Transition
Fetuses
Fibroblasts
Gene Expression Regulation
Growth factors
Humans
Immunohistochemistry
Immunophenotyping
Induced pluripotent stem cells
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - drug effects
Induced Pluripotent Stem Cells - metabolism
Inhibitory postsynaptic potentials
Mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
Mesenchyme
Mesoderm - cytology
Mesoderm - metabolism
Msx2 protein
Neural cell adhesion molecule
Oct-4 protein
Octamer Transcription Factor-3 - genetics
Octamer Transcription Factor-3 - metabolism
Original and Reviews
Pluripotency
Pluripotent stem cells
Regenerative Medicine - methods
Stem cells
Stromal cells
Time Factors
Transforming growth factor
Transforming growth factor-b
Vimentin
Vimentin - genetics
Vimentin - metabolism
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-evvhyeOhpT-_IwYFPOdvmo5vHYzkRYUVYBd9Ckk1R6Lbidg_uv7-ZpBYXkQPf2mY6KZ1M5pev3xDyI3dSICs4E5ZbJpzXTMtas5xjWhxkvKpxRXd2pS5uxeWdvHtxij_xQ4wTbugZsb9GB7cuZiGRgNBjWsJ--TPN8EEc-kB2ANlzbOOluB5nWXKllY7cjFBxxQC8iMTciErONlVsRqZXcPP1rsmXaDaGo_M98nHAkfRXMvwnshXaffJnvrRNQ2cp5W2gMzxaBC3kwVNM0RGPMNCupnHmPj0KC3rdrKHn6AA893TehyWdhqZZ0b6jiZO6HxT5-7-gPoqczfunDm-i6AG5Pf99M71gQ2IF5gHdcSaRIyf4CUCXXHlhpa_kwnEk9uEWOQAXThYWRq-8KkKhK29VEE6XFtBSHcKEfybbbdeGI0KVyuuC21DWuRXSCdDiXW2rPGju4DYj7PmnGj-wjmPyi8bA6AONYNAIBo1g0AgZOR3lHxPfxpuSJ882MoPfrUxZQqeJCYV0Rr6PxeAxuAxi29CtV6YoYdDLIXrnGTlMJh2rArQLgFiqjFQbxh4FkI17s6R9uI-s3FxBvZMiI0VsFv_5ejOf3vAyLnRN-Jd3vHNMduGyTBvIT8h2_7QOXwEf9e5bdIF_QZwI5w
  priority: 102
  providerName: Wiley-Blackwell
Title Small Molecule Mesengenic Induction of Human Induced Pluripotent Stem Cells to Generate Mesenchymal Stem/Stromal Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.5966%2Fsctm.2011-0022
https://www.ncbi.nlm.nih.gov/pubmed/23197756
https://www.proquest.com/docview/2288759629
https://www.proquest.com/docview/1221133410
https://pubmed.ncbi.nlm.nih.gov/PMC3659681
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1da9swFL2sLYO9jH3PXRc0GOxJqyzJdvw0ttBSBilhaSFvRlZkWnDsrnEG_fe9V3K8hbLtUdZFsn31cXQlnQPwUZSJJlZwro0yXJc253lS5VwoksUhxquKdnSn5-nZpf6-SBZ9wG3dH6vcjol-oF62lmLkx1JidyCpmPzLzU9OqlG0u9pLaOzBQYxIhKQbskU2xFhEmqe5Z2bEajOO0EUH3kYsh-7NdKvPIUQopNydlx6AzYdnJv_Esn4yOn0GT3sUyb4Gtz-HR655AY-DruTdS_g1X5m6ZtMgfevYlK4YYUu5toykOvxVBtZWzEfwwyO3ZLN6gyNIiyC6Y_POrdjE1fWadS0L3NRdX5C9usPivcnxvLttKeFNX8Hl6cnF5Iz3AgvcIspTPCGuHGfHCGFEarVJbJYsS0UEP8oQF-CyTGKDq1iVxS7OM2tSp8tcGkRNlXNj9Rr2m7Zxb4GlqahiZZyshNFJqbEUW1YmEy5XJSYj4NvfW9iefZxEMOoCVyHkjoLcUZA7CnJHBJ8G-5vAu_FXy6Ott4q-_62L360lgg9DNvYc2g4xjWs36yKWuPhVOIuLCN4E5w5VIepFYJykEWQ7bh8MiJV7N6e5vvLs3CrFesdxBLFvIP95-2I-uVDSb3iN1eG_P-UdPEFLGc6MH8F-d7tx7xESdeUI9qSejXzrH8HBt5Pz2Y-RDy_cA9gEC7c
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQvE99kDDASiCezxM5H84AQKkwdWyekdlLfguM62qQ0GWsK6j_F38idnQSqCXjaY-KLneTu7J999u8AXvl5FBIrOA-VVDzMdcrTqEi5LyktDjFeFRTRHZ_Eo9Pw8yyabcHP7iwMbavs-kTbUc9rTWvk-0KgO1CqmPT9xTdOWaMoutql0HBmcWTWP3DKtnx3-BH1-1qIg0_T4Yi3WQW4RmgjeUQEMUYPcNz2Yx2qSCfRPJfEaiMVEeDN8yhQOHWTSWCCNNEqNmGeCoVQoTBmILHeG3AzpBAj-k8yS_o1HT9O49QyQeJnJhyhUuh4IvG96ZxOs3jrliR9ITbHwSvg9uoezT-xsx38Du7CTota2QdnZvdgy1T34ZbLY7l-AN8nC1WWbOxS7Ro2piNNaJnnmlFqEHt0gtUFsxEDd8vM2ZdyhT1WjaC9YZPGLNjQlOWSNTVzXNhNW5E-W2P1VmR_0lzWdGFFH8Lptfz6R7Bd1ZV5AiyO_SKQyojCV2GUh1iLzguV-CaVOV56wLvfm-mW7ZySbpQZznpIHRmpIyN1ZKQOD9708heO5-OvknudtrLW35fZb-v04GVfjJ5K4RdVmXq1zAKBk22JqMH34LFTbt8UomwE4lHsQbKh9l6AWMA3S6rzM8sGLmNsdxB4EFgD-c_bZ5PhVAobYBvI3X9_ygu4PZqOj7Pjw5Ojp3AHnxJuv_oebDeXK_MM4ViTP7c-wODrdTvdL8kTQuo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTSBeEN9kDDASiCfTxM5H8zAh6FZtjFYV3aS9BcdxtElpsq0pqP8ifxV3ThqoJuBpj2muTuLz2b_z-X4H8MZNA59YwbmvpOJ-qmMeB3nMXUllcYjxKqeI7mgcHpz4n0-D0w34ucqFoWOVqznRTtRZpWmPvCcEmgOViol7eXssYrI3_HBxyamCFEVaV-U0VFtmIdu1dGNtkseRWf5Ad26-e7iHun8rxHD_eHDA24oDXCPskTwg8hij-7imu6H2VaCjIEslMd5IReR4WRp4Ct06GXnGiyOtQuOnsVAII3Jj-hLbvQVbEa766AhufdofT752Oz5uGIex5YnETog4Aim_YZHEr6Isnnr2vtmwdIVYXyWvQd_rJzj_RNZ2aRzeh3stpmUfm0H4ADZM-RBuN1Uul4_g-3SmioKNmkK8ho0o4QnH7blmVDjEJlawKmc2ntD8ZDI2KRY4n1UI6Ws2rc2MDUxRzFldsYYpu24b0mdLbN6K9Kb1VUUXVvQxnNxI5z-BzbIqzTNgYejmnlRG5K7yg9THVnSaq8g1sUzx0gG-6t5Et1zoVJKjSNAnInUkpI6E1JGQOhx418lfNCwgf5XcWWkraWeDefJ77DrwuruNdkzBGVWaajFPPIGuuERM4TrwtFFu9yjE4AjTg9CBaE3tnQBxhK_fKc_PLFe4DPG5fc8Bzw6Q_7x9Mh0cS2HDb325_e9PeQV30ACTL4fjo-dwF_8kmsPsO7BZXy3MC8RqdfqyNQIG327a7n4BqtVNxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+Molecule+Mesengenic+Induction+of+Human+Induced+Pluripotent+Stem+Cells+to+Generate+Mesenchymal+Stem%2FStromal+Cells&rft.jtitle=Stem+cells+translational+medicine&rft.au=Chen%2C+Yen+Shun&rft.au=Pelekanos%2C+Rebecca+A&rft.au=Ellis%2C+Rebecca+L&rft.au=Horne%2C+Rachel&rft.date=2012-02-01&rft.pub=Oxford+University+Press&rft.issn=2157-6564&rft.eissn=2157-6580&rft.volume=1&rft.issue=2&rft.spage=83&rft.epage=95&rft_id=info:doi/10.5966%2Fsctm.2011-0022&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-6564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-6564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-6564&client=summon