Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae

Anopheles gambiae, the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host seeking, egg laying, and sugar feeding. However, little work has been performed to elucidate the molecular basis for these daily rhythms. To stud...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 32; pp. E421 - E430
Main Authors Rund, Samuel S.C, Hou, Tim Y, Ward, Sarah M, Collins, Frank H, Duffield, Giles E
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 09.08.2011
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1100584108

Cover

Abstract Anopheles gambiae, the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host seeking, egg laying, and sugar feeding. However, little work has been performed to elucidate the molecular basis for these daily rhythms. To study how gene expression is regulated globally by diel and circadian mechanisms, we have undertaken a DNA microarray analysis of An. gambiae under light/dark cycle (LD) and constant dark (DD) conditions. Adult mated, non-blood-fed female mosquitoes were collected every 4 h for 48 h, and samples were processed with DNA microarrays. Using a cosine wave-fitting algorithm, we identified 1,293 and 600 rhythmic genes with a period length of 20-28 h in the head and body, respectively, under LD conditions, representing 9.7 and 4.5% of the An. gambiae gene set. A majority of these genes was specific to heads or bodies. Examination of mosquitoes under DD conditions revealed that rhythmic programming of the transcriptome is dependent on an interaction between the endogenous clock and extrinsic regulation by the LD cycle. A subset of genes, including the canonical clock components, was expressed rhythmically under both environmental conditions. A majority of genes had peak expression clustered around the day/night transitions, anticipating dawn and dusk. Genes cover diverse biological processes such as transcription/translation, metabolism, detoxification, olfaction, vision, cuticle regulation, and immunity, and include rate-limiting steps in the pathways. This study highlights the fundamental roles that both the circadian clock and light play in the physiology of this important insect vector and suggests targets for intervention.
AbstractList Anopheles gambiae, the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host seeking, egg laying, and sugar feeding. However, little work has been performed to elucidate the molecular basis for these daily rhythms. To study how gene expression is regulated globally by diel and circadian mechanisms, we have undertaken a DNA microarray analysis of An. gambiae under light/dark cycle (LD) and constant dark (DD) conditions. Adult mated, non-blood-fed female mosquitoes were collected every 4 h for 48 h, and samples were processed with DNA microarrays. Using a cosine wave-fitting algorithm, we identified 1,293 and 600 rhythmic genes with a period length of 20-28 h in the head and body, respectively, under LD conditions, representing 9.7 and 4.5% of the An. gambiae gene set. A majority of these genes was specific to heads or bodies. Examination of mosquitoes under DD conditions revealed that rhythmic programming of the transcriptome is dependent on an interaction between the endogenous clock and extrinsic regulation by the LD cycle. A subset of genes, including the canonical clock components, was expressed rhythmically under both environmental conditions. A majority of genes had peak expression clustered around the day/night transitions, anticipating dawn and dusk. Genes cover diverse biological processes such as transcription/translation, metabolism, detoxification, olfaction, vision, cuticle regulation, and immunity, and include rate-limiting steps in the pathways. This study highlights the fundamental roles that both the circadian clock and light play in the physiology of this important insect vector and suggests targets for intervention.
Anopheles gambiae, the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host seeking, egg laying, and sugar feeding. However, little work has been performed to elucidate the molecular basis for these daily rhythms. To study how gene expression is regulated globally by diel and circadian mechanisms, we have undertaken a DNA microarray analysis of An. gambiae under light/dark cycle (LD) and constant dark (DD) conditions. Adult mated, non-blood-fed female mosquitoes were collected every 4 h for 48 h, and samples were processed with DNA microarrays. Using a cosine wave-fitting algorithm, we identified 1,293 and 600 rhythmic genes with a period length of 20-28 h in the head and body, respectively, under LD conditions, representing 9.7 and 4.5% of the An. gambiae gene set. A majority of these genes was specific to heads or bodies. Examination of mosquitoes under DD conditions revealed that rhythmic programming of the transcriptome is dependent on an interaction between the endogenous clock and extrinsic regulation by the LD cycle. A subset of genes, including the canonical clock components, was expressed rhythmically under both environmental conditions. A majority of genes had peak expression clustered around the day/night transitions, anticipating dawn and dusk. Genes cover diverse biological processes such as transcription/translation, metabolism, detoxification, olfaction, vision, cuticle regulation, and immunity, and include rate-limiting steps in the pathways. This study highlights the fundamental roles that both the circadian clock and light play in the physiology of this important insect vector and suggests targets for intervention. [PUBLICATION ABSTRACT]
Anopheles gambiae, the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host seeking, egg laying, and sugar feeding. However, little work has been performed to elucidate the molecular basis for these daily rhythms. To study how gene expression is regulated globally by diel and circadian mechanisms, we have undertaken a DNA microarray analysis of An. gambiae under light/dark cycle (LD) and constant dark (DD) conditions. Adult mated, non-blood-fed female mosquitoes were collected every 4 h for 48 h, and samples were processed with DNA microarrays. Using a cosine wave-fitting algorithm, we identified 1,293 and 600 rhythmic genes with a period length of 20-28 h in the head and body, respectively, under LD conditions, representing 9.7 and 4.5% of the An. gambiae gene set. A majority of these genes was specific to heads or bodies. Examination of mosquitoes under DD conditions revealed that rhythmic programming of the transcriptome is dependent on an interaction between the endogenous clock and extrinsic regulation by the LD cycle. A subset of genes, including the canonical clock components, was expressed rhythmically under both environmental conditions. A majority of genes had peak expression clustered around the day/night transitions, anticipating dawn and dusk. Genes cover diverse biological processes such as transcription/translation, metabolism, detoxification, olfaction, vision, cuticle regulation, and immunity, and include rate-limiting steps in the pathways. This study highlights the fundamental roles that both the circadian clock and light play in the physiology of this important insect vector and suggests targets for intervention.Anopheles gambiae, the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host seeking, egg laying, and sugar feeding. However, little work has been performed to elucidate the molecular basis for these daily rhythms. To study how gene expression is regulated globally by diel and circadian mechanisms, we have undertaken a DNA microarray analysis of An. gambiae under light/dark cycle (LD) and constant dark (DD) conditions. Adult mated, non-blood-fed female mosquitoes were collected every 4 h for 48 h, and samples were processed with DNA microarrays. Using a cosine wave-fitting algorithm, we identified 1,293 and 600 rhythmic genes with a period length of 20-28 h in the head and body, respectively, under LD conditions, representing 9.7 and 4.5% of the An. gambiae gene set. A majority of these genes was specific to heads or bodies. Examination of mosquitoes under DD conditions revealed that rhythmic programming of the transcriptome is dependent on an interaction between the endogenous clock and extrinsic regulation by the LD cycle. A subset of genes, including the canonical clock components, was expressed rhythmically under both environmental conditions. A majority of genes had peak expression clustered around the day/night transitions, anticipating dawn and dusk. Genes cover diverse biological processes such as transcription/translation, metabolism, detoxification, olfaction, vision, cuticle regulation, and immunity, and include rate-limiting steps in the pathways. This study highlights the fundamental roles that both the circadian clock and light play in the physiology of this important insect vector and suggests targets for intervention.
Anopheles gambiae , the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host seeking, egg laying, and sugar feeding. However, little work has been performed to elucidate the molecular basis for these daily rhythms. To study how gene expression is regulated globally by diel and circadian mechanisms, we have undertaken a DNA microarray analysis of An. gambiae under light/dark cycle (LD) and constant dark (DD) conditions. Adult mated, non–blood-fed female mosquitoes were collected every 4 h for 48 h, and samples were processed with DNA microarrays. Using a cosine wave-fitting algorithm, we identified 1,293 and 600 rhythmic genes with a period length of 20–28 h in the head and body, respectively, under LD conditions, representing 9.7 and 4.5% of the An. gambiae gene set. A majority of these genes was specific to heads or bodies. Examination of mosquitoes under DD conditions revealed that rhythmic programming of the transcriptome is dependent on an interaction between the endogenous clock and extrinsic regulation by the LD cycle. A subset of genes, including the canonical clock components, was expressed rhythmically under both environmental conditions. A majority of genes had peak expression clustered around the day/night transitions, anticipating dawn and dusk. Genes cover diverse biological processes such as transcription/translation, metabolism, detoxification, olfaction, vision, cuticle regulation, and immunity, and include rate-limiting steps in the pathways. This study highlights the fundamental roles that both the circadian clock and light play in the physiology of this important insect vector and suggests targets for intervention. Our work in the An. gambiae mosquito reveals rhythmic expression of numerous genes across several biological categories. An improved understanding of the rhythmic nature of mosquito biochemistry, physiology, and behavior, including sensory perception and susceptibilities to insecticide or immune challenge, will provide opportunities for novel malarial control strategies and optimization of existing approaches. Indeed, insight into biological timing at the molecular level may prove to be key in the successful implementation of control methods and future experimental design. A number of genes involved in immunity, primarily in the immune deficiency and melanization pathways, show rhythmic expression profiles suggesting time-of-day–specific susceptibility to infection in An. gambiae . The melanization response encapsulates both bacteria and Plasmodium parasites and produces toxic antimicrobial by-products. Because a circadian rhythm of susceptibility to bacterial infection in Drosophila has been demonstrated recently ( 5 ), our results suggest that time-of-day–specific effects should be considered when developing biopesticide-based interventions for An. gambiae . The mosquito uses olfaction to detect blood-feeding hosts and nectar and to select oviposition sites ( 1 ). We identified rhythmic expression of olfaction genes dominated by odorant-binding proteins (OBPs) ( Fig. P1 ). OBPs are soluble proteins located in the olfactory sensilla and are thought to transport odor molecules through the mucous layer to the olfactory receptors, thereby facilitating their activation. Our data indicate that daily changes in OBP levels may modify the olfactory system's sensitivity to specific odors. Interestingly, the OBP genes oscillate with concordant peak phases occurring at dusk or during the early night. It is plausible that these cycles lead to increased sensitivity of the system coinciding with the time of nocturnal host- and nectar-seeking behavior ( 1 ). The odorant coreceptor, OR7 , which is the heterodimer required for all odorant receptor transduction, also was rhythmic in the head, peaking at a time similar to the rhythms of OBP genes near the end of the light phase ( Fig. P1 ). Rhythmicity of OR7 could prove to be another potential gate for diel control of olfactory sensitivity and is especially interesting because it has been implicated in the detection of the insect repellent N,N-diethyl-m-toluamide (DEET). Our analysis also identified rhythmically expressed genes of the visual system, including those contributing to rhodopsin biogenesis and to the phototransduction cascade. Phase-concordant relationships in gene expression between specific partner proteins might contribute to a time-of-day–specific gating mechanism for tuning sensitivity to light. Such temporal changes in sensitivity to light have been reported in other insect species. Our analysis revealed detoxification genes to be rhythmic, including as much as a third of the An. gambiae cytochrome P450 mono-oxygenase (P450) and glutathione S-transferase (GST) genes. These genes include CYP6Z1 , agCYP6P3 , agCYP6M2 , and GSTE2 , whose up-regulation is implicated in insecticide resistance ( Fig. P1 ) ( 4 ). These data highlight the likelihood that An. gambiae exhibits rhythmic sensitivity to insecticides, as has been observed in other insects including Aedes mosquitoes. This finding is important for maximizing exposure of the mosquito to insecticides at the time of day when they may be most susceptible. We identify biological processes whose underlying gene expression is under rhythmic control in An. gambiae and highlight those that may be important in considering measures of insect control. Metabolic demands in the mosquito vary drastically between rest and flight activity. Moreover, in An. gambiae sugar and blood feeding is restricted to the night phase ( 1 ). With these predictable temporal changes in respiratory demands and nutrient availability, it is no surprise that many steps in anabolic/catabolic metabolic pathways were identified as under rhythmic control. Genes under rhythmic control include those involved in glycolysis, the citric acid cycle, oxidative phosphorylation, and fatty acid oxidation pathways. Also, genes associated with control of intermediary metabolism and feeding, nutritional homeostasis, and nutrient mobilization were found to be rhythmic. These genes include target of rapamycin and the takeout genes, which are components of nutrient-sensing signaling pathways and are capable of modulating temporal aspects of feeding behavior. Our data indicate that metabolic activity in An. gambiae is coordinated temporally, allowing the mosquito to anticipate the differing energy demands of activity/rest and the variations in anabolic/catabolic states that occur across the 24-h period. Eukaryotic organisms possess a molecular circadian clock comprising a series of transcriptional–translational feedback loops whose completion takes ∼24 h. The organization of the clock and several of the genes involved are similar across taxonomic groups. In our study of An. gambiae , examination of clock genes revealed the presence of characteristic phase-specific rhythms, such as observed in other mosquito species and in Drosophila ( Fig. P1 ) ( 2 , 3 ). Consistent with recent studies on Aedes and Culex mosquitoes, but dissimilar to Drosophila , the transcriptional repressor and component of the negative feedback loop, cryptochrome 2 ( CRY2 ), was found to be expressed rhythmically in An. gambiae , whereas the cryptochrome 1 gene, encoding a photoreceptor of the clock, was found to be expressed constitutively. These data demonstrate that the An. gambiae circadian system, as well as that of other mosquito species, resembles other insects (e.g., butterfly) more closely than its fellow Dipteran and genetic model organism, Drosophila . Genes regulated by the clock are described as “clock-controlled genes,” and their rhythms in expression are generated by episodic activation/suppression of their promoters, either directly by canonical clock components or via downstream intermediaries. However, an important finding from our analysis in An. gambiae is that the overlap in genes rhythmically expressed under both LD and DD conditions is limited to ∼60%. This incomplete overlap suggests that the An. gambiae 24-h rhythm-generating system comprises two distinct but interlocking mechanisms, one reliant on signals directly from the environmental LD cycle and the other on signals generated internally by the endogenous circadian clock, together forming a bimodal system as similarly proposed for Drosophila ( 3 ). Downstream of this diel and circadian regulation of transcription exist additional posttranscriptional processes. Our results in An. gambiae reveal rhythms in genes involved in gene splicing, translation, and aspects of protein degradation pathways, which could produce, enhance, or modify 24-h rhythms in gene expression and protein abundance. To explore how gene expression is regulated globally in An. gambiae by diel mechanisms, processes directly driven by the environmental light/dark (LD) cycle, and by the endogenous circadian clock, we undertook a DNA microarray analysis of adult female mosquitoes sampled every 4 h over a 48-h period under both LD and constant dark (DD) conditions. This transcriptional analysis of An. gambiae rhythms allows a detailed exploration of the extent to which mosquito biochemistry, physiology, and behavior are controlled by diel and circadian mechanisms ( Fig. P1 ). We sought to characterize the molecular rhythms underlying overt rhythms already documented and to identify hitherto unknown rhythms as have been revealed in model genetic species. With the use of stringent criteria for identifying rhythmic gene-expression profiles, 2,095 genes accounting for at least 15.8% of the An. gambiae gene set were discovered to be rhythmic in either the mosquito head or body and under diel and/or circadian control. In many cases, genes were expressed rhythmically specifically in either the head or the body; these genes covered a wide range of biological functions and processes ( Fig. P1 ). The mosquito Anopheles gambiae is the major African vector o
Author Duffield, Giles E
Collins, Frank H
Hou, Tim Y
Rund, Samuel S.C
Ward, Sarah M
Author_xml – sequence: 1
  fullname: Rund, Samuel S.C
– sequence: 2
  fullname: Hou, Tim Y
– sequence: 3
  fullname: Ward, Sarah M
– sequence: 4
  fullname: Collins, Frank H
– sequence: 5
  fullname: Duffield, Giles E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21715657$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv1DAQhS1URLeFMzewuMAl7diOHedSqapKQarEAXq2vM5k11ViBzvb0n9Pol1Y6KEgH3yY7z17nt4ROQgxICGvGZwwqMTpEGw-YQxA6pKBfkYWDGpWqLKGA7IA4FWhS14ekqOcbwGglhpekEPOKiaVrBbEXWGIPRb3vkE6pNj6zocVjS1tPHbUhoY6n5xtvA10hQEp_hgS5uxjoD7QcY20t51N3tI7dGNM9DzEYY0dZrqy_dJbfEmet7bL-Gp3H5Obj5ffLj4V11-uPl-cXxdOCj4WaFtg3DVqyWVdVbVDiVJYBYLxSmm2hNqVQjnmAGvhUDUMuGq4RteiVEocE9j6bsJgH-5t15kh-d6mB8PAzHmZOS-zz2uSnG0lw2bZY-MwjMnuZdF68_ck-LVZxTsjpvxYPRu83xmk-H2DeTS9zw67zgaMm2xqKEvNQMl_kloLAboWMJEfniSZZpXmtSrFhL57hN7GTQpTyrMfVKxUM_TmzyV_b_erBRNwugVcijknbP8jN_lI4fxox6kUU0q-e0L3dveVebB_RRvBzWXJ2Z5obTR2lXw2N185MDWVeTqiEj8B8fLozA
CitedBy_id crossref_primary_10_1093_icb_ict023
crossref_primary_10_1016_j_cois_2014_12_006
crossref_primary_10_1093_bioinformatics_btaa877
crossref_primary_10_1002_ps_8064
crossref_primary_10_1098_rstb_2023_0343
crossref_primary_10_3390_su11226220
crossref_primary_10_1186_s13071_016_1394_8
crossref_primary_10_3389_fimmu_2020_01457
crossref_primary_10_1098_rspb_2018_1876
crossref_primary_10_3389_fphys_2014_00252
crossref_primary_10_1016_j_isci_2022_104521
crossref_primary_10_1038_s41598_018_21251_x
crossref_primary_10_1186_s12862_017_0910_6
crossref_primary_10_1371_journal_pone_0187170
crossref_primary_10_1186_s13071_019_3513_9
crossref_primary_10_1073_pnas_2104282119
crossref_primary_10_1603_ME11171
crossref_primary_10_1016_j_micpath_2020_104391
crossref_primary_10_1186_s12936_015_0766_4
crossref_primary_10_1371_journal_pone_0220225
crossref_primary_10_1080_21505594_2016_1276689
crossref_primary_10_3390_insects12090826
crossref_primary_10_1080_03949370_2015_1064037
crossref_primary_10_1089_vbz_2012_1110
crossref_primary_10_1016_j_cels_2016_06_007
crossref_primary_10_1111_eva_12571
crossref_primary_10_1186_s13071_017_2235_0
crossref_primary_10_1016_j_cois_2015_04_011
crossref_primary_10_1186_1740_3391_12_1
crossref_primary_10_1093_nar_gkt484
crossref_primary_10_1016_j_pt_2020_08_004
crossref_primary_10_1016_j_tree_2015_03_012
crossref_primary_10_1186_s12864_024_10078_8
crossref_primary_10_1177_0748730418772175
crossref_primary_10_1186_1471_2164_14_218
crossref_primary_10_1016_j_cub_2020_06_069
crossref_primary_10_3390_insects13050434
crossref_primary_10_1073_pnas_1302562110
crossref_primary_10_1590_1519_6984_09815
crossref_primary_10_3390_insects14050486
crossref_primary_10_1038_s41467_023_40029_y
crossref_primary_10_1002_jez_2015
crossref_primary_10_1111_imb_12296
crossref_primary_10_1534_g3_117_300393
crossref_primary_10_1002_pro_2179
crossref_primary_10_1590_0074_0276130471
crossref_primary_10_1098_rspb_2013_2030
crossref_primary_10_1186_1471_2164_15_1089
crossref_primary_10_1016_j_ibmb_2013_03_002
crossref_primary_10_1242_jeb_113233
crossref_primary_10_3389_fphys_2020_614722
crossref_primary_10_1016_j_jinsphys_2012_09_016
crossref_primary_10_1186_1471_2164_15_1128
crossref_primary_10_1038_s41598_022_24923_x
crossref_primary_10_1016_j_conb_2012_02_013
crossref_primary_10_1093_jhered_esz003
crossref_primary_10_1371_journal_pone_0062269
crossref_primary_10_1111_mec_12733
crossref_primary_10_1098_rstb_2016_0248
crossref_primary_10_1371_journal_pcbi_1007666
crossref_primary_10_1186_s12864_015_1507_3
crossref_primary_10_1146_annurev_ento_010715_023523
crossref_primary_10_1111_imb_12747
crossref_primary_10_1371_journal_pone_0031552
crossref_primary_10_1016_j_jinsphys_2014_05_001
crossref_primary_10_1016_j_cois_2019_03_005
crossref_primary_10_1016_j_pt_2022_07_006
crossref_primary_10_1371_journal_pntd_0009797
crossref_primary_10_1038_nrmicro2900
crossref_primary_10_1093_bioinformatics_btz617
crossref_primary_10_1186_s12936_024_05106_7
crossref_primary_10_3390_insects12100867
crossref_primary_10_1038_s41598_022_26990_6
crossref_primary_10_1016_j_cois_2024_101179
crossref_primary_10_1186_s12859_022_04697_9
crossref_primary_10_3958_059_040_0105
crossref_primary_10_1177_0748730412462207
crossref_primary_10_1186_s12864_021_08282_x
crossref_primary_10_3958_059_040_0106
crossref_primary_10_1111_ejn_14180
crossref_primary_10_1007_s00441_020_03368_6
crossref_primary_10_3389_fnbeh_2020_601676
crossref_primary_10_3390_insects13050488
crossref_primary_10_1016_j_cub_2020_06_010
crossref_primary_10_1093_jee_tow128
crossref_primary_10_1177_0748730419830845
crossref_primary_10_1016_j_cels_2016_07_008
crossref_primary_10_1186_s12864_017_4122_7
crossref_primary_10_1016_j_jinsphys_2022_104404
crossref_primary_10_1186_s12864_015_1937_y
crossref_primary_10_1016_j_jinsphys_2012_10_012
crossref_primary_10_1590_0074_0276130438
crossref_primary_10_3390_v13091822
crossref_primary_10_1186_1756_3305_7_304
crossref_primary_10_1038_s41598_022_10825_5
crossref_primary_10_1093_gbe_evw015
crossref_primary_10_1371_journal_pntd_0003724
crossref_primary_10_24072_pcjournal_15
crossref_primary_10_3389_fphys_2015_00400
crossref_primary_10_1016_j_ijbiomac_2023_124009
crossref_primary_10_1111_mve_12747
crossref_primary_10_1016_j_jinsphys_2014_09_006
crossref_primary_10_1186_s13071_017_2196_3
crossref_primary_10_1111_j_1365_3032_2012_00838_x
crossref_primary_10_3389_fphys_2021_803682
crossref_primary_10_1038_s41598_019_40197_2
crossref_primary_10_1038_srep01773
crossref_primary_10_1371_journal_pone_0052559
crossref_primary_10_1016_j_aquatox_2021_106069
crossref_primary_10_1186_s12864_021_07646_7
crossref_primary_10_1186_s12864_016_2998_2
crossref_primary_10_1038_s41598_024_52794_x
crossref_primary_10_1186_s12936_023_04495_5
crossref_primary_10_1186_s12864_015_2336_0
crossref_primary_10_3390_insects7020014
crossref_primary_10_1093_nar_gks1161
crossref_primary_10_1186_s13071_018_3271_0
crossref_primary_10_1016_j_cris_2021_100018
crossref_primary_10_1098_rspb_2024_1105
crossref_primary_10_1371_journal_pone_0218343
crossref_primary_10_1093_jme_tjaf013
crossref_primary_10_1186_s12859_023_05382_1
crossref_primary_10_3389_fphys_2018_00149
crossref_primary_10_1371_journal_pgen_1008265
crossref_primary_10_1080_07420528_2021_1903030
crossref_primary_10_1186_s13071_021_04967_0
crossref_primary_10_1016_j_jinsphys_2014_02_013
crossref_primary_10_1111_pce_13135
crossref_primary_10_1016_j_jinsphys_2013_09_001
Cites_doi 10.1111/j.1365-294X.2008.03774.x
10.1016/j.actatropica.2007.01.005
10.3389/neuro.03.002.2009
10.1073/pnas.93.2.571
10.1016/j.cub.2007.12.054
10.1093/emboj/21.5.1121
10.1038/nprot.2008.211
10.1093/chemse/bjh229
10.1186/1475-2875-8-60
10.1007/s007050050398
10.1146/annurev-ento-112408-085436
10.1016/S0022-1910(02)00108-7
10.1371/journal.pbio.1000467
10.1242/jeb.02551
10.1017/S0007485300007604
10.1111/j.1365-2583.2008.00832.x
10.1042/bj3590295
10.1074/jbc.274.17.11727
10.1007/BF01919312
10.1371/journal.pgen.0040014
10.1146/annurev-genet-102209-163432
10.1016/j.gene.2005.03.013
10.1126/science.1153121
10.1016/j.ibmb.2009.03.008
10.1126/science.144.3615.180
10.1101/sqb.2007.72.022
10.1073/pnas.0407004101
10.1073/pnas.95.25.14863
10.1016/j.jinsphys.2007.10.007
10.1523/JNEUROSCI.4464-09.2010
10.1093/molbev/msm011
10.1016/j.jmb.2005.07.009
10.1038/scientificamerican0670-123
10.1177/0748730409349169
10.1016/S0092-8674(01)00545-1
10.1126/science.1195755
10.1016/S0076-6879(04)83007-6
10.1146/annurev-ento-112408-085423
10.1523/JNEUROSCI.22-21-09305.2002
10.1074/jbc.274.18.12650
10.1016/j.ibmb.2006.06.001
10.1016/S0079-6123(08)60401-X
10.1603/0022-2585-40.6.903
10.1523/JNEUROSCI.2709-10.2010
10.1016/j.pt.2005.02.007
10.1093/chemse/23.3.351
10.1074/jbc.C100765200
10.1146/annurev.ento.44.1.131
10.1111/j.1365-3032.1989.tb00939.x
10.1016/S0896-6273(01)00515-3
10.1101/SQB.1960.025.01.012
10.1073/pnas.092274999
10.1016/j.febslet.2005.11.031
10.1242/jeb.205.1.37
10.1093/nar/gkn857
10.1016/j.pt.2010.08.004
10.1073/pnas.0800145105
10.1603/0013-8746-101.6.1121
10.1603/0022-2585-38.4.531
10.1371/journal.pgen.0020039
10.1073/pnas.132269699
10.1093/nar/gkn785
10.1016/j.jinsphys.2005.03.011
10.1016/j.ibmb.2006.03.009
10.1002/jez.1402060204
10.1177/0748730410379711
10.1126/science.1091789
10.1111/j.1365-313X.2007.03302.x
10.1051/parasite/1999062103
10.1038/emboj.2009.54
10.1016/j.ceb.2007.02.016
10.1016/S0092-8674(02)00722-5
10.1017/S0007485300031126
10.1126/science.1077136
10.1111/j.1365-2915.1996.tb00739.x
10.1126/science.1076781
10.1007/s10709-010-9482-8
10.1016/j.jinsphys.2008.06.003
10.1186/1472-6793-8-23
10.1080/09291010412331313250
10.1371/journal.pbio.0040020
10.1016/S0092-8674(00)80876-4
10.1016/j.trstmh.2005.07.001
10.1111/j.1365-2583.2005.00590.x
10.1002/arch.20047
10.1016/S0960-9822(02)00765-0
10.1242/jeb.00709
10.1093/jee/65.4.1191
10.1111/j.1096-3642.1940.tb00831.x
10.1093/emboj/16.23.7146
10.1111/j.1462-5822.2006.00718.x
10.1111/j.1365-2915.2006.00638.x
10.1046/j.1365-2826.2003.01082.x
10.1016/j.tem.2006.11.005
10.1016/j.cub.2010.05.027
10.1038/nature07967
10.1016/j.ibmb.2010.02.001
10.1016/j.jinsphys.2010.03.028
10.1371/journal.pone.0006469
10.1016/j.cub.2005.11.072
10.1006/bbrc.2001.4391
10.1016/j.ibmb.2005.02.005
10.1186/gb-2007-8-4-r67
10.1016/j.ibmb.2006.08.008
10.1016/j.cell.2006.09.030
10.1042/bj20020272
10.1016/j.cell.2009.09.029
10.1016/S0378-1119(03)00763-7
10.1017/S0007485300024056
ContentType Journal Article
Copyright Copyright National Academy of Sciences Aug 9, 2011
Copyright_xml – notice: Copyright National Academy of Sciences Aug 9, 2011
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
7T7
F1W
H95
H97
L.G
5PM
ADTOC
UNPAY
DOI 10.1073/pnas.1100584108
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitleList
Virology and AIDS Abstracts
MEDLINE
Entomology Abstracts


AGRICOLA
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage E430
ExternalDocumentID 10.1073/pnas.1100584108
PMC3156198
2423372501
21715657
10_1073_pnas_1100584108
108_32_E421
US201600202037
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GeographicLocations Africa
GeographicLocations_xml – name: Africa
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: HHSN266200400039C
– fundername: NIGMS NIH HHS
  grantid: R01 GM087508
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
AAYXX
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
CITATION
IPSME
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
7T7
F1W
H95
H97
L.G
5PM
ADTOC
AFHIN
AFQQW
UNPAY
ID FETCH-LOGICAL-c532t-eaf012cd6b259779ce5e53a603127681b09c436c1c0e93ce6d1026d28ecfe5663
IEDL.DBID UNPAY
ISSN 0027-8424
1091-6490
IngestDate Sun Oct 26 04:10:00 EDT 2025
Tue Sep 30 16:51:04 EDT 2025
Tue Oct 07 09:28:40 EDT 2025
Fri Sep 05 07:53:28 EDT 2025
Wed Oct 01 14:52:05 EDT 2025
Mon Jun 30 08:25:32 EDT 2025
Mon Jul 21 05:33:43 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Wed Oct 01 01:21:50 EDT 2025
Wed Nov 11 00:29:38 EST 2020
Wed Dec 27 19:13:25 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-eaf012cd6b259779ce5e53a603127681b09c436c1c0e93ce6d1026d28ecfe5663
Notes http://dx.doi.org/10.1073/pnas.1100584108
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by David L. Denlinger, Ohio State University, Columbus, OH, and approved May 27, 2011 (received for review January 17, 2011)
Author contributions: F.H.C. and G.E.D. designed research; S.S.C.R., T.Y.H., and S.M.W. performed research; S.S.C.R., T.Y.H., and G.E.D. analyzed data; and S.S.C.R. and G.E.D. wrote the paper.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.pnas.org/content/pnas/108/32/E421.full.pdf
PMID 21715657
PQID 883071463
PQPubID 42026
PageCount 10
ParticipantIDs proquest_journals_883071463
unpaywall_primary_10_1073_pnas_1100584108
proquest_miscellaneous_904481065
fao_agris_US201600202037
proquest_miscellaneous_1817829643
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3156198
crossref_citationtrail_10_1073_pnas_1100584108
pubmed_primary_21715657
pnas_primary_108_32_E421
crossref_primary_10_1073_pnas_1100584108
proquest_miscellaneous_883308930
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-09
PublicationDateYYYYMMDD 2011-08-09
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Kaufmann C (e_1_3_4_52_2) 2006; 36
Cociancich SO (e_1_3_4_70_2) 1999; 274
Ueda HR (e_1_3_4_9_2) 2002; 277
Doherty CJ (e_1_3_4_16_2) 2010; 44
Nakahata Y (e_1_3_4_38_2) 2007; 19
Gentile C (e_1_3_4_17_2) 2006; 36
Yang YY (e_1_3_4_63_2) 2010; 56
Kirkton SD (e_1_3_4_102_2) 2007
Brammer JD (e_1_3_4_88_2) 1978; 206
Lee JE (e_1_3_4_103_2) 2008; 18
Ditzen M (e_1_3_4_78_2) 2008; 319
Phillips AM (e_1_3_4_97_2) 2005; 351
Goto SG (e_1_3_4_34_2) 2002; 48
Gentile C (e_1_3_4_18_2) 2009; 24
Schotta G (e_1_3_4_40_2) 2002; 21
Chen CH (e_1_3_4_29_2) 2009; 28
Nolan T (e_1_3_4_111_2) 2011; 139
Takken W (e_1_3_4_71_2) 1999; 44
e_1_1_2_17_12_3_2
Kaufmann C (e_1_3_4_53_2) 2008; 54
Das S (e_1_3_4_4_2) 2008; 8
Ranson H (e_1_3_4_61_2) 2002; 298
Liu C (e_1_3_4_79_2) 2010; 8
Gray EM (e_1_3_4_44_2) 2003; 40
Zheng X (e_1_3_4_46_2) 2010; 20
Rona LDP (e_1_3_4_21_2) 2009; 8
Pelosi P (e_1_3_4_76_2) 2005; 30
Han J (e_1_3_4_86_2) 2006; 127
Schlein Y (e_1_3_4_93_2) 1973; 49
Rowland M (e_1_3_4_83_2) 1989; 14
Christophides GK (e_1_3_4_31_2) 2002; 298
Kaufmann C (e_1_3_4_48_2) 2004; 29
e_1_1_2_17_12_5_2
McDonald MJ (e_1_3_4_7_2) 2001; 107
Berg JM (e_1_3_4_56_2) 2010
Batth SS (e_1_3_4_65_2) 1972; 65
Gautret P (e_1_3_4_109_2) 1999; 6
Drapeau MD (e_1_3_4_99_2) 2001; 281
Barrozo RB (e_1_3_4_73_2) 2004; 35
Hawking F (e_1_3_4_110_2) 1970; 222
Hastings JW (e_1_3_4_30_2) 1960; 25
Corbel V (e_1_3_4_58_2) 2007; 101
Holliday-Hanson ML (e_1_3_4_47_2) 1997; 22
Kato N (e_1_3_4_100_2) 2005; 35
Park JW (e_1_3_4_42_2) 2004; 101
Lawniczak MK (e_1_3_4_117_2) 2010; 330
Hughes ME (e_1_3_4_122_2) 2010; 25
e_1_1_2_17_12_4_2
Möller A (e_1_3_4_39_2) 2005; 352
Müller HM (e_1_3_4_106_2) 1999; 274
Sandrelli F (e_1_3_4_33_2) 2008; 17
Ranson H (e_1_3_4_59_2) 2001; 359
Luschnig S (e_1_3_4_101_2) 2006; 16
Ranson H (e_1_3_4_60_2) 2011; 27
Duffield GE (e_1_3_4_15_2) 2003; 15
Nation JL (e_1_3_4_57_2) 2002
Becker A (e_1_3_4_54_2) 1996; 52
Hahn DA (e_1_3_4_50_2) 2011; 56
Sessions OM (e_1_3_4_68_2) 2009; 458
Clements AN (e_1_1_2_17_12_1_2) 1999
Sarov-Blat L (e_1_3_4_51_2) 2000; 101
Katz B (e_1_3_4_85_2) 2009; 3
Michael TP (e_1_3_4_13_2) 2008; 4
Van der Goes van Naters WM (e_1_3_4_74_2) 1998; 23
Volz J (e_1_3_4_107_2) 2006; 8
Mbogo CNM (e_1_3_4_115_2) 1996; 10
Jones MDR (e_1_3_4_112_2) 1974; 64
Gary RE (e_1_3_4_3_2) 2006; 20
Schöning JC (e_1_3_4_37_2) 2007; 52
Lawson D (e_1_3_4_118_2) 2009; 37
Patrick ML (e_1_3_4_66_2) 2006; 209
Duffield GE (e_1_3_4_6_2) 2002; 12
Yau KW (e_1_3_4_123_2) 2009; 139
Venkatachalam K (e_1_3_4_87_2) 2010; 30
Mathenge EM (e_1_3_4_116_2) 2001; 38
Bock GR (e_1_3_4_72_2) 1996
Hunter S (e_1_3_4_120_2) 2009; 37
Ceriani MF (e_1_3_4_14_2) 2002; 22
Osta MA (e_1_3_4_108_2) 2004; 303
Kohsaka A (e_1_3_4_45_2) 2007; 18
Nowosielski JW (e_1_3_4_55_2) 1964; 144
Han Q (e_1_3_4_98_2) 2002; 368
Harris AF (e_1_3_4_113_2) 2006; 100
González-Lázaro M (e_1_3_4_104_2) 2009; 39
Wijnen H (e_1_3_4_11_2) 2006; 2
Christensen BM (e_1_3_4_96_2) 2005; 21
Nawa M (e_1_3_4_69_2) 1998; 143
Sacktor B (e_1_3_4_43_2) 1976; 41
Eisen MB (e_1_3_4_121_2) 1998; 95
Claridge-Chang A (e_1_3_4_10_2) 2001; 32
Willis JH (e_1_3_4_92_2) 2010; 40
Oztürk N (e_1_3_4_20_2) 2008; 283
Cassone BJ (e_1_3_4_25_2) 2008; 17
Albers HE (e_1_3_4_27_2) 1991
Neville AC (e_1_3_4_94_2) 1965; 106
Mathias D (e_1_3_4_22_2) 2005; 51
Arsic D (e_1_3_4_49_2) 2008; 54
Straume M (e_1_3_4_26_2) 2004; 383
Huang W (e_1_3_4_119_2) 2009; 4
So WV (e_1_3_4_36_2) 1997; 16
Ribbands CR (e_1_3_4_82_2) 1946; 36
Merzendorfer H (e_1_3_4_91_2) 2003; 206
Clements AN (e_1_3_4_2_2) 1999
Garbarino-Pico E (e_1_3_4_35_2) 2007; 72
Bidlingmayer WL (e_1_3_4_80_2) 1980; 70
Lin Y (e_1_3_4_8_2) 2002; 99
Panda S (e_1_3_4_12_2) 2002; 109
Inouye ST (e_1_3_4_28_2) 1996; 111
Kennedy JS (e_1_3_4_81_2) 1940; 109
Dimopoulos G (e_1_3_4_23_2) 2002; 99
Beltran S (e_1_3_4_41_2) 2007; 8
Biessmann H (e_1_3_4_24_2) 2005; 14
Dunlap JC (e_1_3_4_5_2) 2004
Yuan Q (e_1_3_4_19_2) 2007; 24
e_1_1_2_17_12_2_2
Enayati A (e_1_3_4_1_2) 2010; 55
Bebas P (e_1_3_4_67_2) 2002; 205
Paskewitz SM (e_1_3_4_105_2) 2006; 36
Fleissner G (e_1_3_4_90_2) 1987
Nikou D (e_1_3_4_62_2) 2003; 318
Mecklenburg KL (e_1_3_4_89_2) 2010; 30
Li ZX (e_1_3_4_75_2) 2005; 58
Ito C (e_1_3_4_95_2) 2008; 105
Meireles-Filho ACA (e_1_3_4_32_2) 2006; 580
Benton R (e_1_3_4_77_2) 2006; 4
Matsumoto A (e_1_3_4_114_2) 2008; 101
Zuker CS (e_1_3_4_84_2) 1996; 93
Hooven LA (e_1_3_4_64_2) 2009; 4
20361972 - J Insect Physiol. 2010 Sep;56(9):1219-23
14585502 - Gene. 2003 Oct 30;318:91-102
14765669 - J Med Entomol. 2003 Nov;40(6):903-11
20809800 - Annu Rev Genet. 2010;44:419-44
19837030 - Cell. 2009 Oct 16;139(2):246-64
16083904 - J Mol Biol. 2005 Sep 16;352(2):329-37
21015619 - Bull Entomol Res. 1946 Feb;36:395-417
19926804 - J Biol Rhythms. 2009 Dec;24(6):444-51
15857769 - Insect Biochem Mol Biol. 2005 Jun;35(6):637-46
11937023 - Curr Biol. 2002 Apr 2;12(7):551-7
16337945 - FEBS Lett. 2006 Jan 9;580(1):2-8
4115424 - J Econ Entomol. 1972 Aug;65(4):1191-3
12364793 - Science. 2002 Oct 4;298(5591):159-65
10212245 - J Biol Chem. 1999 Apr 30;274(18):12650-5
8887336 - Med Vet Entomol. 1996 Jul;10(3):251-9
15266751 - J Vector Ecol. 2004 Jun;29(1):140-53
15063650 - Methods Enzymol. 2004;383:149-66
19358734 - Malar J. 2009;8:60
20690828 - Annu Rev Entomol. 2011;56:103-21
12770058 - J Insect Physiol. 2002 Aug;48(8):803-816
18261909 - Curr Biol. 2008 Feb 12;18(3):195-9
14610026 - J Exp Biol. 2003 Dec;206(Pt 24):4393-412
11818410 - J Exp Biol. 2002 Jan;205(Pt 1):37-44
11583575 - Biochem J. 2001 Oct 15;359(Pt 2):295-304
17924945 - Plant J. 2007 Dec;52(6):1119-30
15878647 - Gene. 2005 May 23;351:131-42
15492211 - Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15974-9
15780842 - Trends Parasitol. 2005 Apr;21(4):192-9
11476333 - J Med Entomol. 2001 Jul;38(4):531-6
12164780 - Biochem J. 2002 Nov 15;368(Pt 1):333-40
17808286 - Science. 1964 Apr 10;144(3615):180-1
10892651 - Cell. 2000 Jun 9;101(6):647-56
18634792 - J Insect Physiol. 2008 Aug;54(8):1226-35
16935219 - Insect Biochem Mol Biol. 2006 Sep;36(9):701-11
17046601 - Insect Biochem Mol Biol. 2006 Nov;36(11):878-84
10416184 - Parasite. 1999 Jun;6(2):103-11
11237700 - Biochem Biophys Res Commun. 2001 Mar 2;281(3):611-3
20821345 - Genetica. 2011 Jan;139(1):33-9
16313558 - Insect Mol Biol. 2005 Dec;14(6):575-89
12089325 - Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9562-7
19366631 - Insect Biochem Mol Biol. 2009 May-Jun;39(5-6):395-402
18062987 - J Insect Physiol. 2008 Feb;54(2):367-77
9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
19028744 - Nucleic Acids Res. 2009 Jan;37(Database issue):D583-7
17244599 - Mol Biol Evol. 2007 Apr;24(4):948-55
18539772 - Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8446-51
19262566 - EMBO J. 2009 Apr 22;28(8):1029-42
17466076 - Genome Biol. 2007;8(4):R67
17044882 - Med Vet Entomol. 2006 Sep;20(3):308-16
19396146 - Nature. 2009 Apr 23;458(7241):1047-50
20966253 - Science. 2010 Oct 22;330(6003):512-4
19623243 - Front Cell Neurosci. 2009 Jun 11;3:2
18248097 - PLoS Genet. 2008 Feb;4(2):e14
20171281 - Insect Biochem Mol Biol. 2010 Mar;40(3):189-204
19754246 - Annu Rev Entomol. 2010;55:569-91
9384591 - EMBO J. 1997 Dec 1;16(23):7146-55
17114398 - J Exp Biol. 2006 Dec;209(Pt 23):4638-51
17317138 - Curr Opin Cell Biol. 2007 Apr;19(2):230-7
19649249 - PLoS One. 2009;4(7):e6469
10206988 - J Biol Chem. 1999 Apr 23;274(17):11727-35
16565745 - PLoS Genet. 2006 Mar;2(3):e39
18339904 - Science. 2008 Mar 28;319(5871):1838-42
15738163 - Chem Senses. 2005 Jan;30 Suppl 1:i291-2
18419272 - Cold Spring Harb Symp Quant Biol. 2007;72:145-56
15717318 - Arch Insect Biochem Physiol. 2005 Mar;58(3):175-89
20619819 - Curr Biol. 2010 Jul 13;20(13):1203-8
12969245 - J Neuroendocrinol. 2003 Oct;15(10):991-1002
19087335 - BMC Physiol. 2008;8:23
15044804 - Science. 2004 Mar 26;303(5666):2030-2
788715 - Biochem Soc Symp. 1976;(41):111-31
8990908 - Prog Brain Res. 1996;111:75-90
16731343 - Insect Biochem Mol Biol. 2006 Jun;36(6):466-81
9990718 - Annu Rev Entomol. 1999;44:131-57
17359927 - Acta Trop. 2007 Mar;101(3):207-16
8570597 - Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):571-6
20876817 - J Biol Rhythms. 2010 Oct;25(5):372-80
20739554 - J Neurosci. 2010 Aug 25;30(34):11337-45
9669048 - Chem Senses. 1998 Jun;23(3):351-7
20824161 - PLoS Biol. 2010;8(8). pii: e1000467. doi: 10.1371/journal.pbio.1000467
12015981 - Cell. 2002 May 3;109(3):307-20
11854264 - J Biol Chem. 2002 Apr 19;277(16):14048-52
9221743 - J Vector Ecol. 1997 Jun;22(1):83-9
20107052 - J Neurosci. 2010 Jan 27;30(4):1238-49
12417656 - J Neurosci. 2002 Nov 1;22(21):9305-19
16402857 - PLoS Biol. 2006 Feb;4(2):e20
12364796 - Science. 2002 Oct 4;298(5591):179-81
17110341 - Cell. 2006 Nov 17;127(4):847-58
18828836 - Insect Mol Biol. 2008 Sep;17(5):447-63
11867540 - EMBO J. 2002 Mar 1;21(5):1121-31
9739334 - Arch Virol. 1998;143(8):1555-68
8706810 - Experientia. 1996 May 15;52(5):433-9
11733057 - Cell. 2001 Nov 30;107(5):567-78
4392764 - Sci Am. 1970 Jun;222(6):123-31
20843745 - Trends Parasitol. 2011 Feb;27(2):91-8
16154607 - Trans R Soc Trop Med Hyg. 2006 Jan;100(1):45-7
16431371 - Curr Biol. 2006 Jan 24;16(2):186-94
18940856 - Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5
12077297 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8814-9
4368577 - Bull World Health Organ. 1973;49(4):371-5
15979087 - J Insect Physiol. 2005 Jun;51(6):661-7
18056988 - J Biol Chem. 2008 Feb 8;283(6):3256-63
18430144 - Mol Ecol. 2008 May;17(10):2491-504
16922859 - Cell Microbiol. 2006 Sep;8(9):1392-405
17140805 - Trends Endocrinol Metab. 2007 Jan-Feb;18(1):4-11
13712194 - Cold Spring Harb Symp Quant Biol. 1960;25:131-43
19131956 - Nat Protoc. 2009;4(1):44-57
11719206 - Neuron. 2001 Nov 20;32(4):657-71
References_xml – volume: 17
  start-page: 2491
  year: 2008
  ident: e_1_3_4_25_2
  article-title: Differential gene expression in incipient species of Anopheles gambiae
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2008.03774.x
– volume: 101
  start-page: 207
  year: 2007
  ident: e_1_3_4_58_2
  article-title: Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa
  publication-title: Acta Trop
  doi: 10.1016/j.actatropica.2007.01.005
– volume: 3
  start-page: 2
  year: 2009
  ident: e_1_3_4_85_2
  article-title: Drosophila photoreceptors and signaling mechanisms
  publication-title: Front Cell Neurosci
  doi: 10.3389/neuro.03.002.2009
– volume: 93
  start-page: 571
  year: 1996
  ident: e_1_3_4_84_2
  article-title: The biology of vision of Drosophila
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.2.571
– ident: e_1_1_2_17_12_5_2
  doi: 10.1016/j.cub.2007.12.054
– volume: 21
  start-page: 1121
  year: 2002
  ident: e_1_3_4_40_2
  article-title: Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing
  publication-title: EMBO J
  doi: 10.1093/emboj/21.5.1121
– volume: 4
  start-page: 44
  year: 2009
  ident: e_1_3_4_119_2
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.211
– volume: 30
  start-page: i291
  year: 2005
  ident: e_1_3_4_76_2
  article-title: Diversity of odorant-binding proteins and chemosensory proteins in insects
  publication-title: Chem Senses
  doi: 10.1093/chemse/bjh229
– volume: 8
  start-page: 60
  year: 2009
  ident: e_1_3_4_21_2
  article-title: Assessing the molecular divergence between Anopheles (Kerteszia) cruzii populations from Brazil using the timeless gene: Further evidence of a species complex
  publication-title: Malar J
  doi: 10.1186/1475-2875-8-60
– volume-title: Biochemistry
  year: 2010
  ident: e_1_3_4_56_2
– volume: 143
  start-page: 1555
  year: 1998
  ident: e_1_3_4_69_2
  article-title: Effects of bafilomycin A1 on Japanese encephalitis virus in C6/36 mosquito cells
  publication-title: Arch Virol
  doi: 10.1007/s007050050398
– volume: 56
  start-page: 103
  year: 2011
  ident: e_1_3_4_50_2
  article-title: Energetics of insect diapause
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev-ento-112408-085436
– volume: 48
  start-page: 803
  year: 2002
  ident: e_1_3_4_34_2
  article-title: Short-day and long-day expression patterns of genes involved in the flesh fly clock mechanism: period, timeless, cycle and cryptochrome
  publication-title: J Insect Physiol
  doi: 10.1016/S0022-1910(02)00108-7
– volume: 8
  start-page: e1000467
  year: 2010
  ident: e_1_3_4_79_2
  article-title: Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000467
– volume: 209
  start-page: 4638
  year: 2006
  ident: e_1_3_4_66_2
  article-title: P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti
  publication-title: J Exp Biol
  doi: 10.1242/jeb.02551
– volume: 70
  start-page: 321
  year: 1980
  ident: e_1_3_4_80_2
  article-title: The range of visual attraction and the effect of competitive visual attractants upon mosquito (Diptera, Culicidae) flight
  publication-title: Bull Entomol Res
  doi: 10.1017/S0007485300007604
– volume: 17
  start-page: 447
  year: 2008
  ident: e_1_3_4_33_2
  article-title: Comparative analysis of circadian clock genes in insects
  publication-title: Insect Mol Biol
  doi: 10.1111/j.1365-2583.2008.00832.x
– volume-title: The Biology of Mosquitoes
  year: 1999
  ident: e_1_3_4_2_2
– volume: 359
  start-page: 295
  year: 2001
  ident: e_1_3_4_59_2
  article-title: Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae
  publication-title: Biochem J
  doi: 10.1042/bj3590295
– volume: 274
  start-page: 11727
  year: 1999
  ident: e_1_3_4_106_2
  article-title: A hemocyte-like cell line established from the malaria vector Anopheles gambiae expresses six prophenoloxidase genes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.17.11727
– volume: 52
  start-page: 433
  year: 1996
  ident: e_1_3_4_54_2
  article-title: The regulation of trehalose metabolism in insects
  publication-title: Experientia
  doi: 10.1007/BF01919312
– volume: 4
  start-page: e14
  year: 2008
  ident: e_1_3_4_13_2
  article-title: Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0040014
– volume: 44
  start-page: 419
  year: 2010
  ident: e_1_3_4_16_2
  article-title: Circadian control of global gene expression patterns
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-102209-163432
– volume: 351
  start-page: 131
  year: 2005
  ident: e_1_3_4_97_2
  article-title: The Drosophila black enigma: The molecular and behavioural characterization of the black 1 mutant allele
  publication-title: Gene
  doi: 10.1016/j.gene.2005.03.013
– volume: 319
  start-page: 1838
  year: 2008
  ident: e_1_3_4_78_2
  article-title: Insect odorant receptors are molecular targets of the insect repellent DEET
  publication-title: Science
  doi: 10.1126/science.1153121
– volume: 39
  start-page: 395
  year: 2009
  ident: e_1_3_4_104_2
  article-title: Anopheles gambiae Croquemort SCRBQ2, expression profile in the mosquito and its potential interaction with the malaria parasite Plasmodium berghei
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2009.03.008
– volume: 144
  start-page: 180
  year: 1964
  ident: e_1_3_4_55_2
  article-title: Daily fluctuation in the blood sugar concentration of the house cricket, Gryllus domesticus L
  publication-title: Science
  doi: 10.1126/science.144.3615.180
– volume: 283
  start-page: 3256
  year: 2008
  ident: e_1_3_4_20_2
  article-title: Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis
  publication-title: J Biol Chem
– volume: 72
  start-page: 145
  year: 2007
  ident: e_1_3_4_35_2
  article-title: Posttranscriptional regulation of mammalian circadian clock output
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/sqb.2007.72.022
– volume: 18
  start-page: 195
  year: 2008
  ident: e_1_3_4_103_2
  article-title: Circadian regulation in the ability of Drosophila to combat pathogenic infections
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2007.12.054
– volume: 101
  start-page: 15974
  year: 2004
  ident: e_1_3_4_42_2
  article-title: Identification of alternative splicing regulators by RNA interference in Drosophila
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0407004101
– volume: 95
  start-page: 14863
  year: 1998
  ident: e_1_3_4_121_2
  article-title: Cluster analysis and display of genome-wide expression patterns
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.25.14863
– volume: 54
  start-page: 367
  year: 2008
  ident: e_1_3_4_53_2
  article-title: Regulation of carbohydrate metabolism and flight performance by a hypertrehalosaemic hormone in the mosquito Anopheles gambiae
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2007.10.007
– volume: 30
  start-page: 1238
  year: 2010
  ident: e_1_3_4_89_2
  article-title: Retinophilin is a light-regulated phosphoprotein required to suppress photoreceptor dark noise in Drosophila
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4464-09.2010
– volume: 24
  start-page: 948
  year: 2007
  ident: e_1_3_4_19_2
  article-title: Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm011
– volume: 352
  start-page: 329
  year: 2005
  ident: e_1_3_4_39_2
  article-title: Drosophila BAP60 is an essential component of the Brahma complex, required for gene activation and repression
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.07.009
– volume: 222
  start-page: 123
  year: 1970
  ident: e_1_3_4_110_2
  article-title: The clock of the malaria parasite
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0670-123
– ident: e_1_1_2_17_12_2_2
  doi: 10.1177/0748730409349169
– volume: 107
  start-page: 567
  year: 2001
  ident: e_1_3_4_7_2
  article-title: Microarray analysis and organization of circadian gene expression in Drosophila
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00545-1
– volume-title: Olfactory Regulation of Mosquito–Host Interactions
  year: 1996
  ident: e_1_3_4_72_2
– volume: 330
  start-page: 512
  year: 2010
  ident: e_1_3_4_117_2
  article-title: Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences
  publication-title: Science
  doi: 10.1126/science.1195755
– volume: 383
  start-page: 149
  year: 2004
  ident: e_1_3_4_26_2
  article-title: DNA microarray time series analysis: Automated statistical assessment of circadian rhythms in gene expression patterning
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(04)83007-6
– volume: 55
  start-page: 569
  year: 2010
  ident: e_1_3_4_1_2
  article-title: Malaria management: Past, present, and future
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev-ento-112408-085423
– volume: 22
  start-page: 9305
  year: 2002
  ident: e_1_3_4_14_2
  article-title: Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-21-09305.2002
– volume: 274
  start-page: 12650
  year: 1999
  ident: e_1_3_4_70_2
  article-title: Vesicular ATPase-overexpressing cells determine the distribution of malaria parasite oocysts on the midguts of mosquitoes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.18.12650
– volume: 36
  start-page: 701
  year: 2006
  ident: e_1_3_4_105_2
  article-title: Gene silencing of serine proteases affects melanization of Sephadex beads in Anopheles gambiae
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2006.06.001
– volume: 111
  start-page: 75
  year: 1996
  ident: e_1_3_4_28_2
  article-title: Circadian rhythms of neuropeptides in the suprachiasmatic nucleus
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(08)60401-X
– volume: 40
  start-page: 903
  year: 2003
  ident: e_1_3_4_44_2
  article-title: Metabolic rate in female Culex tarsalis (Diptera: Culicidae): Age, size, activity, and feeding effects
  publication-title: J Med Entomol
  doi: 10.1603/0022-2585-40.6.903
– volume: 30
  start-page: 11337
  year: 2010
  ident: e_1_3_4_87_2
  article-title: Dependence on a retinophilin/myosin complex for stability of PKC and INAD and termination of phototransduction
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2709-10.2010
– volume: 24
  start-page: 444
  year: 2009
  ident: e_1_3_4_18_2
  article-title: Circadian expression of clock genes in two mosquito disease vectors: Cry2 is different
  publication-title: J Biol Rhythms
  doi: 10.1177/0748730409349169
– volume: 22
  start-page: 83
  year: 1997
  ident: e_1_3_4_47_2
  article-title: Energetics and sugar-feeding of field-collected anopheline females
  publication-title: J Vector Ecol
– volume: 21
  start-page: 192
  year: 2005
  ident: e_1_3_4_96_2
  article-title: Melanization immune responses in mosquito vectors
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2005.02.007
– volume: 23
  start-page: 351
  year: 1998
  ident: e_1_3_4_74_2
  article-title: Olfactory sensitivity in tsetse flies: A daily rhythm
  publication-title: Chem Senses
  doi: 10.1093/chemse/23.3.351
– volume: 277
  start-page: 14048
  year: 2002
  ident: e_1_3_4_9_2
  article-title: Genome-wide transcriptional orchestration of circadian rhythms in Drosophila
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C100765200
– volume: 44
  start-page: 131
  year: 1999
  ident: e_1_3_4_71_2
  article-title: Odor-mediated behavior of Afrotropical malaria mosquitoes
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.ento.44.1.131
– volume: 14
  start-page: 77
  year: 1989
  ident: e_1_3_4_83_2
  article-title: Changes in the circadian flight activity of the mosquito Anopheles stephensi associated with insemination, blood-feeding, oviposition and nocturnal light-intensity
  publication-title: Physiol Entomol
  doi: 10.1111/j.1365-3032.1989.tb00939.x
– volume: 32
  start-page: 657
  year: 2001
  ident: e_1_3_4_10_2
  article-title: Circadian regulation of gene expression systems in the Drosophila head
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00515-3
– volume: 25
  start-page: 131
  year: 1960
  ident: e_1_3_4_30_2
  article-title: Biochemical aspects of rhythms: Phase shifting by chemicals
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/SQB.1960.025.01.012
– volume: 99
  start-page: 8814
  year: 2002
  ident: e_1_3_4_23_2
  article-title: Genome expression analysis of Anopheles gambiae: Responses to injury, bacterial challenge, and malaria infection
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.092274999
– volume: 580
  start-page: 2
  year: 2006
  ident: e_1_3_4_32_2
  article-title: The biological clock of an hematophagous insect: Locomotor activity rhythms, circadian expression and downregulation after a blood meal
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2005.11.031
– volume: 205
  start-page: 37
  year: 2002
  ident: e_1_3_4_67_2
  article-title: Circadian rhythm of acidification in insect vas deferens regulated by rhythmic expression of vacuolar H(+)-ATPase
  publication-title: J Exp Biol
  doi: 10.1242/jeb.205.1.37
– volume: 37
  start-page: D583
  year: 2009
  ident: e_1_3_4_118_2
  article-title: VectorBase: A data resource for invertebrate vector genomics
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn857
– volume: 27
  start-page: 91
  year: 2011
  ident: e_1_3_4_60_2
  article-title: Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2010.08.004
– volume: 105
  start-page: 8446
  year: 2008
  ident: e_1_3_4_95_2
  article-title: Peripheral circadian clock for the cuticle deposition rhythm in Drosophila melanogaster
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0800145105
– volume: 101
  start-page: 1121
  year: 2008
  ident: e_1_3_4_114_2
  article-title: Period gene of Bactrocera cucurbitae (Diptera: Tephritidae) among strains with different mating times and sterile insect technique
  publication-title: Ann Entomol Soc Am
  doi: 10.1603/0013-8746-101.6.1121
– volume: 38
  start-page: 531
  year: 2001
  ident: e_1_3_4_116_2
  article-title: Effect of permethrin-impregnated nets on exiting behavior, blood feeding success, and time of feeding of malaria mosquitoes (Diptera: Culicidae) in western Kenya
  publication-title: J Med Entomol
  doi: 10.1603/0022-2585-38.4.531
– ident: e_1_1_2_17_12_3_2
  doi: 10.1371/journal.pgen.0020039
– volume: 99
  start-page: 9562
  year: 2002
  ident: e_1_3_4_8_2
  article-title: Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.132269699
– volume: 37
  start-page: D211
  year: 2009
  ident: e_1_3_4_120_2
  article-title: InterPro: The integrative protein signature database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn785
– volume: 51
  start-page: 661
  year: 2005
  ident: e_1_3_4_22_2
  article-title: Geographic and developmental variation in expression of the circadian rhythm gene, timeless, in the pitcher-plant mosquito, Wyeomyia smithii
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2005.03.011
– volume: 36
  start-page: 466
  year: 2006
  ident: e_1_3_4_52_2
  article-title: Adipokinetic hormones in the African malaria mosquito, Anopheles gambiae: Identification and expression of genes for two peptides and a putative receptor
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2006.03.009
– volume: 206
  start-page: 151
  year: 1978
  ident: e_1_3_4_88_2
  article-title: Effect of light and dark adaptation upon the rhabdom in the compound eye of the mosquito
  publication-title: J Exp Zool
  doi: 10.1002/jez.1402060204
– volume-title: Suprachiasmatic Nucleus: The Mind's Clock
  year: 1991
  ident: e_1_3_4_27_2
– volume: 25
  start-page: 372
  year: 2010
  ident: e_1_3_4_122_2
  article-title: JTK_CYCLE: An efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets
  publication-title: J Biol Rhythms
  doi: 10.1177/0748730410379711
– volume: 303
  start-page: 2030
  year: 2004
  ident: e_1_3_4_108_2
  article-title: Effects of mosquito genes on Plasmodium development
  publication-title: Science
  doi: 10.1126/science.1091789
– volume: 52
  start-page: 1119
  year: 2007
  ident: e_1_3_4_37_2
  article-title: Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2007.03302.x
– volume: 6
  start-page: 103
  year: 1999
  ident: e_1_3_4_109_2
  article-title: Periodic infectivity of Plasmodium gametocytes to the vector. A review
  publication-title: Parasite
  doi: 10.1051/parasite/1999062103
– volume: 49
  start-page: 371
  year: 1973
  ident: e_1_3_4_93_2
  article-title: Determination of the age of some anopheline mosquitoes by daily growth layers of skeletal apodemes
  publication-title: Bull World Health Organ
– volume: 28
  start-page: 1029
  year: 2009
  ident: e_1_3_4_29_2
  article-title: Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.54
– volume-title: Chronobiology: Biological Timekeeping
  year: 2004
  ident: e_1_3_4_5_2
– volume: 19
  start-page: 230
  year: 2007
  ident: e_1_3_4_38_2
  article-title: Signaling to the circadian clock: Plasticity by chromatin remodeling
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2007.02.016
– volume-title: The Biology of Mosquitoes
  year: 1999
  ident: e_1_1_2_17_12_1_2
– volume: 109
  start-page: 307
  year: 2002
  ident: e_1_3_4_12_2
  article-title: Coordinated transcription of key pathways in the mouse by the circadian clock
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00722-5
– volume: 64
  start-page: 241
  year: 1974
  ident: e_1_3_4_112_2
  article-title: Circadian flight activity in 4 sibling species of Anopheles gambiae complex (Diptera, Culicidae)
  publication-title: Bull Entomol Res
  doi: 10.1017/S0007485300031126
– volume: 298
  start-page: 159
  year: 2002
  ident: e_1_3_4_31_2
  article-title: Immunity-related genes and gene families in Anopheles gambiae
  publication-title: Science
  doi: 10.1126/science.1077136
– volume: 10
  start-page: 251
  year: 1996
  ident: e_1_3_4_115_2
  article-title: The impact of permethrin-impregnated bednets on malaria vectors of the Kenyan coast
  publication-title: Med Vet Entomol
  doi: 10.1111/j.1365-2915.1996.tb00739.x
– volume: 298
  start-page: 179
  year: 2002
  ident: e_1_3_4_61_2
  article-title: Evolution of supergene families associated with insecticide resistance
  publication-title: Science
  doi: 10.1126/science.1076781
– volume: 139
  start-page: 33
  year: 2011
  ident: e_1_3_4_111_2
  article-title: Developing transgenic Anopheles mosquitoes for the sterile insect technique
  publication-title: Genetica
  doi: 10.1007/s10709-010-9482-8
– volume: 54
  start-page: 1226
  year: 2008
  ident: e_1_3_4_49_2
  article-title: Nutrient content of diet affects the signaling activity of the insulin/target of rapamycin/p70 S6 kinase pathway in the African malaria mosquito Anopheles gambiae
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2008.06.003
– volume: 8
  start-page: 23
  year: 2008
  ident: e_1_3_4_4_2
  article-title: Molecular analysis of photic inhibition of blood-feeding in Anopheles gambiae
  publication-title: BMC Physiol
  doi: 10.1186/1472-6793-8-23
– volume: 35
  start-page: 79
  year: 2004
  ident: e_1_3_4_73_2
  article-title: Daily rhythms in disease-vector insects
  publication-title: Biol Rhythm Res
  doi: 10.1080/09291010412331313250
– volume: 4
  start-page: e20
  year: 2006
  ident: e_1_3_4_77_2
  article-title: Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040020
– volume: 101
  start-page: 647
  year: 2000
  ident: e_1_3_4_51_2
  article-title: The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80876-4
– volume: 100
  start-page: 45
  year: 2006
  ident: e_1_3_4_113_2
  article-title: Biting time of Anopheles darlingi in the Bolivian Amazon and implications for control of malaria
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/j.trstmh.2005.07.001
– volume: 2
  start-page: e39
  year: 2006
  ident: e_1_3_4_11_2
  article-title: Control of daily transcript oscillations in Drosophila by light and the circadian clock
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020039
– volume: 14
  start-page: 575
  year: 2005
  ident: e_1_3_4_24_2
  article-title: Microarray-based survey of a subset of putative olfactory genes in the mosquito Anopheles gambiae
  publication-title: Insect Mol Biol
  doi: 10.1111/j.1365-2583.2005.00590.x
– volume-title: Insect Physiology and Biochemistry
  year: 2002
  ident: e_1_3_4_57_2
– volume: 58
  start-page: 175
  year: 2005
  ident: e_1_3_4_75_2
  article-title: Identification and expression of odorant-binding proteins of the malaria-carrying mosquitoes Anopheles gambiae and Anopheles arabiensis
  publication-title: Arch Insect Biochem Physiol
  doi: 10.1002/arch.20047
– volume: 12
  start-page: 551
  year: 2002
  ident: e_1_3_4_6_2
  article-title: Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(02)00765-0
– volume: 29
  start-page: 140
  year: 2004
  ident: e_1_3_4_48_2
  article-title: Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus
  publication-title: J Vector Ecol
– volume: 206
  start-page: 4393
  year: 2003
  ident: e_1_3_4_91_2
  article-title: Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases
  publication-title: J Exp Biol
  doi: 10.1242/jeb.00709
– volume: 41
  start-page: 111
  year: 1976
  ident: e_1_3_4_43_2
  article-title: Biochemical adaptations for flight in the insect
  publication-title: Biochem Soc Symp
– volume: 65
  start-page: 1191
  year: 1972
  ident: e_1_3_4_65_2
  article-title: Pesticide effectiveness and biorhythm in the house fly
  publication-title: J Econ Entomol
  doi: 10.1093/jee/65.4.1191
– volume: 109
  start-page: 221
  year: 1940
  ident: e_1_3_4_81_2
  article-title: The visual responses of flying mosquitoes
  publication-title: Proc Zool Soc Lond A-GE
  doi: 10.1111/j.1096-3642.1940.tb00831.x
– volume: 16
  start-page: 7146
  year: 1997
  ident: e_1_3_4_36_2
  article-title: Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling
  publication-title: EMBO J
  doi: 10.1093/emboj/16.23.7146
– volume: 8
  start-page: 1392
  year: 2006
  ident: e_1_3_4_107_2
  article-title: A genetic module regulates the melanization response of Anopheles to Plasmodium
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2006.00718.x
– volume: 20
  start-page: 308
  year: 2006
  ident: e_1_3_4_3_2
  article-title: Diel timing and frequency of sugar feeding in the mosquito Anopheles gambiae, depending on sex, gonotrophic state and resource availability
  publication-title: Med Vet Entomol
  doi: 10.1111/j.1365-2915.2006.00638.x
– volume: 15
  start-page: 991
  year: 2003
  ident: e_1_3_4_15_2
  article-title: DNA microarray analyses of circadian timing: The genomic basis of biological time
  publication-title: J Neuroendocrinol
  doi: 10.1046/j.1365-2826.2003.01082.x
– volume: 18
  start-page: 4
  year: 2007
  ident: e_1_3_4_45_2
  article-title: A sense of time: How molecular clocks organize metabolism
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2006.11.005
– volume: 20
  start-page: 1203
  year: 2010
  ident: e_1_3_4_46_2
  article-title: AKT and TOR signaling set the pace of the circadian pacemaker
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2010.05.027
– volume: 458
  start-page: 1047
  year: 2009
  ident: e_1_3_4_68_2
  article-title: Discovery of insect and human dengue virus host factors
  publication-title: Nature
  doi: 10.1038/nature07967
– volume-title: Hypoxia and the Circulation
  year: 2007
  ident: e_1_3_4_102_2
– volume: 40
  start-page: 189
  year: 2010
  ident: e_1_3_4_92_2
  article-title: Structural cuticular proteins from arthropods: Annotation, nomenclature, and sequence characteristics in the genomics era
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2010.02.001
– volume: 106
  start-page: 315
  year: 1965
  ident: e_1_3_4_94_2
  article-title: Circadian organization of chitin in some insect skeletons
  publication-title: Q J Microsc Sci
– volume: 56
  start-page: 1219
  year: 2010
  ident: e_1_3_4_63_2
  article-title: Circadian control of permethrin-resistance in the mosquito Aedes aegypti
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2010.03.028
– volume: 4
  start-page: e6469
  year: 2009
  ident: e_1_3_4_64_2
  article-title: Does the clock make the poison? Circadian variation in response to pesticides
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006469
– volume: 16
  start-page: 186
  year: 2006
  ident: e_1_3_4_101_2
  article-title: serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.11.072
– volume: 281
  start-page: 611
  year: 2001
  ident: e_1_3_4_99_2
  article-title: The family of yellow-related Drosophila melanogaster proteins
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.2001.4391
– volume: 35
  start-page: 637
  year: 2005
  ident: e_1_3_4_100_2
  article-title: Mosquito glucosamine-6-phosphate N-acetyltransferase: cDNA, gene structure and enzyme kinetics
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2005.02.005
– volume-title: Efferent Control of Visual Sensitivity in Arthropod Eyes: With Emphasis on Circadian Rhythms
  year: 1987
  ident: e_1_3_4_90_2
– ident: e_1_1_2_17_12_4_2
  doi: 10.1016/j.pt.2010.08.004
– volume: 8
  start-page: R67
  year: 2007
  ident: e_1_3_4_41_2
  article-title: Functional dissection of the ash2 and ash1 transcriptomes provides insights into the transcriptional basis of wing phenotypes and reveals conserved protein interactions
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-4-r67
– volume: 36
  start-page: 878
  year: 2006
  ident: e_1_3_4_17_2
  article-title: Cloning and daily expression of the timeless gene in Aedes aegypti (Diptera:Culicidae)
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2006.08.008
– volume: 127
  start-page: 847
  year: 2006
  ident: e_1_3_4_86_2
  article-title: The fly CAMTA transcription factor potentiates deactivation of rhodopsin, a G protein-coupled light receptor
  publication-title: Cell
  doi: 10.1016/j.cell.2006.09.030
– volume: 368
  start-page: 333
  year: 2002
  ident: e_1_3_4_98_2
  article-title: Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes
  publication-title: Biochem J
  doi: 10.1042/bj20020272
– volume: 139
  start-page: 246
  year: 2009
  ident: e_1_3_4_123_2
  article-title: Phototransduction motifs and variations
  publication-title: Cell
  doi: 10.1016/j.cell.2009.09.029
– volume: 318
  start-page: 91
  year: 2003
  ident: e_1_3_4_62_2
  article-title: An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae
  publication-title: Gene
  doi: 10.1016/S0378-1119(03)00763-7
– volume: 36
  start-page: 395
  year: 1946
  ident: e_1_3_4_82_2
  article-title: Moonlight and house-haunting habits of female anophelines in West Africa
  publication-title: Bull Entomol Res
  doi: 10.1017/S0007485300024056
– reference: 17140805 - Trends Endocrinol Metab. 2007 Jan-Feb;18(1):4-11
– reference: 19358734 - Malar J. 2009;8:60
– reference: 18419272 - Cold Spring Harb Symp Quant Biol. 2007;72:145-56
– reference: 19366631 - Insect Biochem Mol Biol. 2009 May-Jun;39(5-6):395-402
– reference: 18828836 - Insect Mol Biol. 2008 Sep;17(5):447-63
– reference: 19028744 - Nucleic Acids Res. 2009 Jan;37(Database issue):D583-7
– reference: 17359927 - Acta Trop. 2007 Mar;101(3):207-16
– reference: 20690828 - Annu Rev Entomol. 2011;56:103-21
– reference: 11476333 - J Med Entomol. 2001 Jul;38(4):531-6
– reference: 20739554 - J Neurosci. 2010 Aug 25;30(34):11337-45
– reference: 12015981 - Cell. 2002 May 3;109(3):307-20
– reference: 8570597 - Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):571-6
– reference: 12089325 - Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9562-7
– reference: 16731343 - Insect Biochem Mol Biol. 2006 Jun;36(6):466-81
– reference: 19396146 - Nature. 2009 Apr 23;458(7241):1047-50
– reference: 17317138 - Curr Opin Cell Biol. 2007 Apr;19(2):230-7
– reference: 9384591 - EMBO J. 1997 Dec 1;16(23):7146-55
– reference: 8887336 - Med Vet Entomol. 1996 Jul;10(3):251-9
– reference: 16431371 - Curr Biol. 2006 Jan 24;16(2):186-94
– reference: 16565745 - PLoS Genet. 2006 Mar;2(3):e39
– reference: 14765669 - J Med Entomol. 2003 Nov;40(6):903-11
– reference: 16313558 - Insect Mol Biol. 2005 Dec;14(6):575-89
– reference: 15266751 - J Vector Ecol. 2004 Jun;29(1):140-53
– reference: 12969245 - J Neuroendocrinol. 2003 Oct;15(10):991-1002
– reference: 15717318 - Arch Insect Biochem Physiol. 2005 Mar;58(3):175-89
– reference: 20821345 - Genetica. 2011 Jan;139(1):33-9
– reference: 9739334 - Arch Virol. 1998;143(8):1555-68
– reference: 16083904 - J Mol Biol. 2005 Sep 16;352(2):329-37
– reference: 19131956 - Nat Protoc. 2009;4(1):44-57
– reference: 12770058 - J Insect Physiol. 2002 Aug;48(8):803-816
– reference: 11818410 - J Exp Biol. 2002 Jan;205(Pt 1):37-44
– reference: 8990908 - Prog Brain Res. 1996;111:75-90
– reference: 18339904 - Science. 2008 Mar 28;319(5871):1838-42
– reference: 18261909 - Curr Biol. 2008 Feb 12;18(3):195-9
– reference: 18634792 - J Insect Physiol. 2008 Aug;54(8):1226-35
– reference: 20843745 - Trends Parasitol. 2011 Feb;27(2):91-8
– reference: 15044804 - Science. 2004 Mar 26;303(5666):2030-2
– reference: 20966253 - Science. 2010 Oct 22;330(6003):512-4
– reference: 19837030 - Cell. 2009 Oct 16;139(2):246-64
– reference: 19649249 - PLoS One. 2009;4(7):e6469
– reference: 17808286 - Science. 1964 Apr 10;144(3615):180-1
– reference: 20619819 - Curr Biol. 2010 Jul 13;20(13):1203-8
– reference: 19623243 - Front Cell Neurosci. 2009 Jun 11;3:2
– reference: 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
– reference: 10206988 - J Biol Chem. 1999 Apr 23;274(17):11727-35
– reference: 20876817 - J Biol Rhythms. 2010 Oct;25(5):372-80
– reference: 15857769 - Insect Biochem Mol Biol. 2005 Jun;35(6):637-46
– reference: 11867540 - EMBO J. 2002 Mar 1;21(5):1121-31
– reference: 20171281 - Insect Biochem Mol Biol. 2010 Mar;40(3):189-204
– reference: 17110341 - Cell. 2006 Nov 17;127(4):847-58
– reference: 12164780 - Biochem J. 2002 Nov 15;368(Pt 1):333-40
– reference: 16935219 - Insect Biochem Mol Biol. 2006 Sep;36(9):701-11
– reference: 12077297 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8814-9
– reference: 11583575 - Biochem J. 2001 Oct 15;359(Pt 2):295-304
– reference: 9221743 - J Vector Ecol. 1997 Jun;22(1):83-9
– reference: 20107052 - J Neurosci. 2010 Jan 27;30(4):1238-49
– reference: 11937023 - Curr Biol. 2002 Apr 2;12(7):551-7
– reference: 19087335 - BMC Physiol. 2008;8:23
– reference: 20361972 - J Insect Physiol. 2010 Sep;56(9):1219-23
– reference: 4392764 - Sci Am. 1970 Jun;222(6):123-31
– reference: 20809800 - Annu Rev Genet. 2010;44:419-44
– reference: 18062987 - J Insect Physiol. 2008 Feb;54(2):367-77
– reference: 19926804 - J Biol Rhythms. 2009 Dec;24(6):444-51
– reference: 15780842 - Trends Parasitol. 2005 Apr;21(4):192-9
– reference: 18940856 - Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5
– reference: 16337945 - FEBS Lett. 2006 Jan 9;580(1):2-8
– reference: 18539772 - Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8446-51
– reference: 19262566 - EMBO J. 2009 Apr 22;28(8):1029-42
– reference: 13712194 - Cold Spring Harb Symp Quant Biol. 1960;25:131-43
– reference: 19754246 - Annu Rev Entomol. 2010;55:569-91
– reference: 11854264 - J Biol Chem. 2002 Apr 19;277(16):14048-52
– reference: 17924945 - Plant J. 2007 Dec;52(6):1119-30
– reference: 11733057 - Cell. 2001 Nov 30;107(5):567-78
– reference: 17114398 - J Exp Biol. 2006 Dec;209(Pt 23):4638-51
– reference: 9669048 - Chem Senses. 1998 Jun;23(3):351-7
– reference: 12417656 - J Neurosci. 2002 Nov 1;22(21):9305-19
– reference: 10212245 - J Biol Chem. 1999 Apr 30;274(18):12650-5
– reference: 18430144 - Mol Ecol. 2008 May;17(10):2491-504
– reference: 9990718 - Annu Rev Entomol. 1999;44:131-57
– reference: 11719206 - Neuron. 2001 Nov 20;32(4):657-71
– reference: 15738163 - Chem Senses. 2005 Jan;30 Suppl 1:i291-2
– reference: 788715 - Biochem Soc Symp. 1976;(41):111-31
– reference: 17244599 - Mol Biol Evol. 2007 Apr;24(4):948-55
– reference: 14585502 - Gene. 2003 Oct 30;318:91-102
– reference: 11237700 - Biochem Biophys Res Commun. 2001 Mar 2;281(3):611-3
– reference: 8706810 - Experientia. 1996 May 15;52(5):433-9
– reference: 14610026 - J Exp Biol. 2003 Dec;206(Pt 24):4393-412
– reference: 4115424 - J Econ Entomol. 1972 Aug;65(4):1191-3
– reference: 15878647 - Gene. 2005 May 23;351:131-42
– reference: 15979087 - J Insect Physiol. 2005 Jun;51(6):661-7
– reference: 17466076 - Genome Biol. 2007;8(4):R67
– reference: 12364796 - Science. 2002 Oct 4;298(5591):179-81
– reference: 16402857 - PLoS Biol. 2006 Feb;4(2):e20
– reference: 17046601 - Insect Biochem Mol Biol. 2006 Nov;36(11):878-84
– reference: 18056988 - J Biol Chem. 2008 Feb 8;283(6):3256-63
– reference: 16154607 - Trans R Soc Trop Med Hyg. 2006 Jan;100(1):45-7
– reference: 4368577 - Bull World Health Organ. 1973;49(4):371-5
– reference: 18248097 - PLoS Genet. 2008 Feb;4(2):e14
– reference: 10892651 - Cell. 2000 Jun 9;101(6):647-56
– reference: 17044882 - Med Vet Entomol. 2006 Sep;20(3):308-16
– reference: 21015619 - Bull Entomol Res. 1946 Feb;36:395-417
– reference: 10416184 - Parasite. 1999 Jun;6(2):103-11
– reference: 15492211 - Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15974-9
– reference: 20824161 - PLoS Biol. 2010;8(8). pii: e1000467. doi: 10.1371/journal.pbio.1000467
– reference: 16922859 - Cell Microbiol. 2006 Sep;8(9):1392-405
– reference: 15063650 - Methods Enzymol. 2004;383:149-66
– reference: 12364793 - Science. 2002 Oct 4;298(5591):159-65
SSID ssj0009580
Score 2.4287064
Snippet Anopheles gambiae, the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host...
Anopheles gambiae , the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host...
Anopheles gambiae , the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E421
SubjectTerms adults
Algorithms
Animals
Anopheles - genetics
Anopheles gambiae
Aquatic insects
Biological Sciences
Circadian Clocks - genetics
circadian rhythm
Circadian Rhythm - genetics
Circadian rhythms
Deoxyribonucleic acid
Detoxification
DNA
DNA microarrays
Environmental conditions
environmental factors
Female
females
flight
Flight behavior
Gene expression
Gene Expression Profiling
Gene Expression Regulation
genes
Genes, Insect - genetics
Genetic Variation
Genome, Insect - genetics
head
host seeking
immunity
Immunity - genetics
insect vectors
Insect Vectors - genetics
Malaria
Malaria - parasitology
Membranes - metabolism
Metabolic Networks and Pathways - genetics
metabolism
microarray technology
Mosquitoes
Olfaction
Olfactory Pathways - metabolism
oviposition
Parasites
PNAS Plus
Protein Biosynthesis - genetics
smell
sugar feeding
swarming
Transcription, Genetic
transcriptome
translation (genetics)
Vector-borne diseases
vision
Vision, Ocular - genetics
Title Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae
URI http://www.pnas.org/content/108/32/E421.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21715657
https://www.proquest.com/docview/883071463
https://www.proquest.com/docview/1817829643
https://www.proquest.com/docview/883308930
https://www.proquest.com/docview/904481065
https://pubmed.ncbi.nlm.nih.gov/PMC3156198
https://www.pnas.org/content/pnas/108/32/E421.full.pdf
UnpaywallVersion publishedVersion
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB612wNcgPJqKFRG4tAesuvYeR5XqFXFoUKCFeUUOY7TRmSdVXeXAr-embzaAivUWxSP87AnM9_Yk28A3iU80MRa4nI_K1xfYMwao5t1uciKMBCBUW2W71l4OvM_nAfnWxD2_8JQWuXCqmWziU_Z2mh6J3RiQvVqpJgc-8Ib09L0eJEX27ATBojBR7AzO_s4_drmc6DZ9dtqtugM3dBPeM_pE8nmWpT7ztHzelRU8pY72i5UTSSnKPIvwPl33uSDtV2on9eqqm45pZPH8KV_nTYX5dt4vcrG-tcfTI_3f98n8KjDqWzaKtYubBn7FHY7S7Bkhx1d9dEz0HhYz417XeaGtSXA0R2yumB5aSqmbM50eaUbDgSG6mqY-dFl31pWWoYIlM0VBtilYt-bPQQ2tcR2UOF9LtQ8K5V5DrOT48_vT92udIOrAylWrlEFej6dh5kggrtEm8AEUlFJa4EBjpfxRPsy1J7mJpHahDkCnTAXsdGFQYQpX8DI1tbsAcMIFUMuz0hEQr7OMGKPVOTriLooxRMHxv0MprrjNafyGlXa7K9HMqXhTG-m3IHDocOipfTYLLqHKpGqCzS46eyTIDo-xNeCywibGuGbK8SpFClNlwP7ve6knUVYpnEs6V-xUDrwdmjFT5n2Z5Q19RrvG3uI14ggzQG2QYZqQ3PEmHyzSMIx5MZIP3DgZauvw0Ni_OnRPrcD0R1NHgSIbPxuiy0vG9JxiR29BEfkaND5_43eq3vI7sPDfrWeJ69htLpamzcI91bZQbMCd9B94b8BiJ1Ozw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB616QEuQHnVLaBF4tAenKx3_TxGqFXFoUKCiHKy1ut1sXDWUZNQyq9nxq-2QIR6i7KzfuyOZ77xjL8BeJfwQBNricv9rHB9gTFrjG7W5SIrwkAERrVVvmfh6cz_cB6cb0HYfwtDZZULq5ZNEp-qtdH0TuiPCfWrkWJy7AtvTK-mx4u82IadMEAMPoKd2dnH6de2ngPNrt92s0Vn6IZ-wntOn0g2x6Lad46e16Omkrfc0XahaiI5RZF_Ac6_6yYfrO1CXV-pqrrllE4ew5f-dtpalO_j9Sob619_MD3e_36fwKMOp7Jpq1i7sGXsU9jtLMGSHXZ01UfPQOPPem7cqzI3rG0Bju6Q1QXLS1MxZXOmy0vdcCAwVFfDzM-u-tay0jJEoGyuMMAuFfvR5BDY1BLbQYXnuVDzrFTmOcxOjj-_P3W71g2uDqRYuUYV6Pl0HmaCCO4SbQITSEUtrQUGOF7GE-3LUHuam0RqE-YIdMJcxEYXBhGmfAEjW1uzBwwjVAy5PCMRCfk6w4g9UpGvI5qiFE8cGPc7mOqO15zaa1Rpk1-PZErLmd5suQOHw4RFS-mxWXQPVSJVF2hw09knQXR8iK8FlxEONcI3R4hTKVLaLgcOet1JO4uwTONY0rdioXTg7TCKjzLlZ5Q19RrPG3uI14ggzQG2QYZ6Q3PEmHyzSMIx5MZIP3DgZauvw0Vi_OlRntuB6I4mDwJENn53xJbfGtJxiRO9BFfkaND5_63e_j1kD-Bh_7aeJ69gtLpcm9cI91bZm-7Z_g21Ak2_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+profiling+of+diel+and+circadian+gene+expression+in+the+malaria+vector+Anopheles+gambiae&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Rund%2C+Samuel+S+C&rft.au=Hou%2C+Tim+Y&rft.au=Ward%2C+Sarah+M&rft.au=Collins%2C+Frank+H&rft.date=2011-08-09&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=32&rft.spage=E421&rft_id=info:doi/10.1073%2Fpnas.1100584108&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F32.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F32.cover.gif