Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening
•We cast the challenging problem of detecting subtle brain lesions as a per voxel outlier detection problem.•Our brain anomaly detection model is trained on normal subjects only.•Our model combines unsupervised latent representation with a novel deep siamese network and one-class classification.•Pat...
Saved in:
| Published in | Medical image analysis Vol. 60; p. 101618 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.02.2020
Elsevier BV Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1361-8415 1361-8423 1361-8431 1361-8423 |
| DOI | 10.1016/j.media.2019.101618 |
Cover
| Abstract | •We cast the challenging problem of detecting subtle brain lesions as a per voxel outlier detection problem.•Our brain anomaly detection model is trained on normal subjects only.•Our model combines unsupervised latent representation with a novel deep siamese network and one-class classification.•Patients with intractable epilepsy are considered normal on MRI (MRI negative) in 30–80% cases.•Our model detects 61% of MRI-negative epilepsy lesions in multi-parametric MRI (T1/FLAIR) while human performance is at 0%.
[Display omitted]
In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoencoders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to ‘close’ representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms. |
|---|---|
| AbstractList | In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoencoders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to 'close' representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms.In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoencoders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to 'close' representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms. In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoencoders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to 'close' representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms. •We cast the challenging problem of detecting subtle brain lesions as a per voxel outlier detection problem.•Our brain anomaly detection model is trained on normal subjects only.•Our model combines unsupervised latent representation with a novel deep siamese network and one-class classification.•Patients with intractable epilepsy are considered normal on MRI (MRI negative) in 30–80% cases.•Our model detects 61% of MRI-negative epilepsy lesions in multi-parametric MRI (T1/FLAIR) while human performance is at 0%. [Display omitted] In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoencoders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to ‘close’ representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms. In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multipara-metric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoen-coders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to 'close' representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms. |
| ArticleNumber | 101618 |
| Author | Jung, Julien Lartizien, Carole Bouet, Romain Alaverdyan, Zaruhi |
| Author_xml | – sequence: 1 givenname: Zaruhi surname: Alaverdyan fullname: Alaverdyan, Zaruhi organization: Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, Lyon, France – sequence: 2 givenname: Julien surname: Jung fullname: Jung, Julien organization: Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS UMR5292, University Lyon 1, Lyon, France – sequence: 3 givenname: Romain surname: Bouet fullname: Bouet, Romain organization: Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS UMR5292, University Lyon 1, Lyon, France – sequence: 4 givenname: Carole orcidid: 0000-0001-7594-4231 surname: Lartizien fullname: Lartizien, Carole email: carole.lartizien@creatis.insa-lyon.fr organization: Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, Lyon, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31841950$$D View this record in MEDLINE/PubMed https://hal.science/hal-02995591$$DView record in HAL |
| BookMark | eNqNkl2LEzEUhgdZcT_0FwgS8Ma9aE0m89ERvCjL6goFQfQ6nMmcqalpMiaZLvXv-Ec97awr7IUKIQkvz3uSvCfn2YnzDrPsueBzwUX1ejPfYmdgnnPRHBWxeJSdCVmJ2aLI5cn9XpSn2XmMG855XRT8SXYqBalNyc-yn59wPVoI5gd2LBrYYkTmcAxgaUm3PnxjvQ9sdHEcMOxMJM6PyRoMrMOEOhnvGI02gHFsO9pkBghUKAWj2RbWVIY2AaN34DQyQ5px6zdsOQzWaDgWSJ7hYCwOcc8sxoMUdUB0RD7NHvdgIz67Wy-yL--uP1_dzFYf33-4Wq5mupR5miGv27Iv2qKpEQFkn3dNiR30smqh1KJeQFXQLJpOLFoBRV1Vsi66CkB3VS7kRVZMdUc3wP4WrFVDoNuGvRJcHRJWG3XMXB0yV1PmZLucbF_hj8GDUTfLlTpoPG-asmzE7nDEq4kdgv8-Ykxqa6JGa8GhH6PKZV43UvKSE_ryAbrxY3AUAFF1WSyKijdEvbijxpaudn_-7w4TICdABx9jwP4_39Q8cGmTjp1K1Gb7D-_byYvUqx39ExW1Qep8ZwJ9F9V581f_L5se5iQ |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0296843 crossref_primary_10_1016_j_measurement_2021_109177 crossref_primary_10_1111_epi_16836 crossref_primary_10_1002_mp_15269 crossref_primary_10_1142_S2424922X22500115 crossref_primary_10_1111_epi_17522 crossref_primary_10_1038_s41582_024_00965_9 crossref_primary_10_1016_j_engappai_2024_108198 crossref_primary_10_1016_j_jneumeth_2021_109441 crossref_primary_10_1016_j_ins_2024_120286 crossref_primary_10_1016_j_neuroimage_2024_120802 crossref_primary_10_1007_s10618_020_00722_8 crossref_primary_10_1186_s12859_020_03936_1 crossref_primary_10_1109_JBHI_2020_2993560 crossref_primary_10_1016_j_jmb_2023_168045 crossref_primary_10_1016_j_compmedimag_2023_102262 crossref_primary_10_1097_RLI_0000000000001125 crossref_primary_10_1016_j_neunet_2022_03_030 crossref_primary_10_1111_epi_16461 crossref_primary_10_3348_kjr_2023_0393 crossref_primary_10_3389_fnins_2021_684825 crossref_primary_10_1038_s41598_021_87013_4 crossref_primary_10_1002_ima_22543 crossref_primary_10_1016_j_bspc_2025_107777 crossref_primary_10_1109_JSTARS_2022_3217040 crossref_primary_10_1142_S0129065723500193 crossref_primary_10_3390_cancers14164025 crossref_primary_10_1007_s10618_023_00931_x crossref_primary_10_1016_j_engappai_2025_110152 crossref_primary_10_3390_app10093280 crossref_primary_10_1109_TII_2020_3019788 crossref_primary_10_1016_j_artmed_2022_102332 |
| Cites_doi | 10.1371/journal.pone.0161498 10.1002/hbm.10123 10.1016/j.media.2017.07.005 10.1212/WNL.0000000000000543 10.1016/j.neuroimage.2017.04.034 10.1016/j.neuroimage.2017.10.065 10.1001/jamaneurol.2013.6223 10.1136/jnnp.2005.077289 10.1109/TMI.2016.2528821 10.1145/1541880.1541882 10.1016/j.yebeh.2015.04.055 10.1111/j.1528-1167.2009.02079.x 10.1109/ACCESS.2018.2886371 10.1093/brain/awr204 10.1136/jnnp-2011-301763 10.1001/archneurol.2009.283 10.1016/j.eplepsyres.2007.02.005 10.1016/j.eplepsyres.2007.09.004 10.1016/S1474-4422(15)00393-2 10.1098/rstb.2001.0915 10.1056/NEJM200108023450501 10.1162/089976601750264965 10.1371/journal.pone.0016430 10.1016/j.mri.2009.01.006 10.1109/TMI.2012.2220154 10.1111/epi.14064 10.1016/S1474-4422(13)70124-8 10.1109/MLSP.2017.8168155 10.1016/j.media.2019.03.009 10.1016/j.patcog.2016.03.028 10.1016/j.nicl.2016.02.013 10.1038/nrneurol.2010.199 10.1016/j.neuroimage.2005.03.045 10.1093/brain/aws019 10.1016/j.media.2016.10.004 10.1016/j.eplepsyres.2005.07.009 10.1016/j.neuroimage.2005.02.018 10.3390/jimaging4020036 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. Copyright Elsevier BV Feb 2020 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Feb 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 1XC VOOES ADTOC UNPAY |
| DOI | 10.1016/j.media.2019.101618 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Computer Science |
| EISSN | 1361-8423 |
| ExternalDocumentID | oai:HAL:hal-02995591v1 31841950 10_1016_j_media_2019_101618 S1361841519301562 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c532t-e07b5f4b497eeaa3f2d95edaf36ba5c178a6417819d18b1a4766374d6aacd6213 |
| IEDL.DBID | .~1 |
| ISSN | 1361-8415 1361-8423 1361-8431 |
| IngestDate | Sun Oct 26 05:05:34 EDT 2025 Tue Oct 14 20:41:59 EDT 2025 Thu Oct 02 10:09:33 EDT 2025 Tue Oct 07 07:01:25 EDT 2025 Thu Apr 03 07:04:47 EDT 2025 Wed Oct 29 21:13:34 EDT 2025 Thu Apr 24 23:05:56 EDT 2025 Fri Feb 23 02:48:37 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wasserstein autoencoder Deep learning Brain lesions Anomaly detection Regularized siamese network Unsupervised representation learning Regularized Siamese network Deep Learning |
| Language | English |
| License | Copyright © 2019 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c532t-e07b5f4b497eeaa3f2d95edaf36ba5c178a6417819d18b1a4766374d6aacd6213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7594-4231 0000-0002-9274-0086 0000-0002-3690-2976 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-02995591 |
| PMID | 31841950 |
| PQID | 2375484609 |
| PQPubID | 2045428 |
| ParticipantIDs | unpaywall_primary_10_1016_j_media_2019_101618 hal_primary_oai_HAL_hal_02995591v1 proquest_miscellaneous_2327933050 proquest_journals_2375484609 pubmed_primary_31841950 crossref_primary_10_1016_j_media_2019_101618 crossref_citationtrail_10_1016_j_media_2019_101618 elsevier_sciencedirect_doi_10_1016_j_media_2019_101618 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
| References | Keller, Cresswell, Denby, Wieshmann, Eldridge, Baker, Roberts (bib0047) 2007; 74 Caputo, Sim, Furesjo, Smola (bib0025) 2002; 2002 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (bib0046) 2017; 36 Ronneberger, Fischer, Brox (bib0058) 2015 Wiebe, Blume, Girvin, Eliasziw (bib0071) 2001; 345 Bruggemann, Wilke, Som, Bye, Bleasel, Lawson (bib0023) 2007; 77 Havaei, Guizard, Chapados, Bengio (bib0040) 2016 Hong, Kim, Schrader, Bernasconi, Bernhardt, Bernasconi (bib0042) 2014; 83 Bunch, Hamilton, Sanderson, Simmons (bib0024) 1978; 4 Ahmed, Brodley, Blackmon, Kuzniecky, Barash, Carlson, Quinn, Doyle, French, Devinsky, Thesen (bib0001) 2015; 48 Loosli, G., Aboubacar, H., 2017. Using svdd in simplemkl for 3D-shapes filtering. arXiv Bach, Lanckriet, Jordan (bib0009) 2004 Jin, Krishnan, Adler, Wagstyl, Hu, Jones, Najm, Alexopoulos, Zhang, Zhang, Ding, Wang, Wang (bib0045) 2018; 59 Cheplygina, V., de Bruijne, M., Pluim, J. P. W., 2018. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Schölkopf, Platt, Shawe-Taylor, Smola, Williamson (bib0060) 2001; 13 Thesen, Quinn, Carlson, Devinsky, DuBois, McDonald, French, Leventer, Felsovalyi, Wang (bib0066) 2011; 6 Srivastava, Maes, Vandermeulen, Van Paesschen, Dupont, Suetens (bib0063) 2005; 27 Hong, Kim, Schrader, Bernasconi, Bernhardt, Bernasconi (bib0043) 2014; 83 Sudre, Li, Vercauteren, Ourselin, Jorge Cardoso (bib0064) 2017 Gill, Hong, Fadaie, Caldairou, Bernhardt, Bernasconi, Bernasconi (bib0034) 2017 Bos, Portegies, van der Lugt, Bos, Koudstaal, Hofman, Krestin, Franco, Vernooij, Ikram (bib0018) 2014; 71 Bernasconi, Bernasconi, Bernhardt, Schrader (bib0013) 2011; 7 Bromley, Bentz, Bottou, Guyon, LeCun, Moore, Säckinger, Shah (bib0021) 1993; 7 Schlegl, Seebäck, Waldstein, Schmidt-Erfurth, Langs (bib0059) 2017 Alarcon, Valentin, Watt, Selway, Lacruz, Elwes, Jarosz, Honavar, Brunhuber, Mullatti (bib0003) 2006; 77 Bernasconi, Bernasconi (bib0014) 2015 . Barkovich, Guerrini, Kuzniecky, Jackson, Dobyns (bib0010) 2012; 135 Munawar, Vinayavekhin, De Magistris (bib0054) 2017 Wagner, Weber, Urbach, Elger, Huppertz (bib0069) 2011; 134 Hinton, Zemel (bib0041) 1994 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sanchez (bib0050) 2017; 42 Glatard, Lartizien, Gibaud, Ferreira da Silva, Forestier, Cervenansky, Alessandrini, Benoit-Cattin, Bernard, Camarasu-Pop, Cerezo, Clarysse, Gaignard, Hugonnard, Liebgott, Marache, Marion, Montagnat, Tabary, Friboulet (bib0036) 2013; 32 Chandola, Banerjee, Kumar (bib0026) 2009; 41 Munawar, A., Vinayavekhin, P., De Magistris, G., 2017a. Limiting the reconstruction capability of generative neural network using negative learning. arXiv Ahmed, Thesen, Blackmon, Kuzniekcy, Devinsky, Brodley (bib0002) 2016; 17 Hammers, Allom, Koepp, Free, Myers, Lemieux, Mitchell, Brooks, Duncan (bib0038) 2003; 19 El Azami, Hammers, Jung, Costes, Bouet, Lartizien (bib0031) 2016; 11 An, Cho (bib0006) 2015 Valverde, Cabezas, Roura, González-Villà, Pareto, Vilanova, Ramió-Torrentà, Rovira, Oliver, Lladó (bib0068) 2017; 155 Tan, Kim, Lee, Tihan, Ver Hoef, Mueller, Barkovich, Xu, Knowlton (bib0065) 2018; 166 Huppertz, Grimm, Fauser, Kassubek, Mader, Hochmuth, Spreer, Schulze-Bonhage (bib0044) 2005; 67 Alaverdyan, Chai, Lartizien (bib0004) 2018 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib0056) 2011; 12 Shah, Merchant, Awate (bib0061) 2018 Zheng, Idrissi, Garcia, Duffner, Baskurt (bib0073) 2015; 1 Ashburner (bib0007) 2009; 27 Bien, Szinay, Wagner, Clusmann, Becker, Urbach (bib0016) 2009; 66 Chen, X., Konukoglu, E., 2018. Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. arXiv Mazziotta, Toga, Evans, Fox, Lancaster, Zilles, Woods, Paus, Simpson, Pike (bib0052) 2001; 356 Bos, Vernooij, Elias-Smale, Verhaaren, Vrooman, Hofman, Niessen, Witteman, van der Lugt, Ikram (bib0019) 2012; 8 Alaverdyan, Jung, Bouet, Lartizien (bib0005) 2018 Guerrini, Sicca, Parmeggiani (bib0037) 2003; 5 Gill, Hong, Fadaie, Caldairou, Bernhardt, Barba, Brandt, Coelho, dIncerti, Lenge, Semmelroch, Bartolomei, Cendes, Deleo, Guerrini, Guye, Jackson, Schulze-Bonhage, Mansi, Bernasconi, Bernasconi (bib0035) 2018 Wardlaw, Smith, Biessels, Cordonnier, Fazekas, Frayne, Lindley, O’Brien, Barkhof, Benavente, Black, Brayne, Breteler, Chabriat, Decarli, de Leeuw, Doubal, Duering, Fox, Greenberg, Hachinski, Kilimann, Mok, Oostenbrugge, Pantoni, Speck, Stephan, Teipel, Viswanathan, Werring, Chen, Smith, van Buchem, Norrving, Gorelick, Dichgans (bib0070) 2013; 12 Baur, Albarqouni, Navab (bib0011) 2017 Zenati, Foo, Lecouat, Manek, Chandrasekhar (bib0072) 2018 Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B., 2017. Wasserstein Auto-Encoders. ArXiv e-prints. Kiran, Thomas, Parakkal (bib0049) 2018; 4 Rakotomamonjy, Bach, Canu, Grandvalet (bib0057) 2008; 9 Chopra, Hadsell, LeCun (bib0029) 2005; 1 Bortsova, van Tulder, Dubost, Peng, Navab, van der Lugt, Bos, De Bruijne (bib0017) 2017 Filippi, Rocca, Ciccarelli, De Stefano, Evangelou, Kappos, Rovira, Sastre-Garriga, Tintore, Frederiksen, Gasperini, Palace, Reich, Banwell, Montalban, Barkhof (bib0033) 2016; 15 Hashemi, Mohseni Salehi, Erdogmus, Prabhu, Warfield, Gholipour (bib0039) 2019; 7 Bell, Rao, So, Trenerry, Kazemi, Matt Stead, Cascino, Marsh, Meyer, Watson (bib0012) 2009; 50 Brosch, Tang, Yoo, Li, Traboulsee, Tam (bib0022) 2016; 35 Bien, Raabe, Schramm, Becker, Urbach, Elger (bib0015) 2013; 84 Dubost, Bortsova, Adams, Ikram, Niessen, Vernooij, De Bruijne (bib0030) 2017 Erfani, Rajasegarar, Karunasekera, Leckie (bib0032) 2016; 58 Kini, Gee, Litt (bib0048) 2016; 11 Pawlowski, Matthew C.H. Lee, McDonagh, Ferrante, Kamnitsas, Cooke, Stevenson, Khetani, Newman, Zeiler, Digby, Coles, Rueckert, Menon, Newcombe, Glocker (bib0055) 2018 Sonnenburg, Rätsch, Schäfer (bib0062) 2006 Ashburner, Friston (bib0008) 2005; 26 Bowman, Azzalini (bib0020) 1997; 18 Bunch (10.1016/j.media.2019.101618_bib0024) 1978; 4 Glatard (10.1016/j.media.2019.101618_sbref0034) 2013; 32 Bruggemann (10.1016/j.media.2019.101618_bib0023) 2007; 77 Ahmed (10.1016/j.media.2019.101618_bib0002) 2016; 17 Rakotomamonjy (10.1016/j.media.2019.101618_bib0057) 2008; 9 Alaverdyan (10.1016/j.media.2019.101618_bib0005) 2018 Kini (10.1016/j.media.2019.101618_bib0048) 2016; 11 Gill (10.1016/j.media.2019.101618_bib0034) 2017 Hong (10.1016/j.media.2019.101618_bib0043) 2014; 83 10.1016/j.media.2019.101618_bib0027 10.1016/j.media.2019.101618_bib0028 Alarcon (10.1016/j.media.2019.101618_bib0003) 2006; 77 Srivastava (10.1016/j.media.2019.101618_bib0063) 2005; 27 10.1016/j.media.2019.101618_bib0067 Bowman (10.1016/j.media.2019.101618_bib0020) 1997; 18 Bien (10.1016/j.media.2019.101618_bib0016) 2009; 66 Bernasconi (10.1016/j.media.2019.101618_bib0014) 2015 Thesen (10.1016/j.media.2019.101618_bib0066) 2011; 6 Ashburner (10.1016/j.media.2019.101618_bib0007) 2009; 27 Ronneberger (10.1016/j.media.2019.101618_bib0058) 2015 Jin (10.1016/j.media.2019.101618_bib0045) 2018; 59 Ahmed (10.1016/j.media.2019.101618_sbref0001) 2015; 48 El Azami (10.1016/j.media.2019.101618_bib0031) 2016; 11 Mazziotta (10.1016/j.media.2019.101618_bib0052) 2001; 356 Hinton (10.1016/j.media.2019.101618_bib0041) 1994 Bach (10.1016/j.media.2019.101618_bib0009) 2004 Pawlowski (10.1016/j.media.2019.101618_bib0055) 2018 Munawar (10.1016/j.media.2019.101618_bib0054) 2017 Erfani (10.1016/j.media.2019.101618_bib0032) 2016; 58 Gill (10.1016/j.media.2019.101618_bib0035) 2018 Alaverdyan (10.1016/j.media.2019.101618_bib0004) 2018 Filippi (10.1016/j.media.2019.101618_bib0033) 2016; 15 Ashburner (10.1016/j.media.2019.101618_bib0008) 2005; 26 Baur (10.1016/j.media.2019.101618_bib0011) 2017 Huppertz (10.1016/j.media.2019.101618_bib0044) 2005; 67 Barkovich (10.1016/j.media.2019.101618_bib0010) 2012; 135 Wardlaw (10.1016/j.media.2019.101618_sbref0065) 2013; 12 Havaei (10.1016/j.media.2019.101618_bib0040) 2016 Bromley (10.1016/j.media.2019.101618_bib0021) 1993; 7 Hashemi (10.1016/j.media.2019.101618_bib0039) 2019; 7 Sudre (10.1016/j.media.2019.101618_bib0064) 2017 Bell (10.1016/j.media.2019.101618_bib0012) 2009; 50 Shah (10.1016/j.media.2019.101618_bib0061) 2018 Kamnitsas (10.1016/j.media.2019.101618_bib0046) 2017; 36 Wiebe (10.1016/j.media.2019.101618_bib0071) 2001; 345 Bortsova (10.1016/j.media.2019.101618_bib0017) 2017 Zheng (10.1016/j.media.2019.101618_bib0073) 2015; 1 Litjens (10.1016/j.media.2019.101618_bib0050) 2017; 42 An (10.1016/j.media.2019.101618_bib0006) 2015 Guerrini (10.1016/j.media.2019.101618_bib0037) 2003; 5 Bos (10.1016/j.media.2019.101618_bib0018) 2014; 71 Dubost (10.1016/j.media.2019.101618_bib0030) 2017 Chopra (10.1016/j.media.2019.101618_bib0029) 2005; 1 Keller (10.1016/j.media.2019.101618_bib0047) 2007; 74 Wagner (10.1016/j.media.2019.101618_bib0069) 2011; 134 Tan (10.1016/j.media.2019.101618_bib0065) 2018; 166 Bernasconi (10.1016/j.media.2019.101618_bib0013) 2011; 7 Hammers (10.1016/j.media.2019.101618_bib0038) 2003; 19 Bien (10.1016/j.media.2019.101618_bib0015) 2013; 84 Caputo (10.1016/j.media.2019.101618_bib0025) 2002; 2002 Brosch (10.1016/j.media.2019.101618_bib0022) 2016; 35 Valverde (10.1016/j.media.2019.101618_bib0068) 2017; 155 Schlegl (10.1016/j.media.2019.101618_bib0059) 2017 Zenati (10.1016/j.media.2019.101618_bib0072) 2018 Hong (10.1016/j.media.2019.101618_bib0042) 2014; 83 Schölkopf (10.1016/j.media.2019.101618_bib0060) 2001; 13 Chandola (10.1016/j.media.2019.101618_bib0026) 2009; 41 Kiran (10.1016/j.media.2019.101618_sbref0047) 2018; 4 Pedregosa (10.1016/j.media.2019.101618_bib0056) 2011; 12 10.1016/j.media.2019.101618_bib0053 Sonnenburg (10.1016/j.media.2019.101618_bib0062) 2006 Bos (10.1016/j.media.2019.101618_bib0019) 2012; 8 10.1016/j.media.2019.101618_bib0051 |
| References_xml | – year: 2018 ident: bib0005 article-title: Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: application to epilepsy lesion screening publication-title: First Conference on Medical Imaging with Deep Learning (MIDL 2018) – volume: 74 start-page: 131 year: 2007 end-page: 139 ident: bib0047 article-title: Persistent seizures following left temporal lobe surgery are associated with posterior and bilateral structural and functional brain abnormalities publication-title: Epilepsy Res. – volume: 4 start-page: 166 year: 1978 end-page: 171 ident: bib0024 article-title: A free-response approach to the measurement and characterization of radiographic-observer performance publication-title: J. Appl. Photogr. Eng – volume: 83 start-page: 48 year: 2014 end-page: 55 ident: bib0043 article-title: Automated detection of cortical dysplasia type II in MRI-negative epilepsy publication-title: Neurology – volume: 77 start-page: 93 year: 2007 end-page: 101 ident: bib0023 article-title: Voxel-based morphometry in the detection of dysplasia and neoplasia in childhood epilepsy: combined grey/white matter analysis augments detection publication-title: Epilepsy Res. – start-page: 469 year: 2016 end-page: 477 ident: bib0040 article-title: Hemis: hetero-modal image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 27 start-page: 253 year: 2005 end-page: 266 ident: bib0063 article-title: Feature-based statistical analysis of structural mr data for automatic detection of focal cortical dysplastic lesions publication-title: Neuroimage – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: bib0008 article-title: Unified segmentation publication-title: Neuroimage – start-page: 6 year: 2004 ident: bib0009 article-title: Multiple kernel learning, conic duality, and the SMO algorithm publication-title: Proceedings of the twenty-first international conference on Machine learning – volume: 356 start-page: 1293 year: 2001 end-page: 1322 ident: bib0052 article-title: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM) publication-title: Philos. Trans. Royal Soc. Lond. B – volume: 32 year: 2013 ident: bib0036 article-title: A virtual imaging platform for multi-modality medical image simulation publication-title: IEEE Transactions on Medical Imaging – volume: 1 start-page: 1 year: 2015 end-page: 7 ident: bib0073 article-title: Triangular similarity metric learning for face verification publication-title: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG) – volume: 7 start-page: 99 year: 2011 ident: bib0013 article-title: Advances in MRI for “cryptogenic” epilepsies publication-title: Nat. Rev. Neurol – start-page: 16 year: 2015 end-page: 27 ident: bib0014 article-title: MRI-Negative Epilepsy: Evaluation and Surgical Management – volume: 4 start-page: 36 year: 2018 ident: bib0049 article-title: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos publication-title: J. Imaging – volume: 135 start-page: 1348 year: 2012 end-page: 1369 ident: bib0010 article-title: A developmental and genetic classification for malformations of cortical development: update 2012 publication-title: Brain – start-page: 356 year: 2017 end-page: 364 ident: bib0017 article-title: Segmentation of intracranial arterial calcification with deeply supervised residual dropout networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 134 start-page: 2844 year: 2011 end-page: 2854 ident: bib0069 article-title: Morphometric MRI analysis improves detection of focal cortical dysplasia type II publication-title: Brain – volume: 15 start-page: 292 year: 2016 end-page: 303 ident: bib0033 article-title: MRI criteria for the diagnosis of multiple sclerosis: Magnims consensus guidelines publication-title: Lancet Neurol – volume: 71 start-page: 405 year: 2014 end-page: 411 ident: bib0018 article-title: Intracranial carotid artery atherosclerosis and the risk of stroke in whites: the rotterdam study publication-title: JAMA Neurol. – start-page: 1273 year: 2006 end-page: 1280 ident: bib0062 article-title: A general and efficient multiple kernel learning algorithm publication-title: Advances in Neural Information Processing Systems – volume: 27 start-page: 1163 year: 2009 end-page: 1174 ident: bib0007 article-title: Computational anatomy with the SPM software publication-title: Magn. Reson. Imaging – start-page: 146 year: 2017 end-page: 157 ident: bib0059 article-title: Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery – start-page: 234 year: 2015 end-page: 241 ident: bib0058 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 490 year: 2018 end-page: 497 ident: bib0035 article-title: Deep convolutional networks for automated detection of epileptogenic brain malformations publication-title: Medical Image Computing and Computer Assisted Intervention MICCAI 2018 – volume: 11 start-page: 515 year: 2016 end-page: 529 ident: bib0048 article-title: Computational analysis in epilepsy neuroimaging: a survey of features and methods publication-title: Neuroimage – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: bib0046 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. – volume: 8 start-page: S104 year: 2012 end-page: S111 ident: bib0019 article-title: Atherosclerotic calcification relates to cognitive function and to brain changes on magnetic resonance imaging publication-title: Alzheimer’s Dement. – volume: 166 start-page: 10 year: 2018 end-page: 18 ident: bib0065 article-title: Quantitative surface analysis of combined MRI and pet enhances detection of focal cortical dysplasias publication-title: Neuroimage – volume: 41 start-page: 15:1 year: 2009 end-page: 15:58 ident: bib0026 article-title: Anomaly detection: a survey publication-title: ACM Comput. Surv. – reference: Cheplygina, V., de Bruijne, M., Pluim, J. P. W., 2018. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. – volume: 155 start-page: 159 year: 2017 end-page: 168 ident: bib0068 article-title: Improving automated multiple sclerosis lesion segmentation with a cascaded 3d convolutional neural network approach publication-title: Neuroimage – start-page: 1017 year: 2017 end-page: 1025 ident: bib0054 article-title: Spatio-temporal anomaly detection for industrial robots through prediction in unsupervised feature space publication-title: Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on – reference: Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B., 2017. Wasserstein Auto-Encoders. ArXiv e-prints. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0056 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – reference: Loosli, G., Aboubacar, H., 2017. Using svdd in simplemkl for 3D-shapes filtering. arXiv: – volume: 7 start-page: 669 year: 1993 end-page: 688 ident: bib0021 article-title: Signature verification using a “siamese” time delay neural network publication-title: IJPRAI – start-page: 3 year: 1994 end-page: 10 ident: bib0041 article-title: Autoencoders, minimum description length and helmholtz free energy publication-title: Advances in Neural Information Processing Systems 6 – volume: 67 start-page: 35 year: 2005 end-page: 50 ident: bib0044 article-title: Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis publication-title: Epilepsy Res. – volume: 48 year: 2015 ident: bib0001 article-title: Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia publication-title: Epilepsy Behav. – start-page: 311 year: 2017 end-page: 319 ident: bib0011 article-title: Semi-supervised deep learning for fully convolutional networks publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2017) – volume: 58 start-page: 121 year: 2016 end-page: 134 ident: bib0032 article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning publication-title: Pattern Recognit. – start-page: 568 year: 2018 end-page: 572 ident: bib0061 article-title: Abnormality detection using deep neural networks with robust quasi-norm autoencoding and semi-supervised learning publication-title: IEEE International Symposium on Biomedical Imaging (ISBI 2018) – start-page: 240 year: 2017 end-page: 248 ident: bib0064 article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 17 start-page: 1 year: 2016 end-page: 30 ident: bib0002 article-title: Decrypting “cryptogenic” epilepsy: semi-supervised hierarchical conditional random fields for detecting cortical lesions in MRI-negative patients publication-title: J. Mach. Learn. Res. – year: 2018 ident: bib0055 article-title: Unsupervised lesion detection in brain ct using Bayesian convolutional autoencoders publication-title: First Conference on Medical Imaging with Deep Learning (MIDL 2018) – volume: 6 start-page: e16430 year: 2011 ident: bib0066 article-title: Detection of epileptogenic cortical malformations with surface-based MRI morphometry publication-title: PLoS One – year: 2018 ident: bib0072 article-title: Efficient gan-based anomaly detection publication-title: ICLR workshop – volume: 13 start-page: 1443 year: 2001 end-page: 1471 ident: bib0060 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput. – start-page: 214 year: 2017 end-page: 221 ident: bib0030 article-title: GP-Unet: lesion detection from weak labels with a 3D regression network publication-title: Medical Image Computing and Computer Assisted Intervention (MICCAI 2017) – reference: Chen, X., Konukoglu, E., 2018. Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. arXiv: – volume: 50 start-page: 2053 year: 2009 end-page: 2060 ident: bib0012 article-title: Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI publication-title: Epilepsia – volume: 5 start-page: 9 year: 2003 end-page: 26 ident: bib0037 article-title: Epilepsy and malformations of the cerebral cortex publication-title: Epileptic Disorders – volume: 77 start-page: 474 year: 2006 end-page: 480 ident: bib0003 article-title: Is it worth pursuing surgery for epilepsy in patients with normal neuroimaging? publication-title: J. Neurol Neurosurg. Psychiatry – reference: Munawar, A., Vinayavekhin, P., De Magistris, G., 2017a. Limiting the reconstruction capability of generative neural network using negative learning. arXiv: – volume: 12 year: 2013 ident: bib0070 article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration publication-title: Lancet Neurol – volume: 19 start-page: 224 year: 2003 end-page: 247 ident: bib0038 article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe publication-title: Hum. Brain Mapp. – volume: 1 start-page: 539 year: 2005 end-page: 546 ident: bib0029 article-title: Learning a similarity metric discriminatively, with application to face verification publication-title: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on – volume: 345 start-page: 311 year: 2001 end-page: 318 ident: bib0071 article-title: A randomized, controlled trial of surgery for temporal-lobe epilepsy publication-title: N top N. Engl. J. Med. – volume: 11 start-page: e0161498 year: 2016 ident: bib0031 article-title: Detection of lesions underlying intractable epilepsy on t1-weighted MRI as an outlier detection problem publication-title: PLoS One – start-page: 210 year: 2018 end-page: 217 ident: bib0004 article-title: Unsupervised feature learning for outlier detection with stacked convolutional autoencoders, siamese networks and wasserstein autoencoders: application to epilepsy detection publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 18 year: 1997 ident: bib0020 article-title: Applied Smoothing Techniques for data Analysis: the Kernel Approach with S-Plus Illustrations – reference: . – start-page: 349 year: 2017 end-page: 356 ident: bib0034 article-title: Automated detection of epileptogenic cortical malformations using multimodal MRI publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – year: 2015 ident: bib0006 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Tech. Rep. – volume: 84 start-page: 54 year: 2013 end-page: 61 ident: bib0015 article-title: Trends in presurgical evaluation and surgical treatment of epilepsy at one centre from 1988–2009 publication-title: J. Neurol Neurosurg. Psychiatry – volume: 66 start-page: 1491 year: 2009 end-page: 1499 ident: bib0016 article-title: Characteristics and surgical outcomes of patients with refractory magnetic resonance imaging–negative epilepsies publication-title: Arch. Neurol. – volume: 35 start-page: 1229 year: 2016 end-page: 1239 ident: bib0022 article-title: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation publication-title: IEEE Trans. Med. Imaging – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: bib0050 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. – volume: 7 start-page: 1721 year: 2019 end-page: 1735 ident: bib0039 article-title: Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: application to multiple sclerosis lesion detection publication-title: IEEE Access – volume: 9 start-page: 2491 year: 2008 end-page: 2521 ident: bib0057 article-title: Simplemkl publication-title: J. Mach. Learn. Res. – volume: 2002 year: 2002 ident: bib0025 article-title: Appearance-based object recognition using SVMs: which kernel should i use? publication-title: Proc of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision, Whistler – volume: 83 start-page: 48 year: 2014 end-page: 55 ident: bib0042 article-title: Automated detection of cortical dysplasia type II in MRI-negative epilepsy publication-title: Neurology – volume: 59 start-page: 982 year: 2018 end-page: 992 ident: bib0045 article-title: Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning publication-title: Epilepsia – volume: 11 start-page: e0161498 issue: 9 year: 2016 ident: 10.1016/j.media.2019.101618_bib0031 article-title: Detection of lesions underlying intractable epilepsy on t1-weighted MRI as an outlier detection problem publication-title: PLoS One doi: 10.1371/journal.pone.0161498 – volume: 1 start-page: 1 year: 2015 ident: 10.1016/j.media.2019.101618_bib0073 article-title: Triangular similarity metric learning for face verification – start-page: 356 year: 2017 ident: 10.1016/j.media.2019.101618_bib0017 article-title: Segmentation of intracranial arterial calcification with deeply supervised residual dropout networks – ident: 10.1016/j.media.2019.101618_bib0067 – volume: 19 start-page: 224 issue: 4 year: 2003 ident: 10.1016/j.media.2019.101618_bib0038 article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10123 – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.media.2019.101618_bib0050 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – start-page: 1017 year: 2017 ident: 10.1016/j.media.2019.101618_bib0054 article-title: Spatio-temporal anomaly detection for industrial robots through prediction in unsupervised feature space – volume: 83 start-page: 48 issue: 1 year: 2014 ident: 10.1016/j.media.2019.101618_bib0042 article-title: Automated detection of cortical dysplasia type II in MRI-negative epilepsy publication-title: Neurology doi: 10.1212/WNL.0000000000000543 – volume: 155 start-page: 159 year: 2017 ident: 10.1016/j.media.2019.101618_bib0068 article-title: Improving automated multiple sclerosis lesion segmentation with a cascaded 3d convolutional neural network approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.034 – volume: 166 start-page: 10 year: 2018 ident: 10.1016/j.media.2019.101618_bib0065 article-title: Quantitative surface analysis of combined MRI and pet enhances detection of focal cortical dysplasias publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.10.065 – volume: 71 start-page: 405 issue: 4 year: 2014 ident: 10.1016/j.media.2019.101618_bib0018 article-title: Intracranial carotid artery atherosclerosis and the risk of stroke in whites: the rotterdam study publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2013.6223 – volume: 7 start-page: 669 issue: 4 year: 1993 ident: 10.1016/j.media.2019.101618_bib0021 article-title: Signature verification using a “siamese” time delay neural network publication-title: IJPRAI – volume: 77 start-page: 474 issue: 4 year: 2006 ident: 10.1016/j.media.2019.101618_bib0003 article-title: Is it worth pursuing surgery for epilepsy in patients with normal neuroimaging? publication-title: J. Neurol Neurosurg. Psychiatry doi: 10.1136/jnnp.2005.077289 – start-page: 3 year: 1994 ident: 10.1016/j.media.2019.101618_bib0041 article-title: Autoencoders, minimum description length and helmholtz free energy – start-page: 210 year: 2018 ident: 10.1016/j.media.2019.101618_bib0004 article-title: Unsupervised feature learning for outlier detection with stacked convolutional autoencoders, siamese networks and wasserstein autoencoders: application to epilepsy detection – start-page: 16 year: 2015 ident: 10.1016/j.media.2019.101618_bib0014 – year: 2018 ident: 10.1016/j.media.2019.101618_bib0072 article-title: Efficient gan-based anomaly detection – volume: 35 start-page: 1229 issue: 5 year: 2016 ident: 10.1016/j.media.2019.101618_bib0022 article-title: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528821 – volume: 41 start-page: 15:1 issue: 3 year: 2009 ident: 10.1016/j.media.2019.101618_bib0026 article-title: Anomaly detection: a survey publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541882 – volume: 48 year: 2015 ident: 10.1016/j.media.2019.101618_sbref0001 article-title: Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2015.04.055 – volume: 50 start-page: 2053 issue: 9 year: 2009 ident: 10.1016/j.media.2019.101618_bib0012 article-title: Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI publication-title: Epilepsia doi: 10.1111/j.1528-1167.2009.02079.x – volume: 17 start-page: 1 issue: 112 year: 2016 ident: 10.1016/j.media.2019.101618_bib0002 article-title: Decrypting “cryptogenic” epilepsy: semi-supervised hierarchical conditional random fields for detecting cortical lesions in MRI-negative patients publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 1721 year: 2019 ident: 10.1016/j.media.2019.101618_bib0039 article-title: Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: application to multiple sclerosis lesion detection publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886371 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.media.2019.101618_bib0056 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 134 start-page: 2844 issue: 10 year: 2011 ident: 10.1016/j.media.2019.101618_bib0069 article-title: Morphometric MRI analysis improves detection of focal cortical dysplasia type II publication-title: Brain doi: 10.1093/brain/awr204 – start-page: 1273 year: 2006 ident: 10.1016/j.media.2019.101618_bib0062 article-title: A general and efficient multiple kernel learning algorithm – volume: 83 start-page: 48 issue: 1 year: 2014 ident: 10.1016/j.media.2019.101618_bib0043 article-title: Automated detection of cortical dysplasia type II in MRI-negative epilepsy publication-title: Neurology doi: 10.1212/WNL.0000000000000543 – year: 2015 ident: 10.1016/j.media.2019.101618_bib0006 article-title: Variational autoencoder based anomaly detection using reconstruction probability – start-page: 240 year: 2017 ident: 10.1016/j.media.2019.101618_bib0064 article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations – volume: 84 start-page: 54 issue: 1 year: 2013 ident: 10.1016/j.media.2019.101618_bib0015 article-title: Trends in presurgical evaluation and surgical treatment of epilepsy at one centre from 1988–2009 publication-title: J. Neurol Neurosurg. Psychiatry doi: 10.1136/jnnp-2011-301763 – ident: 10.1016/j.media.2019.101618_bib0027 – volume: 66 start-page: 1491 issue: 12 year: 2009 ident: 10.1016/j.media.2019.101618_bib0016 article-title: Characteristics and surgical outcomes of patients with refractory magnetic resonance imaging–negative epilepsies publication-title: Arch. Neurol. doi: 10.1001/archneurol.2009.283 – volume: 74 start-page: 131 issue: 2–3 year: 2007 ident: 10.1016/j.media.2019.101618_bib0047 article-title: Persistent seizures following left temporal lobe surgery are associated with posterior and bilateral structural and functional brain abnormalities publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2007.02.005 – volume: 77 start-page: 93 issue: 2–3 year: 2007 ident: 10.1016/j.media.2019.101618_bib0023 article-title: Voxel-based morphometry in the detection of dysplasia and neoplasia in childhood epilepsy: combined grey/white matter analysis augments detection publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2007.09.004 – volume: 15 start-page: 292 issue: 3 year: 2016 ident: 10.1016/j.media.2019.101618_bib0033 article-title: MRI criteria for the diagnosis of multiple sclerosis: Magnims consensus guidelines publication-title: Lancet Neurol doi: 10.1016/S1474-4422(15)00393-2 – start-page: 349 year: 2017 ident: 10.1016/j.media.2019.101618_bib0034 article-title: Automated detection of epileptogenic cortical malformations using multimodal MRI – volume: 356 start-page: 1293 issue: 1412 year: 2001 ident: 10.1016/j.media.2019.101618_bib0052 article-title: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM) publication-title: Philos. Trans. Royal Soc. Lond. B doi: 10.1098/rstb.2001.0915 – volume: 345 start-page: 311 issue: 5 year: 2001 ident: 10.1016/j.media.2019.101618_bib0071 article-title: A randomized, controlled trial of surgery for temporal-lobe epilepsy publication-title: N top N. Engl. J. Med. doi: 10.1056/NEJM200108023450501 – start-page: 214 year: 2017 ident: 10.1016/j.media.2019.101618_bib0030 article-title: GP-Unet: lesion detection from weak labels with a 3D regression network – volume: 13 start-page: 1443 issue: 7 year: 2001 ident: 10.1016/j.media.2019.101618_bib0060 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput. doi: 10.1162/089976601750264965 – volume: 6 start-page: e16430 issue: 2 year: 2011 ident: 10.1016/j.media.2019.101618_bib0066 article-title: Detection of epileptogenic cortical malformations with surface-based MRI morphometry publication-title: PLoS One doi: 10.1371/journal.pone.0016430 – volume: 27 start-page: 1163 issue: 8 year: 2009 ident: 10.1016/j.media.2019.101618_bib0007 article-title: Computational anatomy with the SPM software publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2009.01.006 – volume: 32 issue: 1 year: 2013 ident: 10.1016/j.media.2019.101618_sbref0034 article-title: A virtual imaging platform for multi-modality medical image simulation publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2012.2220154 – volume: 5 start-page: 9 issue: 2 year: 2003 ident: 10.1016/j.media.2019.101618_bib0037 article-title: Epilepsy and malformations of the cerebral cortex publication-title: Epileptic Disorders – volume: 59 start-page: 982 issue: 5 year: 2018 ident: 10.1016/j.media.2019.101618_bib0045 article-title: Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning publication-title: Epilepsia doi: 10.1111/epi.14064 – volume: 12 issue: 8 year: 2013 ident: 10.1016/j.media.2019.101618_sbref0065 article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration publication-title: Lancet Neurol doi: 10.1016/S1474-4422(13)70124-8 – ident: 10.1016/j.media.2019.101618_bib0053 doi: 10.1109/MLSP.2017.8168155 – start-page: 311 year: 2017 ident: 10.1016/j.media.2019.101618_bib0011 article-title: Semi-supervised deep learning for fully convolutional networks – year: 2018 ident: 10.1016/j.media.2019.101618_bib0055 article-title: Unsupervised lesion detection in brain ct using Bayesian convolutional autoencoders – start-page: 146 year: 2017 ident: 10.1016/j.media.2019.101618_bib0059 – ident: 10.1016/j.media.2019.101618_bib0028 doi: 10.1016/j.media.2019.03.009 – ident: 10.1016/j.media.2019.101618_bib0051 – volume: 58 start-page: 121 year: 2016 ident: 10.1016/j.media.2019.101618_bib0032 article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.03.028 – volume: 9 start-page: 2491 issue: Nov year: 2008 ident: 10.1016/j.media.2019.101618_bib0057 article-title: Simplemkl publication-title: J. Mach. Learn. Res. – start-page: 469 year: 2016 ident: 10.1016/j.media.2019.101618_bib0040 article-title: Hemis: hetero-modal image segmentation – volume: 11 start-page: 515 year: 2016 ident: 10.1016/j.media.2019.101618_bib0048 article-title: Computational analysis in epilepsy neuroimaging: a survey of features and methods publication-title: Neuroimage doi: 10.1016/j.nicl.2016.02.013 – volume: 18 year: 1997 ident: 10.1016/j.media.2019.101618_bib0020 – start-page: 6 year: 2004 ident: 10.1016/j.media.2019.101618_bib0009 article-title: Multiple kernel learning, conic duality, and the SMO algorithm – volume: 4 start-page: 166 issue: 4 year: 1978 ident: 10.1016/j.media.2019.101618_bib0024 article-title: A free-response approach to the measurement and characterization of radiographic-observer performance publication-title: J. Appl. Photogr. Eng – volume: 1 start-page: 539 year: 2005 ident: 10.1016/j.media.2019.101618_bib0029 article-title: Learning a similarity metric discriminatively, with application to face verification – volume: 7 start-page: 99 year: 2011 ident: 10.1016/j.media.2019.101618_bib0013 article-title: Advances in MRI for “cryptogenic” epilepsies publication-title: Nat. Rev. Neurol doi: 10.1038/nrneurol.2010.199 – year: 2018 ident: 10.1016/j.media.2019.101618_bib0005 article-title: Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: application to epilepsy lesion screening – volume: 8 start-page: S104 issue: 5 year: 2012 ident: 10.1016/j.media.2019.101618_bib0019 article-title: Atherosclerotic calcification relates to cognitive function and to brain changes on magnetic resonance imaging publication-title: Alzheimer’s Dement. – volume: 27 start-page: 253 issue: 2 year: 2005 ident: 10.1016/j.media.2019.101618_bib0063 article-title: Feature-based statistical analysis of structural mr data for automatic detection of focal cortical dysplastic lesions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.045 – volume: 135 start-page: 1348 issue: 5 year: 2012 ident: 10.1016/j.media.2019.101618_bib0010 article-title: A developmental and genetic classification for malformations of cortical development: update 2012 publication-title: Brain doi: 10.1093/brain/aws019 – volume: 36 start-page: 61 year: 2017 ident: 10.1016/j.media.2019.101618_bib0046 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – volume: 67 start-page: 35 issue: 1–2 year: 2005 ident: 10.1016/j.media.2019.101618_bib0044 article-title: Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2005.07.009 – volume: 26 start-page: 839 year: 2005 ident: 10.1016/j.media.2019.101618_bib0008 article-title: Unified segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 2002 year: 2002 ident: 10.1016/j.media.2019.101618_bib0025 article-title: Appearance-based object recognition using SVMs: which kernel should i use? – volume: 4 start-page: 36 issue: 2 year: 2018 ident: 10.1016/j.media.2019.101618_sbref0047 article-title: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos publication-title: J. Imaging doi: 10.3390/jimaging4020036 – start-page: 568 year: 2018 ident: 10.1016/j.media.2019.101618_bib0061 article-title: Abnormality detection using deep neural networks with robust quasi-norm autoencoding and semi-supervised learning – start-page: 490 year: 2018 ident: 10.1016/j.media.2019.101618_bib0035 article-title: Deep convolutional networks for automated detection of epileptogenic brain malformations – start-page: 234 year: 2015 ident: 10.1016/j.media.2019.101618_bib0058 article-title: U-Net: convolutional networks for biomedical image segmentation |
| SSID | ssj0007440 |
| Score | 2.5437887 |
| Snippet | •We cast the challenging problem of detecting subtle brain lesions as a per voxel outlier detection problem.•Our brain anomaly detection model is trained on... In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data... In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multipara-metric MRI. To compensate for the lack of annotated data... |
| SourceID | unpaywall hal proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 101618 |
| SubjectTerms | Adolescent Adult Aged Anomalies Anomaly detection Brain Brain lesions Brain mapping Computer Science Data analysis Datasets as Topic Deep learning Epilepsy Epilepsy - diagnostic imaging Feature extraction Female Heterogeneity Humans Image Interpretation, Computer-Assisted - methods Lesions Localization Machine Learning Magnetic Resonance Imaging Male Medical Imaging Middle Aged Neural networks Neural Networks, Computer Neuroimaging Outliers (statistics) Regularization Regularized siamese network Representations Signal and Image Processing Spatial discrimination Unsupervised Machine Learning Unsupervised representation learning Wasserstein autoencoder |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0anQTbAx-DQWAgg3jEU5wPJ-GtQkwVggkhKo2nyIkdVujSaElA29_hj3Kv45QJUAVSVVmJ3cjK6fWxfXwPwHPlV75OEsnTylc8kqHmRVqkPM6ySvilxkHWqnyP5WwevTmJT7aAjWdhTpFxuthPZe5juETSi_ObbRkj257A9vz4_fTTcJxK8DSyJgWubN3cXDkUY5IhK-eyBzFIypXZK2Ty8feB6NopKSL_pJu7cKOvG3XxXS2XV4ago1uDFLK1mQtJefL1sO-Kw_Lyt7yOm3p3G246_smmA2DuwJap92D3SlbCPbj-zu2334UfH6xV_fni0mjWLkhRaxilwMSfqAcBOUPWy_q67RuKOi3WI40R9pFp01mdV83wU5AVBRvki4oEYeQMwM7U55pOUTKc9K8o9YdhizPrm_SSTX9trbNuxUyD8atpL9jS0AIfw3CHU3CseQ_mR68_vppxZ-vAyzgMOm78pIirqIiyxBilwirQWWy0qkJZqLgUSapkhN8i0yIthIoSZEVJpKVSpZaBCPdhUq9q8wCYrHQiYiNK0g_g_UzrLBGVwjZB4WvtQTC-47x0Oc_JemOZj-K2L7kFRk7AyAdgePBi3agZUn5sri5H8OTu3Q5sJMdBaXPDZ4iB9SMoz_ds-janayMuvgkPDkYk5i66tHlAvsVIHP3Mg6fr2xgXaLNH1WbVU50gocWq2Pfg_oDg9aMwjkdk_-sBX0P6X7r68D_rP4KdgJYnrMj9ACbdeW8eI4friifub_wTXOZC7A priority: 102 providerName: Unpaywall |
| Title | Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening |
| URI | https://dx.doi.org/10.1016/j.media.2019.101618 https://www.ncbi.nlm.nih.gov/pubmed/31841950 https://www.proquest.com/docview/2375484609 https://www.proquest.com/docview/2327933050 https://hal.science/hal-02995591 |
| UnpaywallVersion | submittedVersion |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAeEJRXoFQGcSRsnJdjbqGiLFBWCFjUniwndmiqbTbqJqBy4M_wR5lxHi0CVQhptZHs8SbZGc-M7W9mCHmivMLTnMduUnjKDeNAu1mSJW4kRMG8XIORtSjfWTydh2_2o_01sjPEwiCsstf9nU632rpvmfT_5qQuy8lHFmCxEoYuCMYDox4OQ45VDJ79OIN5YAK8LvaKuUg9ZB6yGC8bnYH4LmFbsPLH363TpUOESf7pg26Qq21Vq9NvarE4Z5d2b5DrvUNJ0-6Zb5I1U22SjXNpBjfJlXf9Afot8vODrT1_Un43mq5KhMgaijkt4SeqDhFOwY2lbbVqa1QjK6BD0BA8H9WmscCtisInw9oStMMjKkR4Yap_eqy-VBgWSWEVv8RcHoaWx7YQ0nOanp2V02ZJTQ0KqV6d0oXBHTsK-gvW1EB5m8x3X37ambp9nQY3jwK_cY3Hs6gIs1BwY5QKCl-LyGhVBHGmopzxRMUhfDOhWZIxFXJwc3ioY6VyHfssuEPWq2Vl7hEaF5qzyLAcAQHQL7QWnBUKxviZp7VD_IE_Mu-TmGMtjYUc0GpH0jJVIlNlx1SHPB0H1V0Oj4vJ44Hx8jdRlGBlLh74GMRkvAUm7p6mexLbPLD6sHZjX5lDtgYpkr26WEkfCxGDJ-gJhzwau2Gi4-mNqsyyRRqf4-5T5Dnkbid9460CnAgCe9xRHP_lVe__76s-INd83Hiw8PUtst6ctOYheGdNtm2n3za5nL5-O53B9dWLvc8pXOez9-nBL2CQPhc |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItH2gKBACRQwiCPpxnk54baqqBbY9gCt1JvlxA4EbbNRkwWVA3-GP8qM82gRqEJIqxzs8eYx45mx_c0MwEvlFZ4WInaTwlNuGAfazZIscaM0LbiXazSyFuV7FM9Ownen0eka7A-xMASr7HV_p9Ottu5bJv3XnNRlOfnIAypWwskFoXhg1MM3w8gXtALb-3GJ86AMeF3wFXeJfEg9ZEFeNjyDAF6pbaHSH383Tzc-E07yTyd0CzZWVa0uvqnF4ophOrgDt3uPkk27h74La6bahq0reQa34dZhf4J-D35-sMXnz8vvRrOmJIysYZTUEv-i6iDhDP1YtqqaVU16pEE6Qg3h8zFtWovcqhj-MiouwTpAoiKIF-X6Z2fqU0VxkQyX8UtK5mFYeWYrIb1m08vDctYumalRI9XNBVsY2rJjqMBwUY2U9-Hk4M3x_sztCzW4eRT4rWs8kUVFmIWpMEapoPB1GhmtiiDOVJRzkag4xCtPNU8yrkKBfo4IdaxUrmOfBw9gvVpW5iGwuNCCR4bnhAjA_lTrVPBC4Rg_87R2wB_4I_M-izkV01jIAa72RVqmSmKq7JjqwKtxUN0l8biePB4YL3-TRYlm5vqBL1BMxltQ5u7ZdC6pzUOzj4s3_pU7sDtIkez1RSN9qkSMrqCXOvB87MaZTsc3qjLLFdH4grafIs-BnU76xlsFNBNS6nFHcfyXV330v6_6DDZmx4dzOX979P4xbPq0C2Gx7Luw3p6vzBN01drsqZ2KvwCL8Dxt |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0anQTbAx-DQWAgg3jEU5wPJ-GtQkwVggkhKo2nyIkdVujSaElA29_hj3Kv45QJUAVSVVmJ3cjK6fWxfXwPwHPlV75OEsnTylc8kqHmRVqkPM6ySvilxkHWqnyP5WwevTmJT7aAjWdhTpFxuthPZe5juETSi_ObbRkj257A9vz4_fTTcJxK8DSyJgWubN3cXDkUY5IhK-eyBzFIypXZK2Ty8feB6NopKSL_pJu7cKOvG3XxXS2XV4ago1uDFLK1mQtJefL1sO-Kw_Lyt7yOm3p3G246_smmA2DuwJap92D3SlbCPbj-zu2334UfH6xV_fni0mjWLkhRaxilwMSfqAcBOUPWy_q67RuKOi3WI40R9pFp01mdV83wU5AVBRvki4oEYeQMwM7U55pOUTKc9K8o9YdhizPrm_SSTX9trbNuxUyD8atpL9jS0AIfw3CHU3CseQ_mR68_vppxZ-vAyzgMOm78pIirqIiyxBilwirQWWy0qkJZqLgUSapkhN8i0yIthIoSZEVJpKVSpZaBCPdhUq9q8wCYrHQiYiNK0g_g_UzrLBGVwjZB4WvtQTC-47x0Oc_JemOZj-K2L7kFRk7AyAdgePBi3agZUn5sri5H8OTu3Q5sJMdBaXPDZ4iB9SMoz_ds-janayMuvgkPDkYk5i66tHlAvsVIHP3Mg6fr2xgXaLNH1WbVU50gocWq2Pfg_oDg9aMwjkdk_-sBX0P6X7r68D_rP4KdgJYnrMj9ACbdeW8eI4friifub_wTXOZC7A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularized+siamese+neural+network+for+unsupervised+outlier+detection+on+brain+multiparametric+magnetic+resonance+imaging%3A+Application+to+epilepsy+lesion+screening&rft.jtitle=Medical+image+analysis&rft.au=Alaverdyan%2C+Zaruhi&rft.au=Jung%2C+Julien&rft.au=Bouet%2C+Romain&rft.au=Lartizien%2C+Carole&rft.date=2020-02-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=60&rft.spage=1&rft_id=info:doi/10.1016%2Fj.media.2019.101618&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |