Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening

•We cast the challenging problem of detecting subtle brain lesions as a per voxel outlier detection problem.•Our brain anomaly detection model is trained on normal subjects only.•Our model combines unsupervised latent representation with a novel deep siamese network and one-class classification.•Pat...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 60; p. 101618
Main Authors Alaverdyan, Zaruhi, Jung, Julien, Bouet, Romain, Lartizien, Carole
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2020
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8431
1361-8423
DOI10.1016/j.media.2019.101618

Cover

Abstract •We cast the challenging problem of detecting subtle brain lesions as a per voxel outlier detection problem.•Our brain anomaly detection model is trained on normal subjects only.•Our model combines unsupervised latent representation with a novel deep siamese network and one-class classification.•Patients with intractable epilepsy are considered normal on MRI (MRI negative) in 30–80% cases.•Our model detects 61% of MRI-negative epilepsy lesions in multi-parametric MRI (T1/FLAIR) while human performance is at 0%. [Display omitted] In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoencoders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to ‘close’ representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms.
AbstractList In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoencoders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to 'close' representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms.In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoencoders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to 'close' representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms.
In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoencoders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to 'close' representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms.
•We cast the challenging problem of detecting subtle brain lesions as a per voxel outlier detection problem.•Our brain anomaly detection model is trained on normal subjects only.•Our model combines unsupervised latent representation with a novel deep siamese network and one-class classification.•Patients with intractable epilepsy are considered normal on MRI (MRI negative) in 30–80% cases.•Our model detects 61% of MRI-negative epilepsy lesions in multi-parametric MRI (T1/FLAIR) while human performance is at 0%. [Display omitted] In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoencoders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to ‘close’ representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms.
In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multipara-metric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoen-coders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to 'close' representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms.
ArticleNumber 101618
Author Jung, Julien
Lartizien, Carole
Bouet, Romain
Alaverdyan, Zaruhi
Author_xml – sequence: 1
  givenname: Zaruhi
  surname: Alaverdyan
  fullname: Alaverdyan, Zaruhi
  organization: Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, Lyon, France
– sequence: 2
  givenname: Julien
  surname: Jung
  fullname: Jung, Julien
  organization: Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS UMR5292, University Lyon 1, Lyon, France
– sequence: 3
  givenname: Romain
  surname: Bouet
  fullname: Bouet, Romain
  organization: Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS UMR5292, University Lyon 1, Lyon, France
– sequence: 4
  givenname: Carole
  orcidid: 0000-0001-7594-4231
  surname: Lartizien
  fullname: Lartizien, Carole
  email: carole.lartizien@creatis.insa-lyon.fr
  organization: Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, Lyon, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31841950$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02995591$$DView record in HAL
BookMark eNqNkl2LEzEUhgdZcT_0FwgS8Ma9aE0m89ERvCjL6goFQfQ6nMmcqalpMiaZLvXv-Ec97awr7IUKIQkvz3uSvCfn2YnzDrPsueBzwUX1ejPfYmdgnnPRHBWxeJSdCVmJ2aLI5cn9XpSn2XmMG855XRT8SXYqBalNyc-yn59wPVoI5gd2LBrYYkTmcAxgaUm3PnxjvQ9sdHEcMOxMJM6PyRoMrMOEOhnvGI02gHFsO9pkBghUKAWj2RbWVIY2AaN34DQyQ5px6zdsOQzWaDgWSJ7hYCwOcc8sxoMUdUB0RD7NHvdgIz67Wy-yL--uP1_dzFYf33-4Wq5mupR5miGv27Iv2qKpEQFkn3dNiR30smqh1KJeQFXQLJpOLFoBRV1Vsi66CkB3VS7kRVZMdUc3wP4WrFVDoNuGvRJcHRJWG3XMXB0yV1PmZLucbF_hj8GDUTfLlTpoPG-asmzE7nDEq4kdgv8-Ykxqa6JGa8GhH6PKZV43UvKSE_ryAbrxY3AUAFF1WSyKijdEvbijxpaudn_-7w4TICdABx9jwP4_39Q8cGmTjp1K1Gb7D-_byYvUqx39ExW1Qep8ZwJ9F9V581f_L5se5iQ
CitedBy_id crossref_primary_10_1371_journal_pone_0296843
crossref_primary_10_1016_j_measurement_2021_109177
crossref_primary_10_1111_epi_16836
crossref_primary_10_1002_mp_15269
crossref_primary_10_1142_S2424922X22500115
crossref_primary_10_1111_epi_17522
crossref_primary_10_1038_s41582_024_00965_9
crossref_primary_10_1016_j_engappai_2024_108198
crossref_primary_10_1016_j_jneumeth_2021_109441
crossref_primary_10_1016_j_ins_2024_120286
crossref_primary_10_1016_j_neuroimage_2024_120802
crossref_primary_10_1007_s10618_020_00722_8
crossref_primary_10_1186_s12859_020_03936_1
crossref_primary_10_1109_JBHI_2020_2993560
crossref_primary_10_1016_j_jmb_2023_168045
crossref_primary_10_1016_j_compmedimag_2023_102262
crossref_primary_10_1097_RLI_0000000000001125
crossref_primary_10_1016_j_neunet_2022_03_030
crossref_primary_10_1111_epi_16461
crossref_primary_10_3348_kjr_2023_0393
crossref_primary_10_3389_fnins_2021_684825
crossref_primary_10_1038_s41598_021_87013_4
crossref_primary_10_1002_ima_22543
crossref_primary_10_1016_j_bspc_2025_107777
crossref_primary_10_1109_JSTARS_2022_3217040
crossref_primary_10_1142_S0129065723500193
crossref_primary_10_3390_cancers14164025
crossref_primary_10_1007_s10618_023_00931_x
crossref_primary_10_1016_j_engappai_2025_110152
crossref_primary_10_3390_app10093280
crossref_primary_10_1109_TII_2020_3019788
crossref_primary_10_1016_j_artmed_2022_102332
Cites_doi 10.1371/journal.pone.0161498
10.1002/hbm.10123
10.1016/j.media.2017.07.005
10.1212/WNL.0000000000000543
10.1016/j.neuroimage.2017.04.034
10.1016/j.neuroimage.2017.10.065
10.1001/jamaneurol.2013.6223
10.1136/jnnp.2005.077289
10.1109/TMI.2016.2528821
10.1145/1541880.1541882
10.1016/j.yebeh.2015.04.055
10.1111/j.1528-1167.2009.02079.x
10.1109/ACCESS.2018.2886371
10.1093/brain/awr204
10.1136/jnnp-2011-301763
10.1001/archneurol.2009.283
10.1016/j.eplepsyres.2007.02.005
10.1016/j.eplepsyres.2007.09.004
10.1016/S1474-4422(15)00393-2
10.1098/rstb.2001.0915
10.1056/NEJM200108023450501
10.1162/089976601750264965
10.1371/journal.pone.0016430
10.1016/j.mri.2009.01.006
10.1109/TMI.2012.2220154
10.1111/epi.14064
10.1016/S1474-4422(13)70124-8
10.1109/MLSP.2017.8168155
10.1016/j.media.2019.03.009
10.1016/j.patcog.2016.03.028
10.1016/j.nicl.2016.02.013
10.1038/nrneurol.2010.199
10.1016/j.neuroimage.2005.03.045
10.1093/brain/aws019
10.1016/j.media.2016.10.004
10.1016/j.eplepsyres.2005.07.009
10.1016/j.neuroimage.2005.02.018
10.3390/jimaging4020036
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Feb 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Feb 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.media.2019.101618
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1361-8423
ExternalDocumentID oai:HAL:hal-02995591v1
31841950
10_1016_j_media_2019_101618
S1361841519301562
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c532t-e07b5f4b497eeaa3f2d95edaf36ba5c178a6417819d18b1a4766374d6aacd6213
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
1361-8431
IngestDate Sun Oct 26 05:05:34 EDT 2025
Tue Oct 14 20:41:59 EDT 2025
Thu Oct 02 10:09:33 EDT 2025
Tue Oct 07 07:01:25 EDT 2025
Thu Apr 03 07:04:47 EDT 2025
Wed Oct 29 21:13:34 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
Fri Feb 23 02:48:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wasserstein autoencoder
Deep learning
Brain lesions
Anomaly detection
Regularized siamese network
Unsupervised representation learning
Regularized Siamese network
Deep Learning
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-e07b5f4b497eeaa3f2d95edaf36ba5c178a6417819d18b1a4766374d6aacd6213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7594-4231
0000-0002-9274-0086
0000-0002-3690-2976
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-02995591
PMID 31841950
PQID 2375484609
PQPubID 2045428
ParticipantIDs unpaywall_primary_10_1016_j_media_2019_101618
hal_primary_oai_HAL_hal_02995591v1
proquest_miscellaneous_2327933050
proquest_journals_2375484609
pubmed_primary_31841950
crossref_primary_10_1016_j_media_2019_101618
crossref_citationtrail_10_1016_j_media_2019_101618
elsevier_sciencedirect_doi_10_1016_j_media_2019_101618
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Keller, Cresswell, Denby, Wieshmann, Eldridge, Baker, Roberts (bib0047) 2007; 74
Caputo, Sim, Furesjo, Smola (bib0025) 2002; 2002
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (bib0046) 2017; 36
Ronneberger, Fischer, Brox (bib0058) 2015
Wiebe, Blume, Girvin, Eliasziw (bib0071) 2001; 345
Bruggemann, Wilke, Som, Bye, Bleasel, Lawson (bib0023) 2007; 77
Havaei, Guizard, Chapados, Bengio (bib0040) 2016
Hong, Kim, Schrader, Bernasconi, Bernhardt, Bernasconi (bib0042) 2014; 83
Bunch, Hamilton, Sanderson, Simmons (bib0024) 1978; 4
Ahmed, Brodley, Blackmon, Kuzniecky, Barash, Carlson, Quinn, Doyle, French, Devinsky, Thesen (bib0001) 2015; 48
Loosli, G., Aboubacar, H., 2017. Using svdd in simplemkl for 3D-shapes filtering. arXiv
Bach, Lanckriet, Jordan (bib0009) 2004
Jin, Krishnan, Adler, Wagstyl, Hu, Jones, Najm, Alexopoulos, Zhang, Zhang, Ding, Wang, Wang (bib0045) 2018; 59
Cheplygina, V., de Bruijne, M., Pluim, J. P. W., 2018. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis.
Schölkopf, Platt, Shawe-Taylor, Smola, Williamson (bib0060) 2001; 13
Thesen, Quinn, Carlson, Devinsky, DuBois, McDonald, French, Leventer, Felsovalyi, Wang (bib0066) 2011; 6
Srivastava, Maes, Vandermeulen, Van Paesschen, Dupont, Suetens (bib0063) 2005; 27
Hong, Kim, Schrader, Bernasconi, Bernhardt, Bernasconi (bib0043) 2014; 83
Sudre, Li, Vercauteren, Ourselin, Jorge Cardoso (bib0064) 2017
Gill, Hong, Fadaie, Caldairou, Bernhardt, Bernasconi, Bernasconi (bib0034) 2017
Bos, Portegies, van der Lugt, Bos, Koudstaal, Hofman, Krestin, Franco, Vernooij, Ikram (bib0018) 2014; 71
Bernasconi, Bernasconi, Bernhardt, Schrader (bib0013) 2011; 7
Bromley, Bentz, Bottou, Guyon, LeCun, Moore, Säckinger, Shah (bib0021) 1993; 7
Schlegl, Seebäck, Waldstein, Schmidt-Erfurth, Langs (bib0059) 2017
Alarcon, Valentin, Watt, Selway, Lacruz, Elwes, Jarosz, Honavar, Brunhuber, Mullatti (bib0003) 2006; 77
Bernasconi, Bernasconi (bib0014) 2015
.
Barkovich, Guerrini, Kuzniecky, Jackson, Dobyns (bib0010) 2012; 135
Munawar, Vinayavekhin, De Magistris (bib0054) 2017
Wagner, Weber, Urbach, Elger, Huppertz (bib0069) 2011; 134
Hinton, Zemel (bib0041) 1994
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sanchez (bib0050) 2017; 42
Glatard, Lartizien, Gibaud, Ferreira da Silva, Forestier, Cervenansky, Alessandrini, Benoit-Cattin, Bernard, Camarasu-Pop, Cerezo, Clarysse, Gaignard, Hugonnard, Liebgott, Marache, Marion, Montagnat, Tabary, Friboulet (bib0036) 2013; 32
Chandola, Banerjee, Kumar (bib0026) 2009; 41
Munawar, A., Vinayavekhin, P., De Magistris, G., 2017a. Limiting the reconstruction capability of generative neural network using negative learning. arXiv
Ahmed, Thesen, Blackmon, Kuzniekcy, Devinsky, Brodley (bib0002) 2016; 17
Hammers, Allom, Koepp, Free, Myers, Lemieux, Mitchell, Brooks, Duncan (bib0038) 2003; 19
El Azami, Hammers, Jung, Costes, Bouet, Lartizien (bib0031) 2016; 11
An, Cho (bib0006) 2015
Valverde, Cabezas, Roura, González-Villà, Pareto, Vilanova, Ramió-Torrentà, Rovira, Oliver, Lladó (bib0068) 2017; 155
Tan, Kim, Lee, Tihan, Ver Hoef, Mueller, Barkovich, Xu, Knowlton (bib0065) 2018; 166
Huppertz, Grimm, Fauser, Kassubek, Mader, Hochmuth, Spreer, Schulze-Bonhage (bib0044) 2005; 67
Alaverdyan, Chai, Lartizien (bib0004) 2018
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib0056) 2011; 12
Shah, Merchant, Awate (bib0061) 2018
Zheng, Idrissi, Garcia, Duffner, Baskurt (bib0073) 2015; 1
Ashburner (bib0007) 2009; 27
Bien, Szinay, Wagner, Clusmann, Becker, Urbach (bib0016) 2009; 66
Chen, X., Konukoglu, E., 2018. Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. arXiv
Mazziotta, Toga, Evans, Fox, Lancaster, Zilles, Woods, Paus, Simpson, Pike (bib0052) 2001; 356
Bos, Vernooij, Elias-Smale, Verhaaren, Vrooman, Hofman, Niessen, Witteman, van der Lugt, Ikram (bib0019) 2012; 8
Alaverdyan, Jung, Bouet, Lartizien (bib0005) 2018
Guerrini, Sicca, Parmeggiani (bib0037) 2003; 5
Gill, Hong, Fadaie, Caldairou, Bernhardt, Barba, Brandt, Coelho, dIncerti, Lenge, Semmelroch, Bartolomei, Cendes, Deleo, Guerrini, Guye, Jackson, Schulze-Bonhage, Mansi, Bernasconi, Bernasconi (bib0035) 2018
Wardlaw, Smith, Biessels, Cordonnier, Fazekas, Frayne, Lindley, O’Brien, Barkhof, Benavente, Black, Brayne, Breteler, Chabriat, Decarli, de Leeuw, Doubal, Duering, Fox, Greenberg, Hachinski, Kilimann, Mok, Oostenbrugge, Pantoni, Speck, Stephan, Teipel, Viswanathan, Werring, Chen, Smith, van Buchem, Norrving, Gorelick, Dichgans (bib0070) 2013; 12
Baur, Albarqouni, Navab (bib0011) 2017
Zenati, Foo, Lecouat, Manek, Chandrasekhar (bib0072) 2018
Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B., 2017. Wasserstein Auto-Encoders. ArXiv e-prints.
Kiran, Thomas, Parakkal (bib0049) 2018; 4
Rakotomamonjy, Bach, Canu, Grandvalet (bib0057) 2008; 9
Chopra, Hadsell, LeCun (bib0029) 2005; 1
Bortsova, van Tulder, Dubost, Peng, Navab, van der Lugt, Bos, De Bruijne (bib0017) 2017
Filippi, Rocca, Ciccarelli, De Stefano, Evangelou, Kappos, Rovira, Sastre-Garriga, Tintore, Frederiksen, Gasperini, Palace, Reich, Banwell, Montalban, Barkhof (bib0033) 2016; 15
Hashemi, Mohseni Salehi, Erdogmus, Prabhu, Warfield, Gholipour (bib0039) 2019; 7
Bell, Rao, So, Trenerry, Kazemi, Matt Stead, Cascino, Marsh, Meyer, Watson (bib0012) 2009; 50
Brosch, Tang, Yoo, Li, Traboulsee, Tam (bib0022) 2016; 35
Bien, Raabe, Schramm, Becker, Urbach, Elger (bib0015) 2013; 84
Dubost, Bortsova, Adams, Ikram, Niessen, Vernooij, De Bruijne (bib0030) 2017
Erfani, Rajasegarar, Karunasekera, Leckie (bib0032) 2016; 58
Kini, Gee, Litt (bib0048) 2016; 11
Pawlowski, Matthew C.H. Lee, McDonagh, Ferrante, Kamnitsas, Cooke, Stevenson, Khetani, Newman, Zeiler, Digby, Coles, Rueckert, Menon, Newcombe, Glocker (bib0055) 2018
Sonnenburg, Rätsch, Schäfer (bib0062) 2006
Ashburner, Friston (bib0008) 2005; 26
Bowman, Azzalini (bib0020) 1997; 18
Bunch (10.1016/j.media.2019.101618_bib0024) 1978; 4
Glatard (10.1016/j.media.2019.101618_sbref0034) 2013; 32
Bruggemann (10.1016/j.media.2019.101618_bib0023) 2007; 77
Ahmed (10.1016/j.media.2019.101618_bib0002) 2016; 17
Rakotomamonjy (10.1016/j.media.2019.101618_bib0057) 2008; 9
Alaverdyan (10.1016/j.media.2019.101618_bib0005) 2018
Kini (10.1016/j.media.2019.101618_bib0048) 2016; 11
Gill (10.1016/j.media.2019.101618_bib0034) 2017
Hong (10.1016/j.media.2019.101618_bib0043) 2014; 83
10.1016/j.media.2019.101618_bib0027
10.1016/j.media.2019.101618_bib0028
Alarcon (10.1016/j.media.2019.101618_bib0003) 2006; 77
Srivastava (10.1016/j.media.2019.101618_bib0063) 2005; 27
10.1016/j.media.2019.101618_bib0067
Bowman (10.1016/j.media.2019.101618_bib0020) 1997; 18
Bien (10.1016/j.media.2019.101618_bib0016) 2009; 66
Bernasconi (10.1016/j.media.2019.101618_bib0014) 2015
Thesen (10.1016/j.media.2019.101618_bib0066) 2011; 6
Ashburner (10.1016/j.media.2019.101618_bib0007) 2009; 27
Ronneberger (10.1016/j.media.2019.101618_bib0058) 2015
Jin (10.1016/j.media.2019.101618_bib0045) 2018; 59
Ahmed (10.1016/j.media.2019.101618_sbref0001) 2015; 48
El Azami (10.1016/j.media.2019.101618_bib0031) 2016; 11
Mazziotta (10.1016/j.media.2019.101618_bib0052) 2001; 356
Hinton (10.1016/j.media.2019.101618_bib0041) 1994
Bach (10.1016/j.media.2019.101618_bib0009) 2004
Pawlowski (10.1016/j.media.2019.101618_bib0055) 2018
Munawar (10.1016/j.media.2019.101618_bib0054) 2017
Erfani (10.1016/j.media.2019.101618_bib0032) 2016; 58
Gill (10.1016/j.media.2019.101618_bib0035) 2018
Alaverdyan (10.1016/j.media.2019.101618_bib0004) 2018
Filippi (10.1016/j.media.2019.101618_bib0033) 2016; 15
Ashburner (10.1016/j.media.2019.101618_bib0008) 2005; 26
Baur (10.1016/j.media.2019.101618_bib0011) 2017
Huppertz (10.1016/j.media.2019.101618_bib0044) 2005; 67
Barkovich (10.1016/j.media.2019.101618_bib0010) 2012; 135
Wardlaw (10.1016/j.media.2019.101618_sbref0065) 2013; 12
Havaei (10.1016/j.media.2019.101618_bib0040) 2016
Bromley (10.1016/j.media.2019.101618_bib0021) 1993; 7
Hashemi (10.1016/j.media.2019.101618_bib0039) 2019; 7
Sudre (10.1016/j.media.2019.101618_bib0064) 2017
Bell (10.1016/j.media.2019.101618_bib0012) 2009; 50
Shah (10.1016/j.media.2019.101618_bib0061) 2018
Kamnitsas (10.1016/j.media.2019.101618_bib0046) 2017; 36
Wiebe (10.1016/j.media.2019.101618_bib0071) 2001; 345
Bortsova (10.1016/j.media.2019.101618_bib0017) 2017
Zheng (10.1016/j.media.2019.101618_bib0073) 2015; 1
Litjens (10.1016/j.media.2019.101618_bib0050) 2017; 42
An (10.1016/j.media.2019.101618_bib0006) 2015
Guerrini (10.1016/j.media.2019.101618_bib0037) 2003; 5
Bos (10.1016/j.media.2019.101618_bib0018) 2014; 71
Dubost (10.1016/j.media.2019.101618_bib0030) 2017
Chopra (10.1016/j.media.2019.101618_bib0029) 2005; 1
Keller (10.1016/j.media.2019.101618_bib0047) 2007; 74
Wagner (10.1016/j.media.2019.101618_bib0069) 2011; 134
Tan (10.1016/j.media.2019.101618_bib0065) 2018; 166
Bernasconi (10.1016/j.media.2019.101618_bib0013) 2011; 7
Hammers (10.1016/j.media.2019.101618_bib0038) 2003; 19
Bien (10.1016/j.media.2019.101618_bib0015) 2013; 84
Caputo (10.1016/j.media.2019.101618_bib0025) 2002; 2002
Brosch (10.1016/j.media.2019.101618_bib0022) 2016; 35
Valverde (10.1016/j.media.2019.101618_bib0068) 2017; 155
Schlegl (10.1016/j.media.2019.101618_bib0059) 2017
Zenati (10.1016/j.media.2019.101618_bib0072) 2018
Hong (10.1016/j.media.2019.101618_bib0042) 2014; 83
Schölkopf (10.1016/j.media.2019.101618_bib0060) 2001; 13
Chandola (10.1016/j.media.2019.101618_bib0026) 2009; 41
Kiran (10.1016/j.media.2019.101618_sbref0047) 2018; 4
Pedregosa (10.1016/j.media.2019.101618_bib0056) 2011; 12
10.1016/j.media.2019.101618_bib0053
Sonnenburg (10.1016/j.media.2019.101618_bib0062) 2006
Bos (10.1016/j.media.2019.101618_bib0019) 2012; 8
10.1016/j.media.2019.101618_bib0051
References_xml – year: 2018
  ident: bib0005
  article-title: Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: application to epilepsy lesion screening
  publication-title: First Conference on Medical Imaging with Deep Learning (MIDL 2018)
– volume: 74
  start-page: 131
  year: 2007
  end-page: 139
  ident: bib0047
  article-title: Persistent seizures following left temporal lobe surgery are associated with posterior and bilateral structural and functional brain abnormalities
  publication-title: Epilepsy Res.
– volume: 4
  start-page: 166
  year: 1978
  end-page: 171
  ident: bib0024
  article-title: A free-response approach to the measurement and characterization of radiographic-observer performance
  publication-title: J. Appl. Photogr. Eng
– volume: 83
  start-page: 48
  year: 2014
  end-page: 55
  ident: bib0043
  article-title: Automated detection of cortical dysplasia type II in MRI-negative epilepsy
  publication-title: Neurology
– volume: 77
  start-page: 93
  year: 2007
  end-page: 101
  ident: bib0023
  article-title: Voxel-based morphometry in the detection of dysplasia and neoplasia in childhood epilepsy: combined grey/white matter analysis augments detection
  publication-title: Epilepsy Res.
– start-page: 469
  year: 2016
  end-page: 477
  ident: bib0040
  article-title: Hemis: hetero-modal image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 27
  start-page: 253
  year: 2005
  end-page: 266
  ident: bib0063
  article-title: Feature-based statistical analysis of structural mr data for automatic detection of focal cortical dysplastic lesions
  publication-title: Neuroimage
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: bib0008
  article-title: Unified segmentation
  publication-title: Neuroimage
– start-page: 6
  year: 2004
  ident: bib0009
  article-title: Multiple kernel learning, conic duality, and the SMO algorithm
  publication-title: Proceedings of the twenty-first international conference on Machine learning
– volume: 356
  start-page: 1293
  year: 2001
  end-page: 1322
  ident: bib0052
  article-title: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM)
  publication-title: Philos. Trans. Royal Soc. Lond. B
– volume: 32
  year: 2013
  ident: bib0036
  article-title: A virtual imaging platform for multi-modality medical image simulation
  publication-title: IEEE Transactions on Medical Imaging
– volume: 1
  start-page: 1
  year: 2015
  end-page: 7
  ident: bib0073
  article-title: Triangular similarity metric learning for face verification
  publication-title: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)
– volume: 7
  start-page: 99
  year: 2011
  ident: bib0013
  article-title: Advances in MRI for “cryptogenic” epilepsies
  publication-title: Nat. Rev. Neurol
– start-page: 16
  year: 2015
  end-page: 27
  ident: bib0014
  article-title: MRI-Negative Epilepsy: Evaluation and Surgical Management
– volume: 4
  start-page: 36
  year: 2018
  ident: bib0049
  article-title: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos
  publication-title: J. Imaging
– volume: 135
  start-page: 1348
  year: 2012
  end-page: 1369
  ident: bib0010
  article-title: A developmental and genetic classification for malformations of cortical development: update 2012
  publication-title: Brain
– start-page: 356
  year: 2017
  end-page: 364
  ident: bib0017
  article-title: Segmentation of intracranial arterial calcification with deeply supervised residual dropout networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 134
  start-page: 2844
  year: 2011
  end-page: 2854
  ident: bib0069
  article-title: Morphometric MRI analysis improves detection of focal cortical dysplasia type II
  publication-title: Brain
– volume: 15
  start-page: 292
  year: 2016
  end-page: 303
  ident: bib0033
  article-title: MRI criteria for the diagnosis of multiple sclerosis: Magnims consensus guidelines
  publication-title: Lancet Neurol
– volume: 71
  start-page: 405
  year: 2014
  end-page: 411
  ident: bib0018
  article-title: Intracranial carotid artery atherosclerosis and the risk of stroke in whites: the rotterdam study
  publication-title: JAMA Neurol.
– start-page: 1273
  year: 2006
  end-page: 1280
  ident: bib0062
  article-title: A general and efficient multiple kernel learning algorithm
  publication-title: Advances in Neural Information Processing Systems
– volume: 27
  start-page: 1163
  year: 2009
  end-page: 1174
  ident: bib0007
  article-title: Computational anatomy with the SPM software
  publication-title: Magn. Reson. Imaging
– start-page: 146
  year: 2017
  end-page: 157
  ident: bib0059
  article-title: Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0058
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 490
  year: 2018
  end-page: 497
  ident: bib0035
  article-title: Deep convolutional networks for automated detection of epileptogenic brain malformations
  publication-title: Medical Image Computing and Computer Assisted Intervention MICCAI 2018
– volume: 11
  start-page: 515
  year: 2016
  end-page: 529
  ident: bib0048
  article-title: Computational analysis in epilepsy neuroimaging: a survey of features and methods
  publication-title: Neuroimage
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: bib0046
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
– volume: 8
  start-page: S104
  year: 2012
  end-page: S111
  ident: bib0019
  article-title: Atherosclerotic calcification relates to cognitive function and to brain changes on magnetic resonance imaging
  publication-title: Alzheimer’s Dement.
– volume: 166
  start-page: 10
  year: 2018
  end-page: 18
  ident: bib0065
  article-title: Quantitative surface analysis of combined MRI and pet enhances detection of focal cortical dysplasias
  publication-title: Neuroimage
– volume: 41
  start-page: 15:1
  year: 2009
  end-page: 15:58
  ident: bib0026
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput. Surv.
– reference: Cheplygina, V., de Bruijne, M., Pluim, J. P. W., 2018. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis.
– volume: 155
  start-page: 159
  year: 2017
  end-page: 168
  ident: bib0068
  article-title: Improving automated multiple sclerosis lesion segmentation with a cascaded 3d convolutional neural network approach
  publication-title: Neuroimage
– start-page: 1017
  year: 2017
  end-page: 1025
  ident: bib0054
  article-title: Spatio-temporal anomaly detection for industrial robots through prediction in unsupervised feature space
  publication-title: Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on
– reference: Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B., 2017. Wasserstein Auto-Encoders. ArXiv e-prints.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0056
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– reference: Loosli, G., Aboubacar, H., 2017. Using svdd in simplemkl for 3D-shapes filtering. arXiv:
– volume: 7
  start-page: 669
  year: 1993
  end-page: 688
  ident: bib0021
  article-title: Signature verification using a “siamese” time delay neural network
  publication-title: IJPRAI
– start-page: 3
  year: 1994
  end-page: 10
  ident: bib0041
  article-title: Autoencoders, minimum description length and helmholtz free energy
  publication-title: Advances in Neural Information Processing Systems 6
– volume: 67
  start-page: 35
  year: 2005
  end-page: 50
  ident: bib0044
  article-title: Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis
  publication-title: Epilepsy Res.
– volume: 48
  year: 2015
  ident: bib0001
  article-title: Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia
  publication-title: Epilepsy Behav.
– start-page: 311
  year: 2017
  end-page: 319
  ident: bib0011
  article-title: Semi-supervised deep learning for fully convolutional networks
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2017)
– volume: 58
  start-page: 121
  year: 2016
  end-page: 134
  ident: bib0032
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Pattern Recognit.
– start-page: 568
  year: 2018
  end-page: 572
  ident: bib0061
  article-title: Abnormality detection using deep neural networks with robust quasi-norm autoencoding and semi-supervised learning
  publication-title: IEEE International Symposium on Biomedical Imaging (ISBI 2018)
– start-page: 240
  year: 2017
  end-page: 248
  ident: bib0064
  article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 17
  start-page: 1
  year: 2016
  end-page: 30
  ident: bib0002
  article-title: Decrypting “cryptogenic” epilepsy: semi-supervised hierarchical conditional random fields for detecting cortical lesions in MRI-negative patients
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: bib0055
  article-title: Unsupervised lesion detection in brain ct using Bayesian convolutional autoencoders
  publication-title: First Conference on Medical Imaging with Deep Learning (MIDL 2018)
– volume: 6
  start-page: e16430
  year: 2011
  ident: bib0066
  article-title: Detection of epileptogenic cortical malformations with surface-based MRI morphometry
  publication-title: PLoS One
– year: 2018
  ident: bib0072
  article-title: Efficient gan-based anomaly detection
  publication-title: ICLR workshop
– volume: 13
  start-page: 1443
  year: 2001
  end-page: 1471
  ident: bib0060
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput.
– start-page: 214
  year: 2017
  end-page: 221
  ident: bib0030
  article-title: GP-Unet: lesion detection from weak labels with a 3D regression network
  publication-title: Medical Image Computing and Computer Assisted Intervention (MICCAI 2017)
– reference: Chen, X., Konukoglu, E., 2018. Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. arXiv:
– volume: 50
  start-page: 2053
  year: 2009
  end-page: 2060
  ident: bib0012
  article-title: Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI
  publication-title: Epilepsia
– volume: 5
  start-page: 9
  year: 2003
  end-page: 26
  ident: bib0037
  article-title: Epilepsy and malformations of the cerebral cortex
  publication-title: Epileptic Disorders
– volume: 77
  start-page: 474
  year: 2006
  end-page: 480
  ident: bib0003
  article-title: Is it worth pursuing surgery for epilepsy in patients with normal neuroimaging?
  publication-title: J. Neurol Neurosurg. Psychiatry
– reference: Munawar, A., Vinayavekhin, P., De Magistris, G., 2017a. Limiting the reconstruction capability of generative neural network using negative learning. arXiv:
– volume: 12
  year: 2013
  ident: bib0070
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration
  publication-title: Lancet Neurol
– volume: 19
  start-page: 224
  year: 2003
  end-page: 247
  ident: bib0038
  article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe
  publication-title: Hum. Brain Mapp.
– volume: 1
  start-page: 539
  year: 2005
  end-page: 546
  ident: bib0029
  article-title: Learning a similarity metric discriminatively, with application to face verification
  publication-title: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on
– volume: 345
  start-page: 311
  year: 2001
  end-page: 318
  ident: bib0071
  article-title: A randomized, controlled trial of surgery for temporal-lobe epilepsy
  publication-title: N top N. Engl. J. Med.
– volume: 11
  start-page: e0161498
  year: 2016
  ident: bib0031
  article-title: Detection of lesions underlying intractable epilepsy on t1-weighted MRI as an outlier detection problem
  publication-title: PLoS One
– start-page: 210
  year: 2018
  end-page: 217
  ident: bib0004
  article-title: Unsupervised feature learning for outlier detection with stacked convolutional autoencoders, siamese networks and wasserstein autoencoders: application to epilepsy detection
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 18
  year: 1997
  ident: bib0020
  article-title: Applied Smoothing Techniques for data Analysis: the Kernel Approach with S-Plus Illustrations
– reference: .
– start-page: 349
  year: 2017
  end-page: 356
  ident: bib0034
  article-title: Automated detection of epileptogenic cortical malformations using multimodal MRI
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– year: 2015
  ident: bib0006
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Tech. Rep.
– volume: 84
  start-page: 54
  year: 2013
  end-page: 61
  ident: bib0015
  article-title: Trends in presurgical evaluation and surgical treatment of epilepsy at one centre from 1988–2009
  publication-title: J. Neurol Neurosurg. Psychiatry
– volume: 66
  start-page: 1491
  year: 2009
  end-page: 1499
  ident: bib0016
  article-title: Characteristics and surgical outcomes of patients with refractory magnetic resonance imaging–negative epilepsies
  publication-title: Arch. Neurol.
– volume: 35
  start-page: 1229
  year: 2016
  end-page: 1239
  ident: bib0022
  article-title: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bib0050
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– volume: 7
  start-page: 1721
  year: 2019
  end-page: 1735
  ident: bib0039
  article-title: Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: application to multiple sclerosis lesion detection
  publication-title: IEEE Access
– volume: 9
  start-page: 2491
  year: 2008
  end-page: 2521
  ident: bib0057
  article-title: Simplemkl
  publication-title: J. Mach. Learn. Res.
– volume: 2002
  year: 2002
  ident: bib0025
  article-title: Appearance-based object recognition using SVMs: which kernel should i use?
  publication-title: Proc of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision, Whistler
– volume: 83
  start-page: 48
  year: 2014
  end-page: 55
  ident: bib0042
  article-title: Automated detection of cortical dysplasia type II in MRI-negative epilepsy
  publication-title: Neurology
– volume: 59
  start-page: 982
  year: 2018
  end-page: 992
  ident: bib0045
  article-title: Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning
  publication-title: Epilepsia
– volume: 11
  start-page: e0161498
  issue: 9
  year: 2016
  ident: 10.1016/j.media.2019.101618_bib0031
  article-title: Detection of lesions underlying intractable epilepsy on t1-weighted MRI as an outlier detection problem
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0161498
– volume: 1
  start-page: 1
  year: 2015
  ident: 10.1016/j.media.2019.101618_bib0073
  article-title: Triangular similarity metric learning for face verification
– start-page: 356
  year: 2017
  ident: 10.1016/j.media.2019.101618_bib0017
  article-title: Segmentation of intracranial arterial calcification with deeply supervised residual dropout networks
– ident: 10.1016/j.media.2019.101618_bib0067
– volume: 19
  start-page: 224
  issue: 4
  year: 2003
  ident: 10.1016/j.media.2019.101618_bib0038
  article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10123
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.media.2019.101618_bib0050
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– start-page: 1017
  year: 2017
  ident: 10.1016/j.media.2019.101618_bib0054
  article-title: Spatio-temporal anomaly detection for industrial robots through prediction in unsupervised feature space
– volume: 83
  start-page: 48
  issue: 1
  year: 2014
  ident: 10.1016/j.media.2019.101618_bib0042
  article-title: Automated detection of cortical dysplasia type II in MRI-negative epilepsy
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000543
– volume: 155
  start-page: 159
  year: 2017
  ident: 10.1016/j.media.2019.101618_bib0068
  article-title: Improving automated multiple sclerosis lesion segmentation with a cascaded 3d convolutional neural network approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.04.034
– volume: 166
  start-page: 10
  year: 2018
  ident: 10.1016/j.media.2019.101618_bib0065
  article-title: Quantitative surface analysis of combined MRI and pet enhances detection of focal cortical dysplasias
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.10.065
– volume: 71
  start-page: 405
  issue: 4
  year: 2014
  ident: 10.1016/j.media.2019.101618_bib0018
  article-title: Intracranial carotid artery atherosclerosis and the risk of stroke in whites: the rotterdam study
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2013.6223
– volume: 7
  start-page: 669
  issue: 4
  year: 1993
  ident: 10.1016/j.media.2019.101618_bib0021
  article-title: Signature verification using a “siamese” time delay neural network
  publication-title: IJPRAI
– volume: 77
  start-page: 474
  issue: 4
  year: 2006
  ident: 10.1016/j.media.2019.101618_bib0003
  article-title: Is it worth pursuing surgery for epilepsy in patients with normal neuroimaging?
  publication-title: J. Neurol Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2005.077289
– start-page: 3
  year: 1994
  ident: 10.1016/j.media.2019.101618_bib0041
  article-title: Autoencoders, minimum description length and helmholtz free energy
– start-page: 210
  year: 2018
  ident: 10.1016/j.media.2019.101618_bib0004
  article-title: Unsupervised feature learning for outlier detection with stacked convolutional autoencoders, siamese networks and wasserstein autoencoders: application to epilepsy detection
– start-page: 16
  year: 2015
  ident: 10.1016/j.media.2019.101618_bib0014
– year: 2018
  ident: 10.1016/j.media.2019.101618_bib0072
  article-title: Efficient gan-based anomaly detection
– volume: 35
  start-page: 1229
  issue: 5
  year: 2016
  ident: 10.1016/j.media.2019.101618_bib0022
  article-title: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528821
– volume: 41
  start-page: 15:1
  issue: 3
  year: 2009
  ident: 10.1016/j.media.2019.101618_bib0026
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– volume: 48
  year: 2015
  ident: 10.1016/j.media.2019.101618_sbref0001
  article-title: Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2015.04.055
– volume: 50
  start-page: 2053
  issue: 9
  year: 2009
  ident: 10.1016/j.media.2019.101618_bib0012
  article-title: Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2009.02079.x
– volume: 17
  start-page: 1
  issue: 112
  year: 2016
  ident: 10.1016/j.media.2019.101618_bib0002
  article-title: Decrypting “cryptogenic” epilepsy: semi-supervised hierarchical conditional random fields for detecting cortical lesions in MRI-negative patients
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 1721
  year: 2019
  ident: 10.1016/j.media.2019.101618_bib0039
  article-title: Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: application to multiple sclerosis lesion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886371
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.media.2019.101618_bib0056
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 134
  start-page: 2844
  issue: 10
  year: 2011
  ident: 10.1016/j.media.2019.101618_bib0069
  article-title: Morphometric MRI analysis improves detection of focal cortical dysplasia type II
  publication-title: Brain
  doi: 10.1093/brain/awr204
– start-page: 1273
  year: 2006
  ident: 10.1016/j.media.2019.101618_bib0062
  article-title: A general and efficient multiple kernel learning algorithm
– volume: 83
  start-page: 48
  issue: 1
  year: 2014
  ident: 10.1016/j.media.2019.101618_bib0043
  article-title: Automated detection of cortical dysplasia type II in MRI-negative epilepsy
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000543
– year: 2015
  ident: 10.1016/j.media.2019.101618_bib0006
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
– start-page: 240
  year: 2017
  ident: 10.1016/j.media.2019.101618_bib0064
  article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations
– volume: 84
  start-page: 54
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2019.101618_bib0015
  article-title: Trends in presurgical evaluation and surgical treatment of epilepsy at one centre from 1988–2009
  publication-title: J. Neurol Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2011-301763
– ident: 10.1016/j.media.2019.101618_bib0027
– volume: 66
  start-page: 1491
  issue: 12
  year: 2009
  ident: 10.1016/j.media.2019.101618_bib0016
  article-title: Characteristics and surgical outcomes of patients with refractory magnetic resonance imaging–negative epilepsies
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2009.283
– volume: 74
  start-page: 131
  issue: 2–3
  year: 2007
  ident: 10.1016/j.media.2019.101618_bib0047
  article-title: Persistent seizures following left temporal lobe surgery are associated with posterior and bilateral structural and functional brain abnormalities
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2007.02.005
– volume: 77
  start-page: 93
  issue: 2–3
  year: 2007
  ident: 10.1016/j.media.2019.101618_bib0023
  article-title: Voxel-based morphometry in the detection of dysplasia and neoplasia in childhood epilepsy: combined grey/white matter analysis augments detection
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2007.09.004
– volume: 15
  start-page: 292
  issue: 3
  year: 2016
  ident: 10.1016/j.media.2019.101618_bib0033
  article-title: MRI criteria for the diagnosis of multiple sclerosis: Magnims consensus guidelines
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(15)00393-2
– start-page: 349
  year: 2017
  ident: 10.1016/j.media.2019.101618_bib0034
  article-title: Automated detection of epileptogenic cortical malformations using multimodal MRI
– volume: 356
  start-page: 1293
  issue: 1412
  year: 2001
  ident: 10.1016/j.media.2019.101618_bib0052
  article-title: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM)
  publication-title: Philos. Trans. Royal Soc. Lond. B
  doi: 10.1098/rstb.2001.0915
– volume: 345
  start-page: 311
  issue: 5
  year: 2001
  ident: 10.1016/j.media.2019.101618_bib0071
  article-title: A randomized, controlled trial of surgery for temporal-lobe epilepsy
  publication-title: N top N. Engl. J. Med.
  doi: 10.1056/NEJM200108023450501
– start-page: 214
  year: 2017
  ident: 10.1016/j.media.2019.101618_bib0030
  article-title: GP-Unet: lesion detection from weak labels with a 3D regression network
– volume: 13
  start-page: 1443
  issue: 7
  year: 2001
  ident: 10.1016/j.media.2019.101618_bib0060
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput.
  doi: 10.1162/089976601750264965
– volume: 6
  start-page: e16430
  issue: 2
  year: 2011
  ident: 10.1016/j.media.2019.101618_bib0066
  article-title: Detection of epileptogenic cortical malformations with surface-based MRI morphometry
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016430
– volume: 27
  start-page: 1163
  issue: 8
  year: 2009
  ident: 10.1016/j.media.2019.101618_bib0007
  article-title: Computational anatomy with the SPM software
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2009.01.006
– volume: 32
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2019.101618_sbref0034
  article-title: A virtual imaging platform for multi-modality medical image simulation
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2012.2220154
– volume: 5
  start-page: 9
  issue: 2
  year: 2003
  ident: 10.1016/j.media.2019.101618_bib0037
  article-title: Epilepsy and malformations of the cerebral cortex
  publication-title: Epileptic Disorders
– volume: 59
  start-page: 982
  issue: 5
  year: 2018
  ident: 10.1016/j.media.2019.101618_bib0045
  article-title: Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning
  publication-title: Epilepsia
  doi: 10.1111/epi.14064
– volume: 12
  issue: 8
  year: 2013
  ident: 10.1016/j.media.2019.101618_sbref0065
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(13)70124-8
– ident: 10.1016/j.media.2019.101618_bib0053
  doi: 10.1109/MLSP.2017.8168155
– start-page: 311
  year: 2017
  ident: 10.1016/j.media.2019.101618_bib0011
  article-title: Semi-supervised deep learning for fully convolutional networks
– year: 2018
  ident: 10.1016/j.media.2019.101618_bib0055
  article-title: Unsupervised lesion detection in brain ct using Bayesian convolutional autoencoders
– start-page: 146
  year: 2017
  ident: 10.1016/j.media.2019.101618_bib0059
– ident: 10.1016/j.media.2019.101618_bib0028
  doi: 10.1016/j.media.2019.03.009
– ident: 10.1016/j.media.2019.101618_bib0051
– volume: 58
  start-page: 121
  year: 2016
  ident: 10.1016/j.media.2019.101618_bib0032
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.03.028
– volume: 9
  start-page: 2491
  issue: Nov
  year: 2008
  ident: 10.1016/j.media.2019.101618_bib0057
  article-title: Simplemkl
  publication-title: J. Mach. Learn. Res.
– start-page: 469
  year: 2016
  ident: 10.1016/j.media.2019.101618_bib0040
  article-title: Hemis: hetero-modal image segmentation
– volume: 11
  start-page: 515
  year: 2016
  ident: 10.1016/j.media.2019.101618_bib0048
  article-title: Computational analysis in epilepsy neuroimaging: a survey of features and methods
  publication-title: Neuroimage
  doi: 10.1016/j.nicl.2016.02.013
– volume: 18
  year: 1997
  ident: 10.1016/j.media.2019.101618_bib0020
– start-page: 6
  year: 2004
  ident: 10.1016/j.media.2019.101618_bib0009
  article-title: Multiple kernel learning, conic duality, and the SMO algorithm
– volume: 4
  start-page: 166
  issue: 4
  year: 1978
  ident: 10.1016/j.media.2019.101618_bib0024
  article-title: A free-response approach to the measurement and characterization of radiographic-observer performance
  publication-title: J. Appl. Photogr. Eng
– volume: 1
  start-page: 539
  year: 2005
  ident: 10.1016/j.media.2019.101618_bib0029
  article-title: Learning a similarity metric discriminatively, with application to face verification
– volume: 7
  start-page: 99
  year: 2011
  ident: 10.1016/j.media.2019.101618_bib0013
  article-title: Advances in MRI for “cryptogenic” epilepsies
  publication-title: Nat. Rev. Neurol
  doi: 10.1038/nrneurol.2010.199
– year: 2018
  ident: 10.1016/j.media.2019.101618_bib0005
  article-title: Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: application to epilepsy lesion screening
– volume: 8
  start-page: S104
  issue: 5
  year: 2012
  ident: 10.1016/j.media.2019.101618_bib0019
  article-title: Atherosclerotic calcification relates to cognitive function and to brain changes on magnetic resonance imaging
  publication-title: Alzheimer’s Dement.
– volume: 27
  start-page: 253
  issue: 2
  year: 2005
  ident: 10.1016/j.media.2019.101618_bib0063
  article-title: Feature-based statistical analysis of structural mr data for automatic detection of focal cortical dysplastic lesions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.03.045
– volume: 135
  start-page: 1348
  issue: 5
  year: 2012
  ident: 10.1016/j.media.2019.101618_bib0010
  article-title: A developmental and genetic classification for malformations of cortical development: update 2012
  publication-title: Brain
  doi: 10.1093/brain/aws019
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.media.2019.101618_bib0046
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 67
  start-page: 35
  issue: 1–2
  year: 2005
  ident: 10.1016/j.media.2019.101618_bib0044
  article-title: Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2005.07.009
– volume: 26
  start-page: 839
  year: 2005
  ident: 10.1016/j.media.2019.101618_bib0008
  article-title: Unified segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 2002
  year: 2002
  ident: 10.1016/j.media.2019.101618_bib0025
  article-title: Appearance-based object recognition using SVMs: which kernel should i use?
– volume: 4
  start-page: 36
  issue: 2
  year: 2018
  ident: 10.1016/j.media.2019.101618_sbref0047
  article-title: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos
  publication-title: J. Imaging
  doi: 10.3390/jimaging4020036
– start-page: 568
  year: 2018
  ident: 10.1016/j.media.2019.101618_bib0061
  article-title: Abnormality detection using deep neural networks with robust quasi-norm autoencoding and semi-supervised learning
– start-page: 490
  year: 2018
  ident: 10.1016/j.media.2019.101618_bib0035
  article-title: Deep convolutional networks for automated detection of epileptogenic brain malformations
– start-page: 234
  year: 2015
  ident: 10.1016/j.media.2019.101618_bib0058
  article-title: U-Net: convolutional networks for biomedical image segmentation
SSID ssj0007440
Score 2.5437887
Snippet •We cast the challenging problem of detecting subtle brain lesions as a per voxel outlier detection problem.•Our brain anomaly detection model is trained on...
In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data...
In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multipara-metric MRI. To compensate for the lack of annotated data...
SourceID unpaywall
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101618
SubjectTerms Adolescent
Adult
Aged
Anomalies
Anomaly detection
Brain
Brain lesions
Brain mapping
Computer Science
Data analysis
Datasets as Topic
Deep learning
Epilepsy
Epilepsy - diagnostic imaging
Feature extraction
Female
Heterogeneity
Humans
Image Interpretation, Computer-Assisted - methods
Lesions
Localization
Machine Learning
Magnetic Resonance Imaging
Male
Medical Imaging
Middle Aged
Neural networks
Neural Networks, Computer
Neuroimaging
Outliers (statistics)
Regularization
Regularized siamese network
Representations
Signal and Image Processing
Spatial discrimination
Unsupervised Machine Learning
Unsupervised representation learning
Wasserstein autoencoder
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0anQTbAx-DQWAgg3jEU5wPJ-GtQkwVggkhKo2nyIkdVujSaElA29_hj3Kv45QJUAVSVVmJ3cjK6fWxfXwPwHPlV75OEsnTylc8kqHmRVqkPM6ySvilxkHWqnyP5WwevTmJT7aAjWdhTpFxuthPZe5juETSi_ObbRkj257A9vz4_fTTcJxK8DSyJgWubN3cXDkUY5IhK-eyBzFIypXZK2Ty8feB6NopKSL_pJu7cKOvG3XxXS2XV4ago1uDFLK1mQtJefL1sO-Kw_Lyt7yOm3p3G246_smmA2DuwJap92D3SlbCPbj-zu2334UfH6xV_fni0mjWLkhRaxilwMSfqAcBOUPWy_q67RuKOi3WI40R9pFp01mdV83wU5AVBRvki4oEYeQMwM7U55pOUTKc9K8o9YdhizPrm_SSTX9trbNuxUyD8atpL9jS0AIfw3CHU3CseQ_mR68_vppxZ-vAyzgMOm78pIirqIiyxBilwirQWWy0qkJZqLgUSapkhN8i0yIthIoSZEVJpKVSpZaBCPdhUq9q8wCYrHQiYiNK0g_g_UzrLBGVwjZB4WvtQTC-47x0Oc_JemOZj-K2L7kFRk7AyAdgePBi3agZUn5sri5H8OTu3Q5sJMdBaXPDZ4iB9SMoz_ds-janayMuvgkPDkYk5i66tHlAvsVIHP3Mg6fr2xgXaLNH1WbVU50gocWq2Pfg_oDg9aMwjkdk_-sBX0P6X7r68D_rP4KdgJYnrMj9ACbdeW8eI4friifub_wTXOZC7A
  priority: 102
  providerName: Unpaywall
Title Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening
URI https://dx.doi.org/10.1016/j.media.2019.101618
https://www.ncbi.nlm.nih.gov/pubmed/31841950
https://www.proquest.com/docview/2375484609
https://www.proquest.com/docview/2327933050
https://hal.science/hal-02995591
UnpaywallVersion submittedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAeEJRXoFQGcSRsnJdjbqGiLFBWCFjUniwndmiqbTbqJqBy4M_wR5lxHi0CVQhptZHs8SbZGc-M7W9mCHmivMLTnMduUnjKDeNAu1mSJW4kRMG8XIORtSjfWTydh2_2o_01sjPEwiCsstf9nU632rpvmfT_5qQuy8lHFmCxEoYuCMYDox4OQ45VDJ79OIN5YAK8LvaKuUg9ZB6yGC8bnYH4LmFbsPLH363TpUOESf7pg26Qq21Vq9NvarE4Z5d2b5DrvUNJ0-6Zb5I1U22SjXNpBjfJlXf9Afot8vODrT1_Un43mq5KhMgaijkt4SeqDhFOwY2lbbVqa1QjK6BD0BA8H9WmscCtisInw9oStMMjKkR4Yap_eqy-VBgWSWEVv8RcHoaWx7YQ0nOanp2V02ZJTQ0KqV6d0oXBHTsK-gvW1EB5m8x3X37ambp9nQY3jwK_cY3Hs6gIs1BwY5QKCl-LyGhVBHGmopzxRMUhfDOhWZIxFXJwc3ioY6VyHfssuEPWq2Vl7hEaF5qzyLAcAQHQL7QWnBUKxviZp7VD_IE_Mu-TmGMtjYUc0GpH0jJVIlNlx1SHPB0H1V0Oj4vJ44Hx8jdRlGBlLh74GMRkvAUm7p6mexLbPLD6sHZjX5lDtgYpkr26WEkfCxGDJ-gJhzwau2Gi4-mNqsyyRRqf4-5T5Dnkbid9460CnAgCe9xRHP_lVe__76s-INd83Hiw8PUtst6ctOYheGdNtm2n3za5nL5-O53B9dWLvc8pXOez9-nBL2CQPhc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItH2gKBACRQwiCPpxnk54baqqBbY9gCt1JvlxA4EbbNRkwWVA3-GP8qM82gRqEJIqxzs8eYx45mx_c0MwEvlFZ4WInaTwlNuGAfazZIscaM0LbiXazSyFuV7FM9Ownen0eka7A-xMASr7HV_p9Ottu5bJv3XnNRlOfnIAypWwskFoXhg1MM3w8gXtALb-3GJ86AMeF3wFXeJfEg9ZEFeNjyDAF6pbaHSH383Tzc-E07yTyd0CzZWVa0uvqnF4ophOrgDt3uPkk27h74La6bahq0reQa34dZhf4J-D35-sMXnz8vvRrOmJIysYZTUEv-i6iDhDP1YtqqaVU16pEE6Qg3h8zFtWovcqhj-MiouwTpAoiKIF-X6Z2fqU0VxkQyX8UtK5mFYeWYrIb1m08vDctYumalRI9XNBVsY2rJjqMBwUY2U9-Hk4M3x_sztCzW4eRT4rWs8kUVFmIWpMEapoPB1GhmtiiDOVJRzkag4xCtPNU8yrkKBfo4IdaxUrmOfBw9gvVpW5iGwuNCCR4bnhAjA_lTrVPBC4Rg_87R2wB_4I_M-izkV01jIAa72RVqmSmKq7JjqwKtxUN0l8biePB4YL3-TRYlm5vqBL1BMxltQ5u7ZdC6pzUOzj4s3_pU7sDtIkez1RSN9qkSMrqCXOvB87MaZTsc3qjLLFdH4grafIs-BnU76xlsFNBNS6nFHcfyXV330v6_6DDZmx4dzOX979P4xbPq0C2Gx7Luw3p6vzBN01drsqZ2KvwCL8Dxt
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0anQTbAx-DQWAgg3jEU5wPJ-GtQkwVggkhKo2nyIkdVujSaElA29_hj3Kv45QJUAVSVVmJ3cjK6fWxfXwPwHPlV75OEsnTylc8kqHmRVqkPM6ySvilxkHWqnyP5WwevTmJT7aAjWdhTpFxuthPZe5juETSi_ObbRkj257A9vz4_fTTcJxK8DSyJgWubN3cXDkUY5IhK-eyBzFIypXZK2Ty8feB6NopKSL_pJu7cKOvG3XxXS2XV4ago1uDFLK1mQtJefL1sO-Kw_Lyt7yOm3p3G246_smmA2DuwJap92D3SlbCPbj-zu2334UfH6xV_fni0mjWLkhRaxilwMSfqAcBOUPWy_q67RuKOi3WI40R9pFp01mdV83wU5AVBRvki4oEYeQMwM7U55pOUTKc9K8o9YdhizPrm_SSTX9trbNuxUyD8atpL9jS0AIfw3CHU3CseQ_mR68_vppxZ-vAyzgMOm78pIirqIiyxBilwirQWWy0qkJZqLgUSapkhN8i0yIthIoSZEVJpKVSpZaBCPdhUq9q8wCYrHQiYiNK0g_g_UzrLBGVwjZB4WvtQTC-47x0Oc_JemOZj-K2L7kFRk7AyAdgePBi3agZUn5sri5H8OTu3Q5sJMdBaXPDZ4iB9SMoz_ds-janayMuvgkPDkYk5i66tHlAvsVIHP3Mg6fr2xgXaLNH1WbVU50gocWq2Pfg_oDg9aMwjkdk_-sBX0P6X7r68D_rP4KdgJYnrMj9ACbdeW8eI4friifub_wTXOZC7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularized+siamese+neural+network+for+unsupervised+outlier+detection+on+brain+multiparametric+magnetic+resonance+imaging%3A+Application+to+epilepsy+lesion+screening&rft.jtitle=Medical+image+analysis&rft.au=Alaverdyan%2C+Zaruhi&rft.au=Jung%2C+Julien&rft.au=Bouet%2C+Romain&rft.au=Lartizien%2C+Carole&rft.date=2020-02-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=60&rft.spage=1&rft_id=info:doi/10.1016%2Fj.media.2019.101618&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon