Control of an Ambulatory Exoskeleton with a Brain–Machine Interface for Spinal Cord Injury Gait Rehabilitation
The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association be...
Saved in:
| Published in | Frontiers in neuroscience Vol. 10; p. 359 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article Publication |
| Language | English |
| Published |
Switzerland
Frontiers Research Foundation
03.08.2016
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1662-453X 1662-4548 1662-453X |
| DOI | 10.3389/fnins.2016.00359 |
Cover
| Abstract | The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation). |
|---|---|
| AbstractList | The closed-loop control of rehabilitative technologies by neural commands has shown a greatpotential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces(BMI) can be used as a natural control method for such technologies. BMI provide a continuousassociation between the brain activity and peripheral stimulation, with the potential to induceplastic changes in the nervous system. Paraplegic patients, and especially the ones with incompleteinjuries, constitute a potential target population to be rehabilitated with brain-controlledrobotic systems, as they may improve their gait function after the reinforcement of their sparedintact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatoryexoskeleton–without any weight or balance support–for gait rehabilitation of incomplete spinalcord injury (SCI) patients. The integrated system was validated with three healthy subjects, andits viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm,the electroencephalographic signals of the subjects were used to decode their gait intention, andto trigger the movements of the exoskeleton. We designed a protocol with a special emphasison safety, since patients with poor balance were required to stand and walk. We continuouslymonitored their fatigue and exertion levels, and conducted usability and user-satisfaction testsafter the experiments. The results show that, for the three healthy subjects, 84.44□14.56% ofthe trials were correctly decoded. Three out of the four patients performed at least one successfulBMI session, with an average performance of 77.61□14.72%. The shared control strategyimplemented (i.e., the exoskeleton could only move during specific periods of time) was effectivein preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22□16.69% and 40.45□16.98% of the trials (for healthy subjects and patients,respectively) would have suffered from unexpected activations (i.e., false positives) without theproposed control strategy. All the patients showed low exertion and fatigue levels during theperformance of the experiments. This paper constitutes a proof-of-concept study to validate thefeasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia(i.e., patients with good prognosis for gait rehabilitation). The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain–machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton—without any weight or balance support—for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation). Peer Reviewed The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation). The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation).The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation). The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provide a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton–without any weight or balance support–for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention, and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, since patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion levels, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44□14.56% of the trials were correctly decoded. Three out of the four patients performed at least one successful BMI session, with an average performance of 77.61□14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22□16.69% and 40.45□16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation). |
| Author | Trincado-Alonso, Fernando Rajasekaran, Vijaykumar del-Ama, Antonio J. Gil-Agudo, Angel Minguez, Javier López-Larraz, Eduardo Aranda, Joan Pérez-Nombela, Soraya Montesano, Luis |
| AuthorAffiliation | 2 Instituto de Investigación en Ingeniería de Aragón (I3A) Zaragoza, Spain 4 Institute for Bioengineering of Catalunya, Universitat Politécnica de Catalunya Barcelona, Spain 5 Bit & Brain Technologies Zaragoza, Spain 1 Departamento de Informática e Ingeniería de Sistemas, University of Zaragoza Zaragoza, Spain 3 Biomechanics and Technical Aids Unit, National Hospital for Spinal Cord Injury Toledo, Spain |
| AuthorAffiliation_xml | – name: 4 Institute for Bioengineering of Catalunya, Universitat Politécnica de Catalunya Barcelona, Spain – name: 2 Instituto de Investigación en Ingeniería de Aragón (I3A) Zaragoza, Spain – name: 1 Departamento de Informática e Ingeniería de Sistemas, University of Zaragoza Zaragoza, Spain – name: 3 Biomechanics and Technical Aids Unit, National Hospital for Spinal Cord Injury Toledo, Spain – name: 5 Bit & Brain Technologies Zaragoza, Spain |
| Author_xml | – sequence: 1 givenname: Eduardo surname: López-Larraz fullname: López-Larraz, Eduardo – sequence: 2 givenname: Fernando surname: Trincado-Alonso fullname: Trincado-Alonso, Fernando – sequence: 3 givenname: Vijaykumar surname: Rajasekaran fullname: Rajasekaran, Vijaykumar – sequence: 4 givenname: Soraya surname: Pérez-Nombela fullname: Pérez-Nombela, Soraya – sequence: 5 givenname: Antonio J. surname: del-Ama fullname: del-Ama, Antonio J. – sequence: 6 givenname: Joan surname: Aranda fullname: Aranda, Joan – sequence: 7 givenname: Javier surname: Minguez fullname: Minguez, Javier – sequence: 8 givenname: Angel surname: Gil-Agudo fullname: Gil-Agudo, Angel – sequence: 9 givenname: Luis surname: Montesano fullname: Montesano, Luis |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27536214$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstuEzEUHaEi2gb2rJAlNmwS_BjPeDZIJSolUhESD4md5fFcNw6OnXo8lOz4B_6QL8F5ENpKSCws2_fec-7j3NPiyAcPRfGU4AljonlpvPX9hGJSTTBmvHlQnJCqouOSsy9Ht97HxWnfLzCuqCjpo-KY1pxVlJQnxWoafIrBoWCQ8uhs2Q5OpRDX6Px76L-CgxQ8urFpjhR6HZX1v378fKf03HpAM58gGqUBmRDRx5X1yqFpiF32LIbMcaFsQh9grlrrbFLJBv-4eGiU6-HJ_h4Vn9-cf5q-HV--v5hNzy7HmjOaxhqDIrVuKtyB4LomZdkAZZSV0NUCwGhomWhrbTgYAYrizuhGVEC7RjRVyUbFbMfbBbWQq2iXKq5lUFZuDSFeSRWT1Q5kJ0zNKeegalGWmjUcKMeZBeuqZdkwKsiOa_Artb5Rzh0ICZYbJeRWCblRQm6VyJhXO8xqaJfQachjVu5OIXc93s7lVfgmy6YmhOC_SXU_aBlBQ9QqbYGHz-ZQXFNJa0roBvNinzSG6wH6JJe21-Cc8hCGXhJBqBB5ipvQ5_dCF2GIWcDcBcOcE1JhlqOe3e7iUP6fBcoBeF9lDH0fwfzPZKp7EL3fjTwH6_4N_A32oe01 |
| CitedBy_id | crossref_primary_10_1016_j_isci_2023_106675 crossref_primary_10_1109_TNSRE_2018_2855053 crossref_primary_10_3389_fbioe_2020_00735 crossref_primary_10_1109_ACCESS_2021_3110595 crossref_primary_10_1088_1741_2552_aa70d2 crossref_primary_10_1109_ACCESS_2023_3321067 crossref_primary_10_1155_2023_2506144 crossref_primary_10_1109_ACCESS_2021_3104464 crossref_primary_10_1142_S0129065717500605 crossref_primary_10_1088_1741_2552_aa7df9 crossref_primary_10_1109_JSEN_2023_3328615 crossref_primary_10_1016_j_nicl_2018_09_035 crossref_primary_10_3389_fnbot_2024_1443010 crossref_primary_10_3389_fnins_2017_00126 crossref_primary_10_1155_2018_8948145 crossref_primary_10_1089_g4h_2020_0024 crossref_primary_10_5694_mja16_01011 crossref_primary_10_1109_MIS_2016_105 crossref_primary_10_1186_s12984_023_01144_5 crossref_primary_10_3390_jcm13175008 crossref_primary_10_1080_17483107_2023_2287153 crossref_primary_10_1177_1550059418792153 crossref_primary_10_3390_biomedicines12102415 crossref_primary_10_3389_fnins_2023_1305850 crossref_primary_10_1111_aor_14925 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_4103_1673_5374_243694 crossref_primary_10_1155_2017_1463512 crossref_primary_10_1007_s11571_020_09577_7 crossref_primary_10_3389_fnins_2021_721387 crossref_primary_10_3389_fnhum_2024_1486167 crossref_primary_10_1088_1741_2552_abd1bf crossref_primary_10_1177_1073858418775355 crossref_primary_10_3389_fnins_2020_00578 crossref_primary_10_3390_bios12121134 crossref_primary_10_3390_s21206863 crossref_primary_10_3389_frobt_2020_00108 crossref_primary_10_1109_TNSRE_2023_3294435 crossref_primary_10_1186_s12984_023_01161_4 crossref_primary_10_1155_2017_2986423 crossref_primary_10_3389_fnins_2023_1154480 crossref_primary_10_1016_j_cobme_2021_100354 crossref_primary_10_1016_j_compeleceng_2021_107113 crossref_primary_10_1002_adfm_201903762 crossref_primary_10_1038_s41598_022_24864_5 crossref_primary_10_1186_s12984_019_0517_9 crossref_primary_10_1109_ACCESS_2019_2921375 crossref_primary_10_4995_riai_2018_9861 crossref_primary_10_1177_1352458517736150 crossref_primary_10_1186_s12984_017_0345_8 crossref_primary_10_3389_fnhum_2020_613254 crossref_primary_10_1038_s41467_024_46249_0 crossref_primary_10_1146_annurev_control_012720_093904 crossref_primary_10_1007_s40846_017_0343_0 crossref_primary_10_1155_2022_2429832 crossref_primary_10_3389_fncom_2018_00003 crossref_primary_10_3389_fnins_2025_1532099 crossref_primary_10_1016_j_heliyon_2023_e18308 crossref_primary_10_3389_fnins_2018_00540 crossref_primary_10_1007_s10846_024_02074_7 crossref_primary_10_1088_1741_2552_aaa8c0 crossref_primary_10_1155_2020_8195893 crossref_primary_10_1109_TRO_2019_2943072 crossref_primary_10_3233_NRE_172394 crossref_primary_10_1088_1741_2552_aba7cd crossref_primary_10_3389_fnhum_2023_1111645 |
| Cites_doi | 10.1371/journal.pone.0131759 10.1016/S1388-2457(99)00141-8 10.1016/j.tins.2006.07.004 10.1002/ana.23879 10.3389/fneng.2014.00038 10.3389/fnhum.2014.00141 10.1093/ptj/67.2.206 10.3389/fnins.2013.00084 10.1038/nature05226 10.1016/S1388-2457(02)00057-3 10.1088/1741-2560/12/5/056009 10.1038/sj.sc.3101223 10.1371/journal.pone.0103764 10.1016/S1474-4422(13)70146-7 10.2340/1650197719702239298 10.1109/TNSRE.2012.2205707 10.1016/j.clinph.2014.05.003 10.3389/fnins.2016.00122 10.1088/1741-2560/8/6/066009 10.1038/sc.1996.94 10.1371/journal.pone.0047048 10.1080/09638280110066352 10.1016/j.neulet.2013.12.059 10.1186/1743-0003-11-153 10.1016/j.clinph.2006.04.025 10.1007/978-3-642-38556-8_1 10.1186/s12984-015-0048-y 10.1007/s40141-014-0051-4 10.1016/j.brainres.2006.12.052 10.1016/j.artmed.2013.07.004 10.1038/sj.sc.3101893 10.1186/1743-0003-10-111 10.1088/1741-2560/8/3/036005 10.1038/nrneurol.2012.219 10.1371/journal.pone.0129435 10.1109/IROS.2015.7354260 10.3389/fnins.2010.00161 10.1016/j.ijpsycho.2013.01.012 10.1016/j.jneumeth.2010.07.015 10.1080/10790268.2003.11754575 10.3389/neuro.07.003.2009 10.1113/jphysiol.2011.222851 10.1109/TBME.2013.2294203 10.1016/S0079-6123(06)59006-5 10.1186/s12984-015-0068-7 10.1523/JNEUROSCI.2266-06.2006 10.1088/1741-2560/12/3/036007 10.1198/TECH.2011.08118 10.1016/j.brainres.2005.11.083 10.1016/j.apmr.2004.08.004 10.1088/1741-2560/11/5/056009 10.1016/S0304-3940(03)00947-9 10.1016/j.apmr.2004.02.010 10.1038/sj.sc.3102172 10.3389/fnhum.2015.00708 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial Universitat Politècnica de Catalunya. GRINS - Grup de Recerca en Robòtica Intel·ligent i Sistemes |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial – sequence: 2 fullname: Universitat Politècnica de Catalunya. GRINS - Grup de Recerca en Robòtica Intel·ligent i Sistemes |
| Copyright | 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/es Copyright © 2016 López-Larraz, Trincado-Alonso, Rajasekaran, Pérez-Nombela, del-Ama, Aranda, Minguez, Gil-Agudo and Montesano. 2016 López-Larraz, Trincado-Alonso, Rajasekaran, Pérez-Nombela, del-Ama, Aranda, Minguez, Gil-Agudo and Montesano |
| Copyright_xml | – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/3.0/es/">http://creativecommons.org/licenses/by/3.0/es/</a> – notice: Copyright © 2016 López-Larraz, Trincado-Alonso, Rajasekaran, Pérez-Nombela, del-Ama, Aranda, Minguez, Gil-Agudo and Montesano. 2016 López-Larraz, Trincado-Alonso, Rajasekaran, Pérez-Nombela, del-Ama, Aranda, Minguez, Gil-Agudo and Montesano |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 XX2 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fnins.2016.00359 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Recercat PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-453X |
| ExternalDocumentID | oai_doaj_org_article_d8f75255ea7844c395e2508960c6b34c 10.3389/fnins.2016.00359 PMC4971110 oai_recercat_cat_2072_272120 27536214 10_3389_fnins_2016_00359 |
| Genre | Journal Article |
| GeographicLocations | Spain |
| GeographicLocations_xml | – name: Spain |
| GrantInformation_xml | – fundername: Ministerio de Ciencia e Innovación grantid: HYPER-CSD2009-00067 |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM W2D ACXDI C1A NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 XX2 5PM ADTOC AFFHD UNPAY |
| ID | FETCH-LOGICAL-c532t-c0ea17c960de85c71449e23234ed78eefceb38b7cf5ef8ea20dfc986e2d989643 |
| IEDL.DBID | M48 |
| ISSN | 1662-453X 1662-4548 |
| IngestDate | Tue Oct 14 19:08:16 EDT 2025 Wed Oct 29 12:12:12 EDT 2025 Tue Sep 30 16:48:40 EDT 2025 Sat Oct 18 15:00:40 EDT 2025 Thu Oct 02 11:49:49 EDT 2025 Fri Jul 25 11:41:42 EDT 2025 Thu Apr 03 07:13:07 EDT 2025 Wed Oct 01 01:43:04 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | brain machine interfaces (BMI) electroencephalography (EEG) event related desynchronization (ERD) gait rehabilitation ambulatory exoskeletons movement intention decoding movement related cortical potentials (MRCP) spinal cord injury (SCI) |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c532t-c0ea17c960de85c71449e23234ed78eefceb38b7cf5ef8ea20dfc986e2d989643 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience Edited by: Timothée Levi, University of Bordeaux 1, France Reviewed by: Jose Luis Contreras-Vidal, University of Houston, USA; Ren Xu, University of Göttingen, Germany |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2016.00359 |
| PMID | 27536214 |
| PQID | 2305511603 |
| PQPubID | 4424402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d8f75255ea7844c395e2508960c6b34c unpaywall_primary_10_3389_fnins_2016_00359 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4971110 csuc_recercat_oai_recercat_cat_2072_272120 proquest_miscellaneous_1812883230 proquest_journals_2305511603 pubmed_primary_27536214 crossref_primary_10_3389_fnins_2016_00359 crossref_citationtrail_10_3389_fnins_2016_00359 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-03 |
| PublicationDateYYYYMMDD | 2016-08-03 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neuroscience |
| PublicationTitleAlternate | Front Neurosci |
| PublicationYear | 2016 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Bohannon (B5) 1987; 67 Sburlea (B52) 2015; 12 Xu (B61) 2014; 61 Jackson (B21) 2006; 444 Bhagat (B4) 2016; 10 Ditunno (B13) 2001; 39 Maeder (B32) 2012; 20 Marino (B33) 2003; 26 Jackson (B22) 2012; 8 Fitzsimmons (B16) 2009; 3 López-Larraz (B29) 2014; 11 Venkatakrishnan (B57) 2014; 2 Rajasekaran (B47) 2015 Pfurtscheller (B43) 1999; 110 Ditunno (B14) 2008; 46 Ibáñez (B20) 2014; 11 Ramos-Murguialday (B49) 2012; 7 Shibasaki (B54) 2006; 117 Wyndaele (B60) 2006; 44 López-Larraz (B28) 2012 Clemmensen (B11) 2011; 53 Jiang (B23) 2015; 126 Rohm (B50) 2013; 59 Bortole (B7) 2015; 12 Castro (B10) 2013; 87 Castermans (B9) 2014; 561 (B46) 2014 Velu (B56) 2013; 7 Wolpaw (B59) 2002; 113 López-Larraz (B30) 2015a; 10 Graimann (B19) 2006; 159 Pichiorri (B45) 2011 Asín Prieto (B2) 2014 King (B25) 2015; 12 Borg (B6) 1970; 2 López-Larraz (B31) 2015b Gomez-Rodriguez (B18) 2011; 8 Rupp (B51) 2014; 7 Niazi (B40) 2011; 8 Mrachacz-Kersting (B36) 2012; 590 Alam (B1) 2014; 9 van Hedel (B55) 2005; 86 Pfurtscheller (B42) 2006; 1071 Bashashati (B3) 2015; 10 Kwak (B26) 2015; 12 Freund (B17) 2013; 12 Lebedev (B27) 2006; 29 Pfurtscheller (B44) 2003; 351 Nolan (B41) 2010; 192 Nene (B39) 1996; 34 Nathan (B38) 2016; 9 Ramos-Murguialday (B48) 2013; 74 Kilicarslan (B24) 2013 Müller-Putz (B37) 2007; 1137 Millán (B35) 2010; 4 Wirz (B58) 2005; 86 Demers (B12) 2002; 24 Do (B15) 2013; 10 Mattia (B34) 2013 Scivoletto (B53) 2014; 8 Cai (B8) 2006; 26 26793089 - Front Hum Neurosci. 2016 Jan 13;9:708 23147846 - Nat Rev Neurol. 2012 Dec;8(12):690-9 24910150 - Clin Neurophysiol. 2015 Jan;126(1):154-9 24111008 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5606-9 5523831 - Scand J Rehabil Med. 1970;2(2):92-8 15827916 - Arch Phys Med Rehabil. 2005 Apr;86(4):672-80 18209742 - Spinal Cord. 2008 Jul;46(7):500-6 24321081 - J Neuroeng Rehabil. 2013 Dec 09;10:111 23781166 - Front Neurosci. 2013 Jun 11;7:84 17071225 - Prog Brain Res. 2006;159:79-97 17229403 - Brain Res. 2007 Mar 16;1137(1):84-91 25084446 - PLoS One. 2014 Aug 01;9(8):e103764 23366260 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1798-801 16859758 - Trends Neurosci. 2006 Sep;29(9):536-46 23494615 - Ann Neurol. 2013 Jul;74(1):100-8 26076696 - J Neuroeng Rehabil. 2015 Jun 17;12 :54 14550907 - Neurosci Lett. 2003 Nov 6;351(1):33-6 15706542 - Arch Phys Med Rehabil. 2005 Feb;86(2):190-6 26090799 - PLoS One. 2015 Jun 19;10(6):e0129435 22027549 - J Neural Eng. 2011 Dec;8(6):066009 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91 24659962 - Front Hum Neurosci. 2014 Mar 13;8:141 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57 22250210 - J Physiol. 2012 Apr 1;590(7):1669-82 20877434 - Front Neurosci. 2010 Sep 07;4:null 26400061 - J Neuroeng Rehabil. 2015 Sep 24;12:80 24448593 - IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96 8883185 - Spinal Cord. 1996 Sep;34(9):507-24 25082789 - J Neural Eng. 2014 Oct;11(5):056009 20654646 - J Neurosci Methods. 2010 Sep 30;192(1):152-62 26177457 - PLoS One. 2015 Jul 15;10(7):e0131759 19404411 - Front Integr Neurosci. 2009 Mar 09;3:3 21474878 - J Neural Eng. 2011 Jun;8(3):036005 25110624 - Curr Phys Med Rehabil Rep. 2014 Jun 1;2(2):93-105 25915773 - J Neural Eng. 2015 Jun;12(3):036007 22801528 - IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):653-62 16876476 - Clin Neurophysiol. 2006 Nov;117(11):2341-56 17035542 - J Neurosci. 2006 Oct 11;26(41):10564-8 24064256 - Artif Intell Med. 2013 Oct;59(2):133-42 24412128 - Neurosci Lett. 2014 Feb 21;561:166-70 23827394 - Lancet Neurol. 2013 Sep;12(9):873-81 16389270 - Spinal Cord. 2006 Sep;44(9):523-9 23376596 - Int J Psychophysiol. 2013 Feb;87(2):205-14 11827151 - Disabil Rehabil. 2002 Jan 10-Feb 15;24(1-3):21-30 27065787 - Front Neurosci. 2016 Mar 31;10:122 16405926 - Brain Res. 2006 Feb 3;1071(1):145-52 25309420 - Front Neuroeng. 2014 Sep 24;7:38 16296564 - J Spinal Cord Med. 2003 Spring;26 Suppl 1:S50-6 11781863 - Spinal Cord. 2001 Dec;39(12):654-6 23071707 - PLoS One. 2012;7(10):e47048 26291321 - J Neural Eng. 2015 Oct;12(5):056009 3809245 - Phys Ther. 1987 Feb;67(2):206-7 17057705 - Nature. 2006 Nov 2;444(7115):56-60 25398273 - J Neuroeng Rehabil. 2014 Nov 15;11:153 |
| References_xml | – volume: 10 start-page: e0131759 year: 2015a ident: B30 article-title: Evolution of EEG motor rhythms after spinal cord injury: a longitudinal study publication-title: PLoS ONE doi: 10.1371/journal.pone.0131759 – volume: 110 start-page: 1842 year: 1999 ident: B43 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00141-8 – volume: 29 start-page: 536 year: 2006 ident: B27 article-title: Brain-machine interfaces: past, present and future publication-title: Trends Neurosci. doi: 10.1016/j.tins.2006.07.004 – volume: 74 start-page: 100 year: 2013 ident: B48 article-title: Brain-machine interface in chronic stroke rehabilitation: a controlled study publication-title: Ann. Neurol. doi: 10.1002/ana.23879 – volume: 7 issue: 38 year: 2014 ident: B51 article-title: Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury publication-title: Front. Neuroeng. doi: 10.3389/fneng.2014.00038 – volume: 8 issue: 141 year: 2014 ident: B53 article-title: Who is going to walk? A review of the factors influencing walking recovery after spinal cord injury publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00141 – volume: 67 start-page: 206 year: 1987 ident: B5 article-title: Interrater reliability of a modified Ashworth scale of muscle spasticity publication-title: Phys. Therapy doi: 10.1093/ptj/67.2.206 – volume: 7 issue: 84 year: 2013 ident: B56 article-title: Single-trial classification of gait and point movement preparation from human EEG publication-title: Front. Neurosci. doi: 10.3389/fnins.2013.00084 – volume: 444 start-page: 56 year: 2006 ident: B21 article-title: Long-term motor cortex plasticity induced by an electronic neural implant publication-title: Nature doi: 10.1038/nature05226 – volume: 113 start-page: 767 year: 2002 ident: B59 article-title: Brain-computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 12 start-page: 056009 year: 2015 ident: B26 article-title: A lower limb exoskeleton control system based on steady state visual evoked potentials publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/5/056009 – volume: 39 start-page: 654 year: 2001 ident: B13 article-title: Walking index for spinal cord injury (WISCI II): scale revision publication-title: Spinal Cord doi: 10.1038/sj.sc.3101223 – start-page: 268 volume-title: Proceedings of the 5th International Brain-Computer Interface Conference year: 2011 ident: B45 article-title: Towards a brain computer interface-based rehabilitation : from bench to bedside – volume: 9 start-page: e103764 year: 2014 ident: B1 article-title: A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats publication-title: PLoS ONE doi: 10.1371/journal.pone.0103764 – volume: 12 start-page: 873 year: 2013 ident: B17 article-title: MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70146-7 – volume: 2 start-page: 92 year: 1970 ident: B6 article-title: Perceived exertion as an indicator of somatic stress publication-title: Scand. J. Rehabil. Med. doi: 10.2340/1650197719702239298 – volume-title: Emerging Therapies in Neurorehabilitation, 1st Edn year: 2014 ident: B46 – volume: 20 start-page: 653 year: 2012 ident: B32 article-title: Pre-stimulus sensorimotor rhythms influence brain-computer interface classification performance publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2205707 – volume: 126 start-page: 154 year: 2015 ident: B23 article-title: A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2014.05.003 – volume: 10 issue: 122 year: 2016 ident: B4 article-title: Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00122 – volume: 8 start-page: 066009 year: 2011 ident: B40 article-title: Detection of movement intention from single-trial movement-related cortical potentials publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/6/066009 – volume: 34 start-page: 507 year: 1996 ident: B39 article-title: Paraplegic locomotion: a review publication-title: Spinal Cord doi: 10.1038/sc.1996.94 – volume: 7 start-page: e47048 year: 2012 ident: B49 article-title: Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses publication-title: PLoS ONE doi: 10.1371/journal.pone.0047048 – volume: 24 start-page: 21 year: 2002 ident: B12 article-title: Reliability, validity, and applicability of the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST 2.0) for adults with multiple sclerosis publication-title: Disabil. Rehabil. doi: 10.1080/09638280110066352 – volume: 561 start-page: 166 year: 2014 ident: B9 article-title: About the cortical origin of the low-delta and high-gamma rhythms observed in EEG signals during treadmill walking publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2013.12.059 – volume: 11 start-page: 153 year: 2014 ident: B29 article-title: Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-153 – start-page: 131 volume-title: Towards Practical Brain-Computer Interfaces year: 2013 ident: B34 article-title: Brain computer interface for hand motor function restoration and rehabilitation – volume: 117 start-page: 2341 year: 2006 ident: B54 article-title: What is the Bereitschaftspotential? publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.04.025 – start-page: 3 volume-title: Emerging Therapies in Neurorehabilitation year: 2014 ident: B2 article-title: Emerging perspectives in stroke rehabilitation doi: 10.1007/978-3-642-38556-8_1 – volume: 12 start-page: 54 year: 2015 ident: B7 article-title: The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-015-0048-y – volume: 2 start-page: 93 year: 2014 ident: B57 article-title: Applications of brain-machine interface systems in stroke recovery and rehabilitation publication-title: Curr. Phys. Med. Rehabil. Rep. doi: 10.1007/s40141-014-0051-4 – volume: 1137 start-page: 84 year: 2007 ident: B37 article-title: Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients publication-title: Brain Res. doi: 10.1016/j.brainres.2006.12.052 – volume: 59 start-page: 133 year: 2013 ident: B50 article-title: Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2013.07.004 – volume: 44 start-page: 523 year: 2006 ident: B60 article-title: Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? publication-title: Spinal Cord doi: 10.1038/sj.sc.3101893 – start-page: 1798 volume-title: 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2012 ident: B28 article-title: Continuous decoding of motor attempt and motor imagery from EEG activity in spinal cord injury patients – volume: 10 start-page: 111 year: 2013 ident: B15 article-title: Brain-computer interface controlled robotic gait orthosis publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-10-111 – volume: 8 start-page: 036005 year: 2011 ident: B18 article-title: Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036005 – volume: 8 start-page: 690 year: 2012 ident: B22 article-title: Neural interfaces for the brain and spinal cordrestoring motor function publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2012.219 – volume: 10 start-page: e0129435 year: 2015 ident: B3 article-title: Comparing different classifiers in sensory motor brain computer interfaces publication-title: PLoS ONE doi: 10.1371/journal.pone.0129435 – start-page: 223 volume-title: 14th International Conference on Rehabilitation Robotics (ICORR) year: 2015b ident: B31 article-title: Brain-machine interfaces for motor rehabilitation: is recalibration important? – start-page: 6190 volume-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) year: 2015 ident: B47 article-title: Adaptive walking assistance based on human- orthosis interaction doi: 10.1109/IROS.2015.7354260 – volume: 4 issue: 161 year: 2010 ident: B35 article-title: Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges publication-title: Front. Neurosci. doi: 10.3389/fnins.2010.00161 – volume: 87 start-page: 205 year: 2013 ident: B10 article-title: Long-term neuroplasticity in spinal cord injury patients: a study on movement-related brain potentials publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2013.01.012 – volume: 192 start-page: 152 year: 2010 ident: B41 article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.07.015 – volume: 26 start-page: S50 year: 2003 ident: B33 article-title: International standards for neurological classification of spinal cord injury publication-title: J. Spinal Cord Med. doi: 10.1080/10790268.2003.11754575 – volume: 3 start-page: 3 year: 2009 ident: B16 article-title: Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity publication-title: Front. Integr. Neurosci. doi: 10.3389/neuro.07.003.2009 – volume: 590 start-page: 1669 year: 2012 ident: B36 article-title: Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity publication-title: J. Physiol. doi: 10.1113/jphysiol.2011.222851 – volume: 61 start-page: 288 year: 2014 ident: B61 article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2294203 – volume: 159 start-page: 79 year: 2006 ident: B19 article-title: Quantification and visualization of event-related changes in oscillatory brain activity in the time-frequency domain publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(06)59006-5 – start-page: 5606 volume-title: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2013 ident: B24 article-title: High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton – volume: 12 start-page: 80 year: 2015 ident: B25 article-title: The feasibility of a brain-computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-015-0068-7 – volume: 26 start-page: 10564 year: 2006 ident: B8 article-title: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2266-06.2006 – volume: 12 start-page: 036007 year: 2015 ident: B52 article-title: Continuous detection of the self-initiated walking pre-movement state from EEG correlates without session-to-session recalibration publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/3/036007 – volume: 53 start-page: 406 year: 2011 ident: B11 article-title: Sparse discriminant analysis publication-title: Technometrics doi: 10.1198/TECH.2011.08118 – volume: 1071 start-page: 145 year: 2006 ident: B42 article-title: Walking from thought publication-title: Brain Res. doi: 10.1016/j.brainres.2005.11.083 – volume: 86 start-page: 672 year: 2005 ident: B58 article-title: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2004.08.004 – volume: 11 start-page: 056009 year: 2014 ident: B20 article-title: Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/5/056009 – volume: 351 start-page: 33 year: 2003 ident: B44 article-title: ‘Thought’ - Control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(03)00947-9 – volume: 86 start-page: 190 year: 2005 ident: B55 article-title: Assessing walking ability in subjects with spinal cord injury: validity and reliability of 3 walking tests publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2004.02.010 – volume: 46 start-page: 500 year: 2008 ident: B14 article-title: Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study publication-title: Spinal Cord doi: 10.1038/sj.sc.3102172 – volume: 9 issue: 708 year: 2016 ident: B38 article-title: Negligible motion artifacts in scalp electroencephalography (EEG) during treadmill walking publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00708 – reference: 24910150 - Clin Neurophysiol. 2015 Jan;126(1):154-9 – reference: 26177457 - PLoS One. 2015 Jul 15;10(7):e0131759 – reference: 22027549 - J Neural Eng. 2011 Dec;8(6):066009 – reference: 23827394 - Lancet Neurol. 2013 Sep;12(9):873-81 – reference: 24111008 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5606-9 – reference: 23147846 - Nat Rev Neurol. 2012 Dec;8(12):690-9 – reference: 14550907 - Neurosci Lett. 2003 Nov 6;351(1):33-6 – reference: 8883185 - Spinal Cord. 1996 Sep;34(9):507-24 – reference: 23071707 - PLoS One. 2012;7(10):e47048 – reference: 27065787 - Front Neurosci. 2016 Mar 31;10:122 – reference: 24064256 - Artif Intell Med. 2013 Oct;59(2):133-42 – reference: 16876476 - Clin Neurophysiol. 2006 Nov;117(11):2341-56 – reference: 24659962 - Front Hum Neurosci. 2014 Mar 13;8:141 – reference: 23494615 - Ann Neurol. 2013 Jul;74(1):100-8 – reference: 23781166 - Front Neurosci. 2013 Jun 11;7:84 – reference: 21474878 - J Neural Eng. 2011 Jun;8(3):036005 – reference: 26793089 - Front Hum Neurosci. 2016 Jan 13;9:708 – reference: 15706542 - Arch Phys Med Rehabil. 2005 Feb;86(2):190-6 – reference: 17057705 - Nature. 2006 Nov 2;444(7115):56-60 – reference: 19404411 - Front Integr Neurosci. 2009 Mar 09;3:3 – reference: 17035542 - J Neurosci. 2006 Oct 11;26(41):10564-8 – reference: 23366260 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1798-801 – reference: 17229403 - Brain Res. 2007 Mar 16;1137(1):84-91 – reference: 26090799 - PLoS One. 2015 Jun 19;10(6):e0129435 – reference: 26291321 - J Neural Eng. 2015 Oct;12(5):056009 – reference: 17071225 - Prog Brain Res. 2006;159:79-97 – reference: 26400061 - J Neuroeng Rehabil. 2015 Sep 24;12:80 – reference: 20877434 - Front Neurosci. 2010 Sep 07;4:null – reference: 16389270 - Spinal Cord. 2006 Sep;44(9):523-9 – reference: 25915773 - J Neural Eng. 2015 Jun;12(3):036007 – reference: 11781863 - Spinal Cord. 2001 Dec;39(12):654-6 – reference: 24448593 - IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96 – reference: 24412128 - Neurosci Lett. 2014 Feb 21;561:166-70 – reference: 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91 – reference: 5523831 - Scand J Rehabil Med. 1970;2(2):92-8 – reference: 23376596 - Int J Psychophysiol. 2013 Feb;87(2):205-14 – reference: 25082789 - J Neural Eng. 2014 Oct;11(5):056009 – reference: 18209742 - Spinal Cord. 2008 Jul;46(7):500-6 – reference: 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57 – reference: 26076696 - J Neuroeng Rehabil. 2015 Jun 17;12 :54 – reference: 16405926 - Brain Res. 2006 Feb 3;1071(1):145-52 – reference: 16859758 - Trends Neurosci. 2006 Sep;29(9):536-46 – reference: 22801528 - IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):653-62 – reference: 25398273 - J Neuroeng Rehabil. 2014 Nov 15;11:153 – reference: 16296564 - J Spinal Cord Med. 2003 Spring;26 Suppl 1:S50-6 – reference: 25084446 - PLoS One. 2014 Aug 01;9(8):e103764 – reference: 15827916 - Arch Phys Med Rehabil. 2005 Apr;86(4):672-80 – reference: 11827151 - Disabil Rehabil. 2002 Jan 10-Feb 15;24(1-3):21-30 – reference: 24321081 - J Neuroeng Rehabil. 2013 Dec 09;10:111 – reference: 20654646 - J Neurosci Methods. 2010 Sep 30;192(1):152-62 – reference: 3809245 - Phys Ther. 1987 Feb;67(2):206-7 – reference: 25110624 - Curr Phys Med Rehabil Rep. 2014 Jun 1;2(2):93-105 – reference: 22250210 - J Physiol. 2012 Apr 1;590(7):1669-82 – reference: 25309420 - Front Neuroeng. 2014 Sep 24;7:38 |
| SSID | ssj0062842 |
| Score | 2.4612386 |
| Snippet | The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from... The closed-loop control of rehabilitative technologies by neural commands has shown a greatpotential to improve motor recovery in patients suffering from... |
| SourceID | doaj unpaywall pubmedcentral csuc proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 359 |
| SubjectTerms | Ambulatory exoskeletons Balance Brain injury Brain machine interface (BMI) Brain research Clinical trials EEG Electroencephalography Electroencephalography (EEG) Event related desynchronization (ERD) Exoskeleton exoskeletons Exoskeletons(BMI) Fatigue Feasibility studies Ferides i lesions Gait Gait rehabilitation Informàtica Interfaces Medul·la espinal Movement intention decoding Movement related cortical potentials (MRCP) Nervous system Neuroscience Paralysis Paraplegia Plasticity Prostheses Rehabilitation Robotic exoskeletons Robotics Robotics in medicine Robòtica Robòtica en medicina Spinal cord Spinal cord injuries Spinal cord injury (SCI) Stroke Walking Wounds and injuries Àrees temàtiques de la UPC |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF-kL_oi6vkRPWUFETwIzffuPp6HxyHokwf3tmwmE622m5KmaP97Z5I0tCjeiw99SDdZhpnZnd9kJ78R4g2ArjQWECqnIKR8owxNleah04BlrdiP-APnT5-Lq-vs401-c9Dqi2vCBnrgQXHzStcqJ9yLTuksg9TkSFFbE_CGokwz4N2XLvfJ1LAHF7TpJsOhJKVgZl77hWdu7phPHlLmJT0IQjPYbGGk7P8bzvyzXPLu1q_d7qdbLg9i0eUDcX8EkfJ8EP6huIP-kTg595RAr3byrezLOvv35SfCXwzF6LKppfPSrUpu2NW0O4m_ms0PijqE_iS_jpVOltwwIlz1BZYomUqirR2gJGQrN2tuoCU5W6WR72QL-dUtOtkecX0_FteXH75cXIVjk4UQ8jTpQojQxQpInxXqHBQlWAYJZqUZVkoj1mSzVJcK6hxrjS6JqhqMLjCpjGYyrydi5huPz4SMalMqHecKCJdFrjQOKheVVY5xZdBkgZjvtW5hlIobYSwtZSJsJ9vbybKdbG-nQLybnlgP7Bv_uPeMDWkpUGALrrNMnD1d8C-JVGITSnmTKBDv2dzTpHxv_we5nh1dz97meoE43TuLHVc-CcQUajE37w7E62mY1iwfxDiPzXZjGVVp2kpTkuPp4FuTJAnlj0USk7LUkdcdiXo84hffel7wzCiKXDTn2eSft2rt-f9QxAtxj2fs6yLTUzHr2i2-JKzWla_6Zfkbwj4_XQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELaW7gEuCFgegQUZCSGxUtTEedg-INRWXVZIW6GFlfZmObYDhW5S-hD0xn_gH_JLmHGTaCvQcuihtRtNPON5eMbfEPLCGGGFy03INTchxBtFKG2ShVoYV5Qc5QgvOJ9O8pPz9N1FdrFHJu1dGCyrbHWiV9S2NnhG3mcITRVjU-Q3828hdo3C7GrbQkM3rRXsaw8xdoPsM0TG6pH94Xjy_qzVzTkoY5__zPGuEDjr28QlhGmyX1bTCvG7Y8xOJIhdesVQ9cxybRpY_3_5on-XVN5cV3O9-a5nsyv26vgOud04mnSwlYy7ZM9V98jBoIIg-3JDX1Jf-unP1A_IfLQtWKd1SXVFB5cFNvWqFxs6_lEvv4JlAg-R4pEt1XSITSV-__x16sswHfVniqU2joL_Sz_Msc0WHUFMCyNfgGP0rZ6u6NkOIvh9cn48_jg6CZtWDKHJErYKTeR0zA2EO9aJzHAIw6QDZyxJneXCuRI4m4iCmzJzpXCaRbY0UuSOWSkQ8usB6VV15R4RGpWy4CLOuAHvLdKF1MbqqLCZi610Mg1Iv113ZRqqsF3GTEG8gpxSnlMKOaU8pwLyqvvHfIvRcc3cI2SlAnPiFkavFMJrd1_wwyLOFIPAmEUBGSLDu4fiXP9Dvfikmp2trCh5BoGZ01ykqUlk5sCthJeOTF4kqQnIYSsuqtEPQFAnzQF53g3DzsZ0ja5cvV4q9L0EKNwE6Hi4la6OEgZRZs5iWCy-I3c7pO6OVNPPHj08lRzsGzzzqJPQ_67a4-vf4Qm5hXN9XWRySHqrxdo9BV9tVTxrNuAfEQhAjg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELYgPcCFV3ksFGQkhESlbfbltX1Mo5YKqRUCIpWT5fVDDU03UbIRhBP_gX_IL2Fmd7MQqECIw0rZ2GuNx2PPfPZ4hpBnxggrXG5CrrkJAW8UobQpC7UwrvAc5QgvOB-f5Eej7NUpW3sTLlq3So9X9zER9LhsIgW3LmI4wwFRyb4vxyWG2o7xICFlsj-z_irZyhmY4z2yNTp5PXiPQCvHG0EsPf3xOxPNUeWlzWyopp5ZLE0byP8y6_N3J8pry3KmVx_1ZPKThjq8SYp13xrHlPO9ZVXsmc-_hH38r87fIjda-5UOmvq3yRVX3iHbgxKw-8WKPqe1R2m9Vb9NZsPGD55OPdUlHVwUmCtsOl_Rg0_TxTkoPDA8Ke4EU033MVfFty9fj2vvTkfrrUqvjaNgVtO3M8zeRYcAlaHkAwgCfanHFX2zEWj8LhkdHrwbHoVthofQsDSpQhM5HXMDw2adYIYDupMObLw0c5YL5zwITCoKbjxzXjidRNYbKXKXWCkwktg90iunpXtAaORlwUXMuAGjMNKF1MbqqLDMxVY6mQWkvx5cZVqqMAvHRAEMQsaqmrEKGatqxgbkRffFrAn98Ye6uygvCrSUmxtdKYza3b3gk0Q8UQng7SQKyD5KVdco1q3_gPFW7XgrKzxngPec5iLLTCqZA2sVOh2ZvEgzE5CdtUyqdtkBgjB-W4yZwwPytCuGBQNPgXTppsuFQpNOwDqeAh33GxHuKEkAvOZJDMziG8K9QepmSTk-q4OSZ5KD2oQ2d7tp8FeuPfyXyo_IdXypnS_THdKr5kv3GAzCqnjSTvnv81lhAw priority: 102 providerName: Unpaywall |
| Title | Control of an Ambulatory Exoskeleton with a Brain–Machine Interface for Spinal Cord Injury Gait Rehabilitation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27536214 https://www.proquest.com/docview/2305511603 https://www.proquest.com/docview/1812883230 https://recercat.cat/handle/2072/272120 https://pubmed.ncbi.nlm.nih.gov/PMC4971110 https://www.frontiersin.org/articles/10.3389/fnins.2016.00359/pdf https://doaj.org/article/d8f75255ea7844c395e2508960c6b34c |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-453X dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20071015 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-453X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M48 dateStart: 20071001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dixMxEA_ae9AXUU-91bNEEMGD9fY7yYNIW3p3CC3HaaE-hWw2q9VetvYDr_-9M-l2tVj1oYU2aZhmJju_XyaZIeSl1rzgJtM-U0z7wDdyXxRx6iuuTV4ytCO84DwYZhej5P04Hf-6Hl1P4GIvtcN6UqP59M3N9_U7WPBvkXGCvz0t7cRi5u0Q4wpxKm6TA_BTAgs5DJImppDBg9jFPjO8JwRAfRO03DsCpggGHJ9FYbLjr1p6sdJ1dv99kPTPk5V3Vnam1j_UdPqb2zq7T-7VeJN2NgbygNwy9iE57Fjg2tdr-oq6E6Bua_2Q2N7m3DqtSqos7VznWNurmq9p_6ZafAMHBUCR4s4tVbSLtSX8gTuLaajbWCyVNhRAMP0ww1pbtAfEFlq-gtrouZos6dVOWvBHZHTW_9i78Ot6DL5O42jp68CokGngPIXhqWbAxYQBRBYnpmDcmBLUG_Oc6TI1JTcqCopSC56ZqBAc8349Ji1bWXNEaFCKnPEwZRogXKByoXShgrxITVgIIxKPnG5nXepaKqyZMZVAWlBl0qlMosqkU5lHXje_mG0Sdfyj7wkqUoJPMXOtlhJzbDcf8BUFLJIRsOMo8EgX1d0Min3dF9X8s6yXtyx4yVJgZ0YxniQ6FqkBbAl_OtBZHifaI8dbY5FbG5cRZlsLsc63R140zbC8MWajrKlWC4kAjMNTNwY5nmxsq5Fka6IeYTtWtyPqboudfHEpxBPBwMnBmCeNff531p7-VYBn5C52c-ci42PSWs5X5jlgtWXeJgfd_vDyqu32OuD9fBy23bKEltHwsvPpJ621QQc |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9lAuCCg_CwWMBEhUijZxfuwcKrS7bNnSboVKK_XmOo4DC9tk2R-VvfEOvA8Pw5Mw402irkDl1EMOiRNr4hnPzGePZwh5obVIhYm0wxXXDuCNxIlTP3SU0CbJOMoRHnAeHEb9k-D9aXi6Rn5VZ2EwrLLSiVZRp4XGNfIWw9RUHhZFfjP-5mDVKNxdrUpoqLK0QrpjU4yVBzv2zeICINx0Z-8t8PslY7u9427fKasMODr02czRrlEe1-DJp0aEmgPCiA34GX5gUi6MyYBoXyRcZ6HJhFHMTTMdi8iwNBaYzQr6vUHWAz-IAfytd3qHH44qWxCB8rf7rRGeTQJwsNwoBVgYt7J8mGO-cA93Q3zMlXrJMDb0dK7LMgL_8n3_DuHcmOdjtbhQo9El-7h7m9wqHVvaXkriHbJm8rtks50DqD9f0FfUhpraNfxNMu4uA-RpkVGV0_Z5gkXEismC9r4X069gCcEjpbhETBXtYBGL3z9-DmzYp6F2DTNT2lDwt-nHMZb1ol1gALR8AQmh79RwRo9WMpDfIyfXwpT7pJEXuXlIqJvFCRdeyDV4i65KYqVT5SZpaLw0NnHQJK1q3KUuqcLyHCMJ-Ag5JS2nJHJKWk41yev6i_EyJ8gV724jKyWYLzPRaiYxnXd9gxdzOZMMgDhzm6SDDK87xXftg2LySZaaRKYi4yEAQaO4CALtx6EBNxZ-2tVR4ge6SbYqcZGlPgKC6tnTJM_rZtAkuD2kclPMpxJ9PQEK3gc6Hiylq6aEAaqNmAeDxVfkboXU1ZZ8-NlmK4dpAfYU-tyuJfS_o_bo6n94Rjb6x4MDebB3uP-Y3MTvbEymv0Uas8ncPAE_cZY8LScjJWfXPf__AI4nfxI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKgEXBJSfQAEjARKVVtl_ew8VStKEltKoKlTqzfXaXgikuyE_KrnxDrwVj8GTMOPsrhqByqmHHDbetWzPeOYbz3iGkBdKcc1NrBwmmXLA3kidRAeRI7kyacaQj_CC88Eg3j0O351EJ2vkV3UXBsMqK5loBbUuFJ6Rt3xMTeVhUeRWVoZFHO7034y_OVhBCj2tVTkNWZZZ0Ns23Vh5yWPfLM7BnJtu7-0A7V_6fr_3sbvrlBUHHBUF_sxRrpEeU4DqteGRYmBtJAYwRxAazbgxGUwg4ClTWWQybqTv6kwlPDa-TjhmtoJ-r5F1dH6BkFjv9AaHR5VeiEERWN9rjPeUwFBYOk3BRExaWT7MMXe4h56RAPOmXlCSDTWdq7KkwL9w8N_hnDfm-VguzuVodEFX9m-TWyXIpe0lV94haya_SzbaORj4Zwv6itqwU3uev0HG3WWwPC0yKnPaPkuxoFgxWdDe92L6FbQioFOKx8VU0g4WtPj94-eBDQE11J5nZlIZCtibfhhjiS_aBQJAyxfgFvpWDmf0aCUb-T1yfCVEuU8aeZGbh4S6WZIy7kVMAXJ0ZZpIpaWb6sh4OjFJ2CStat2FKkeFpTpGAmwlpJSwlBJIKWEp1SSv6y_Gy_wgl7y7haQUoMrMRMmZwNTe9QP-fJf5wgej3HebpIMErzvFd-0fxeSTKKWK0DxjERiFRjIehgrYzgCkhUm7Kk6DUDXJZsUuopRNMKB6JzXJ87oZpAq6imRuivlUIO7jIOwDGMeDJXfVI_HBwo19DxaLrfDdylBXW_LhZ5u5PEwY6Fboc6vm0P-u2qPL5_CMXAc5IN7vDfYfk5v4mQ3PDDZJYzaZmycAGWfp03IvUnJ61dv_DzuXg0E |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELYgPcCFV3ksFGQkhESlbfbltX1Mo5YKqRUCIpWT5fVDDU03UbIRhBP_gX_IL2Fmd7MQqECIw0rZ2GuNx2PPfPZ4hpBnxggrXG5CrrkJAW8UobQpC7UwrvAc5QgvOB-f5Eej7NUpW3sTLlq3So9X9zER9LhsIgW3LmI4wwFRyb4vxyWG2o7xICFlsj-z_irZyhmY4z2yNTp5PXiPQCvHG0EsPf3xOxPNUeWlzWyopp5ZLE0byP8y6_N3J8pry3KmVx_1ZPKThjq8SYp13xrHlPO9ZVXsmc-_hH38r87fIjda-5UOmvq3yRVX3iHbgxKw-8WKPqe1R2m9Vb9NZsPGD55OPdUlHVwUmCtsOl_Rg0_TxTkoPDA8Ke4EU033MVfFty9fj2vvTkfrrUqvjaNgVtO3M8zeRYcAlaHkAwgCfanHFX2zEWj8LhkdHrwbHoVthofQsDSpQhM5HXMDw2adYIYDupMObLw0c5YL5zwITCoKbjxzXjidRNYbKXKXWCkwktg90iunpXtAaORlwUXMuAGjMNKF1MbqqLDMxVY6mQWkvx5cZVqqMAvHRAEMQsaqmrEKGatqxgbkRffFrAn98Ye6uygvCrSUmxtdKYza3b3gk0Q8UQng7SQKyD5KVdco1q3_gPFW7XgrKzxngPec5iLLTCqZA2sVOh2ZvEgzE5CdtUyqdtkBgjB-W4yZwwPytCuGBQNPgXTppsuFQpNOwDqeAh33GxHuKEkAvOZJDMziG8K9QepmSTk-q4OSZ5KD2oQ2d7tp8FeuPfyXyo_IdXypnS_THdKr5kv3GAzCqnjSTvnv81lhAw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+an+Ambulatory+Exoskeleton+with+a+Brain-Machine+Interface+for+Spinal+Cord+Injury+Gait+Rehabilitation&rft.jtitle=Frontiers+in+neuroscience&rft.au=L%C3%B3pez-Larraz%2C+Eduardo&rft.au=Trincado-Alonso%2C+Fernando&rft.au=Rajasekaran%2C+Vijaykumar&rft.au=P%C3%A9rez-Nombela%2C+Soraya&rft.date=2016-08-03&rft.issn=1662-4548&rft.volume=10&rft.spage=359&rft_id=info:doi/10.3389%2Ffnins.2016.00359&rft_id=info%3Apmid%2F27536214&rft.externalDocID=27536214 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |