Control of an Ambulatory Exoskeleton with a Brain–Machine Interface for Spinal Cord Injury Gait Rehabilitation

The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association be...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 10; p. 359
Main Authors López-Larraz, Eduardo, Trincado-Alonso, Fernando, Rajasekaran, Vijaykumar, Pérez-Nombela, Soraya, del-Ama, Antonio J., Aranda, Joan, Minguez, Javier, Gil-Agudo, Angel, Montesano, Luis
Format Journal Article Publication
LanguageEnglish
Published Switzerland Frontiers Research Foundation 03.08.2016
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2016.00359

Cover

Abstract The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation).
AbstractList The closed-loop control of rehabilitative technologies by neural commands has shown a greatpotential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces(BMI) can be used as a natural control method for such technologies. BMI provide a continuousassociation between the brain activity and peripheral stimulation, with the potential to induceplastic changes in the nervous system. Paraplegic patients, and especially the ones with incompleteinjuries, constitute a potential target population to be rehabilitated with brain-controlledrobotic systems, as they may improve their gait function after the reinforcement of their sparedintact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatoryexoskeleton–without any weight or balance support–for gait rehabilitation of incomplete spinalcord injury (SCI) patients. The integrated system was validated with three healthy subjects, andits viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm,the electroencephalographic signals of the subjects were used to decode their gait intention, andto trigger the movements of the exoskeleton. We designed a protocol with a special emphasison safety, since patients with poor balance were required to stand and walk. We continuouslymonitored their fatigue and exertion levels, and conducted usability and user-satisfaction testsafter the experiments. The results show that, for the three healthy subjects, 84.44□14.56% ofthe trials were correctly decoded. Three out of the four patients performed at least one successfulBMI session, with an average performance of 77.61□14.72%. The shared control strategyimplemented (i.e., the exoskeleton could only move during specific periods of time) was effectivein preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22□16.69% and 40.45□16.98% of the trials (for healthy subjects and patients,respectively) would have suffered from unexpected activations (i.e., false positives) without theproposed control strategy. All the patients showed low exertion and fatigue levels during theperformance of the experiments. This paper constitutes a proof-of-concept study to validate thefeasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia(i.e., patients with good prognosis for gait rehabilitation).
The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain–machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton—without any weight or balance support—for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation). Peer Reviewed
The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation).
The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation).The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation).
The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provide a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton–without any weight or balance support–for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention, and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, since patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion levels, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44□14.56% of the trials were correctly decoded. Three out of the four patients performed at least one successful BMI session, with an average performance of 77.61□14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22□16.69% and 40.45□16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation).
Author Trincado-Alonso, Fernando
Rajasekaran, Vijaykumar
del-Ama, Antonio J.
Gil-Agudo, Angel
Minguez, Javier
López-Larraz, Eduardo
Aranda, Joan
Pérez-Nombela, Soraya
Montesano, Luis
AuthorAffiliation 2 Instituto de Investigación en Ingeniería de Aragón (I3A) Zaragoza, Spain
4 Institute for Bioengineering of Catalunya, Universitat Politécnica de Catalunya Barcelona, Spain
5 Bit & Brain Technologies Zaragoza, Spain
1 Departamento de Informática e Ingeniería de Sistemas, University of Zaragoza Zaragoza, Spain
3 Biomechanics and Technical Aids Unit, National Hospital for Spinal Cord Injury Toledo, Spain
AuthorAffiliation_xml – name: 4 Institute for Bioengineering of Catalunya, Universitat Politécnica de Catalunya Barcelona, Spain
– name: 2 Instituto de Investigación en Ingeniería de Aragón (I3A) Zaragoza, Spain
– name: 1 Departamento de Informática e Ingeniería de Sistemas, University of Zaragoza Zaragoza, Spain
– name: 3 Biomechanics and Technical Aids Unit, National Hospital for Spinal Cord Injury Toledo, Spain
– name: 5 Bit & Brain Technologies Zaragoza, Spain
Author_xml – sequence: 1
  givenname: Eduardo
  surname: López-Larraz
  fullname: López-Larraz, Eduardo
– sequence: 2
  givenname: Fernando
  surname: Trincado-Alonso
  fullname: Trincado-Alonso, Fernando
– sequence: 3
  givenname: Vijaykumar
  surname: Rajasekaran
  fullname: Rajasekaran, Vijaykumar
– sequence: 4
  givenname: Soraya
  surname: Pérez-Nombela
  fullname: Pérez-Nombela, Soraya
– sequence: 5
  givenname: Antonio J.
  surname: del-Ama
  fullname: del-Ama, Antonio J.
– sequence: 6
  givenname: Joan
  surname: Aranda
  fullname: Aranda, Joan
– sequence: 7
  givenname: Javier
  surname: Minguez
  fullname: Minguez, Javier
– sequence: 8
  givenname: Angel
  surname: Gil-Agudo
  fullname: Gil-Agudo, Angel
– sequence: 9
  givenname: Luis
  surname: Montesano
  fullname: Montesano, Luis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27536214$$D View this record in MEDLINE/PubMed
BookMark eNqNUstuEzEUHaEi2gb2rJAlNmwS_BjPeDZIJSolUhESD4md5fFcNw6OnXo8lOz4B_6QL8F5ENpKSCws2_fec-7j3NPiyAcPRfGU4AljonlpvPX9hGJSTTBmvHlQnJCqouOSsy9Ht97HxWnfLzCuqCjpo-KY1pxVlJQnxWoafIrBoWCQ8uhs2Q5OpRDX6Px76L-CgxQ8urFpjhR6HZX1v378fKf03HpAM58gGqUBmRDRx5X1yqFpiF32LIbMcaFsQh9grlrrbFLJBv-4eGiU6-HJ_h4Vn9-cf5q-HV--v5hNzy7HmjOaxhqDIrVuKtyB4LomZdkAZZSV0NUCwGhomWhrbTgYAYrizuhGVEC7RjRVyUbFbMfbBbWQq2iXKq5lUFZuDSFeSRWT1Q5kJ0zNKeegalGWmjUcKMeZBeuqZdkwKsiOa_Artb5Rzh0ICZYbJeRWCblRQm6VyJhXO8xqaJfQachjVu5OIXc93s7lVfgmy6YmhOC_SXU_aBlBQ9QqbYGHz-ZQXFNJa0roBvNinzSG6wH6JJe21-Cc8hCGXhJBqBB5ipvQ5_dCF2GIWcDcBcOcE1JhlqOe3e7iUP6fBcoBeF9lDH0fwfzPZKp7EL3fjTwH6_4N_A32oe01
CitedBy_id crossref_primary_10_1016_j_isci_2023_106675
crossref_primary_10_1109_TNSRE_2018_2855053
crossref_primary_10_3389_fbioe_2020_00735
crossref_primary_10_1109_ACCESS_2021_3110595
crossref_primary_10_1088_1741_2552_aa70d2
crossref_primary_10_1109_ACCESS_2023_3321067
crossref_primary_10_1155_2023_2506144
crossref_primary_10_1109_ACCESS_2021_3104464
crossref_primary_10_1142_S0129065717500605
crossref_primary_10_1088_1741_2552_aa7df9
crossref_primary_10_1109_JSEN_2023_3328615
crossref_primary_10_1016_j_nicl_2018_09_035
crossref_primary_10_3389_fnbot_2024_1443010
crossref_primary_10_3389_fnins_2017_00126
crossref_primary_10_1155_2018_8948145
crossref_primary_10_1089_g4h_2020_0024
crossref_primary_10_5694_mja16_01011
crossref_primary_10_1109_MIS_2016_105
crossref_primary_10_1186_s12984_023_01144_5
crossref_primary_10_3390_jcm13175008
crossref_primary_10_1080_17483107_2023_2287153
crossref_primary_10_1177_1550059418792153
crossref_primary_10_3390_biomedicines12102415
crossref_primary_10_3389_fnins_2023_1305850
crossref_primary_10_1111_aor_14925
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_4103_1673_5374_243694
crossref_primary_10_1155_2017_1463512
crossref_primary_10_1007_s11571_020_09577_7
crossref_primary_10_3389_fnins_2021_721387
crossref_primary_10_3389_fnhum_2024_1486167
crossref_primary_10_1088_1741_2552_abd1bf
crossref_primary_10_1177_1073858418775355
crossref_primary_10_3389_fnins_2020_00578
crossref_primary_10_3390_bios12121134
crossref_primary_10_3390_s21206863
crossref_primary_10_3389_frobt_2020_00108
crossref_primary_10_1109_TNSRE_2023_3294435
crossref_primary_10_1186_s12984_023_01161_4
crossref_primary_10_1155_2017_2986423
crossref_primary_10_3389_fnins_2023_1154480
crossref_primary_10_1016_j_cobme_2021_100354
crossref_primary_10_1016_j_compeleceng_2021_107113
crossref_primary_10_1002_adfm_201903762
crossref_primary_10_1038_s41598_022_24864_5
crossref_primary_10_1186_s12984_019_0517_9
crossref_primary_10_1109_ACCESS_2019_2921375
crossref_primary_10_4995_riai_2018_9861
crossref_primary_10_1177_1352458517736150
crossref_primary_10_1186_s12984_017_0345_8
crossref_primary_10_3389_fnhum_2020_613254
crossref_primary_10_1038_s41467_024_46249_0
crossref_primary_10_1146_annurev_control_012720_093904
crossref_primary_10_1007_s40846_017_0343_0
crossref_primary_10_1155_2022_2429832
crossref_primary_10_3389_fncom_2018_00003
crossref_primary_10_3389_fnins_2025_1532099
crossref_primary_10_1016_j_heliyon_2023_e18308
crossref_primary_10_3389_fnins_2018_00540
crossref_primary_10_1007_s10846_024_02074_7
crossref_primary_10_1088_1741_2552_aaa8c0
crossref_primary_10_1155_2020_8195893
crossref_primary_10_1109_TRO_2019_2943072
crossref_primary_10_3233_NRE_172394
crossref_primary_10_1088_1741_2552_aba7cd
crossref_primary_10_3389_fnhum_2023_1111645
Cites_doi 10.1371/journal.pone.0131759
10.1016/S1388-2457(99)00141-8
10.1016/j.tins.2006.07.004
10.1002/ana.23879
10.3389/fneng.2014.00038
10.3389/fnhum.2014.00141
10.1093/ptj/67.2.206
10.3389/fnins.2013.00084
10.1038/nature05226
10.1016/S1388-2457(02)00057-3
10.1088/1741-2560/12/5/056009
10.1038/sj.sc.3101223
10.1371/journal.pone.0103764
10.1016/S1474-4422(13)70146-7
10.2340/1650197719702239298
10.1109/TNSRE.2012.2205707
10.1016/j.clinph.2014.05.003
10.3389/fnins.2016.00122
10.1088/1741-2560/8/6/066009
10.1038/sc.1996.94
10.1371/journal.pone.0047048
10.1080/09638280110066352
10.1016/j.neulet.2013.12.059
10.1186/1743-0003-11-153
10.1016/j.clinph.2006.04.025
10.1007/978-3-642-38556-8_1
10.1186/s12984-015-0048-y
10.1007/s40141-014-0051-4
10.1016/j.brainres.2006.12.052
10.1016/j.artmed.2013.07.004
10.1038/sj.sc.3101893
10.1186/1743-0003-10-111
10.1088/1741-2560/8/3/036005
10.1038/nrneurol.2012.219
10.1371/journal.pone.0129435
10.1109/IROS.2015.7354260
10.3389/fnins.2010.00161
10.1016/j.ijpsycho.2013.01.012
10.1016/j.jneumeth.2010.07.015
10.1080/10790268.2003.11754575
10.3389/neuro.07.003.2009
10.1113/jphysiol.2011.222851
10.1109/TBME.2013.2294203
10.1016/S0079-6123(06)59006-5
10.1186/s12984-015-0068-7
10.1523/JNEUROSCI.2266-06.2006
10.1088/1741-2560/12/3/036007
10.1198/TECH.2011.08118
10.1016/j.brainres.2005.11.083
10.1016/j.apmr.2004.08.004
10.1088/1741-2560/11/5/056009
10.1016/S0304-3940(03)00947-9
10.1016/j.apmr.2004.02.010
10.1038/sj.sc.3102172
10.3389/fnhum.2015.00708
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. GRINS - Grup de Recerca en Robòtica Intel·ligent i Sistemes
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. GRINS - Grup de Recerca en Robòtica Intel·ligent i Sistemes
Copyright 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/es
Copyright © 2016 López-Larraz, Trincado-Alonso, Rajasekaran, Pérez-Nombela, del-Ama, Aranda, Minguez, Gil-Agudo and Montesano. 2016 López-Larraz, Trincado-Alonso, Rajasekaran, Pérez-Nombela, del-Ama, Aranda, Minguez, Gil-Agudo and Montesano
Copyright_xml – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/3.0/es/">http://creativecommons.org/licenses/by/3.0/es/</a>
– notice: Copyright © 2016 López-Larraz, Trincado-Alonso, Rajasekaran, Pérez-Nombela, del-Ama, Aranda, Minguez, Gil-Agudo and Montesano. 2016 López-Larraz, Trincado-Alonso, Rajasekaran, Pérez-Nombela, del-Ama, Aranda, Minguez, Gil-Agudo and Montesano
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
XX2
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fnins.2016.00359
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Recercat
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_d8f75255ea7844c395e2508960c6b34c
10.3389/fnins.2016.00359
PMC4971110
oai_recercat_cat_2072_272120
27536214
10_3389_fnins_2016_00359
Genre Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación
  grantid: HYPER-CSD2009-00067
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
W2D
ACXDI
C1A
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
XX2
5PM
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c532t-c0ea17c960de85c71449e23234ed78eefceb38b7cf5ef8ea20dfc986e2d989643
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Tue Oct 14 19:08:16 EDT 2025
Wed Oct 29 12:12:12 EDT 2025
Tue Sep 30 16:48:40 EDT 2025
Sat Oct 18 15:00:40 EDT 2025
Thu Oct 02 11:49:49 EDT 2025
Fri Jul 25 11:41:42 EDT 2025
Thu Apr 03 07:13:07 EDT 2025
Wed Oct 01 01:43:04 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords brain machine interfaces (BMI)
electroencephalography (EEG)
event related desynchronization (ERD)
gait rehabilitation
ambulatory exoskeletons
movement intention decoding
movement related cortical potentials (MRCP)
spinal cord injury (SCI)
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-c0ea17c960de85c71449e23234ed78eefceb38b7cf5ef8ea20dfc986e2d989643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience
Edited by: Timothée Levi, University of Bordeaux 1, France
Reviewed by: Jose Luis Contreras-Vidal, University of Houston, USA; Ren Xu, University of Göttingen, Germany
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2016.00359
PMID 27536214
PQID 2305511603
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_d8f75255ea7844c395e2508960c6b34c
unpaywall_primary_10_3389_fnins_2016_00359
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4971110
csuc_recercat_oai_recercat_cat_2072_272120
proquest_miscellaneous_1812883230
proquest_journals_2305511603
pubmed_primary_27536214
crossref_primary_10_3389_fnins_2016_00359
crossref_citationtrail_10_3389_fnins_2016_00359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-03
PublicationDateYYYYMMDD 2016-08-03
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-03
  day: 03
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2016
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Bohannon (B5) 1987; 67
Sburlea (B52) 2015; 12
Xu (B61) 2014; 61
Jackson (B21) 2006; 444
Bhagat (B4) 2016; 10
Ditunno (B13) 2001; 39
Maeder (B32) 2012; 20
Marino (B33) 2003; 26
Jackson (B22) 2012; 8
Fitzsimmons (B16) 2009; 3
López-Larraz (B29) 2014; 11
Venkatakrishnan (B57) 2014; 2
Rajasekaran (B47) 2015
Pfurtscheller (B43) 1999; 110
Ditunno (B14) 2008; 46
Ibáñez (B20) 2014; 11
Ramos-Murguialday (B49) 2012; 7
Shibasaki (B54) 2006; 117
Wyndaele (B60) 2006; 44
López-Larraz (B28) 2012
Clemmensen (B11) 2011; 53
Jiang (B23) 2015; 126
Rohm (B50) 2013; 59
Bortole (B7) 2015; 12
Castro (B10) 2013; 87
Castermans (B9) 2014; 561
(B46) 2014
Velu (B56) 2013; 7
Wolpaw (B59) 2002; 113
López-Larraz (B30) 2015a; 10
Graimann (B19) 2006; 159
Pichiorri (B45) 2011
Asín Prieto (B2) 2014
King (B25) 2015; 12
Borg (B6) 1970; 2
López-Larraz (B31) 2015b
Gomez-Rodriguez (B18) 2011; 8
Rupp (B51) 2014; 7
Niazi (B40) 2011; 8
Mrachacz-Kersting (B36) 2012; 590
Alam (B1) 2014; 9
van Hedel (B55) 2005; 86
Pfurtscheller (B42) 2006; 1071
Bashashati (B3) 2015; 10
Kwak (B26) 2015; 12
Freund (B17) 2013; 12
Lebedev (B27) 2006; 29
Pfurtscheller (B44) 2003; 351
Nolan (B41) 2010; 192
Nene (B39) 1996; 34
Nathan (B38) 2016; 9
Ramos-Murguialday (B48) 2013; 74
Kilicarslan (B24) 2013
Müller-Putz (B37) 2007; 1137
Millán (B35) 2010; 4
Wirz (B58) 2005; 86
Demers (B12) 2002; 24
Do (B15) 2013; 10
Mattia (B34) 2013
Scivoletto (B53) 2014; 8
Cai (B8) 2006; 26
26793089 - Front Hum Neurosci. 2016 Jan 13;9:708
23147846 - Nat Rev Neurol. 2012 Dec;8(12):690-9
24910150 - Clin Neurophysiol. 2015 Jan;126(1):154-9
24111008 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5606-9
5523831 - Scand J Rehabil Med. 1970;2(2):92-8
15827916 - Arch Phys Med Rehabil. 2005 Apr;86(4):672-80
18209742 - Spinal Cord. 2008 Jul;46(7):500-6
24321081 - J Neuroeng Rehabil. 2013 Dec 09;10:111
23781166 - Front Neurosci. 2013 Jun 11;7:84
17071225 - Prog Brain Res. 2006;159:79-97
17229403 - Brain Res. 2007 Mar 16;1137(1):84-91
25084446 - PLoS One. 2014 Aug 01;9(8):e103764
23366260 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1798-801
16859758 - Trends Neurosci. 2006 Sep;29(9):536-46
23494615 - Ann Neurol. 2013 Jul;74(1):100-8
26076696 - J Neuroeng Rehabil. 2015 Jun 17;12 :54
14550907 - Neurosci Lett. 2003 Nov 6;351(1):33-6
15706542 - Arch Phys Med Rehabil. 2005 Feb;86(2):190-6
26090799 - PLoS One. 2015 Jun 19;10(6):e0129435
22027549 - J Neural Eng. 2011 Dec;8(6):066009
12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91
24659962 - Front Hum Neurosci. 2014 Mar 13;8:141
10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57
22250210 - J Physiol. 2012 Apr 1;590(7):1669-82
20877434 - Front Neurosci. 2010 Sep 07;4:null
26400061 - J Neuroeng Rehabil. 2015 Sep 24;12:80
24448593 - IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96
8883185 - Spinal Cord. 1996 Sep;34(9):507-24
25082789 - J Neural Eng. 2014 Oct;11(5):056009
20654646 - J Neurosci Methods. 2010 Sep 30;192(1):152-62
26177457 - PLoS One. 2015 Jul 15;10(7):e0131759
19404411 - Front Integr Neurosci. 2009 Mar 09;3:3
21474878 - J Neural Eng. 2011 Jun;8(3):036005
25110624 - Curr Phys Med Rehabil Rep. 2014 Jun 1;2(2):93-105
25915773 - J Neural Eng. 2015 Jun;12(3):036007
22801528 - IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):653-62
16876476 - Clin Neurophysiol. 2006 Nov;117(11):2341-56
17035542 - J Neurosci. 2006 Oct 11;26(41):10564-8
24064256 - Artif Intell Med. 2013 Oct;59(2):133-42
24412128 - Neurosci Lett. 2014 Feb 21;561:166-70
23827394 - Lancet Neurol. 2013 Sep;12(9):873-81
16389270 - Spinal Cord. 2006 Sep;44(9):523-9
23376596 - Int J Psychophysiol. 2013 Feb;87(2):205-14
11827151 - Disabil Rehabil. 2002 Jan 10-Feb 15;24(1-3):21-30
27065787 - Front Neurosci. 2016 Mar 31;10:122
16405926 - Brain Res. 2006 Feb 3;1071(1):145-52
25309420 - Front Neuroeng. 2014 Sep 24;7:38
16296564 - J Spinal Cord Med. 2003 Spring;26 Suppl 1:S50-6
11781863 - Spinal Cord. 2001 Dec;39(12):654-6
23071707 - PLoS One. 2012;7(10):e47048
26291321 - J Neural Eng. 2015 Oct;12(5):056009
3809245 - Phys Ther. 1987 Feb;67(2):206-7
17057705 - Nature. 2006 Nov 2;444(7115):56-60
25398273 - J Neuroeng Rehabil. 2014 Nov 15;11:153
References_xml – volume: 10
  start-page: e0131759
  year: 2015a
  ident: B30
  article-title: Evolution of EEG motor rhythms after spinal cord injury: a longitudinal study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0131759
– volume: 110
  start-page: 1842
  year: 1999
  ident: B43
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 29
  start-page: 536
  year: 2006
  ident: B27
  article-title: Brain-machine interfaces: past, present and future
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2006.07.004
– volume: 74
  start-page: 100
  year: 2013
  ident: B48
  article-title: Brain-machine interface in chronic stroke rehabilitation: a controlled study
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23879
– volume: 7
  issue: 38
  year: 2014
  ident: B51
  article-title: Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury
  publication-title: Front. Neuroeng.
  doi: 10.3389/fneng.2014.00038
– volume: 8
  issue: 141
  year: 2014
  ident: B53
  article-title: Who is going to walk? A review of the factors influencing walking recovery after spinal cord injury
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00141
– volume: 67
  start-page: 206
  year: 1987
  ident: B5
  article-title: Interrater reliability of a modified Ashworth scale of muscle spasticity
  publication-title: Phys. Therapy
  doi: 10.1093/ptj/67.2.206
– volume: 7
  issue: 84
  year: 2013
  ident: B56
  article-title: Single-trial classification of gait and point movement preparation from human EEG
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2013.00084
– volume: 444
  start-page: 56
  year: 2006
  ident: B21
  article-title: Long-term motor cortex plasticity induced by an electronic neural implant
  publication-title: Nature
  doi: 10.1038/nature05226
– volume: 113
  start-page: 767
  year: 2002
  ident: B59
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 12
  start-page: 056009
  year: 2015
  ident: B26
  article-title: A lower limb exoskeleton control system based on steady state visual evoked potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/5/056009
– volume: 39
  start-page: 654
  year: 2001
  ident: B13
  article-title: Walking index for spinal cord injury (WISCI II): scale revision
  publication-title: Spinal Cord
  doi: 10.1038/sj.sc.3101223
– start-page: 268
  volume-title: Proceedings of the 5th International Brain-Computer Interface Conference
  year: 2011
  ident: B45
  article-title: Towards a brain computer interface-based rehabilitation : from bench to bedside
– volume: 9
  start-page: e103764
  year: 2014
  ident: B1
  article-title: A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0103764
– volume: 12
  start-page: 873
  year: 2013
  ident: B17
  article-title: MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70146-7
– volume: 2
  start-page: 92
  year: 1970
  ident: B6
  article-title: Perceived exertion as an indicator of somatic stress
  publication-title: Scand. J. Rehabil. Med.
  doi: 10.2340/1650197719702239298
– volume-title: Emerging Therapies in Neurorehabilitation, 1st Edn
  year: 2014
  ident: B46
– volume: 20
  start-page: 653
  year: 2012
  ident: B32
  article-title: Pre-stimulus sensorimotor rhythms influence brain-computer interface classification performance
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2205707
– volume: 126
  start-page: 154
  year: 2015
  ident: B23
  article-title: A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2014.05.003
– volume: 10
  issue: 122
  year: 2016
  ident: B4
  article-title: Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00122
– volume: 8
  start-page: 066009
  year: 2011
  ident: B40
  article-title: Detection of movement intention from single-trial movement-related cortical potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/6/066009
– volume: 34
  start-page: 507
  year: 1996
  ident: B39
  article-title: Paraplegic locomotion: a review
  publication-title: Spinal Cord
  doi: 10.1038/sc.1996.94
– volume: 7
  start-page: e47048
  year: 2012
  ident: B49
  article-title: Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0047048
– volume: 24
  start-page: 21
  year: 2002
  ident: B12
  article-title: Reliability, validity, and applicability of the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST 2.0) for adults with multiple sclerosis
  publication-title: Disabil. Rehabil.
  doi: 10.1080/09638280110066352
– volume: 561
  start-page: 166
  year: 2014
  ident: B9
  article-title: About the cortical origin of the low-delta and high-gamma rhythms observed in EEG signals during treadmill walking
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2013.12.059
– volume: 11
  start-page: 153
  year: 2014
  ident: B29
  article-title: Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-153
– start-page: 131
  volume-title: Towards Practical Brain-Computer Interfaces
  year: 2013
  ident: B34
  article-title: Brain computer interface for hand motor function restoration and rehabilitation
– volume: 117
  start-page: 2341
  year: 2006
  ident: B54
  article-title: What is the Bereitschaftspotential?
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.04.025
– start-page: 3
  volume-title: Emerging Therapies in Neurorehabilitation
  year: 2014
  ident: B2
  article-title: Emerging perspectives in stroke rehabilitation
  doi: 10.1007/978-3-642-38556-8_1
– volume: 12
  start-page: 54
  year: 2015
  ident: B7
  article-title: The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0048-y
– volume: 2
  start-page: 93
  year: 2014
  ident: B57
  article-title: Applications of brain-machine interface systems in stroke recovery and rehabilitation
  publication-title: Curr. Phys. Med. Rehabil. Rep.
  doi: 10.1007/s40141-014-0051-4
– volume: 1137
  start-page: 84
  year: 2007
  ident: B37
  article-title: Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2006.12.052
– volume: 59
  start-page: 133
  year: 2013
  ident: B50
  article-title: Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2013.07.004
– volume: 44
  start-page: 523
  year: 2006
  ident: B60
  article-title: Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey?
  publication-title: Spinal Cord
  doi: 10.1038/sj.sc.3101893
– start-page: 1798
  volume-title: 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2012
  ident: B28
  article-title: Continuous decoding of motor attempt and motor imagery from EEG activity in spinal cord injury patients
– volume: 10
  start-page: 111
  year: 2013
  ident: B15
  article-title: Brain-computer interface controlled robotic gait orthosis
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-111
– volume: 8
  start-page: 036005
  year: 2011
  ident: B18
  article-title: Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036005
– volume: 8
  start-page: 690
  year: 2012
  ident: B22
  article-title: Neural interfaces for the brain and spinal cordrestoring motor function
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2012.219
– volume: 10
  start-page: e0129435
  year: 2015
  ident: B3
  article-title: Comparing different classifiers in sensory motor brain computer interfaces
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0129435
– start-page: 223
  volume-title: 14th International Conference on Rehabilitation Robotics (ICORR)
  year: 2015b
  ident: B31
  article-title: Brain-machine interfaces for motor rehabilitation: is recalibration important?
– start-page: 6190
  volume-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
  year: 2015
  ident: B47
  article-title: Adaptive walking assistance based on human- orthosis interaction
  doi: 10.1109/IROS.2015.7354260
– volume: 4
  issue: 161
  year: 2010
  ident: B35
  article-title: Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2010.00161
– volume: 87
  start-page: 205
  year: 2013
  ident: B10
  article-title: Long-term neuroplasticity in spinal cord injury patients: a study on movement-related brain potentials
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2013.01.012
– volume: 192
  start-page: 152
  year: 2010
  ident: B41
  article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.07.015
– volume: 26
  start-page: S50
  year: 2003
  ident: B33
  article-title: International standards for neurological classification of spinal cord injury
  publication-title: J. Spinal Cord Med.
  doi: 10.1080/10790268.2003.11754575
– volume: 3
  start-page: 3
  year: 2009
  ident: B16
  article-title: Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity
  publication-title: Front. Integr. Neurosci.
  doi: 10.3389/neuro.07.003.2009
– volume: 590
  start-page: 1669
  year: 2012
  ident: B36
  article-title: Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2011.222851
– volume: 61
  start-page: 288
  year: 2014
  ident: B61
  article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2294203
– volume: 159
  start-page: 79
  year: 2006
  ident: B19
  article-title: Quantification and visualization of event-related changes in oscillatory brain activity in the time-frequency domain
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(06)59006-5
– start-page: 5606
  volume-title: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2013
  ident: B24
  article-title: High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton
– volume: 12
  start-page: 80
  year: 2015
  ident: B25
  article-title: The feasibility of a brain-computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0068-7
– volume: 26
  start-page: 10564
  year: 2006
  ident: B8
  article-title: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2266-06.2006
– volume: 12
  start-page: 036007
  year: 2015
  ident: B52
  article-title: Continuous detection of the self-initiated walking pre-movement state from EEG correlates without session-to-session recalibration
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/3/036007
– volume: 53
  start-page: 406
  year: 2011
  ident: B11
  article-title: Sparse discriminant analysis
  publication-title: Technometrics
  doi: 10.1198/TECH.2011.08118
– volume: 1071
  start-page: 145
  year: 2006
  ident: B42
  article-title: Walking from thought
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2005.11.083
– volume: 86
  start-page: 672
  year: 2005
  ident: B58
  article-title: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2004.08.004
– volume: 11
  start-page: 056009
  year: 2014
  ident: B20
  article-title: Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/5/056009
– volume: 351
  start-page: 33
  year: 2003
  ident: B44
  article-title: ‘Thought’ - Control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(03)00947-9
– volume: 86
  start-page: 190
  year: 2005
  ident: B55
  article-title: Assessing walking ability in subjects with spinal cord injury: validity and reliability of 3 walking tests
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2004.02.010
– volume: 46
  start-page: 500
  year: 2008
  ident: B14
  article-title: Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study
  publication-title: Spinal Cord
  doi: 10.1038/sj.sc.3102172
– volume: 9
  issue: 708
  year: 2016
  ident: B38
  article-title: Negligible motion artifacts in scalp electroencephalography (EEG) during treadmill walking
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00708
– reference: 24910150 - Clin Neurophysiol. 2015 Jan;126(1):154-9
– reference: 26177457 - PLoS One. 2015 Jul 15;10(7):e0131759
– reference: 22027549 - J Neural Eng. 2011 Dec;8(6):066009
– reference: 23827394 - Lancet Neurol. 2013 Sep;12(9):873-81
– reference: 24111008 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5606-9
– reference: 23147846 - Nat Rev Neurol. 2012 Dec;8(12):690-9
– reference: 14550907 - Neurosci Lett. 2003 Nov 6;351(1):33-6
– reference: 8883185 - Spinal Cord. 1996 Sep;34(9):507-24
– reference: 23071707 - PLoS One. 2012;7(10):e47048
– reference: 27065787 - Front Neurosci. 2016 Mar 31;10:122
– reference: 24064256 - Artif Intell Med. 2013 Oct;59(2):133-42
– reference: 16876476 - Clin Neurophysiol. 2006 Nov;117(11):2341-56
– reference: 24659962 - Front Hum Neurosci. 2014 Mar 13;8:141
– reference: 23494615 - Ann Neurol. 2013 Jul;74(1):100-8
– reference: 23781166 - Front Neurosci. 2013 Jun 11;7:84
– reference: 21474878 - J Neural Eng. 2011 Jun;8(3):036005
– reference: 26793089 - Front Hum Neurosci. 2016 Jan 13;9:708
– reference: 15706542 - Arch Phys Med Rehabil. 2005 Feb;86(2):190-6
– reference: 17057705 - Nature. 2006 Nov 2;444(7115):56-60
– reference: 19404411 - Front Integr Neurosci. 2009 Mar 09;3:3
– reference: 17035542 - J Neurosci. 2006 Oct 11;26(41):10564-8
– reference: 23366260 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1798-801
– reference: 17229403 - Brain Res. 2007 Mar 16;1137(1):84-91
– reference: 26090799 - PLoS One. 2015 Jun 19;10(6):e0129435
– reference: 26291321 - J Neural Eng. 2015 Oct;12(5):056009
– reference: 17071225 - Prog Brain Res. 2006;159:79-97
– reference: 26400061 - J Neuroeng Rehabil. 2015 Sep 24;12:80
– reference: 20877434 - Front Neurosci. 2010 Sep 07;4:null
– reference: 16389270 - Spinal Cord. 2006 Sep;44(9):523-9
– reference: 25915773 - J Neural Eng. 2015 Jun;12(3):036007
– reference: 11781863 - Spinal Cord. 2001 Dec;39(12):654-6
– reference: 24448593 - IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96
– reference: 24412128 - Neurosci Lett. 2014 Feb 21;561:166-70
– reference: 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91
– reference: 5523831 - Scand J Rehabil Med. 1970;2(2):92-8
– reference: 23376596 - Int J Psychophysiol. 2013 Feb;87(2):205-14
– reference: 25082789 - J Neural Eng. 2014 Oct;11(5):056009
– reference: 18209742 - Spinal Cord. 2008 Jul;46(7):500-6
– reference: 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57
– reference: 26076696 - J Neuroeng Rehabil. 2015 Jun 17;12 :54
– reference: 16405926 - Brain Res. 2006 Feb 3;1071(1):145-52
– reference: 16859758 - Trends Neurosci. 2006 Sep;29(9):536-46
– reference: 22801528 - IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):653-62
– reference: 25398273 - J Neuroeng Rehabil. 2014 Nov 15;11:153
– reference: 16296564 - J Spinal Cord Med. 2003 Spring;26 Suppl 1:S50-6
– reference: 25084446 - PLoS One. 2014 Aug 01;9(8):e103764
– reference: 15827916 - Arch Phys Med Rehabil. 2005 Apr;86(4):672-80
– reference: 11827151 - Disabil Rehabil. 2002 Jan 10-Feb 15;24(1-3):21-30
– reference: 24321081 - J Neuroeng Rehabil. 2013 Dec 09;10:111
– reference: 20654646 - J Neurosci Methods. 2010 Sep 30;192(1):152-62
– reference: 3809245 - Phys Ther. 1987 Feb;67(2):206-7
– reference: 25110624 - Curr Phys Med Rehabil Rep. 2014 Jun 1;2(2):93-105
– reference: 22250210 - J Physiol. 2012 Apr 1;590(7):1669-82
– reference: 25309420 - Front Neuroeng. 2014 Sep 24;7:38
SSID ssj0062842
Score 2.4612386
Snippet The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from...
The closed-loop control of rehabilitative technologies by neural commands has shown a greatpotential to improve motor recovery in patients suffering from...
SourceID doaj
unpaywall
pubmedcentral
csuc
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 359
SubjectTerms Ambulatory exoskeletons
Balance
Brain injury
Brain machine interface (BMI)
Brain research
Clinical trials
EEG
Electroencephalography
Electroencephalography (EEG)
Event related desynchronization (ERD)
Exoskeleton
exoskeletons
Exoskeletons(BMI)
Fatigue
Feasibility studies
Ferides i lesions
Gait
Gait rehabilitation
Informàtica
Interfaces
Medul·la espinal
Movement intention decoding
Movement related cortical potentials (MRCP)
Nervous system
Neuroscience
Paralysis
Paraplegia
Plasticity
Prostheses
Rehabilitation
Robotic exoskeletons
Robotics
Robotics in medicine
Robòtica
Robòtica en medicina
Spinal cord
Spinal cord injuries
Spinal cord injury (SCI)
Stroke
Walking
Wounds and injuries
Àrees temàtiques de la UPC
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF-kL_oi6vkRPWUFETwIzffuPp6HxyHokwf3tmwmE622m5KmaP97Z5I0tCjeiw99SDdZhpnZnd9kJ78R4g2ArjQWECqnIKR8owxNleah04BlrdiP-APnT5-Lq-vs401-c9Dqi2vCBnrgQXHzStcqJ9yLTuksg9TkSFFbE_CGokwz4N2XLvfJ1LAHF7TpJsOhJKVgZl77hWdu7phPHlLmJT0IQjPYbGGk7P8bzvyzXPLu1q_d7qdbLg9i0eUDcX8EkfJ8EP6huIP-kTg595RAr3byrezLOvv35SfCXwzF6LKppfPSrUpu2NW0O4m_ms0PijqE_iS_jpVOltwwIlz1BZYomUqirR2gJGQrN2tuoCU5W6WR72QL-dUtOtkecX0_FteXH75cXIVjk4UQ8jTpQojQxQpInxXqHBQlWAYJZqUZVkoj1mSzVJcK6hxrjS6JqhqMLjCpjGYyrydi5huPz4SMalMqHecKCJdFrjQOKheVVY5xZdBkgZjvtW5hlIobYSwtZSJsJ9vbybKdbG-nQLybnlgP7Bv_uPeMDWkpUGALrrNMnD1d8C-JVGITSnmTKBDv2dzTpHxv_we5nh1dz97meoE43TuLHVc-CcQUajE37w7E62mY1iwfxDiPzXZjGVVp2kpTkuPp4FuTJAnlj0USk7LUkdcdiXo84hffel7wzCiKXDTn2eSft2rt-f9QxAtxj2fs6yLTUzHr2i2-JKzWla_6Zfkbwj4_XQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELaW7gEuCFgegQUZCSGxUtTEedg-INRWXVZIW6GFlfZmObYDhW5S-hD0xn_gH_JLmHGTaCvQcuihtRtNPON5eMbfEPLCGGGFy03INTchxBtFKG2ShVoYV5Qc5QgvOJ9O8pPz9N1FdrFHJu1dGCyrbHWiV9S2NnhG3mcITRVjU-Q3828hdo3C7GrbQkM3rRXsaw8xdoPsM0TG6pH94Xjy_qzVzTkoY5__zPGuEDjr28QlhGmyX1bTCvG7Y8xOJIhdesVQ9cxybRpY_3_5on-XVN5cV3O9-a5nsyv26vgOud04mnSwlYy7ZM9V98jBoIIg-3JDX1Jf-unP1A_IfLQtWKd1SXVFB5cFNvWqFxs6_lEvv4JlAg-R4pEt1XSITSV-__x16sswHfVniqU2joL_Sz_Msc0WHUFMCyNfgGP0rZ6u6NkOIvh9cn48_jg6CZtWDKHJErYKTeR0zA2EO9aJzHAIw6QDZyxJneXCuRI4m4iCmzJzpXCaRbY0UuSOWSkQ8usB6VV15R4RGpWy4CLOuAHvLdKF1MbqqLCZi610Mg1Iv113ZRqqsF3GTEG8gpxSnlMKOaU8pwLyqvvHfIvRcc3cI2SlAnPiFkavFMJrd1_wwyLOFIPAmEUBGSLDu4fiXP9Dvfikmp2trCh5BoGZ01ykqUlk5sCthJeOTF4kqQnIYSsuqtEPQFAnzQF53g3DzsZ0ja5cvV4q9L0EKNwE6Hi4la6OEgZRZs5iWCy-I3c7pO6OVNPPHj08lRzsGzzzqJPQ_67a4-vf4Qm5hXN9XWRySHqrxdo9BV9tVTxrNuAfEQhAjg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELYgPcCFV3ksFGQkhESlbfbltX1Mo5YKqRUCIpWT5fVDDU03UbIRhBP_gX_IL2Fmd7MQqECIw0rZ2GuNx2PPfPZ4hpBnxggrXG5CrrkJAW8UobQpC7UwrvAc5QgvOB-f5Eej7NUpW3sTLlq3So9X9zER9LhsIgW3LmI4wwFRyb4vxyWG2o7xICFlsj-z_irZyhmY4z2yNTp5PXiPQCvHG0EsPf3xOxPNUeWlzWyopp5ZLE0byP8y6_N3J8pry3KmVx_1ZPKThjq8SYp13xrHlPO9ZVXsmc-_hH38r87fIjda-5UOmvq3yRVX3iHbgxKw-8WKPqe1R2m9Vb9NZsPGD55OPdUlHVwUmCtsOl_Rg0_TxTkoPDA8Ke4EU033MVfFty9fj2vvTkfrrUqvjaNgVtO3M8zeRYcAlaHkAwgCfanHFX2zEWj8LhkdHrwbHoVthofQsDSpQhM5HXMDw2adYIYDupMObLw0c5YL5zwITCoKbjxzXjidRNYbKXKXWCkwktg90iunpXtAaORlwUXMuAGjMNKF1MbqqLDMxVY6mQWkvx5cZVqqMAvHRAEMQsaqmrEKGatqxgbkRffFrAn98Ye6uygvCrSUmxtdKYza3b3gk0Q8UQng7SQKyD5KVdco1q3_gPFW7XgrKzxngPec5iLLTCqZA2sVOh2ZvEgzE5CdtUyqdtkBgjB-W4yZwwPytCuGBQNPgXTppsuFQpNOwDqeAh33GxHuKEkAvOZJDMziG8K9QepmSTk-q4OSZ5KD2oQ2d7tp8FeuPfyXyo_IdXypnS_THdKr5kv3GAzCqnjSTvnv81lhAw
  priority: 102
  providerName: Unpaywall
Title Control of an Ambulatory Exoskeleton with a Brain–Machine Interface for Spinal Cord Injury Gait Rehabilitation
URI https://www.ncbi.nlm.nih.gov/pubmed/27536214
https://www.proquest.com/docview/2305511603
https://www.proquest.com/docview/1812883230
https://recercat.cat/handle/2072/272120
https://pubmed.ncbi.nlm.nih.gov/PMC4971110
https://www.frontiersin.org/articles/10.3389/fnins.2016.00359/pdf
https://doaj.org/article/d8f75255ea7844c395e2508960c6b34c
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M48
  dateStart: 20071001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dixMxEA_ae9AXUU-91bNEEMGD9fY7yYNIW3p3CC3HaaE-hWw2q9VetvYDr_-9M-l2tVj1oYU2aZhmJju_XyaZIeSl1rzgJtM-U0z7wDdyXxRx6iuuTV4ytCO84DwYZhej5P04Hf-6Hl1P4GIvtcN6UqP59M3N9_U7WPBvkXGCvz0t7cRi5u0Q4wpxKm6TA_BTAgs5DJImppDBg9jFPjO8JwRAfRO03DsCpggGHJ9FYbLjr1p6sdJ1dv99kPTPk5V3Vnam1j_UdPqb2zq7T-7VeJN2NgbygNwy9iE57Fjg2tdr-oq6E6Bua_2Q2N7m3DqtSqos7VznWNurmq9p_6ZafAMHBUCR4s4tVbSLtSX8gTuLaajbWCyVNhRAMP0ww1pbtAfEFlq-gtrouZos6dVOWvBHZHTW_9i78Ot6DL5O42jp68CokGngPIXhqWbAxYQBRBYnpmDcmBLUG_Oc6TI1JTcqCopSC56ZqBAc8349Ji1bWXNEaFCKnPEwZRogXKByoXShgrxITVgIIxKPnG5nXepaKqyZMZVAWlBl0qlMosqkU5lHXje_mG0Sdfyj7wkqUoJPMXOtlhJzbDcf8BUFLJIRsOMo8EgX1d0Min3dF9X8s6yXtyx4yVJgZ0YxniQ6FqkBbAl_OtBZHifaI8dbY5FbG5cRZlsLsc63R140zbC8MWajrKlWC4kAjMNTNwY5nmxsq5Fka6IeYTtWtyPqboudfHEpxBPBwMnBmCeNff531p7-VYBn5C52c-ci42PSWs5X5jlgtWXeJgfd_vDyqu32OuD9fBy23bKEltHwsvPpJ621QQc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9lAuCCg_CwWMBEhUijZxfuwcKrS7bNnSboVKK_XmOo4DC9tk2R-VvfEOvA8Pw5Mw402irkDl1EMOiRNr4hnPzGePZwh5obVIhYm0wxXXDuCNxIlTP3SU0CbJOMoRHnAeHEb9k-D9aXi6Rn5VZ2EwrLLSiVZRp4XGNfIWw9RUHhZFfjP-5mDVKNxdrUpoqLK0QrpjU4yVBzv2zeICINx0Z-8t8PslY7u9427fKasMODr02czRrlEe1-DJp0aEmgPCiA34GX5gUi6MyYBoXyRcZ6HJhFHMTTMdi8iwNBaYzQr6vUHWAz-IAfytd3qHH44qWxCB8rf7rRGeTQJwsNwoBVgYt7J8mGO-cA93Q3zMlXrJMDb0dK7LMgL_8n3_DuHcmOdjtbhQo9El-7h7m9wqHVvaXkriHbJm8rtks50DqD9f0FfUhpraNfxNMu4uA-RpkVGV0_Z5gkXEismC9r4X069gCcEjpbhETBXtYBGL3z9-DmzYp6F2DTNT2lDwt-nHMZb1ol1gALR8AQmh79RwRo9WMpDfIyfXwpT7pJEXuXlIqJvFCRdeyDV4i65KYqVT5SZpaLw0NnHQJK1q3KUuqcLyHCMJ-Ag5JS2nJHJKWk41yev6i_EyJ8gV724jKyWYLzPRaiYxnXd9gxdzOZMMgDhzm6SDDK87xXftg2LySZaaRKYi4yEAQaO4CALtx6EBNxZ-2tVR4ge6SbYqcZGlPgKC6tnTJM_rZtAkuD2kclPMpxJ9PQEK3gc6Hiylq6aEAaqNmAeDxVfkboXU1ZZ8-NlmK4dpAfYU-tyuJfS_o_bo6n94Rjb6x4MDebB3uP-Y3MTvbEymv0Uas8ncPAE_cZY8LScjJWfXPf__AI4nfxI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKgEXBJSfQAEjARKVVtl_ew8VStKEltKoKlTqzfXaXgikuyE_KrnxDrwVj8GTMOPsrhqByqmHHDbetWzPeOYbz3iGkBdKcc1NrBwmmXLA3kidRAeRI7kyacaQj_CC88Eg3j0O351EJ2vkV3UXBsMqK5loBbUuFJ6Rt3xMTeVhUeRWVoZFHO7034y_OVhBCj2tVTkNWZZZ0Ns23Vh5yWPfLM7BnJtu7-0A7V_6fr_3sbvrlBUHHBUF_sxRrpEeU4DqteGRYmBtJAYwRxAazbgxGUwg4ClTWWQybqTv6kwlPDa-TjhmtoJ-r5F1dH6BkFjv9AaHR5VeiEERWN9rjPeUwFBYOk3BRExaWT7MMXe4h56RAPOmXlCSDTWdq7KkwL9w8N_hnDfm-VguzuVodEFX9m-TWyXIpe0lV94haya_SzbaORj4Zwv6itqwU3uev0HG3WWwPC0yKnPaPkuxoFgxWdDe92L6FbQioFOKx8VU0g4WtPj94-eBDQE11J5nZlIZCtibfhhjiS_aBQJAyxfgFvpWDmf0aCUb-T1yfCVEuU8aeZGbh4S6WZIy7kVMAXJ0ZZpIpaWb6sh4OjFJ2CStat2FKkeFpTpGAmwlpJSwlBJIKWEp1SSv6y_Gy_wgl7y7haQUoMrMRMmZwNTe9QP-fJf5wgej3HebpIMErzvFd-0fxeSTKKWK0DxjERiFRjIehgrYzgCkhUm7Kk6DUDXJZsUuopRNMKB6JzXJ87oZpAq6imRuivlUIO7jIOwDGMeDJXfVI_HBwo19DxaLrfDdylBXW_LhZ5u5PEwY6Fboc6vm0P-u2qPL5_CMXAc5IN7vDfYfk5v4mQ3PDDZJYzaZmycAGWfp03IvUnJ61dv_DzuXg0E
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELYgPcCFV3ksFGQkhESlbfbltX1Mo5YKqRUCIpWT5fVDDU03UbIRhBP_gX_IL2Fmd7MQqECIw0rZ2GuNx2PPfPZ4hpBnxggrXG5CrrkJAW8UobQpC7UwrvAc5QgvOB-f5Eej7NUpW3sTLlq3So9X9zER9LhsIgW3LmI4wwFRyb4vxyWG2o7xICFlsj-z_irZyhmY4z2yNTp5PXiPQCvHG0EsPf3xOxPNUeWlzWyopp5ZLE0byP8y6_N3J8pry3KmVx_1ZPKThjq8SYp13xrHlPO9ZVXsmc-_hH38r87fIjda-5UOmvq3yRVX3iHbgxKw-8WKPqe1R2m9Vb9NZsPGD55OPdUlHVwUmCtsOl_Rg0_TxTkoPDA8Ke4EU033MVfFty9fj2vvTkfrrUqvjaNgVtO3M8zeRYcAlaHkAwgCfanHFX2zEWj8LhkdHrwbHoVthofQsDSpQhM5HXMDw2adYIYDupMObLw0c5YL5zwITCoKbjxzXjidRNYbKXKXWCkwktg90iunpXtAaORlwUXMuAGjMNKF1MbqqLDMxVY6mQWkvx5cZVqqMAvHRAEMQsaqmrEKGatqxgbkRffFrAn98Ye6uygvCrSUmxtdKYza3b3gk0Q8UQng7SQKyD5KVdco1q3_gPFW7XgrKzxngPec5iLLTCqZA2sVOh2ZvEgzE5CdtUyqdtkBgjB-W4yZwwPytCuGBQNPgXTppsuFQpNOwDqeAh33GxHuKEkAvOZJDMziG8K9QepmSTk-q4OSZ5KD2oQ2d7tp8FeuPfyXyo_IdXypnS_THdKr5kv3GAzCqnjSTvnv81lhAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+an+Ambulatory+Exoskeleton+with+a+Brain-Machine+Interface+for+Spinal+Cord+Injury+Gait+Rehabilitation&rft.jtitle=Frontiers+in+neuroscience&rft.au=L%C3%B3pez-Larraz%2C+Eduardo&rft.au=Trincado-Alonso%2C+Fernando&rft.au=Rajasekaran%2C+Vijaykumar&rft.au=P%C3%A9rez-Nombela%2C+Soraya&rft.date=2016-08-03&rft.issn=1662-4548&rft.volume=10&rft.spage=359&rft_id=info:doi/10.3389%2Ffnins.2016.00359&rft_id=info%3Apmid%2F27536214&rft.externalDocID=27536214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon