Cellular pharmacokinetics of telavancin, a novel lipoglycopeptide antibiotic, and analysis of lysosomal changes in cultured eukaryotic cells (J774 mouse macrophages and rat embryonic fibroblasts)
Background Telavancin is a lipoglycopeptide with multiple mechanisms of action that include membrane-destabilizing effects towards bacterial cells. It shows bactericidal activity against forms of Staphylococcus aureus (phagolysosomal infection) with different resistance phenotypes [methicillin-resis...
Saved in:
Published in | Journal of antimicrobial chemotherapy Vol. 61; no. 6; pp. 1288 - 1294 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.06.2008
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 0305-7453 1460-2091 1460-2091 |
DOI | 10.1093/jac/dkn120 |
Cover
Summary: | Background Telavancin is a lipoglycopeptide with multiple mechanisms of action that include membrane-destabilizing effects towards bacterial cells. It shows bactericidal activity against forms of Staphylococcus aureus (phagolysosomal infection) with different resistance phenotypes [methicillin-resistant S. aureus, vancomycin-intermediate S. aureus or vancomycin-resistant S. aureus]. We examine here the uptake, efflux and intracellular distribution of telavancin in eukaryotic cells as well as its potential to induce lysosomal changes (in comparison with vancomycin and oritavancin). Methods J774 macrophages and rat embryo fibroblasts were exposed for up to 24 and 72 h to telavancin (5–90 mg/L). The following studies were performed: measurement of 14C-labelled telavancin cellular uptake and subcellular distribution (cell fractionation), determination of pericellular membrane integrity (lactate dehydrogenase release), electron microscopy with morphometric analysis of changes in lysosome size and determination of total phospholipid and cholesterol content. Results The uptake of telavancin proceeded linearly as a function of time and concentration in both cell types (clearance rate of ∼10 mL/g of protein/h). Efflux (macrophages) was ∼5.7-fold slower. Telavancin subcellular distribution was superimposable on that of a lysosomal marker (N-acetyl-β-hexosaminidase). It did not cause an increase in the release of lactate dehydrogenase and did not induce significant increases in total phospholipid or cholesterol content. It caused only mild morphological lysosomal alterations (similar to vancomycin and much less than oritavancin by morphometric analysis). Conclusions Telavancin is taken up by eukaryotic cells and localizes in lysosomes, causing mild morphological alterations without evidence of lipid metabolism alterations. These data support our observations that telavancin is active against intracellular S. aureus. |
---|---|
Bibliography: | istex:EA79BA61B739C5299B0576482FF441775115319C ark:/67375/HXZ-7HQ7930W-N ArticleID:dkn120 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0305-7453 1460-2091 1460-2091 |
DOI: | 10.1093/jac/dkn120 |