WADDAICA: A webserver for aiding protein drug design by artificial intelligence and classical algorithm
Artificial intelligence can train the related known drug data into deep learning models for drug design, while classical algorithms can design drugs through established and predefined procedures. Both deep learning and classical algorithms have their merits for drug design. Here, the webserver WADDA...
Saved in:
| Published in | Computational and structural biotechnology journal Vol. 19; pp. 3573 - 3579 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.01.2021
Research Network of Computational and Structural Biotechnology Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2001-0370 2001-0370 |
| DOI | 10.1016/j.csbj.2021.06.017 |
Cover
| Abstract | Artificial intelligence can train the related known drug data into deep learning models for drug design, while classical algorithms can design drugs through established and predefined procedures. Both deep learning and classical algorithms have their merits for drug design. Here, the webserver WADDAICA is built to employ the advantage of deep learning model and classical algorithms for drug design. The WADDAICA mainly contains two modules. In the first module, WADDAICA provides deep learning models for scaffold hopping of compounds to modify or design new novel drugs. The deep learning model which is used in WADDAICA shows a good scoring power based on the PDBbind database. In the second module, WADDAICA supplies functions for modifying or designing new novel drugs by classical algorithms. WADDAICA shows better Pearson and Spearman correlations of binding affinity than Autodock Vina that is considered to have the best scoring power. Besides, WADDAICA supplies a friendly and convenient web interface for users to submit drug design jobs. We believe that WADDAICA is a useful and effective tool to help researchers to modify or design novel drugs by deep learning models and classical algorithms. WADDAICA is free and accessible at https://bqflab.github.io or https://heisenberg.ucam.edu:5000. |
|---|---|
| AbstractList | Artificial intelligence can train the related known drug data into deep learning models for drug design, while classical algorithms can design drugs through established and predefined procedures. Both deep learning and classical algorithms have their merits for drug design. Here, the webserver WADDAICA is built to employ the advantage of deep learning model and classical algorithms for drug design. The WADDAICA mainly contains two modules. In the first module, WADDAICA provides deep learning models for scaffold hopping of compounds to modify or design new novel drugs. The deep learning model which is used in WADDAICA shows a good scoring power based on the PDBbind database. In the second module, WADDAICA supplies functions for modifying or designing new novel drugs by classical algorithms. WADDAICA shows better Pearson and Spearman correlations of binding affinity than Autodock Vina that is considered to have the best scoring power. Besides, WADDAICA supplies a friendly and convenient web interface for users to submit drug design jobs. We believe that WADDAICA is a useful and effective tool to help researchers to modify or design novel drugs by deep learning models and classical algorithms. WADDAICA is free and accessible at https://bqflab.github.io or https://heisenberg.ucam.edu:5000. Artificial intelligence can train the related known drug data into deep learning models for drug design, while classical algorithms can design drugs through established and predefined procedures. Both deep learning and classical algorithms have their merits for drug design. Here, the webserver WADDAICA is built to employ the advantage of deep learning model and classical algorithms for drug design. The WADDAICA mainly contains two modules. In the first module, WADDAICA provides deep learning models for scaffold hopping of compounds to modify or design new novel drugs. The deep learning model which is used in WADDAICA shows a good scoring power based on the PDBbind database. In the second module, WADDAICA supplies functions for modifying or designing new novel drugs by classical algorithms. WADDAICA shows better Pearson and Spearman correlations of binding affinity than Autodock Vina that is considered to have the best scoring power. Besides, WADDAICA supplies a friendly and convenient web interface for users to submit drug design jobs. We believe that WADDAICA is a useful and effective tool to help researchers to modify or design novel drugs by deep learning models and classical algorithms. WADDAICA is free and accessible at https://bqflab.github.io or https://heisenberg.ucam.edu:5000.Artificial intelligence can train the related known drug data into deep learning models for drug design, while classical algorithms can design drugs through established and predefined procedures. Both deep learning and classical algorithms have their merits for drug design. Here, the webserver WADDAICA is built to employ the advantage of deep learning model and classical algorithms for drug design. The WADDAICA mainly contains two modules. In the first module, WADDAICA provides deep learning models for scaffold hopping of compounds to modify or design new novel drugs. The deep learning model which is used in WADDAICA shows a good scoring power based on the PDBbind database. In the second module, WADDAICA supplies functions for modifying or designing new novel drugs by classical algorithms. WADDAICA shows better Pearson and Spearman correlations of binding affinity than Autodock Vina that is considered to have the best scoring power. Besides, WADDAICA supplies a friendly and convenient web interface for users to submit drug design jobs. We believe that WADDAICA is a useful and effective tool to help researchers to modify or design novel drugs by deep learning models and classical algorithms. WADDAICA is free and accessible at https://bqflab.github.io or https://heisenberg.ucam.edu:5000. |
| Author | Huang, Junzhou Banegas-Luna, Antonio Jesús Pérez-Sánchez, Horacio Ma, Jian Tian, Yanan Bai, Qifeng Liu, Huanxiang Xu, Tingyang Yao, Xiaojun Liu, Shuo |
| Author_xml | – sequence: 1 givenname: Qifeng surname: Bai fullname: Bai, Qifeng email: baiqf@lzu.edu.cn organization: Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P. R. China – sequence: 2 givenname: Jian surname: Ma fullname: Ma, Jian organization: School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P. R. China – sequence: 3 givenname: Shuo surname: Liu fullname: Liu, Shuo organization: School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P. R. China – sequence: 4 givenname: Tingyang surname: Xu fullname: Xu, Tingyang organization: Tencent AI Lab, Shenzhen, P. R. China – sequence: 5 givenname: Antonio Jesús surname: Banegas-Luna fullname: Banegas-Luna, Antonio Jesús organization: Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Murcia, Spain – sequence: 6 givenname: Horacio surname: Pérez-Sánchez fullname: Pérez-Sánchez, Horacio email: hperez@ucam.edu organization: Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Murcia, Spain – sequence: 7 givenname: Yanan surname: Tian fullname: Tian, Yanan organization: School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P. R. China – sequence: 8 givenname: Junzhou surname: Huang fullname: Huang, Junzhou organization: Tencent AI Lab, Shenzhen, P. R. China – sequence: 9 givenname: Huanxiang surname: Liu fullname: Liu, Huanxiang organization: School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P. R. China – sequence: 10 givenname: Xiaojun surname: Yao fullname: Yao, Xiaojun email: xjyao@lzu.edu.cn organization: Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P. R. China |
| BookMark | eNqNUl1vFCEUnZgaW2v_gE88-rIrDDPAGGOyaf1o0sQXjY_kDtyZsmFhhdlt9t-XcRtjfajyAuGec-7hHl5WJyEGrKrXjC4ZZeLtemlyv17WtGZLKpaUyWfVWU0pW1Au6ckf59PqIuc1LUsx0XH6ojrlDesaIdVZNf5YXV2tri9X78iK3GGfMe0xkSEmAs66MJJtihO6QGzajcRidmMg_YFAmtzgjANPXJjQezdiMEggWGI85OxMKYEfY3LT7eZV9XwAn_HiYT-vvn_6-O3yy-Lm6-fS_WZhWs6mxWAFla1ScuBgoLdiaHtTS9V10gpbc8llzXhrFXIpegVIZQOdlb0SprNK8vPq-qhrI6z1NrkNpIOO4PSvi5hGPTs3HrWqQVCshRWsbSi0HXImQUI_MNYotEWLH7V2YQuHO_D-tyCjek5Br_Wcgp5T0FTokkJhfTiytrt-g9ZgmBL4R1YeV4K71WPcFz-84Y0qAm8eBFL8ucM86Y3LpkwYAsZd1rXgoqlZy7p_Q9tGtlzwhhaoOkJNijknHLRxE0wuziacf_pF9V_U_xrD-yMJS9p7h0ln4-YfYl1CM5U43FP0e43k5eU |
| CitedBy_id | crossref_primary_10_3390_ai5040116 crossref_primary_10_1039_D4MD00257A crossref_primary_10_1021_acschemneuro_2c00171 crossref_primary_10_1016_j_tips_2022_12_002 crossref_primary_10_3390_biomedicines11041041 crossref_primary_10_3390_cells12020267 crossref_primary_10_2174_1872208316666220802151129 crossref_primary_10_1080_07391102_2023_2214223 crossref_primary_10_4155_fmc_2021_0243 crossref_primary_10_1111_cbdd_14421 crossref_primary_10_1093_bib_bbac592 crossref_primary_10_3390_math11061279 crossref_primary_10_1002_slct_202203932 crossref_primary_10_1016_j_csbj_2021_11_005 crossref_primary_10_1515_chem_2023_0197 crossref_primary_10_3934_mbe_2023419 crossref_primary_10_1002_wcms_1581 crossref_primary_10_1038_s41598_024_79275_5 crossref_primary_10_1515_znc_2024_0075 crossref_primary_10_1515_chem_2024_0019 crossref_primary_10_1093_bib_bbab507 |
| Cites_doi | 10.1038/nprot.2017.114 10.1162/neco.1997.9.8.1735 10.1021/acs.jmedchem.8b00686 10.1039/C6CP01555G 10.1021/acs.jcim.5b00559 10.1124/pr.112.007336 10.1093/bib/bbaa161 10.1016/j.engappai.2015.06.021 10.1021/acsomega.9b01997 10.1093/nar/gkz397 10.1016/j.neunet.2014.09.003 10.1021/jm030580l 10.1109/TASL.2011.2134090 10.1021/acs.jproteome.6b00618 10.1021/jm901137j 10.1038/nature14539 10.1093/bioinformatics/bty374 10.1186/1758-2946-5-24 10.1021/acs.jcim.7b00049 10.1016/S0169-409X(00)00129-0 10.1002/(SICI)1096-987X(199604)17:5/6<587::AID-JCC4>3.0.CO;2-Q 10.1186/1758-2946-3-33 10.1093/bioinformatics/bty593 10.1038/s41586-020-2994-1 10.1021/acs.jcim.8b00706 10.1016/j.drudis.2018.01.039 10.1002/minf.201501008 10.1002/jcc.21334 10.1093/bioinformatics/btaa645 10.1091/mbc.11.9.2873 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
| Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 5PM ADTOC UNPAY DOA |
| DOI | 10.1016/j.csbj.2021.06.017 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2001-0370 |
| EndPage | 3579 |
| ExternalDocumentID | oai_doaj_org_article_82a60e26d61540a59e317a7abf1148ed 10.1016/j.csbj.2021.06.017 PMC8234348 10_1016_j_csbj_2021_06_017 S2001037021002555 |
| GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION 7X8 7S9 L.6 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c531t-fd6075887f3acabd6f5bc278997d6d237372135d8e376b8ae074a9d7b86c9d873 |
| IEDL.DBID | M48 |
| ISSN | 2001-0370 |
| IngestDate | Fri Oct 03 12:51:39 EDT 2025 Sun Oct 26 04:17:31 EDT 2025 Tue Sep 30 17:07:07 EDT 2025 Fri Jul 11 07:15:27 EDT 2025 Fri Jul 11 09:39:15 EDT 2025 Wed Oct 01 04:21:18 EDT 2025 Thu Apr 24 22:51:21 EDT 2025 Sat Aug 31 16:01:00 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Classical algorithm Drug design Webserver Class D GPCR Artificial intelligence |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c531t-fd6075887f3acabd6f5bc278997d6d237372135d8e376b8ae074a9d7b86c9d873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.csbj.2021.06.017 |
| PMID | 34194678 |
| PQID | 2547536340 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_82a60e26d61540a59e317a7abf1148ed unpaywall_primary_10_1016_j_csbj_2021_06_017 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8234348 proquest_miscellaneous_2636421519 proquest_miscellaneous_2547536340 crossref_citationtrail_10_1016_j_csbj_2021_06_017 crossref_primary_10_1016_j_csbj_2021_06_017 elsevier_sciencedirect_doi_10_1016_j_csbj_2021_06_017 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computational and structural biotechnology journal |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Research Network of Computational and Structural Biotechnology Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Research Network of Computational and Structural Biotechnology – name: Elsevier |
| References | Trott, Olson (b0095) 2010; 31 Wang, Fang, Lu, Wang (b0120) 2004; 47 Li, Su, Liu, Li, Liu, Han (b0115) 2018; 13 Wang, Sun, Yao, Li, Xu, Li (b0125) 2016; 18 LeCun, Bengio, Hinton (b0035) 2015; 521 Shultz (b0145) 2019; 62 Feng, Chen, Liang, Shen, Chen, Xie (b0100) 2020 Baell, Holloway (b0085) 2010; 53 Ozturk, Ozgur, Ozkirimli (b0045) 2018; 34 O'Boyle, Banck, James, Morley, Vandermeersch, Hutchison (b0155) 2011; 3 Chen, Engkvist, Wang, Olivecrona, Blaschke (b0025) 2018; 23 Skalic, Jimenez, Sabbadin, De Fabritiis (b0050) 2019; 59 Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki PJB. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. 2018;34(21):3666-74. Weng, Wang, Wang, Liu, Zhu, Li (b0105) 2019; 47 Schmidhuber (b0015) 2015; 61 Sliwoski, Kothiwale, Meiler, Lowe (b0030) 2014; 66 Hochreiter S, Schmidhuber JJNc. Long short-term memory. 1997;9(8):1735-80.sun. Yesilaltay, Jenness (b0175) 2000; 11 Gawehn, Hiss, Schneider (b0020) 2016; 35 Dahl, Yu, Deng (b0010) 2011; 20 Wen, Zhang, Niu, Sha, Yang, Yun (b0040) 2017; 16 Bienfait, Ertl (b0150) 2013; 5 Zheng, Fan, Mu (b0065) 2019; 4 Simonyan K, Zisserman AJapa. Very deep convolutional networks for large-scale image recognition. arXiv preprint. 2014:arXiv:1409.556. Li, Yang (b0070) 2017; 57 Khamis, Gomaa (b0160) 2015; 45 Lipinski, Lombardo, Dominy, Feeney (b0090) 2001; 46 Hochreiter, Schmidhuber (b0055) 1997; 9 Bai Q. Research and development of MolAICal for drug design via deep learning and classical programming. arXiv preprint. 2020:arXiv:2006.09747. Stepniewska-Dziubinska, Zielenkiewicz, Siedlecki (b0060) 2018; 34 Bai, Tan, Xu, Liu, Huang, Yao (b0075) 2020; 22 Velazhahan, Ma, Pandy-Szekeres, Kooistra, Lee, Gloriam (b0170) 2021; 589 Kong, Yang, Xue, Liu, Wang, Hu (b0110) 2020; 36 Halgren, Nachbar (b0135) 1996; 17 Sterling, Irwin (b0130) 2015; 55 Schmidhuber (10.1016/j.csbj.2021.06.017_b0015) 2015; 61 Li (10.1016/j.csbj.2021.06.017_b0115) 2018; 13 Sliwoski (10.1016/j.csbj.2021.06.017_b0030) 2014; 66 Weng (10.1016/j.csbj.2021.06.017_b0105) 2019; 47 Hochreiter (10.1016/j.csbj.2021.06.017_b0055) 1997; 9 Halgren (10.1016/j.csbj.2021.06.017_b0135) 1996; 17 Feng (10.1016/j.csbj.2021.06.017_b0100) 2020 Yesilaltay (10.1016/j.csbj.2021.06.017_b0175) 2000; 11 LeCun (10.1016/j.csbj.2021.06.017_b0035) 2015; 521 Sterling (10.1016/j.csbj.2021.06.017_b0130) 2015; 55 Kong (10.1016/j.csbj.2021.06.017_b0110) 2020; 36 Chen (10.1016/j.csbj.2021.06.017_b0025) 2018; 23 Stepniewska-Dziubinska (10.1016/j.csbj.2021.06.017_b0060) 2018; 34 Trott (10.1016/j.csbj.2021.06.017_b0095) 2010; 31 Bai (10.1016/j.csbj.2021.06.017_b0075) 2020; 22 Gawehn (10.1016/j.csbj.2021.06.017_b0020) 2016; 35 Wang (10.1016/j.csbj.2021.06.017_b0120) 2004; 47 Dahl (10.1016/j.csbj.2021.06.017_b0010) 2011; 20 Ozturk (10.1016/j.csbj.2021.06.017_b0045) 2018; 34 O'Boyle (10.1016/j.csbj.2021.06.017_b0155) 2011; 3 Velazhahan (10.1016/j.csbj.2021.06.017_b0170) 2021; 589 10.1016/j.csbj.2021.06.017_b0165 Khamis (10.1016/j.csbj.2021.06.017_b0160) 2015; 45 Lipinski (10.1016/j.csbj.2021.06.017_b0090) 2001; 46 Zheng (10.1016/j.csbj.2021.06.017_b0065) 2019; 4 10.1016/j.csbj.2021.06.017_b0140 Shultz (10.1016/j.csbj.2021.06.017_b0145) 2019; 62 Baell (10.1016/j.csbj.2021.06.017_b0085) 2010; 53 10.1016/j.csbj.2021.06.017_b0080 Bienfait (10.1016/j.csbj.2021.06.017_b0150) 2013; 5 Wen (10.1016/j.csbj.2021.06.017_b0040) 2017; 16 Wang (10.1016/j.csbj.2021.06.017_b0125) 2016; 18 Li (10.1016/j.csbj.2021.06.017_b0070) 2017; 57 Skalic (10.1016/j.csbj.2021.06.017_b0050) 2019; 59 10.1016/j.csbj.2021.06.017_b0005 |
| References_xml | – year: 2020 ident: b0100 article-title: Virus-CKB: an integrated bioinformatics platform and analysis resource for COVID-19 research publication-title: Brief Bioinform – volume: 55 start-page: 2324 year: 2015 end-page: 2337 ident: b0130 article-title: ZINC 15–ligand discovery for everyone publication-title: J Chem Inf Model – reference: Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki PJB. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. 2018;34(21):3666-74. – volume: 11 start-page: 2873 year: 2000 end-page: 2884 ident: b0175 article-title: Homo-oligomeric complexes of the yeast alpha-factor pheromone receptor are functional units of endocytosis publication-title: Mol Biol Cell – volume: 13 start-page: 666 year: 2018 end-page: 680 ident: b0115 article-title: Assessing protein-ligand interaction scoring functions with the CASF-2013 benchmark publication-title: Nat Protoc – volume: 20 start-page: 30 year: 2011 end-page: 42 ident: b0010 article-title: Acero AJIToa, speech, processing l. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Trans Audio Speech Lang Process – volume: 5 start-page: 24 year: 2013 ident: b0150 article-title: JSME: a free molecule editor in JavaScript publication-title: J Cheminform. – volume: 53 start-page: 2719 year: 2010 end-page: 2740 ident: b0085 article-title: New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays publication-title: J Med Chem – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0055 article-title: Long short-term memory publication-title: Neural Comput – volume: 34 start-page: 3666 year: 2018 end-page: 3674 ident: b0060 article-title: Development and evaluation of a deep learning model for protein-ligand binding affinity prediction publication-title: Bioinformatics – volume: 589 start-page: 148 year: 2021 end-page: 153 ident: b0170 article-title: Structure of the class D GPCR Ste2 dimer coupled to two G proteins publication-title: Nature – volume: 57 start-page: 1007 year: 2017 end-page: 1012 ident: b0070 article-title: Structural and sequence similarity makes a significant impact on machine-learning-based scoring functions for protein-ligand interactions publication-title: J Chem Inf Model – volume: 66 start-page: 334 year: 2014 end-page: 395 ident: b0030 article-title: Computational methods in drug discovery publication-title: Pharmacol Rev – volume: 17 start-page: 587 year: 1996 end-page: 615 ident: b0135 article-title: Merck molecular force field. IV. conformational energies and geometries for MMFF94 publication-title: J Comput Chem – volume: 23 start-page: 1241 year: 2018 end-page: 1250 ident: b0025 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov Today – volume: 46 start-page: 3 year: 2001 end-page: 26 ident: b0090 article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings publication-title: Adv Drug Deliv Rev – volume: 47 start-page: W322 year: 2019 end-page: W330 ident: b0105 article-title: HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA publication-title: Nucl Acids Res – volume: 47 start-page: 2977 year: 2004 end-page: 2980 ident: b0120 article-title: The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures publication-title: J Med Chem – volume: 62 start-page: 1701 year: 2019 end-page: 1714 ident: b0145 article-title: Two decades under the influence of the rule of five and the changing properties of approved oral drugs publication-title: J Med Chem – reference: Simonyan K, Zisserman AJapa. Very deep convolutional networks for large-scale image recognition. arXiv preprint. 2014:arXiv:1409.556. – volume: 34 start-page: i821 year: 2018 end-page: i829 ident: b0045 article-title: DeepDTA: deep drug-target binding affinity prediction publication-title: Bioinformatics – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0035 article-title: Deep learning publication-title: Nature – volume: 35 start-page: 3 year: 2016 end-page: 14 ident: b0020 article-title: Deep learning in drug discovery publication-title: Mol Inform – volume: 4 start-page: 15956 year: 2019 end-page: 15965 ident: b0065 article-title: OnionNet: a multiple-layer intermolecular-contact-based convolutional neural network for protein-ligand binding affinity prediction publication-title: ACS Omega – volume: 59 start-page: 1205 year: 2019 end-page: 1214 ident: b0050 article-title: Shape-based generative modeling for publication-title: J Chem Inf Model – reference: Bai Q. Research and development of MolAICal for drug design via deep learning and classical programming. arXiv preprint. 2020:arXiv:2006.09747. – volume: 31 start-page: 455 year: 2010 end-page: 461 ident: b0095 article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J Comput Chem – volume: 18 start-page: 12964 year: 2016 end-page: 12975 ident: b0125 article-title: Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power publication-title: Phys Chem Chem Phys – volume: 3 start-page: 33 year: 2011 ident: b0155 article-title: Open Babel: An open chemical toolbox publication-title: J Cheminform – volume: 45 start-page: 136 year: 2015 end-page: 151 ident: b0160 article-title: Comparative assessment of machine-learning scoring functions on PDBbind 2013 publication-title: Eng Appl Artif Intell – volume: 36 start-page: 5109 year: 2020 end-page: 5111 ident: b0110 article-title: COVID-19 Docking Server: a meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19 publication-title: Bioinformatics – volume: 16 start-page: 1401 year: 2017 end-page: 1409 ident: b0040 article-title: Deep-Learning-Based Drug-Target Interaction Prediction publication-title: J Proteome Res – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b0015 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw – reference: Hochreiter S, Schmidhuber JJNc. Long short-term memory. 1997;9(8):1735-80.sun. – volume: 22 year: 2020 ident: b0075 article-title: MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm publication-title: Brief Bioinform – ident: 10.1016/j.csbj.2021.06.017_b0005 – volume: 13 start-page: 666 issue: 4 year: 2018 ident: 10.1016/j.csbj.2021.06.017_b0115 article-title: Assessing protein-ligand interaction scoring functions with the CASF-2013 benchmark publication-title: Nat Protoc doi: 10.1038/nprot.2017.114 – ident: 10.1016/j.csbj.2021.06.017_b0140 doi: 10.1162/neco.1997.9.8.1735 – volume: 62 start-page: 1701 issue: 4 year: 2019 ident: 10.1016/j.csbj.2021.06.017_b0145 article-title: Two decades under the influence of the rule of five and the changing properties of approved oral drugs publication-title: J Med Chem doi: 10.1021/acs.jmedchem.8b00686 – ident: 10.1016/j.csbj.2021.06.017_b0080 – volume: 18 start-page: 12964 issue: 18 year: 2016 ident: 10.1016/j.csbj.2021.06.017_b0125 article-title: Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power publication-title: Phys Chem Chem Phys doi: 10.1039/C6CP01555G – volume: 55 start-page: 2324 issue: 11 year: 2015 ident: 10.1016/j.csbj.2021.06.017_b0130 article-title: ZINC 15–ligand discovery for everyone publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00559 – volume: 66 start-page: 334 issue: 1 year: 2014 ident: 10.1016/j.csbj.2021.06.017_b0030 article-title: Computational methods in drug discovery publication-title: Pharmacol Rev doi: 10.1124/pr.112.007336 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.csbj.2021.06.017_b0055 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 22 issue: 3 year: 2020 ident: 10.1016/j.csbj.2021.06.017_b0075 article-title: MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm publication-title: Brief Bioinform doi: 10.1093/bib/bbaa161 – volume: 45 start-page: 136 year: 2015 ident: 10.1016/j.csbj.2021.06.017_b0160 article-title: Comparative assessment of machine-learning scoring functions on PDBbind 2013 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2015.06.021 – volume: 4 start-page: 15956 issue: 14 year: 2019 ident: 10.1016/j.csbj.2021.06.017_b0065 article-title: OnionNet: a multiple-layer intermolecular-contact-based convolutional neural network for protein-ligand binding affinity prediction publication-title: ACS Omega doi: 10.1021/acsomega.9b01997 – volume: 47 start-page: W322 issue: W1 year: 2019 ident: 10.1016/j.csbj.2021.06.017_b0105 article-title: HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA publication-title: Nucl Acids Res doi: 10.1093/nar/gkz397 – year: 2020 ident: 10.1016/j.csbj.2021.06.017_b0100 article-title: Virus-CKB: an integrated bioinformatics platform and analysis resource for COVID-19 research publication-title: Brief Bioinform – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.csbj.2021.06.017_b0015 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003 – volume: 47 start-page: 2977 issue: 12 year: 2004 ident: 10.1016/j.csbj.2021.06.017_b0120 article-title: The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures publication-title: J Med Chem doi: 10.1021/jm030580l – volume: 20 start-page: 30 issue: 1 year: 2011 ident: 10.1016/j.csbj.2021.06.017_b0010 article-title: Acero AJIToa, speech, processing l. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Trans Audio Speech Lang Process doi: 10.1109/TASL.2011.2134090 – volume: 16 start-page: 1401 issue: 4 year: 2017 ident: 10.1016/j.csbj.2021.06.017_b0040 article-title: Deep-Learning-Based Drug-Target Interaction Prediction publication-title: J Proteome Res doi: 10.1021/acs.jproteome.6b00618 – volume: 53 start-page: 2719 issue: 7 year: 2010 ident: 10.1016/j.csbj.2021.06.017_b0085 article-title: New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays publication-title: J Med Chem doi: 10.1021/jm901137j – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.csbj.2021.06.017_b0035 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 34 start-page: 3666 issue: 21 year: 2018 ident: 10.1016/j.csbj.2021.06.017_b0060 article-title: Development and evaluation of a deep learning model for protein-ligand binding affinity prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty374 – volume: 5 start-page: 24 year: 2013 ident: 10.1016/j.csbj.2021.06.017_b0150 article-title: JSME: a free molecule editor in JavaScript publication-title: J Cheminform. doi: 10.1186/1758-2946-5-24 – volume: 57 start-page: 1007 issue: 4 year: 2017 ident: 10.1016/j.csbj.2021.06.017_b0070 article-title: Structural and sequence similarity makes a significant impact on machine-learning-based scoring functions for protein-ligand interactions publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00049 – volume: 46 start-page: 3 issue: 1–3 year: 2001 ident: 10.1016/j.csbj.2021.06.017_b0090 article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(00)00129-0 – volume: 17 start-page: 587 issue: 5–6 year: 1996 ident: 10.1016/j.csbj.2021.06.017_b0135 article-title: Merck molecular force field. IV. conformational energies and geometries for MMFF94 publication-title: J Comput Chem doi: 10.1002/(SICI)1096-987X(199604)17:5/6<587::AID-JCC4>3.0.CO;2-Q – volume: 3 start-page: 33 year: 2011 ident: 10.1016/j.csbj.2021.06.017_b0155 article-title: Open Babel: An open chemical toolbox publication-title: J Cheminform doi: 10.1186/1758-2946-3-33 – volume: 34 start-page: i821 issue: 17 year: 2018 ident: 10.1016/j.csbj.2021.06.017_b0045 article-title: DeepDTA: deep drug-target binding affinity prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty593 – volume: 589 start-page: 148 issue: 7840 year: 2021 ident: 10.1016/j.csbj.2021.06.017_b0170 article-title: Structure of the class D GPCR Ste2 dimer coupled to two G proteins publication-title: Nature doi: 10.1038/s41586-020-2994-1 – volume: 59 start-page: 1205 issue: 3 year: 2019 ident: 10.1016/j.csbj.2021.06.017_b0050 article-title: Shape-based generative modeling for de novo drug design publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00706 – ident: 10.1016/j.csbj.2021.06.017_b0165 doi: 10.1093/bioinformatics/bty374 – volume: 23 start-page: 1241 issue: 6 year: 2018 ident: 10.1016/j.csbj.2021.06.017_b0025 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2018.01.039 – volume: 35 start-page: 3 issue: 1 year: 2016 ident: 10.1016/j.csbj.2021.06.017_b0020 article-title: Deep learning in drug discovery publication-title: Mol Inform doi: 10.1002/minf.201501008 – volume: 31 start-page: 455 issue: 2 year: 2010 ident: 10.1016/j.csbj.2021.06.017_b0095 article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J Comput Chem doi: 10.1002/jcc.21334 – volume: 36 start-page: 5109 issue: 20 year: 2020 ident: 10.1016/j.csbj.2021.06.017_b0110 article-title: COVID-19 Docking Server: a meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa645 – volume: 11 start-page: 2873 issue: 9 year: 2000 ident: 10.1016/j.csbj.2021.06.017_b0175 article-title: Homo-oligomeric complexes of the yeast alpha-factor pheromone receptor are functional units of endocytosis publication-title: Mol Biol Cell doi: 10.1091/mbc.11.9.2873 |
| SSID | ssj0000816930 |
| Score | 2.310715 |
| Snippet | Artificial intelligence can train the related known drug data into deep learning models for drug design, while classical algorithms can design drugs through... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3573 |
| SubjectTerms | algorithms Artificial intelligence biotechnology Class D GPCR Classical algorithm Deep learning Drug design drugs user interface Webserver |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQLsABMT5EgU1G4gYRTuzYDrewMQ0OnJjYzfJXukwlnbpW0_77veekXcqhcOBWtbarvM-fneffI-S9D5YxC54WueCZiEFlziqbMV6ohkXIoTFV-f6Qp2fi-3l5Pmr1hTVhPT1wL7hPurCSxUIGmCaYLasIGQ9Wcw0i-Rgw-jJdjTZTKQZrJBnBA5ahZkix4cZMX9zlr90lbA6LPJF3pm5l91kpkfdvJacR-PyzdPLhqruytzd2NhvlpZOn5MkAKGndP8g-eRC7Z-TxiGbwOZn-qo-P629H9WdaUwibeBAbFxTgKrUt5i6a2BrajobFakpDKuqg7paidHqGCdqOqDup7QL1CLtRw9TOpvNFu7z4_YKcnXz9eXSaDQ0WMg-ut8yaIAExQJhpuPXWBdmUzuPV2EoFGQqOLWxyXgYdIQw5bSPgDVsF5bT0VdCKvyR73byLrwhVhWhc0YjSKyuiBEVFxiMv8gY-eKYmJF8L2PiBfRybYMzMuszs0qBSDCrFYK1dDnM-bOZc9dwbO0d_Qb1tRiJvdvoCrMkM1mT-Zk0TUq61bgYI0kMLWKrd-efv1iZiwD_xpYvt4nx1bWADDjtCyQXbMUZyvG8MYHpC1JZ9bT3N9i9de5HYwHUBXib0hHzcWOI_SOv1_5DWG_IIl-xPpN6SveViFQ8Aoy3dYXLHO8SoOCY priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOvCuWl4zEDVI5dmJnuYWWqnCoOLCinCy_sk1ZstVuIlR-PTNJdrWp0Krc8rDzcL7xfHbG3xDy1nnDmAFLCyIRURK8iqxRJmKCq4IF8KGhjfI9lSfT5MtZetbL5OBamMH_-zYOy63sBYzjeNzqbMbqNtmTKfDuEdmbnn7Nf2D2uC4uSLF-Vcy_Kw48TyvQP3BAWwTzenjknaa6NFe_zXy-5XuOH3RJjFatZCGGnPw8aGp74P5cE3S82Ws9JPd7CkrzDjOPyK1QPSb3toQJn5DZ9_zoKP98mH-gOYWOFqduw5ICwaWmRG9HW32HsqJ-2cyob8NAqL2iCMROk4KWW2Kf1FSeOiTqiAlq5rPFsqzPfz0l0-NP3w5Poj4lQ-TAWOuo8BI4BnRMhTDOWC-L1DpcTDtRXnouMOlNLFKfBei4bGYCMBQz8cpm0k18psQ-GVWLKjwjVPGksLxIUqdMEiQzaWAiCB4XsOGYGpN4_bm06_XKMW3GXK8D0y40NqLGRtQYnRdDnXebOpedWsfO0h8RBZuSqLTdHoAvpXvD1Rk3kgUuPcA2gYecBGBcgGZb4Egy-DFJ1xjSPWnpyAhcqtx58zdrwGmwaPxNY6qwaFYahuwwhpQiYTvKSIErlIF-j4kaoHXwNsMzVXne6odnHOwyycbk_QbXN2it5_9X_AW5i3vdbNVLMqqXTXgF_K22r3vD_QueIkEf priority: 102 providerName: Unpaywall |
| Title | WADDAICA: A webserver for aiding protein drug design by artificial intelligence and classical algorithm |
| URI | https://dx.doi.org/10.1016/j.csbj.2021.06.017 https://www.proquest.com/docview/2547536340 https://www.proquest.com/docview/2636421519 https://pubmed.ncbi.nlm.nih.gov/PMC8234348 https://doi.org/10.1016/j.csbj.2021.06.017 https://doaj.org/article/82a60e26d61540a59e317a7abf1148ed |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: KQ8 dateStart: 20120401 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2001-0370 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: AKRWK dateStart: 20120401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2001-0370 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: M48 dateStart: 20120401 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJsH2gLiKDqiMxBsEJXFiJ0gIhY1pMDEhRLXxFPmWLlNIR9oK-u85x0lKi6YK8ValdpL63L7jHn-HkOfaSN-XYGmWRcyLrBGekkJ6PgtF4VuIodZV-Z7y41H08Tw-3yJ9u6NuAafXpnbYT2rUVK9-_Vi8BYN_86dWS0_VJeR6YeC4OANxg-xApEqxlcOnDu47z5wg9YjfnZ25fuouuYkUZ-A_krVQ5Rj91yLWCiL9u57y1ry-koufsqpWgtXRHXK7Q5k0a9XiLtmy9T2yt8I9eJ-Mz7LDw-zDQfaaZhR8Ke7O2oYChqWyxIBGHYVDWVPTzMfUuEoPqhYUda2lnaDlCp8nlbWhGrE4ip3KajxpytnF9wdkdPT-68Gx13Vd8DTY48wrDAcYAb6nYFJLZXgRK43nZVNhuAkZ9rUJWGwSC75JJdICCJGpESrhOjWJYA_Jdj2p7SNCRRgVKiyiWAsZWe7L2PrMsjAo4IP2xYAE_QLnuqMkx84YVd7Xnl3mKJ8c5ZNjAV4Ac14s51y1hBwbR79DuS1HIpm2uzBpxnlnm3kSSu7bkBvQzAheMrUAqkBhVYHJojUDEvdSzztc0uINuFW58eHPehXJwWjxnxhZ28l8mkNWDmkiZ5G_YQxneAgZEPaAiDX9Wvs169_U5YWjCE9CML0oGZCXS038h9Xa_-8HPSa7eJ92b-oJ2Z41c_sU0NpMDclOdvLl7GTodjuGziDh2uj0c_btN2v2Q7Y |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOvCuWl4zEDVI5dmJnuYWWqnCoOLCinCy_sk1ZstVuIlR-PTNJdrWp0Krc8rDzcL7xfHbG3xDy1nnDmAFLCyIRURK8iqxRJmKCq4IF8KGhjfI9lSfT5MtZetbL5OBamMH_-zYOy63sBYzjeNzqbMbqNtmTKfDuEdmbnn7Nf2D2uC4uSLF-Vcy_Kw48TyvQP3BAWwTzenjknaa6NFe_zXy-5XuOH3RJjFatZCGGnPw8aGp74P5cE3S82Ws9JPd7CkrzDjOPyK1QPSb3toQJn5DZ9_zoKP98mH-gOYWOFqduw5ICwaWmRG9HW32HsqJ-2cyob8NAqL2iCMROk4KWW2Kf1FSeOiTqiAlq5rPFsqzPfz0l0-NP3w5Poj4lQ-TAWOuo8BI4BnRMhTDOWC-L1DpcTDtRXnouMOlNLFKfBei4bGYCMBQz8cpm0k18psQ-GVWLKjwjVPGksLxIUqdMEiQzaWAiCB4XsOGYGpN4_bm06_XKMW3GXK8D0y40NqLGRtQYnRdDnXebOpedWsfO0h8RBZuSqLTdHoAvpXvD1Rk3kgUuPcA2gYecBGBcgGZb4Egy-DFJ1xjSPWnpyAhcqtx58zdrwGmwaPxNY6qwaFYahuwwhpQiYTvKSIErlIF-j4kaoHXwNsMzVXne6odnHOwyycbk_QbXN2it5_9X_AW5i3vdbNVLMqqXTXgF_K22r3vD_QueIkEf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WADDAICA%3A+A+webserver+for+aiding+protein+drug+design+by+artificial+intelligence+and+classical+algorithm&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Bai%2C+Qifeng&rft.au=Ma%2C+Jian&rft.au=Liu%2C+Shuo&rft.au=Xu%2C+Tingyang&rft.date=2021-01-01&rft.pub=Research+Network+of+Computational+and+Structural+Biotechnology&rft.eissn=2001-0370&rft.volume=19&rft.spage=3573&rft.epage=3579&rft_id=info:doi/10.1016%2Fj.csbj.2021.06.017&rft_id=info%3Apmid%2F34194678&rft.externalDocID=PMC8234348 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon |