WADDAICA: A webserver for aiding protein drug design by artificial intelligence and classical algorithm

Artificial intelligence can train the related known drug data into deep learning models for drug design, while classical algorithms can design drugs through established and predefined procedures. Both deep learning and classical algorithms have their merits for drug design. Here, the webserver WADDA...

Full description

Saved in:
Bibliographic Details
Published inComputational and structural biotechnology journal Vol. 19; pp. 3573 - 3579
Main Authors Bai, Qifeng, Ma, Jian, Liu, Shuo, Xu, Tingyang, Banegas-Luna, Antonio Jesús, Pérez-Sánchez, Horacio, Tian, Yanan, Huang, Junzhou, Liu, Huanxiang, Yao, Xiaojun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
Research Network of Computational and Structural Biotechnology
Elsevier
Subjects
Online AccessGet full text
ISSN2001-0370
2001-0370
DOI10.1016/j.csbj.2021.06.017

Cover

Abstract Artificial intelligence can train the related known drug data into deep learning models for drug design, while classical algorithms can design drugs through established and predefined procedures. Both deep learning and classical algorithms have their merits for drug design. Here, the webserver WADDAICA is built to employ the advantage of deep learning model and classical algorithms for drug design. The WADDAICA mainly contains two modules. In the first module, WADDAICA provides deep learning models for scaffold hopping of compounds to modify or design new novel drugs. The deep learning model which is used in WADDAICA shows a good scoring power based on the PDBbind database. In the second module, WADDAICA supplies functions for modifying or designing new novel drugs by classical algorithms. WADDAICA shows better Pearson and Spearman correlations of binding affinity than Autodock Vina that is considered to have the best scoring power. Besides, WADDAICA supplies a friendly and convenient web interface for users to submit drug design jobs. We believe that WADDAICA is a useful and effective tool to help researchers to modify or design novel drugs by deep learning models and classical algorithms. WADDAICA is free and accessible at https://bqflab.github.io or https://heisenberg.ucam.edu:5000.
AbstractList Artificial intelligence can train the related known drug data into deep learning models for drug design, while classical algorithms can design drugs through established and predefined procedures. Both deep learning and classical algorithms have their merits for drug design. Here, the webserver WADDAICA is built to employ the advantage of deep learning model and classical algorithms for drug design. The WADDAICA mainly contains two modules. In the first module, WADDAICA provides deep learning models for scaffold hopping of compounds to modify or design new novel drugs. The deep learning model which is used in WADDAICA shows a good scoring power based on the PDBbind database. In the second module, WADDAICA supplies functions for modifying or designing new novel drugs by classical algorithms. WADDAICA shows better Pearson and Spearman correlations of binding affinity than Autodock Vina that is considered to have the best scoring power. Besides, WADDAICA supplies a friendly and convenient web interface for users to submit drug design jobs. We believe that WADDAICA is a useful and effective tool to help researchers to modify or design novel drugs by deep learning models and classical algorithms. WADDAICA is free and accessible at https://bqflab.github.io or https://heisenberg.ucam.edu:5000.
Artificial intelligence can train the related known drug data into deep learning models for drug design, while classical algorithms can design drugs through established and predefined procedures. Both deep learning and classical algorithms have their merits for drug design. Here, the webserver WADDAICA is built to employ the advantage of deep learning model and classical algorithms for drug design. The WADDAICA mainly contains two modules. In the first module, WADDAICA provides deep learning models for scaffold hopping of compounds to modify or design new novel drugs. The deep learning model which is used in WADDAICA shows a good scoring power based on the PDBbind database. In the second module, WADDAICA supplies functions for modifying or designing new novel drugs by classical algorithms. WADDAICA shows better Pearson and Spearman correlations of binding affinity than Autodock Vina that is considered to have the best scoring power. Besides, WADDAICA supplies a friendly and convenient web interface for users to submit drug design jobs. We believe that WADDAICA is a useful and effective tool to help researchers to modify or design novel drugs by deep learning models and classical algorithms. WADDAICA is free and accessible at https://bqflab.github.io or https://heisenberg.ucam.edu:5000.Artificial intelligence can train the related known drug data into deep learning models for drug design, while classical algorithms can design drugs through established and predefined procedures. Both deep learning and classical algorithms have their merits for drug design. Here, the webserver WADDAICA is built to employ the advantage of deep learning model and classical algorithms for drug design. The WADDAICA mainly contains two modules. In the first module, WADDAICA provides deep learning models for scaffold hopping of compounds to modify or design new novel drugs. The deep learning model which is used in WADDAICA shows a good scoring power based on the PDBbind database. In the second module, WADDAICA supplies functions for modifying or designing new novel drugs by classical algorithms. WADDAICA shows better Pearson and Spearman correlations of binding affinity than Autodock Vina that is considered to have the best scoring power. Besides, WADDAICA supplies a friendly and convenient web interface for users to submit drug design jobs. We believe that WADDAICA is a useful and effective tool to help researchers to modify or design novel drugs by deep learning models and classical algorithms. WADDAICA is free and accessible at https://bqflab.github.io or https://heisenberg.ucam.edu:5000.
Author Huang, Junzhou
Banegas-Luna, Antonio Jesús
Pérez-Sánchez, Horacio
Ma, Jian
Tian, Yanan
Bai, Qifeng
Liu, Huanxiang
Xu, Tingyang
Yao, Xiaojun
Liu, Shuo
Author_xml – sequence: 1
  givenname: Qifeng
  surname: Bai
  fullname: Bai, Qifeng
  email: baiqf@lzu.edu.cn
  organization: Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
– sequence: 2
  givenname: Jian
  surname: Ma
  fullname: Ma, Jian
  organization: School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
– sequence: 3
  givenname: Shuo
  surname: Liu
  fullname: Liu, Shuo
  organization: School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
– sequence: 4
  givenname: Tingyang
  surname: Xu
  fullname: Xu, Tingyang
  organization: Tencent AI Lab, Shenzhen, P. R. China
– sequence: 5
  givenname: Antonio Jesús
  surname: Banegas-Luna
  fullname: Banegas-Luna, Antonio Jesús
  organization: Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Murcia, Spain
– sequence: 6
  givenname: Horacio
  surname: Pérez-Sánchez
  fullname: Pérez-Sánchez, Horacio
  email: hperez@ucam.edu
  organization: Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Murcia, Spain
– sequence: 7
  givenname: Yanan
  surname: Tian
  fullname: Tian, Yanan
  organization: School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
– sequence: 8
  givenname: Junzhou
  surname: Huang
  fullname: Huang, Junzhou
  organization: Tencent AI Lab, Shenzhen, P. R. China
– sequence: 9
  givenname: Huanxiang
  surname: Liu
  fullname: Liu, Huanxiang
  organization: School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
– sequence: 10
  givenname: Xiaojun
  surname: Yao
  fullname: Yao, Xiaojun
  email: xjyao@lzu.edu.cn
  organization: Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
BookMark eNqNUl1vFCEUnZgaW2v_gE88-rIrDDPAGGOyaf1o0sQXjY_kDtyZsmFhhdlt9t-XcRtjfajyAuGec-7hHl5WJyEGrKrXjC4ZZeLtemlyv17WtGZLKpaUyWfVWU0pW1Au6ckf59PqIuc1LUsx0XH6ojrlDesaIdVZNf5YXV2tri9X78iK3GGfMe0xkSEmAs66MJJtihO6QGzajcRidmMg_YFAmtzgjANPXJjQezdiMEggWGI85OxMKYEfY3LT7eZV9XwAn_HiYT-vvn_6-O3yy-Lm6-fS_WZhWs6mxWAFla1ScuBgoLdiaHtTS9V10gpbc8llzXhrFXIpegVIZQOdlb0SprNK8vPq-qhrI6z1NrkNpIOO4PSvi5hGPTs3HrWqQVCshRWsbSi0HXImQUI_MNYotEWLH7V2YQuHO_D-tyCjek5Br_Wcgp5T0FTokkJhfTiytrt-g9ZgmBL4R1YeV4K71WPcFz-84Y0qAm8eBFL8ucM86Y3LpkwYAsZd1rXgoqlZy7p_Q9tGtlzwhhaoOkJNijknHLRxE0wuziacf_pF9V_U_xrD-yMJS9p7h0ln4-YfYl1CM5U43FP0e43k5eU
CitedBy_id crossref_primary_10_3390_ai5040116
crossref_primary_10_1039_D4MD00257A
crossref_primary_10_1021_acschemneuro_2c00171
crossref_primary_10_1016_j_tips_2022_12_002
crossref_primary_10_3390_biomedicines11041041
crossref_primary_10_3390_cells12020267
crossref_primary_10_2174_1872208316666220802151129
crossref_primary_10_1080_07391102_2023_2214223
crossref_primary_10_4155_fmc_2021_0243
crossref_primary_10_1111_cbdd_14421
crossref_primary_10_1093_bib_bbac592
crossref_primary_10_3390_math11061279
crossref_primary_10_1002_slct_202203932
crossref_primary_10_1016_j_csbj_2021_11_005
crossref_primary_10_1515_chem_2023_0197
crossref_primary_10_3934_mbe_2023419
crossref_primary_10_1002_wcms_1581
crossref_primary_10_1038_s41598_024_79275_5
crossref_primary_10_1515_znc_2024_0075
crossref_primary_10_1515_chem_2024_0019
crossref_primary_10_1093_bib_bbab507
Cites_doi 10.1038/nprot.2017.114
10.1162/neco.1997.9.8.1735
10.1021/acs.jmedchem.8b00686
10.1039/C6CP01555G
10.1021/acs.jcim.5b00559
10.1124/pr.112.007336
10.1093/bib/bbaa161
10.1016/j.engappai.2015.06.021
10.1021/acsomega.9b01997
10.1093/nar/gkz397
10.1016/j.neunet.2014.09.003
10.1021/jm030580l
10.1109/TASL.2011.2134090
10.1021/acs.jproteome.6b00618
10.1021/jm901137j
10.1038/nature14539
10.1093/bioinformatics/bty374
10.1186/1758-2946-5-24
10.1021/acs.jcim.7b00049
10.1016/S0169-409X(00)00129-0
10.1002/(SICI)1096-987X(199604)17:5/6<587::AID-JCC4>3.0.CO;2-Q
10.1186/1758-2946-3-33
10.1093/bioinformatics/bty593
10.1038/s41586-020-2994-1
10.1021/acs.jcim.8b00706
10.1016/j.drudis.2018.01.039
10.1002/minf.201501008
10.1002/jcc.21334
10.1093/bioinformatics/btaa645
10.1091/mbc.11.9.2873
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.csbj.2021.06.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic


AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2001-0370
EndPage 3579
ExternalDocumentID oai_doaj_org_article_82a60e26d61540a59e317a7abf1148ed
10.1016/j.csbj.2021.06.017
PMC8234348
10_1016_j_csbj_2021_06_017
S2001037021002555
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c531t-fd6075887f3acabd6f5bc278997d6d237372135d8e376b8ae074a9d7b86c9d873
IEDL.DBID M48
ISSN 2001-0370
IngestDate Fri Oct 03 12:51:39 EDT 2025
Sun Oct 26 04:17:31 EDT 2025
Tue Sep 30 17:07:07 EDT 2025
Fri Jul 11 07:15:27 EDT 2025
Fri Jul 11 09:39:15 EDT 2025
Wed Oct 01 04:21:18 EDT 2025
Thu Apr 24 22:51:21 EDT 2025
Sat Aug 31 16:01:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Classical algorithm
Drug design
Webserver
Class D GPCR
Artificial intelligence
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-fd6075887f3acabd6f5bc278997d6d237372135d8e376b8ae074a9d7b86c9d873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.csbj.2021.06.017
PMID 34194678
PQID 2547536340
PQPubID 23479
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_82a60e26d61540a59e317a7abf1148ed
unpaywall_primary_10_1016_j_csbj_2021_06_017
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8234348
proquest_miscellaneous_2636421519
proquest_miscellaneous_2547536340
crossref_citationtrail_10_1016_j_csbj_2021_06_017
crossref_primary_10_1016_j_csbj_2021_06_017
elsevier_sciencedirect_doi_10_1016_j_csbj_2021_06_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Computational and structural biotechnology journal
PublicationYear 2021
Publisher Elsevier B.V
Research Network of Computational and Structural Biotechnology
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Research Network of Computational and Structural Biotechnology
– name: Elsevier
References Trott, Olson (b0095) 2010; 31
Wang, Fang, Lu, Wang (b0120) 2004; 47
Li, Su, Liu, Li, Liu, Han (b0115) 2018; 13
Wang, Sun, Yao, Li, Xu, Li (b0125) 2016; 18
LeCun, Bengio, Hinton (b0035) 2015; 521
Shultz (b0145) 2019; 62
Feng, Chen, Liang, Shen, Chen, Xie (b0100) 2020
Baell, Holloway (b0085) 2010; 53
Ozturk, Ozgur, Ozkirimli (b0045) 2018; 34
O'Boyle, Banck, James, Morley, Vandermeersch, Hutchison (b0155) 2011; 3
Chen, Engkvist, Wang, Olivecrona, Blaschke (b0025) 2018; 23
Skalic, Jimenez, Sabbadin, De Fabritiis (b0050) 2019; 59
Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki PJB. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. 2018;34(21):3666-74.
Weng, Wang, Wang, Liu, Zhu, Li (b0105) 2019; 47
Schmidhuber (b0015) 2015; 61
Sliwoski, Kothiwale, Meiler, Lowe (b0030) 2014; 66
Hochreiter S, Schmidhuber JJNc. Long short-term memory. 1997;9(8):1735-80.sun.
Yesilaltay, Jenness (b0175) 2000; 11
Gawehn, Hiss, Schneider (b0020) 2016; 35
Dahl, Yu, Deng (b0010) 2011; 20
Wen, Zhang, Niu, Sha, Yang, Yun (b0040) 2017; 16
Bienfait, Ertl (b0150) 2013; 5
Zheng, Fan, Mu (b0065) 2019; 4
Simonyan K, Zisserman AJapa. Very deep convolutional networks for large-scale image recognition. arXiv preprint. 2014:arXiv:1409.556.
Li, Yang (b0070) 2017; 57
Khamis, Gomaa (b0160) 2015; 45
Lipinski, Lombardo, Dominy, Feeney (b0090) 2001; 46
Hochreiter, Schmidhuber (b0055) 1997; 9
Bai Q. Research and development of MolAICal for drug design via deep learning and classical programming. arXiv preprint. 2020:arXiv:2006.09747.
Stepniewska-Dziubinska, Zielenkiewicz, Siedlecki (b0060) 2018; 34
Bai, Tan, Xu, Liu, Huang, Yao (b0075) 2020; 22
Velazhahan, Ma, Pandy-Szekeres, Kooistra, Lee, Gloriam (b0170) 2021; 589
Kong, Yang, Xue, Liu, Wang, Hu (b0110) 2020; 36
Halgren, Nachbar (b0135) 1996; 17
Sterling, Irwin (b0130) 2015; 55
Schmidhuber (10.1016/j.csbj.2021.06.017_b0015) 2015; 61
Li (10.1016/j.csbj.2021.06.017_b0115) 2018; 13
Sliwoski (10.1016/j.csbj.2021.06.017_b0030) 2014; 66
Weng (10.1016/j.csbj.2021.06.017_b0105) 2019; 47
Hochreiter (10.1016/j.csbj.2021.06.017_b0055) 1997; 9
Halgren (10.1016/j.csbj.2021.06.017_b0135) 1996; 17
Feng (10.1016/j.csbj.2021.06.017_b0100) 2020
Yesilaltay (10.1016/j.csbj.2021.06.017_b0175) 2000; 11
LeCun (10.1016/j.csbj.2021.06.017_b0035) 2015; 521
Sterling (10.1016/j.csbj.2021.06.017_b0130) 2015; 55
Kong (10.1016/j.csbj.2021.06.017_b0110) 2020; 36
Chen (10.1016/j.csbj.2021.06.017_b0025) 2018; 23
Stepniewska-Dziubinska (10.1016/j.csbj.2021.06.017_b0060) 2018; 34
Trott (10.1016/j.csbj.2021.06.017_b0095) 2010; 31
Bai (10.1016/j.csbj.2021.06.017_b0075) 2020; 22
Gawehn (10.1016/j.csbj.2021.06.017_b0020) 2016; 35
Wang (10.1016/j.csbj.2021.06.017_b0120) 2004; 47
Dahl (10.1016/j.csbj.2021.06.017_b0010) 2011; 20
Ozturk (10.1016/j.csbj.2021.06.017_b0045) 2018; 34
O'Boyle (10.1016/j.csbj.2021.06.017_b0155) 2011; 3
Velazhahan (10.1016/j.csbj.2021.06.017_b0170) 2021; 589
10.1016/j.csbj.2021.06.017_b0165
Khamis (10.1016/j.csbj.2021.06.017_b0160) 2015; 45
Lipinski (10.1016/j.csbj.2021.06.017_b0090) 2001; 46
Zheng (10.1016/j.csbj.2021.06.017_b0065) 2019; 4
10.1016/j.csbj.2021.06.017_b0140
Shultz (10.1016/j.csbj.2021.06.017_b0145) 2019; 62
Baell (10.1016/j.csbj.2021.06.017_b0085) 2010; 53
10.1016/j.csbj.2021.06.017_b0080
Bienfait (10.1016/j.csbj.2021.06.017_b0150) 2013; 5
Wen (10.1016/j.csbj.2021.06.017_b0040) 2017; 16
Wang (10.1016/j.csbj.2021.06.017_b0125) 2016; 18
Li (10.1016/j.csbj.2021.06.017_b0070) 2017; 57
Skalic (10.1016/j.csbj.2021.06.017_b0050) 2019; 59
10.1016/j.csbj.2021.06.017_b0005
References_xml – year: 2020
  ident: b0100
  article-title: Virus-CKB: an integrated bioinformatics platform and analysis resource for COVID-19 research
  publication-title: Brief Bioinform
– volume: 55
  start-page: 2324
  year: 2015
  end-page: 2337
  ident: b0130
  article-title: ZINC 15–ligand discovery for everyone
  publication-title: J Chem Inf Model
– reference: Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki PJB. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. 2018;34(21):3666-74.
– volume: 11
  start-page: 2873
  year: 2000
  end-page: 2884
  ident: b0175
  article-title: Homo-oligomeric complexes of the yeast alpha-factor pheromone receptor are functional units of endocytosis
  publication-title: Mol Biol Cell
– volume: 13
  start-page: 666
  year: 2018
  end-page: 680
  ident: b0115
  article-title: Assessing protein-ligand interaction scoring functions with the CASF-2013 benchmark
  publication-title: Nat Protoc
– volume: 20
  start-page: 30
  year: 2011
  end-page: 42
  ident: b0010
  article-title: Acero AJIToa, speech, processing l. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Trans Audio Speech Lang Process
– volume: 5
  start-page: 24
  year: 2013
  ident: b0150
  article-title: JSME: a free molecule editor in JavaScript
  publication-title: J Cheminform.
– volume: 53
  start-page: 2719
  year: 2010
  end-page: 2740
  ident: b0085
  article-title: New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays
  publication-title: J Med Chem
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0055
  article-title: Long short-term memory
  publication-title: Neural Comput
– volume: 34
  start-page: 3666
  year: 2018
  end-page: 3674
  ident: b0060
  article-title: Development and evaluation of a deep learning model for protein-ligand binding affinity prediction
  publication-title: Bioinformatics
– volume: 589
  start-page: 148
  year: 2021
  end-page: 153
  ident: b0170
  article-title: Structure of the class D GPCR Ste2 dimer coupled to two G proteins
  publication-title: Nature
– volume: 57
  start-page: 1007
  year: 2017
  end-page: 1012
  ident: b0070
  article-title: Structural and sequence similarity makes a significant impact on machine-learning-based scoring functions for protein-ligand interactions
  publication-title: J Chem Inf Model
– volume: 66
  start-page: 334
  year: 2014
  end-page: 395
  ident: b0030
  article-title: Computational methods in drug discovery
  publication-title: Pharmacol Rev
– volume: 17
  start-page: 587
  year: 1996
  end-page: 615
  ident: b0135
  article-title: Merck molecular force field. IV. conformational energies and geometries for MMFF94
  publication-title: J Comput Chem
– volume: 23
  start-page: 1241
  year: 2018
  end-page: 1250
  ident: b0025
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov Today
– volume: 46
  start-page: 3
  year: 2001
  end-page: 26
  ident: b0090
  article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
  publication-title: Adv Drug Deliv Rev
– volume: 47
  start-page: W322
  year: 2019
  end-page: W330
  ident: b0105
  article-title: HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA
  publication-title: Nucl Acids Res
– volume: 47
  start-page: 2977
  year: 2004
  end-page: 2980
  ident: b0120
  article-title: The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures
  publication-title: J Med Chem
– volume: 62
  start-page: 1701
  year: 2019
  end-page: 1714
  ident: b0145
  article-title: Two decades under the influence of the rule of five and the changing properties of approved oral drugs
  publication-title: J Med Chem
– reference: Simonyan K, Zisserman AJapa. Very deep convolutional networks for large-scale image recognition. arXiv preprint. 2014:arXiv:1409.556.
– volume: 34
  start-page: i821
  year: 2018
  end-page: i829
  ident: b0045
  article-title: DeepDTA: deep drug-target binding affinity prediction
  publication-title: Bioinformatics
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0035
  article-title: Deep learning
  publication-title: Nature
– volume: 35
  start-page: 3
  year: 2016
  end-page: 14
  ident: b0020
  article-title: Deep learning in drug discovery
  publication-title: Mol Inform
– volume: 4
  start-page: 15956
  year: 2019
  end-page: 15965
  ident: b0065
  article-title: OnionNet: a multiple-layer intermolecular-contact-based convolutional neural network for protein-ligand binding affinity prediction
  publication-title: ACS Omega
– volume: 59
  start-page: 1205
  year: 2019
  end-page: 1214
  ident: b0050
  article-title: Shape-based generative modeling for
  publication-title: J Chem Inf Model
– reference: Bai Q. Research and development of MolAICal for drug design via deep learning and classical programming. arXiv preprint. 2020:arXiv:2006.09747.
– volume: 31
  start-page: 455
  year: 2010
  end-page: 461
  ident: b0095
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J Comput Chem
– volume: 18
  start-page: 12964
  year: 2016
  end-page: 12975
  ident: b0125
  article-title: Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power
  publication-title: Phys Chem Chem Phys
– volume: 3
  start-page: 33
  year: 2011
  ident: b0155
  article-title: Open Babel: An open chemical toolbox
  publication-title: J Cheminform
– volume: 45
  start-page: 136
  year: 2015
  end-page: 151
  ident: b0160
  article-title: Comparative assessment of machine-learning scoring functions on PDBbind 2013
  publication-title: Eng Appl Artif Intell
– volume: 36
  start-page: 5109
  year: 2020
  end-page: 5111
  ident: b0110
  article-title: COVID-19 Docking Server: a meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19
  publication-title: Bioinformatics
– volume: 16
  start-page: 1401
  year: 2017
  end-page: 1409
  ident: b0040
  article-title: Deep-Learning-Based Drug-Target Interaction Prediction
  publication-title: J Proteome Res
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b0015
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
– reference: Hochreiter S, Schmidhuber JJNc. Long short-term memory. 1997;9(8):1735-80.sun.
– volume: 22
  year: 2020
  ident: b0075
  article-title: MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm
  publication-title: Brief Bioinform
– ident: 10.1016/j.csbj.2021.06.017_b0005
– volume: 13
  start-page: 666
  issue: 4
  year: 2018
  ident: 10.1016/j.csbj.2021.06.017_b0115
  article-title: Assessing protein-ligand interaction scoring functions with the CASF-2013 benchmark
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2017.114
– ident: 10.1016/j.csbj.2021.06.017_b0140
  doi: 10.1162/neco.1997.9.8.1735
– volume: 62
  start-page: 1701
  issue: 4
  year: 2019
  ident: 10.1016/j.csbj.2021.06.017_b0145
  article-title: Two decades under the influence of the rule of five and the changing properties of approved oral drugs
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.8b00686
– ident: 10.1016/j.csbj.2021.06.017_b0080
– volume: 18
  start-page: 12964
  issue: 18
  year: 2016
  ident: 10.1016/j.csbj.2021.06.017_b0125
  article-title: Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C6CP01555G
– volume: 55
  start-page: 2324
  issue: 11
  year: 2015
  ident: 10.1016/j.csbj.2021.06.017_b0130
  article-title: ZINC 15–ligand discovery for everyone
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00559
– volume: 66
  start-page: 334
  issue: 1
  year: 2014
  ident: 10.1016/j.csbj.2021.06.017_b0030
  article-title: Computational methods in drug discovery
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.112.007336
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.csbj.2021.06.017_b0055
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 22
  issue: 3
  year: 2020
  ident: 10.1016/j.csbj.2021.06.017_b0075
  article-title: MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa161
– volume: 45
  start-page: 136
  year: 2015
  ident: 10.1016/j.csbj.2021.06.017_b0160
  article-title: Comparative assessment of machine-learning scoring functions on PDBbind 2013
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2015.06.021
– volume: 4
  start-page: 15956
  issue: 14
  year: 2019
  ident: 10.1016/j.csbj.2021.06.017_b0065
  article-title: OnionNet: a multiple-layer intermolecular-contact-based convolutional neural network for protein-ligand binding affinity prediction
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01997
– volume: 47
  start-page: W322
  issue: W1
  year: 2019
  ident: 10.1016/j.csbj.2021.06.017_b0105
  article-title: HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkz397
– year: 2020
  ident: 10.1016/j.csbj.2021.06.017_b0100
  article-title: Virus-CKB: an integrated bioinformatics platform and analysis resource for COVID-19 research
  publication-title: Brief Bioinform
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.csbj.2021.06.017_b0015
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– volume: 47
  start-page: 2977
  issue: 12
  year: 2004
  ident: 10.1016/j.csbj.2021.06.017_b0120
  article-title: The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures
  publication-title: J Med Chem
  doi: 10.1021/jm030580l
– volume: 20
  start-page: 30
  issue: 1
  year: 2011
  ident: 10.1016/j.csbj.2021.06.017_b0010
  article-title: Acero AJIToa, speech, processing l. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Trans Audio Speech Lang Process
  doi: 10.1109/TASL.2011.2134090
– volume: 16
  start-page: 1401
  issue: 4
  year: 2017
  ident: 10.1016/j.csbj.2021.06.017_b0040
  article-title: Deep-Learning-Based Drug-Target Interaction Prediction
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.6b00618
– volume: 53
  start-page: 2719
  issue: 7
  year: 2010
  ident: 10.1016/j.csbj.2021.06.017_b0085
  article-title: New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays
  publication-title: J Med Chem
  doi: 10.1021/jm901137j
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.csbj.2021.06.017_b0035
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 34
  start-page: 3666
  issue: 21
  year: 2018
  ident: 10.1016/j.csbj.2021.06.017_b0060
  article-title: Development and evaluation of a deep learning model for protein-ligand binding affinity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty374
– volume: 5
  start-page: 24
  year: 2013
  ident: 10.1016/j.csbj.2021.06.017_b0150
  article-title: JSME: a free molecule editor in JavaScript
  publication-title: J Cheminform.
  doi: 10.1186/1758-2946-5-24
– volume: 57
  start-page: 1007
  issue: 4
  year: 2017
  ident: 10.1016/j.csbj.2021.06.017_b0070
  article-title: Structural and sequence similarity makes a significant impact on machine-learning-based scoring functions for protein-ligand interactions
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00049
– volume: 46
  start-page: 3
  issue: 1–3
  year: 2001
  ident: 10.1016/j.csbj.2021.06.017_b0090
  article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(00)00129-0
– volume: 17
  start-page: 587
  issue: 5–6
  year: 1996
  ident: 10.1016/j.csbj.2021.06.017_b0135
  article-title: Merck molecular force field. IV. conformational energies and geometries for MMFF94
  publication-title: J Comput Chem
  doi: 10.1002/(SICI)1096-987X(199604)17:5/6<587::AID-JCC4>3.0.CO;2-Q
– volume: 3
  start-page: 33
  year: 2011
  ident: 10.1016/j.csbj.2021.06.017_b0155
  article-title: Open Babel: An open chemical toolbox
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-3-33
– volume: 34
  start-page: i821
  issue: 17
  year: 2018
  ident: 10.1016/j.csbj.2021.06.017_b0045
  article-title: DeepDTA: deep drug-target binding affinity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty593
– volume: 589
  start-page: 148
  issue: 7840
  year: 2021
  ident: 10.1016/j.csbj.2021.06.017_b0170
  article-title: Structure of the class D GPCR Ste2 dimer coupled to two G proteins
  publication-title: Nature
  doi: 10.1038/s41586-020-2994-1
– volume: 59
  start-page: 1205
  issue: 3
  year: 2019
  ident: 10.1016/j.csbj.2021.06.017_b0050
  article-title: Shape-based generative modeling for de novo drug design
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00706
– ident: 10.1016/j.csbj.2021.06.017_b0165
  doi: 10.1093/bioinformatics/bty374
– volume: 23
  start-page: 1241
  issue: 6
  year: 2018
  ident: 10.1016/j.csbj.2021.06.017_b0025
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2018.01.039
– volume: 35
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.csbj.2021.06.017_b0020
  article-title: Deep learning in drug discovery
  publication-title: Mol Inform
  doi: 10.1002/minf.201501008
– volume: 31
  start-page: 455
  issue: 2
  year: 2010
  ident: 10.1016/j.csbj.2021.06.017_b0095
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21334
– volume: 36
  start-page: 5109
  issue: 20
  year: 2020
  ident: 10.1016/j.csbj.2021.06.017_b0110
  article-title: COVID-19 Docking Server: a meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa645
– volume: 11
  start-page: 2873
  issue: 9
  year: 2000
  ident: 10.1016/j.csbj.2021.06.017_b0175
  article-title: Homo-oligomeric complexes of the yeast alpha-factor pheromone receptor are functional units of endocytosis
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.11.9.2873
SSID ssj0000816930
Score 2.310715
Snippet Artificial intelligence can train the related known drug data into deep learning models for drug design, while classical algorithms can design drugs through...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3573
SubjectTerms algorithms
Artificial intelligence
biotechnology
Class D GPCR
Classical algorithm
Deep learning
Drug design
drugs
user interface
Webserver
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQLsABMT5EgU1G4gYRTuzYDrewMQ0OnJjYzfJXukwlnbpW0_77veekXcqhcOBWtbarvM-fneffI-S9D5YxC54WueCZiEFlziqbMV6ohkXIoTFV-f6Qp2fi-3l5Pmr1hTVhPT1wL7hPurCSxUIGmCaYLasIGQ9Wcw0i-Rgw-jJdjTZTKQZrJBnBA5ahZkix4cZMX9zlr90lbA6LPJF3pm5l91kpkfdvJacR-PyzdPLhqruytzd2NhvlpZOn5MkAKGndP8g-eRC7Z-TxiGbwOZn-qo-P629H9WdaUwibeBAbFxTgKrUt5i6a2BrajobFakpDKuqg7paidHqGCdqOqDup7QL1CLtRw9TOpvNFu7z4_YKcnXz9eXSaDQ0WMg-ut8yaIAExQJhpuPXWBdmUzuPV2EoFGQqOLWxyXgYdIQw5bSPgDVsF5bT0VdCKvyR73byLrwhVhWhc0YjSKyuiBEVFxiMv8gY-eKYmJF8L2PiBfRybYMzMuszs0qBSDCrFYK1dDnM-bOZc9dwbO0d_Qb1tRiJvdvoCrMkM1mT-Zk0TUq61bgYI0kMLWKrd-efv1iZiwD_xpYvt4nx1bWADDjtCyQXbMUZyvG8MYHpC1JZ9bT3N9i9de5HYwHUBXib0hHzcWOI_SOv1_5DWG_IIl-xPpN6SveViFQ8Aoy3dYXLHO8SoOCY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOvCuWl4zEDVI5dmJnuYWWqnCoOLCinCy_sk1ZstVuIlR-PTNJdrWp0Krc8rDzcL7xfHbG3xDy1nnDmAFLCyIRURK8iqxRJmKCq4IF8KGhjfI9lSfT5MtZetbL5OBamMH_-zYOy63sBYzjeNzqbMbqNtmTKfDuEdmbnn7Nf2D2uC4uSLF-Vcy_Kw48TyvQP3BAWwTzenjknaa6NFe_zXy-5XuOH3RJjFatZCGGnPw8aGp74P5cE3S82Ws9JPd7CkrzDjOPyK1QPSb3toQJn5DZ9_zoKP98mH-gOYWOFqduw5ICwaWmRG9HW32HsqJ-2cyob8NAqL2iCMROk4KWW2Kf1FSeOiTqiAlq5rPFsqzPfz0l0-NP3w5Poj4lQ-TAWOuo8BI4BnRMhTDOWC-L1DpcTDtRXnouMOlNLFKfBei4bGYCMBQz8cpm0k18psQ-GVWLKjwjVPGksLxIUqdMEiQzaWAiCB4XsOGYGpN4_bm06_XKMW3GXK8D0y40NqLGRtQYnRdDnXebOpedWsfO0h8RBZuSqLTdHoAvpXvD1Rk3kgUuPcA2gYecBGBcgGZb4Egy-DFJ1xjSPWnpyAhcqtx58zdrwGmwaPxNY6qwaFYahuwwhpQiYTvKSIErlIF-j4kaoHXwNsMzVXne6odnHOwyycbk_QbXN2it5_9X_AW5i3vdbNVLMqqXTXgF_K22r3vD_QueIkEf
  priority: 102
  providerName: Unpaywall
Title WADDAICA: A webserver for aiding protein drug design by artificial intelligence and classical algorithm
URI https://dx.doi.org/10.1016/j.csbj.2021.06.017
https://www.proquest.com/docview/2547536340
https://www.proquest.com/docview/2636421519
https://pubmed.ncbi.nlm.nih.gov/PMC8234348
https://doi.org/10.1016/j.csbj.2021.06.017
https://doaj.org/article/82a60e26d61540a59e317a7abf1148ed
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: KQ8
  dateStart: 20120401
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: AKRWK
  dateStart: 20120401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: M48
  dateStart: 20120401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJsH2gLiKDqiMxBsEJXFiJ0gIhY1pMDEhRLXxFPmWLlNIR9oK-u85x0lKi6YK8ValdpL63L7jHn-HkOfaSN-XYGmWRcyLrBGekkJ6PgtF4VuIodZV-Z7y41H08Tw-3yJ9u6NuAafXpnbYT2rUVK9-_Vi8BYN_86dWS0_VJeR6YeC4OANxg-xApEqxlcOnDu47z5wg9YjfnZ25fuouuYkUZ-A_krVQ5Rj91yLWCiL9u57y1ry-koufsqpWgtXRHXK7Q5k0a9XiLtmy9T2yt8I9eJ-Mz7LDw-zDQfaaZhR8Ke7O2oYChqWyxIBGHYVDWVPTzMfUuEoPqhYUda2lnaDlCp8nlbWhGrE4ip3KajxpytnF9wdkdPT-68Gx13Vd8DTY48wrDAcYAb6nYFJLZXgRK43nZVNhuAkZ9rUJWGwSC75JJdICCJGpESrhOjWJYA_Jdj2p7SNCRRgVKiyiWAsZWe7L2PrMsjAo4IP2xYAE_QLnuqMkx84YVd7Xnl3mKJ8c5ZNjAV4Ac14s51y1hBwbR79DuS1HIpm2uzBpxnlnm3kSSu7bkBvQzAheMrUAqkBhVYHJojUDEvdSzztc0uINuFW58eHPehXJwWjxnxhZ28l8mkNWDmkiZ5G_YQxneAgZEPaAiDX9Wvs169_U5YWjCE9CML0oGZCXS038h9Xa_-8HPSa7eJ92b-oJ2Z41c_sU0NpMDclOdvLl7GTodjuGziDh2uj0c_btN2v2Q7Y
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOvCuWl4zEDVI5dmJnuYWWqnCoOLCinCy_sk1ZstVuIlR-PTNJdrWp0Krc8rDzcL7xfHbG3xDy1nnDmAFLCyIRURK8iqxRJmKCq4IF8KGhjfI9lSfT5MtZetbL5OBamMH_-zYOy63sBYzjeNzqbMbqNtmTKfDuEdmbnn7Nf2D2uC4uSLF-Vcy_Kw48TyvQP3BAWwTzenjknaa6NFe_zXy-5XuOH3RJjFatZCGGnPw8aGp74P5cE3S82Ws9JPd7CkrzDjOPyK1QPSb3toQJn5DZ9_zoKP98mH-gOYWOFqduw5ICwaWmRG9HW32HsqJ-2cyob8NAqL2iCMROk4KWW2Kf1FSeOiTqiAlq5rPFsqzPfz0l0-NP3w5Poj4lQ-TAWOuo8BI4BnRMhTDOWC-L1DpcTDtRXnouMOlNLFKfBei4bGYCMBQz8cpm0k18psQ-GVWLKjwjVPGksLxIUqdMEiQzaWAiCB4XsOGYGpN4_bm06_XKMW3GXK8D0y40NqLGRtQYnRdDnXebOpedWsfO0h8RBZuSqLTdHoAvpXvD1Rk3kgUuPcA2gYecBGBcgGZb4Egy-DFJ1xjSPWnpyAhcqtx58zdrwGmwaPxNY6qwaFYahuwwhpQiYTvKSIErlIF-j4kaoHXwNsMzVXne6odnHOwyycbk_QbXN2it5_9X_AW5i3vdbNVLMqqXTXgF_K22r3vD_QueIkEf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WADDAICA%3A+A+webserver+for+aiding+protein+drug+design+by+artificial+intelligence+and+classical+algorithm&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Bai%2C+Qifeng&rft.au=Ma%2C+Jian&rft.au=Liu%2C+Shuo&rft.au=Xu%2C+Tingyang&rft.date=2021-01-01&rft.pub=Research+Network+of+Computational+and+Structural+Biotechnology&rft.eissn=2001-0370&rft.volume=19&rft.spage=3573&rft.epage=3579&rft_id=info:doi/10.1016%2Fj.csbj.2021.06.017&rft_id=info%3Apmid%2F34194678&rft.externalDocID=PMC8234348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon