Stellate Genes and the piRNA Pathway in Speciation and Reproductive Isolation of Drosophila melanogaster
One of the main conditions of the species splitting from a common precursor lineage is the prevention of a gene flow between diverging populations. The study of Drosophila interspecific hybrids allows to reconstruct the speciation mechanisms and to identify hybrid incompatibility factors that mainta...
Saved in:
Published in | Frontiers in genetics Vol. 11; p. 610665 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
22.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-8021 1664-8021 |
DOI | 10.3389/fgene.2020.610665 |
Cover
Abstract | One of the main conditions of the species splitting from a common precursor lineage is the prevention of a gene flow between diverging populations. The study of
Drosophila
interspecific hybrids allows to reconstruct the speciation mechanisms and to identify hybrid incompatibility factors that maintain post-zygotic reproductive isolation between closely related species. The regulation, evolution, and maintenance of the testis-specific
Ste-Su(Ste)
genetic system in
Drosophila melanogaster
is the subject of investigation worldwide. X-linked tandem testis-specific
Stellate
genes encode proteins homologous to the regulatory β-subunit of protein kinase CK2, but they are permanently repressed in wild-type flies by the piRNA pathway via piRNAs originating from the homologous Y-linked
Su(Ste)
locus. Derepression of
Stellate
genes caused by
Su(Ste)
piRNA biogenesis disruption leads to the accumulation of crystalline aggregates in spermatocytes, meiotic defects and male sterility. In this review we summarize current data about the origin, organization, evolution of the
Ste-Su(Ste)
system, and piRNA-dependent regulation of
Stellate
expression. The
Ste-Su(Ste)
system is fixed only in the
D. melanogaster
genome. According to our hypothesis, the acquisition of the
Ste-Su(Ste)
system by a part of the ancient fly population appears to be the causative factor of hybrid sterility in crosses of female flies with males that do not carry Y-linked
Su(Ste)
repeats. To support this scenario, we have directly demonstrated
Stellate
derepression and the corresponding meiotic disorders in the testes of interspecies hybrids between
D. melanogaster
and
D. mauritiana
. This finding embraces our hypothesis about the contribution of the
Ste-Su(Ste)
system and the piRNA pathway to the emergence of reproductive isolation of
D. melanogaster
lineage from initial species. |
---|---|
AbstractList | One of the main conditions of the species splitting from a common precursor lineage is the prevention of a gene flow between diverging populations. The study of
interspecific hybrids allows to reconstruct the speciation mechanisms and to identify hybrid incompatibility factors that maintain post-zygotic reproductive isolation between closely related species. The regulation, evolution, and maintenance of the testis-specific
genetic system in
is the subject of investigation worldwide. X-linked tandem testis-specific
genes encode proteins homologous to the regulatory β-subunit of protein kinase CK2, but they are permanently repressed in wild-type flies by the piRNA pathway via piRNAs originating from the homologous Y-linked
locus. Derepression of
genes caused by
piRNA biogenesis disruption leads to the accumulation of crystalline aggregates in spermatocytes, meiotic defects and male sterility. In this review we summarize current data about the origin, organization, evolution of the
system, and piRNA-dependent regulation of
expression. The
system is fixed only in the
genome. According to our hypothesis, the acquisition of the
system by a part of the ancient fly population appears to be the causative factor of hybrid sterility in crosses of female flies with males that do not carry Y-linked
repeats. To support this scenario, we have directly demonstrated
derepression and the corresponding meiotic disorders in the testes of interspecies hybrids between
and
. This finding embraces our hypothesis about the contribution of the
system and the piRNA pathway to the emergence of reproductive isolation of
lineage from initial species. One of the main conditions of the species splitting from a common precursor lineage is the prevention of a gene flow between diverging populations. The study of Drosophila interspecific hybrids allows to reconstruct the speciation mechanisms and to identify hybrid incompatibility factors that maintain post-zygotic reproductive isolation between closely related species. The regulation, evolution, and maintenance of the testis-specific Ste-Su(Ste) genetic system in Drosophila melanogaster is the subject of investigation worldwide. X-linked tandem testis-specific Stellate genes encode proteins homologous to the regulatory β-subunit of protein kinase CK2, but they are permanently repressed in wild-type flies by the piRNA pathway via piRNAs originating from the homologous Y-linked Su(Ste) locus. Derepression of Stellate genes caused by Su(Ste) piRNA biogenesis disruption leads to the accumulation of crystalline aggregates in spermatocytes, meiotic defects and male sterility. In this review we summarize current data about the origin, organization, evolution of the Ste-Su(Ste) system, and piRNA-dependent regulation of Stellate expression. The Ste-Su(Ste) system is fixed only in the D. melanogaster genome. According to our hypothesis, the acquisition of the Ste-Su(Ste) system by a part of the ancient fly population appears to be the causative factor of hybrid sterility in crosses of female flies with males that do not carry Y-linked Su(Ste) repeats. To support this scenario, we have directly demonstrated Stellate derepression and the corresponding meiotic disorders in the testes of interspecies hybrids between D. melanogaster and D. mauritiana. This finding embraces our hypothesis about the contribution of the Ste-Su(Ste) system and the piRNA pathway to the emergence of reproductive isolation of D. melanogaster lineage from initial species. One of the main conditions of the species splitting from a common precursor lineage is the prevention of a gene flow between diverging populations. The study of Drosophila interspecific hybrids allows to reconstruct the speciation mechanisms and to identify hybrid incompatibility factors that maintain post-zygotic reproductive isolation between closely related species. The regulation, evolution, and maintenance of the testis-specific Ste-Su(Ste) genetic system in Drosophila melanogaster is the subject of investigation worldwide. X-linked tandem testis-specific Stellate genes encode proteins homologous to the regulatory β-subunit of protein kinase CK2, but they are permanently repressed in wild-type flies by the piRNA pathway via piRNAs originating from the homologous Y-linked Su(Ste) locus. Derepression of Stellate genes caused by Su(Ste) piRNA biogenesis disruption leads to the accumulation of crystalline aggregates in spermatocytes, meiotic defects and male sterility. In this review we summarize current data about the origin, organization, evolution of the Ste-Su(Ste) system, and piRNA-dependent regulation of Stellate expression. The Ste-Su(Ste) system is fixed only in the D. melanogaster genome. According to our hypothesis, the acquisition of the Ste-Su(Ste) system by a part of the ancient fly population appears to be the causative factor of hybrid sterility in crosses of female flies with males that do not carry Y-linked Su(Ste) repeats. To support this scenario, we have directly demonstrated Stellate derepression and the corresponding meiotic disorders in the testes of interspecies hybrids between D. melanogaster and D. mauritiana . This finding embraces our hypothesis about the contribution of the Ste-Su(Ste) system and the piRNA pathway to the emergence of reproductive isolation of D. melanogaster lineage from initial species. One of the main conditions of the species splitting from a common precursor lineage is the prevention of a gene flow between diverging populations. The study of Drosophila interspecific hybrids allows to reconstruct the speciation mechanisms and to identify hybrid incompatibility factors that maintain post-zygotic reproductive isolation between closely related species. The regulation, evolution, and maintenance of the testis-specific Ste-Su(Ste) genetic system in Drosophila melanogaster is the subject of investigation worldwide. X-linked tandem testis-specific Stellate genes encode proteins homologous to the regulatory β-subunit of protein kinase CK2, but they are permanently repressed in wild-type flies by the piRNA pathway via piRNAs originating from the homologous Y-linked Su(Ste) locus. Derepression of Stellate genes caused by Su(Ste) piRNA biogenesis disruption leads to the accumulation of crystalline aggregates in spermatocytes, meiotic defects and male sterility. In this review we summarize current data about the origin, organization, evolution of the Ste-Su(Ste) system, and piRNA-dependent regulation of Stellate expression. The Ste-Su(Ste) system is fixed only in the D. melanogaster genome. According to our hypothesis, the acquisition of the Ste-Su(Ste) system by a part of the ancient fly population appears to be the causative factor of hybrid sterility in crosses of female flies with males that do not carry Y-linked Su(Ste) repeats. To support this scenario, we have directly demonstrated Stellate derepression and the corresponding meiotic disorders in the testes of interspecies hybrids between D. melanogaster and D. mauritiana. This finding embraces our hypothesis about the contribution of the Ste-Su(Ste) system and the piRNA pathway to the emergence of reproductive isolation of D. melanogaster lineage from initial species.One of the main conditions of the species splitting from a common precursor lineage is the prevention of a gene flow between diverging populations. The study of Drosophila interspecific hybrids allows to reconstruct the speciation mechanisms and to identify hybrid incompatibility factors that maintain post-zygotic reproductive isolation between closely related species. The regulation, evolution, and maintenance of the testis-specific Ste-Su(Ste) genetic system in Drosophila melanogaster is the subject of investigation worldwide. X-linked tandem testis-specific Stellate genes encode proteins homologous to the regulatory β-subunit of protein kinase CK2, but they are permanently repressed in wild-type flies by the piRNA pathway via piRNAs originating from the homologous Y-linked Su(Ste) locus. Derepression of Stellate genes caused by Su(Ste) piRNA biogenesis disruption leads to the accumulation of crystalline aggregates in spermatocytes, meiotic defects and male sterility. In this review we summarize current data about the origin, organization, evolution of the Ste-Su(Ste) system, and piRNA-dependent regulation of Stellate expression. The Ste-Su(Ste) system is fixed only in the D. melanogaster genome. According to our hypothesis, the acquisition of the Ste-Su(Ste) system by a part of the ancient fly population appears to be the causative factor of hybrid sterility in crosses of female flies with males that do not carry Y-linked Su(Ste) repeats. To support this scenario, we have directly demonstrated Stellate derepression and the corresponding meiotic disorders in the testes of interspecies hybrids between D. melanogaster and D. mauritiana. This finding embraces our hypothesis about the contribution of the Ste-Su(Ste) system and the piRNA pathway to the emergence of reproductive isolation of D. melanogaster lineage from initial species. |
Author | Aravin, Alexei A. Adashev, Vladimir E. Shatskikh, Aleksei S. Olenina, Ludmila V. Kotov, Alexei A. Bazylev, Sergei S. |
AuthorAffiliation | 3 Division of Biology and Biological Engineering, California Institute of Technology , Pasadena, CA , United States 2 Laboratory of Analysis of Clinical and Model Tumor Pathologies at the Organismal Level, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute” , Moscow , Russia 1 Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute” , Moscow , Russia |
AuthorAffiliation_xml | – name: 2 Laboratory of Analysis of Clinical and Model Tumor Pathologies at the Organismal Level, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute” , Moscow , Russia – name: 3 Division of Biology and Biological Engineering, California Institute of Technology , Pasadena, CA , United States – name: 1 Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute” , Moscow , Russia |
Author_xml | – sequence: 1 givenname: Vladimir E. surname: Adashev fullname: Adashev, Vladimir E. – sequence: 2 givenname: Alexei A. surname: Kotov fullname: Kotov, Alexei A. – sequence: 3 givenname: Sergei S. surname: Bazylev fullname: Bazylev, Sergei S. – sequence: 4 givenname: Aleksei S. surname: Shatskikh fullname: Shatskikh, Aleksei S. – sequence: 5 givenname: Alexei A. surname: Aravin fullname: Aravin, Alexei A. – sequence: 6 givenname: Ludmila V. surname: Olenina fullname: Olenina, Ludmila V. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33584811$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URB_0B7BBXrKZwY_EdjZIVQvtSBWgFtaWY19PXGXiYHuK-u_JTErVssAbW77nfNe6PsfoYIgDIPSOkiXnqvno1zDAkhFGloISIepX6IgKUS0UYfTg2fkQneZ8R6ZVNZzz6g065LxWlaL0CHW3BfreFMCXEy5jMzhcOsBjuPl6hr-b0v02DzgM-HYEG0wJcdhrbmBM0W1tCfeAVzn2cyl6fJFijmMXeoM30Jshrk0ukN6i1970GU4f9xP088vnH-dXi-tvl6vzs-uFrTktC68qbiipvXQSPGkaXgnuneIKGDUNV4woTi1IyUXtuayFmxR1S6SsSFsxfoJWM9dFc6fHFDYmPehogt5fxLTWJpVge9Bcetq2TjDh7GQWDfjWGsp845ylQk6sTzNr3LYbcBaGkkz_AvqyMoROr-O9lkpWjOwAHx4BKf7aQi56E7LdDXyAuM2aVaoRhDaNmqTvn_d6avL3qyYBnQV2GnBO4J8klOhdIvQ-EXqXCD0nYvLIfzw2lP1PTc8N_X-cfwBPfbxz |
CitedBy_id | crossref_primary_10_1186_s12964_023_01368_x crossref_primary_10_1002_jev2_12288 crossref_primary_10_1038_s41467_021_27136_4 crossref_primary_10_1007_s10522_023_10062_x crossref_primary_10_1186_s12964_024_01724_5 crossref_primary_10_3389_fcell_2024_1450227 crossref_primary_10_1371_journal_pgen_1009655 crossref_primary_10_1038_s41467_024_47346_w crossref_primary_10_3390_ijms23084184 crossref_primary_10_1371_journal_pgen_1009702 crossref_primary_10_3390_cimb45070358 crossref_primary_10_1038_s41598_022_22137_9 crossref_primary_10_3390_cells11233725 crossref_primary_10_1080_15476286_2022_2132359 crossref_primary_10_1126_sciadv_adh0397 crossref_primary_10_3390_ijms25115681 |
Cites_doi | 10.1093/genetics/107.4.591 10.1146/annurev-genet-102108-134802 10.1093/molbev/msl142 10.1016/j.tig.2017.09.002 10.1186/gb-2002-3-12-research0085 10.1073/pnas.82.10.3164 10.1016/S0006-291X(03)00073-1 10.15252/embj.201797259 10.1038/nature04219 10.1093/emboj/21.5.1121 10.1007/BF00328946 10.1093/genetics/154.4.1747 10.1016/j.molcel.2015.08.007 10.1016/j.devcel.2007.03.022 10.1073/pnas.0501893102 10.1101/gad.245514.114 10.1093/genetics/163.1.217 10.1016/j.mrgentox.2008.08.010 10.1016/j.jmb.2005.06.039 10.1073/pnas.94.12.6297 10.1371/journal.pone.0037738 10.1093/nar/20.14.3731 10.1126/science.1172046 10.1016/j.molcel.2018.08.007 10.1534/genetics.116.187120 10.1091/mbc.e11-02-0168 10.1016/j.molcel.2015.07.017 10.1242/dev.161786 10.1242/dev.181180 10.1016/j.molcel.2015.01.013 10.1016/j.bbrc.2005.04.016 10.1093/genetics/124.2.303 10.1016/j.cell.2007.02.005 10.1074/jbc.M101914200 10.1126/science.1142612 10.1101/gr.177001 10.1093/molbev/msu127 10.1101/2020.02.27.968743 10.1261/rna.744307 10.1016/j.cub.2010.02.046 10.1074/jbc.274.21.15095 10.1016/S0021-9258(18)37803-7 10.1038/emboj.2011.449 10.1096/fasebj.9.5.7896000 10.1093/molbev/msg119 10.1242/jcs.00074 10.3390/ph10010004 10.1093/oxfordjournals.molbev.a026348 10.1016/j.cell.2009.03.040 10.1016/j.jmb.2009.04.064 10.1126/science.aaa1039 10.1038/s41588-020-0656-8 10.1073/pnas.92.13.6067 10.1038/s41576-018-0073-3 10.1074/jbc.M507084200 10.1093/nar/gkz130 10.1016/S0960-9822(01)00299-8 10.1016/j.molcel.2011.10.011 10.1101/2020.08.25.266585 10.1093/genetics/146.1.253 10.1093/molbev/msl033 10.1134/S0026893314050112 10.1016/S0960-9822(01)00089-6 10.1016/0012-1606(77)90092-6 10.1016/j.gene.2012.03.023 10.1093/genetics/138.4.1181 10.1093/molbev/msg236 10.1016/j.cell.2012.09.040 10.1083/jcb.200904063 10.1534/genetics.118.301765 10.1093/molbev/msi147 10.1016/j.ab.2013.01.009 10.1038/nrg.2016.59 10.1016/j.cell.2014.05.018 10.1016/j.tibs.2015.12.008 10.1093/genetics/107.4.611 10.1093/nar/gkp167 10.1038/ncb1872 10.1038/nrg2482 10.1038/s41559-019-1065-1 10.1073/pnas.0701920104 10.1016/j.cell.2007.01.043 10.1126/science.1129333 10.1101/gad.267252.115 10.1016/j.cell.2009.04.027 10.1038/nchembio.88 10.7150/ijbs.1.67 10.1126/science.aaa1264 10.1016/j.ejcb.2016.06.001 10.1093/genetics/21.6.832 10.1038/emboj.2009.365 10.1073/pnas.86.6.1944 10.1093/genetics/142.1.149 10.1007/BF00418245 10.1242/dev.00310 10.1046/j.1432-1033.2002.02785.x 10.1242/jcs.01059 10.1093/nar/gki281 10.1134/S0006297912110077 10.1093/genetics/132.4.1033 10.1128/MCB.24.15.6742-6750.2004 10.1101/gad.973302 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Adashev, Kotov, Bazylev, Shatskikh, Aravin and Olenina. Copyright © 2021 Adashev, Kotov, Bazylev, Shatskikh, Aravin and Olenina. 2021 Adashev, Kotov, Bazylev, Shatskikh, Aravin and Olenina |
Copyright_xml | – notice: Copyright © 2021 Adashev, Kotov, Bazylev, Shatskikh, Aravin and Olenina. – notice: Copyright © 2021 Adashev, Kotov, Bazylev, Shatskikh, Aravin and Olenina. 2021 Adashev, Kotov, Bazylev, Shatskikh, Aravin and Olenina |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fgene.2020.610665 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-8021 |
ExternalDocumentID | oai_doaj_org_article_37f1bbd626dc40b69efbca12f9ddc167 PMC7874207 33584811 10_3389_fgene_2020_610665 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Russian Foundation for Basic Research |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c531t-f843a105f7d7ef0993463fd838e21a93820831ce77365f3756d3465b07740b423 |
IEDL.DBID | M48 |
ISSN | 1664-8021 |
IngestDate | Wed Aug 27 01:23:30 EDT 2025 Tue Sep 30 16:54:12 EDT 2025 Fri Sep 05 04:20:33 EDT 2025 Mon Jul 21 06:06:51 EDT 2025 Thu Apr 24 23:08:49 EDT 2025 Wed Oct 01 03:15:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stellate genes reproductive isolation piRNA pathway Drosophila hybrid sterility |
Language | English |
License | Copyright © 2021 Adashev, Kotov, Bazylev, Shatskikh, Aravin and Olenina. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-f843a105f7d7ef0993463fd838e21a93820831ce77365f3756d3465b07740b423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Igor V. Sharakhov, Virginia Tech, United States This article was submitted to Evolutionary and Population Genetics, a section of the journal Frontiers in Genetics Reviewed by: Séverine Chambeyron, Délégation Languedoc Roussillon (CNRS), France; Vanessa Michelle Macias, Pennsylvania State University (PSU), United States |
OpenAccessLink | https://doaj.org/article/37f1bbd626dc40b69efbca12f9ddc167 |
PMID | 33584811 |
PQID | 2489601998 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_37f1bbd626dc40b69efbca12f9ddc167 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7874207 proquest_miscellaneous_2489601998 pubmed_primary_33584811 crossref_primary_10_3389_fgene_2020_610665 crossref_citationtrail_10_3389_fgene_2020_610665 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-22 |
PublicationDateYYYYMMDD | 2021-01-22 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in genetics |
PublicationTitleAlternate | Front Genet |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Schultz (B89) 2002; 16 Pane (B80) 2007; 12 Bozzetti (B17) 1995; 92 Fischle (B31) 2005; 438 Nishida (B71) 2007; 13 Brangwynne (B18) 2009; 324 Webster (B100) 2015; 59 Rathert (B83) 2008; 4 Zhang (B103) 2012; 151 Tachibana (B93) 2001; 276 Vermaak (B98) 2009; 43 Bibby (B14) 2005; 1 Kalmykova (B40) 1997; 94 Ackerman (B1) 1985; 82 Huang (B37) 2017; 33 Livak (B58) 1984; 107 Lechner (B52) 2005; 331 Ryazansky (B87) 2016; 95 Kalmykova (B39) 2005; 33 Lim (B56) 2007; 104 Kibanov (B44) 2013; 436 Chen (B24) 2020 Meyer (B63) 1961; 12 Michalak (B64) 2003; 20 Charlesworth (B23) 2001; 11 Kotelnikov (B48) 2009; 37 Moehring (B65) 2007; 24 Wang (B99) 2015; 59 Bonet (B15) 2005; 351 Kogan (B46) 2000; 17 Rojas-Ríos (B84) 2017; 36 Aravin (B8) 2001; 11 Nosov (B72) 2014; 48 Bandyopadhyay (B11) 2016; 10 Muller (B67) 1940 Russo (B86) 1995; 12 Balakireva (B10) 1992; 20 Aravin (B9) 2007; 316 Lim (B57) 2009; 186 Haerty (B33) 2006; 23 Allende (B3) 1995; 9 Ledent (B53) 2001; 11 Chang (B22) 2019; 211 Hardy (B35) 1984; 107 Malone (B61) 2009; 137 Hoskins (B36) 2002 Palumbo (B79) 1994; 138 Barbash (B13) 2000; 154 Ozata (B77) 2019; 20 Han (B34) 2015; 348 Karandikar (B42) 2003; 301 Schotta (B88) 2002; 21 Barbash (B12) 2003; 163 Livak (B59) 1990; 124 Kirino (B45) 2009; 11 Czech (B26) 2016; 41 Zhang (B104) 2011; 44 Olenkina (B75); 499 Wei (B101) 2014; 31 Mohn (B66) 2015; 348 Tamura (B94) 2004; 21 Senti (B90) 2015; 29 Danilevskaya (B27) 1991; 100 Nott (B73) 2015; 57 Özata (B78) 2020; 4 Kogan (B47) 2012; 7 Xiol (B102) 2014; 157 Le Thomas (B51) 2014; 28 Dobzhansky (B28) 1936; 21 Zhao (B105) 1999; 274 Kotov (B49) 2019; 47 Muller (B68) 1942 Inoue (B38) 2008; 657 Patil (B81) 2010; 20 Kouzarides (B50) 2007; 128 Bouazoune (B16) 2005; 280 Pinna (B82) 2002; 115 Anand (B5) 2012; 31 Castillo (B20) 2017; 207 Chakraborty (B21) 2020 Conant (B25) 2008; 9 Lyckegaard (B60) 1989; 86 Snee (B92) 2004; 117 Findley (B30) 2003; 130 Aravin (B7) 2004; 24 Kibanov (B43) 2011; 22 Orr (B76) 2005; 102 Ackerman (B2) 1988; 263 Vagin (B97) 2006; 313 Egorova (B29) 2009; 389 Lifschytz (B55) 1977; 58 Olenkina (B74); 77 Nishida (B70) 2009; 28 Usakin (B96) 2005; 22 Gainetdinov (B32) 2018; 71 Rojas-Ríos (B85) 2018; 145 Brennecke (B19) 2007; 128 Li (B54) 2009; 137 Allis (B4) 2016; 17 McKee (B62) 1996; 142 Tulin (B95) 1997; 146 Ninova (B69) 2019; 146 Aravin (B6) 2020; 52 Shevelyov (B91) 1992; 132 Kalmykova (B41) 2002; 269 |
References_xml | – volume: 107 start-page: 591 year: 1984 ident: B35 article-title: Cytogenetic analysis of a segment of the Y chromosome of Drosophila melanogaster publication-title: Genetics doi: 10.1093/genetics/107.4.591 – volume: 43 start-page: 467 year: 2009 ident: B98 article-title: Multiple roles for heterochromatin protein 1 genes in Drosophila publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-102108-134802 – volume: 24 start-page: 137 year: 2007 ident: B65 article-title: Genome-wide patterns of expression in Drosophila pure species and hybrid males. II. Examination of multiple-species hybridizations, platforms, and life cycle stages publication-title: Mol. Biol. Evol doi: 10.1093/molbev/msl142 – volume: 33 start-page: 882 year: 2017 ident: B37 article-title: piRNA biogenesis in Drosophila melanogaster publication-title: Trends Genet. doi: 10.1016/j.tig.2017.09.002 – year: 2002 ident: B36 article-title: Heterochromatic sequences in a Drosophila whole-genome shotgun assembly publication-title: Genome Biol. doi: 10.1186/gb-2002-3-12-research0085 – volume: 82 start-page: 3164 year: 1985 ident: B1 article-title: Phosphorylation of DNA topoisomerase II by casein kinase II: modulation of eukaryotic topoisomerase II activity in vitro publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.82.10.3164 – volume: 301 start-page: 941 year: 2003 ident: B42 article-title: The Drosophila SSL gene is expressed in larvae, pupae, and adults, exhibits sexual dimorphism, and mimics properties of the beta subunit of casein kinase II publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(03)00073-1 – volume: 36 start-page: 3194 year: 2017 ident: B84 article-title: Aubergine and piRNAs promote germline stem cell self-renewal by repressing the proto-oncogene Cbl publication-title: EMBO J. doi: 10.15252/embj.201797259 – volume: 438 start-page: 1116 year: 2005 ident: B31 article-title: Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation publication-title: Nature doi: 10.1038/nature04219 – volume: 21 start-page: 1121 year: 2002 ident: B88 article-title: Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing publication-title: EMBO J doi: 10.1093/emboj/21.5.1121 – volume: 12 start-page: 676 year: 1961 ident: B63 article-title: Phase-specific function structure in spermatocyte nuclei of Drosophila melanogaster and their dependence of Y chromosomes publication-title: Chromosoma doi: 10.1007/BF00328946 – volume: 154 start-page: 1747 year: 2000 ident: B13 article-title: The Drosophila melanogaster hybrid male rescue gene causes inviability in male and female species hybrids publication-title: Genetics doi: 10.1093/genetics/154.4.1747 – volume: 59 start-page: 819 year: 2015 ident: B99 article-title: Slicing and binding by Ago3 or Aub trigger piwi-bound piRNA production by distinct mechanisms publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.08.007 – volume: 12 start-page: 851 year: 2007 ident: B80 article-title: zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.03.022 – volume: 102 start-page: 6522 year: 2005 ident: B76 article-title: The genetic basis of reproductive isolation: insights from Drosophila. Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.0501893102 – volume: 28 start-page: 1667 year: 2014 ident: B51 article-title: Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing publication-title: Genes Dev doi: 10.1101/gad.245514.114 – volume: 163 start-page: 217 year: 2003 ident: B12 article-title: A novel system of fertility rescue in Drosophila hybrids reveals a link between hybrid lethality and female sterility publication-title: Genetics doi: 10.1093/genetics/163.1.217 – volume: 657 start-page: 48 year: 2008 ident: B38 article-title: Perturbation of HP1 localization and chromatin binding ability causes defects in sister-chromatid cohesion publication-title: Mutat. Res doi: 10.1016/j.mrgentox.2008.08.010 – volume: 351 start-page: 562 year: 2005 ident: B15 article-title: The GAGA protein of Drosophila is phosphorylated by CK2 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.06.039 – volume: 94 start-page: 6297 year: 1997 ident: B40 article-title: Acquisition and amplification of a testis-expressed autosomal gene, SSL, by the Drosophila Y chromosome publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.12.6297 – volume: 7 start-page: e37738 year: 2012 ident: B47 article-title: Expansion and evolution of the X-linked testis specific multigene families in the melanogaster species subgroup publication-title: PLoS ONE doi: 10.1371/journal.pone.0037738 – volume: 20 start-page: 3731 year: 1992 ident: B10 article-title: Structural organization and diversification of Y-linked sequences comprising Su(Ste) genes in Drosophila melanogaster publication-title: Nucleic Acids Res. doi: 10.1093/nar/20.14.3731 – volume: 324 start-page: 1729 year: 2009 ident: B18 article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation publication-title: Science doi: 10.1126/science.1172046 – volume: 71 start-page: 775 year: 2018 ident: B32 article-title: A single mechanism of biogenesis, initiated and directed by PIWI proteins, explains piRNA production in most animals publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.08.007 – volume: 207 start-page: 825 year: 2017 ident: B20 article-title: Moving speciation genetics forward: modern techniques build on foundational studies in Drosophila publication-title: Genetics doi: 10.1534/genetics.116.187120 – volume: 22 start-page: 3410 year: 2011 ident: B43 article-title: A novel organelle, the piNG-body, in the nuage of Drosophila male germ cells is associated with piRNA-mediated gene silencing publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e11-02-0168 – volume: 59 start-page: 564 year: 2015 ident: B100 article-title: Aub and Ago3 are recruited to nuage through two mechanisms to form a ping-pong complex assembled by Krimper publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.07.017 – volume: 145 start-page: dev161786 year: 2018 ident: B85 article-title: piRNAs and PIWI proteins: regulators of gene expression in development and stem cells publication-title: Development doi: 10.1242/dev.161786 – volume: 146 start-page: dev181180 year: 2019 ident: B69 article-title: The control of gene expression and cell identity by H3K9 trimethylation publication-title: Development doi: 10.1242/dev.181180 – volume: 57 start-page: 936 year: 2015 ident: B73 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.013 – volume: 331 start-page: 929 year: 2005 ident: B52 article-title: The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.04.016 – volume: 124 start-page: 303 year: 1990 ident: B59 article-title: Detailed structure of the Drosophila melanogaster Stellate genes and their transcripts publication-title: Genetics doi: 10.1093/genetics/124.2.303 – volume: 128 start-page: 693 year: 2007 ident: B50 article-title: Chromatin modifications and their function publication-title: Cell doi: 10.1016/j.cell.2007.02.005 – start-page: 185 volume-title: The New Systematics year: 1940 ident: B67 article-title: Bearings of the Drosophila work on systematics – volume: 276 start-page: 25309 year: 2001 ident: B93 article-title: SET Domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3 publication-title: J. Biol. Chem doi: 10.1074/jbc.M101914200 – volume: 316 start-page: 744 year: 2007 ident: B9 article-title: Developmentally regulated piRNA clusters implicate MILI in transposon control publication-title: Science doi: 10.1126/science.1142612 – volume: 11 start-page: 754 year: 2001 ident: B53 article-title: The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis publication-title: Genome Res doi: 10.1101/gr.177001 – volume: 31 start-page: 1767 year: 2014 ident: B101 article-title: Limited gene misregulation is exacerbated by allele-specific upregulation in lethal hybrids between Drosophila melanogaster and Drosophila simulans publication-title: Mol. Biol. Evol doi: 10.1093/molbev/msu127 – year: 2020 ident: B21 article-title: Evolution of genome structure in the Drosophila simulans species complex. bioRxiv [Preprint] doi: 10.1101/2020.02.27.968743 – volume: 13 start-page: 1911 year: 2007 ident: B71 article-title: Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad publication-title: RNA doi: 10.1261/rna.744307 – volume: 20 start-page: 724 year: 2010 ident: B81 article-title: Repression of retroelements in Drosophila germline via piRNA pathway by the Tudor domain protein Tejas publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.02.046 – volume: 274 start-page: 15095 year: 1999 ident: B105 article-title: Phosphorylation of heterochromatin protein 1 by casein kinase II is required for efficient heterochromatin binding in Drosophila publication-title: J. Biol. Chem doi: 10.1074/jbc.274.21.15095 – volume: 263 start-page: 12653 year: 1988 ident: B2 article-title: Phosphorylation of DNA topoisomerase II in vivo and in total homogenates of Drosophila Kc cells. The role of casein kinase II publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)37803-7 – volume: 31 start-page: 870 year: 2012 ident: B5 article-title: The tudor domain protein kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila publication-title: EMBO J doi: 10.1038/emboj.2011.449 – volume: 9 start-page: 313 year: 1995 ident: B3 article-title: Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation publication-title: FASEB J. doi: 10.1096/fasebj.9.5.7896000 – volume: 20 start-page: 1070 year: 2003 ident: B64 article-title: Genome-wide patterns of expression in Drosophila pure species and hybrid males publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msg119 – volume: 115 start-page: 3873 year: 2002 ident: B82 article-title: Protein kinase CK2: a challenge to canons publication-title: J. Cell Sci. doi: 10.1242/jcs.00074 – volume: 10 start-page: 4 year: 2016 ident: B11 article-title: Drosophila protein kinase CK2: genetics, regulatory complexity and emerging roles during development publication-title: Pharmaceuticals doi: 10.3390/ph10010004 – volume: 17 start-page: 697 year: 2000 ident: B46 article-title: Molecular evolution of two paralogous tandemly repeated heterochromatic gene clusters linked to the X and Y chromosomes of Drosophila melanogaster publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026348 – volume: 137 start-page: 522 year: 2009 ident: B61 article-title: Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary publication-title: Cell doi: 10.1016/j.cell.2009.03.040 – volume: 389 start-page: 895 year: 2009 ident: B29 article-title: Genetically derepressed nucleoplasmic stellate protein in spermatocytes of D. melanogaster interacts with the catalytic subunit of protein kinase 2 and carries histone-like lysine-methylated mark publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.04.064 – volume: 348 start-page: 812 year: 2015 ident: B66 article-title: Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis publication-title: Science doi: 10.1126/science.aaa1039 – volume: 52 start-page: 644 year: 2020 ident: B6 article-title: Pachytene piRNAs as beneficial regulators or a defense system gone rogue publication-title: Nat. Genet. doi: 10.1038/s41588-020-0656-8 – volume: 92 start-page: 6067 year: 1995 ident: B17 article-title: The Ste locus, a component of the parasitic cry-Ste system of Drosophila melanogaster, encodes a protein that forms crystals in primary spermatocytes and mimics properties of the α-subunit of casein kinase 2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.92.13.6067 – volume: 20 start-page: 89 year: 2019 ident: B77 article-title: PIWI-interacting RNAs: small RNAs with big functions publication-title: Nat. Rev. Genet doi: 10.1038/s41576-018-0073-3 – volume: 280 start-page: 41912 year: 2005 ident: B16 article-title: dMi-2 chromatin binding and remodeling activities are regulated by dCK2 phosphorylation publication-title: J. Biol. Chem doi: 10.1074/jbc.M507084200 – volume: 47 start-page: 4255 year: 2019 ident: B49 article-title: piRNA silencing contributes to interspecies hybrid sterility and reproductive isolation in Drosophila melanogaster publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz130 – volume: 11 start-page: 1017 year: 2001 ident: B8 article-title: Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the publication-title: D. melanogaster germline. Curr. Biol. doi: 10.1016/S0960-9822(01)00299-8 – volume: 44 start-page: 572 year: 2011 ident: B104 article-title: Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.10.011 – year: 2020 ident: B24 article-title: piRNA-mediated gene regulation and adaptation to sex-specific transposon expression in D. melanogaster male germline. bioRxiv [Preprint] doi: 10.1101/2020.08.25.266585 – volume: 146 start-page: 253 year: 1997 ident: B95 article-title: Heterochromatic Stellate gene cluster in Drosophila melanogaster: structure and molecular evolution publication-title: Genetics doi: 10.1093/genetics/146.1.253 – volume: 23 start-page: 1707 year: 2006 ident: B33 article-title: Gene regulation divergence is a major contributor to the evolution of Dobzhansky-Muller incompatibilities between species of Drosophila publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msl033 – volume: 48 start-page: 805 year: 2014 ident: B72 article-title: Dynamic properties of germinal granule ping-body in the testes of Drosophila melanogaster publication-title: Mol. Biol. doi: 10.1134/S0026893314050112 – volume: 11 start-page: R182 year: 2001 ident: B23 article-title: Genome analysis: more Drosophila Y chromosome genes publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00089-6 – volume: 58 start-page: 276 year: 1977 ident: B55 article-title: Gene expression and the control of spermatid morphogenesis in Drosophila melanogaster publication-title: Dev. Biol. doi: 10.1016/0012-1606(77)90092-6 – volume: 499 start-page: 143 ident: B75 article-title: Promoter contribution to the testis-specific expression of Stellate gene family in Drosophila melanogaster publication-title: Gene doi: 10.1016/j.gene.2012.03.023 – volume: 138 start-page: 1181 year: 1994 ident: B79 article-title: Genetic analysis of Stellate elements of Drosophila melanogaster publication-title: Genetics doi: 10.1093/genetics/138.4.1181 – volume: 21 start-page: 36 year: 2004 ident: B94 article-title: Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks publication-title: Mol. Biol. Evol doi: 10.1093/molbev/msg236 – volume: 151 start-page: 871 year: 2012 ident: B103 article-title: UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery publication-title: Cell doi: 10.1016/j.cell.2012.09.040 – volume: 186 start-page: 333 year: 2009 ident: B57 article-title: piRNAs mediate posttranscriptional retroelement silencing and localization to pi-bodies in the Drosophila germline publication-title: J. Cell Biol. doi: 10.1083/jcb.200904063 – volume: 211 start-page: 333 year: 2019 ident: B22 article-title: Heterochromatin-enriched assemblies reveal the sequence and organization of the Drosophila melanogaster Y chromosome publication-title: Genetics doi: 10.1534/genetics.118.301765 – volume: 22 start-page: 1555 year: 2005 ident: B96 article-title: An alien promoter capture as a primary step of the evolution of testes-expressed repeats in the Drosophila melanogaster genome publication-title: Mol. Biol. Evol doi: 10.1093/molbev/msi147 – volume: 436 start-page: 55 year: 2013 ident: B44 article-title: Multicolor fluorescence imaging of whole-mount Drosophila testes for studying spermatogenesis publication-title: Anal. Biochem. doi: 10.1016/j.ab.2013.01.009 – volume: 17 start-page: 487 year: 2016 ident: B4 article-title: The molecular hallmarks of epigenetic control publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.59 – volume: 157 start-page: 1698 year: 2014 ident: B102 article-title: RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts publication-title: Cell doi: 10.1016/j.cell.2014.05.018 – volume: 41 start-page: 324 year: 2016 ident: B26 article-title: One loop to rule them all: the ping-pong cycle and piRNA-guided silencing publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.12.008 – volume: 107 start-page: 611 year: 1984 ident: B58 article-title: Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis publication-title: Genetics doi: 10.1093/genetics/107.4.611 – volume: 37 start-page: 3254 year: 2009 ident: B48 article-title: Peculiarities of piRNA-mediated post-transcriptional silencing of Stellate repeats in testes of Drosophila melanogaster publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp167 – volume: 11 start-page: 652 year: 2009 ident: B45 article-title: Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability publication-title: Nat. Cell Biol. doi: 10.1038/ncb1872 – volume: 9 start-page: 938 year: 2008 ident: B25 article-title: Turning a hobby into a job: how duplicated genes find new functions publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2482 – volume: 4 start-page: 156 year: 2020 ident: B78 article-title: Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-019-1065-1 – volume: 104 start-page: 6714 year: 2007 ident: B56 article-title: Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0701920104 – volume: 128 start-page: 1089 year: 2007 ident: B19 article-title: Discrete small RNA-generating loci as master regulators of transposon activity in publication-title: Drosophila. Cell doi: 10.1016/j.cell.2007.01.043 – volume: 313 start-page: 320 year: 2006 ident: B97 article-title: A distinct small RNA pathway silences selfish genetic elements in the germline publication-title: Science doi: 10.1126/science.1129333 – volume: 29 start-page: 1747 year: 2015 ident: B90 article-title: piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire publication-title: Genes Dev doi: 10.1101/gad.267252.115 – volume: 137 start-page: 509 year: 2009 ident: B54 article-title: Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies publication-title: Cell doi: 10.1016/j.cell.2009.04.027 – volume: 4 start-page: 344 year: 2008 ident: B83 article-title: Protein lysine methyltransferase G9a acts on non-histone targets publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.88 – volume: 1 start-page: 67 year: 2005 ident: B14 article-title: The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.1.67 – volume: 348 start-page: 817 year: 2015 ident: B34 article-title: Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production publication-title: Science doi: 10.1126/science.aaa1264 – volume: 95 start-page: 311 year: 2016 ident: B87 article-title: RNA helicase Spn-E is required to maintain Aub and AGO3 protein levels for piRNA silencing in the germline of Drosophila publication-title: Eur. J. Cell Biol doi: 10.1016/j.ejcb.2016.06.001 – volume: 21 start-page: 113 year: 1936 ident: B28 article-title: Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids publication-title: Genetics doi: 10.1093/genetics/21.6.832 – volume: 28 start-page: 3820 year: 2009 ident: B70 article-title: Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines publication-title: EMBO J. doi: 10.1038/emboj.2009.365 – volume: 86 start-page: 1944 year: 1989 ident: B60 article-title: Ribosomal DNA and Stellate gene copy number variation on the Y chromosome of Drosophila melanogaster publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.86.6.1944 – volume: 142 start-page: 149 year: 1996 ident: B62 article-title: Structure of the Y chromosomal Su(Ste) locus in Drosophila melanogaster and evidence for localized recombination among repeats publication-title: Genetics doi: 10.1093/genetics/142.1.149 – volume: 12 start-page: 391 year: 1995 ident: B86 article-title: Molecular phylogeny and divergence times of drosophilid species publication-title: Mol. Biol. Evol – volume: 100 start-page: 118 year: 1991 ident: B27 article-title: He-T family DNA sequences in the Y chromosome of Drosophila melanogaster share homology with the X-linked stellate genes publication-title: Chromosoma doi: 10.1007/BF00418245 – start-page: 157 year: 1942 ident: B68 article-title: Recessive genes causing interspecific sterility and other disharmonies between Drosophila melanogaster and simulans. Genetics – volume: 130 start-page: 859 year: 2003 ident: B30 article-title: Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage publication-title: Development doi: 10.1242/dev.00310 – volume: 269 start-page: 1418 year: 2002 ident: B41 article-title: CK2(beta)tes gene encodes a testis-specific isoform of the regulatory subunit of casein kinase 2 in Drosophila melanogaster publication-title: Eur. J. Biochem doi: 10.1046/j.1432-1033.2002.02785.x – volume: 117 start-page: 2109 year: 2004 ident: B92 article-title: Live imaging of nuage and polar granules: evidence against a precursor-product relationship and a novel role for Oskar in stabilization of polar granule components publication-title: J. Cell Sci doi: 10.1242/jcs.01059 – volume: 33 start-page: 1435 year: 2005 ident: B39 article-title: Regulated chromatin domain comprising cluster of co-expressed genes in Drosophila melanogaster publication-title: Nucleic Acids Res doi: 10.1093/nar/gki281 – volume: 77 start-page: 1285 ident: B74 article-title: Mapping of cis-regulatory sites in the promoter of testis-specific Stellate genes of Drosophila melanogaster publication-title: Biochem. Mosc doi: 10.1134/S0006297912110077 – volume: 132 start-page: 1033 year: 1992 ident: B91 article-title: Copies of a Stellate gene variant are located in the X heterochromatin of Drosophila melanogaster and are probably expressed publication-title: Genetics doi: 10.1093/genetics/132.4.1033 – volume: 24 start-page: 6742 year: 2004 ident: B7 article-title: Dissection of a natural RNA silencing process in the Drosophila melanogaster germ line publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.15.6742-6750.2004 – volume: 16 start-page: 919 year: 2002 ident: B89 article-title: SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins publication-title: Genes Dev doi: 10.1101/gad.973302 |
SSID | ssj0000493334 |
Score | 2.3517761 |
SecondaryResourceType | review_article |
Snippet | One of the main conditions of the species splitting from a common precursor lineage is the prevention of a gene flow between diverging populations. The study... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 610665 |
SubjectTerms | Drosophila Genetics hybrid sterility piRNA pathway reproductive isolation Stellate genes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA4iCH0prfbHai0p-FTYupvJJruP_qhoQZG2gm8hySb15Nw79I5y_31nNudxJ8W-9HUzmw35JjtfSOYbxvZsbMBjIM1L5XQunbO583WVV1GBwxgL1lNy8vmFOr2S366r66VSX3QnLMkDp4nbBx1L51rk3a2XhVNNiM7bUsSmbX2p-jxyDGNLm6nbxHsBQKZjTNyFNfsR8SBZTFF8QcagKJgsBaJer_9vJPPpXcml4HPyir2cs0Z-kEb7mq2FbpNtpDqSsy1284NyQZA1clKRfuC2azkSOz4efL844JdI8n7bGR90PFWbJyx6G2TfSfAVf3n8DL0wNY0iP77v6xsMhpbfhaHtRr8sKSq8YVcnX38enebzEgq5x8U1yWMtwSKFirrVISIbBKkgtjXUQZS2AYz_NZQ-aA2qiqAr1aJF5QpkhYVDqvWWrXejLrxnXCMR1NiTjE7JEMHV1jUK-xAgg619xorH-TR-ri9OZS6GBvcZBIHpITAEgUkQZOzz4pVxEtd4zviQQFoYki52_wC9xcy9xfzLWzL26RFig-uIDkdsF0bTByNkjZs5yjjM2LsE-eJTABVVHSgzplecYWUsqy3d4KbX6sb_oRSF3v4fg99hLwTdqCnKXIgPbH1yPw27SIkm7mPv_X8ANGYMHg priority: 102 providerName: Directory of Open Access Journals |
Title | Stellate Genes and the piRNA Pathway in Speciation and Reproductive Isolation of Drosophila melanogaster |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33584811 https://www.proquest.com/docview/2489601998 https://pubmed.ncbi.nlm.nih.gov/PMC7874207 https://doaj.org/article/37f1bbd626dc40b69efbca12f9ddc167 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: GX1 dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1664-8021 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: M48 dateStart: 20101201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbGEBIvE7_JBpOREA9IGfGP2MkDQttgDKRNCKjUt8h27K2oS7q2E_S_5y5OK4oqxEsfGtdJfWffdzn7-wh5aUIpHATSlCmrU2mtSa0r8jQPSliIscI4PJx8dq5OB_LzMB9ukWX1vB_A2cbUDvWkBtPxwa_rxTuY8G8x44R4-ybAUCPjJc8OAAwolb-aXKeoK4X1115k4xa5DbGKo9-f9QnAj4iPhYilZ6UkLNecxdLn5o7XglfH8b8JmP69v_KPgHVyj-z0SJMeRte4T7Z884DcidqTi4fk8hueHwGkSZF5ekZNU1MAg3Qy-np-SL8AMPxpFnTU0KhQj_br2gBijySxsEzST-C58VIb6Ptpp4kwGht65cemaS8MsjA8IoOTD9-PT9NediF1MCHnaSikMAC7gq61D4AghVQi1IUoPGemFIAZCsGc11qoPAidqxpa5DYDJJlZgGePyXbTNv4poRrAo4aeZLBK-iBsYWypoA8upDeFS0i2HM_K9ZzkKI0xriA3QRNUnQkqNEEVTZCQ16ufTCIhx78aH6GRVg2RS7v7op1eVP3UrIQOzNoaMrvawR9QpQ_WGcZDWdeOKZ2QF0sTVzD3sKBiGt_ezCouC0gA8ZRiQp5Ek69uJUSOSgUsIXrNGdaeZf1KM7rs-L1hDZU807v_cd89cpfjJpuMpZw_I9vz6Y1_Dihpbve7twvw-XHI9jun_w3LghM1 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stellate+Genes+and+the+piRNA+Pathway+in+Speciation+and+Reproductive+Isolation+of+Drosophila+melanogaster&rft.jtitle=Frontiers+in+genetics&rft.au=Adashev%2C+Vladimir+E&rft.au=Kotov%2C+Alexei+A&rft.au=Bazylev%2C+Sergei+S&rft.au=Shatskikh%2C+Aleksei+S&rft.date=2021-01-22&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=11&rft.spage=610665&rft_id=info:doi/10.3389%2Ffgene.2020.610665&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon |