Mercury removal from water streams through the ion exchange membrane bioreactor concept
•Mercury removal from water achieved through the ion exchange membrane bioreactor.•Mercury removal to levels below the 1ppb drinking water limit were achieved.•>98% removal of Hg achieved, with >98% biologically reduced from Hg(II) to Hg(0).•Higher water throughputs (>5 times) achieved afte...
Saved in:
Published in | Journal of hazardous materials Vol. 264; pp. 65 - 70 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
15.01.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0304-3894 1873-3336 1873-3336 |
DOI | 10.1016/j.jhazmat.2013.10.067 |
Cover
Abstract | •Mercury removal from water achieved through the ion exchange membrane bioreactor.•Mercury removal to levels below the 1ppb drinking water limit were achieved.•>98% removal of Hg achieved, with >98% biologically reduced from Hg(II) to Hg(0).•Higher water throughputs (>5 times) achieved after membrane pre-treatment.•Minimal contaminated waste was produced=clean environmental technology.
Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg0 in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. |
---|---|
AbstractList | •Mercury removal from water achieved through the ion exchange membrane bioreactor.•Mercury removal to levels below the 1ppb drinking water limit were achieved.•>98% removal of Hg achieved, with >98% biologically reduced from Hg(II) to Hg(0).•Higher water throughputs (>5 times) achieved after membrane pre-treatment.•Minimal contaminated waste was produced=clean environmental technology.
Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg0 in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg0 in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process.Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. |
Author | Crespo, João G. Vergel, Dario Oehmen, Adrian Reis, Maria A.M. Fradinho, Joana Velizarov, Svetlozar |
Author_xml | – sequence: 1 givenname: Adrian surname: Oehmen fullname: Oehmen, Adrian email: a.oehmen@fct.unl.pt – sequence: 2 givenname: Dario surname: Vergel fullname: Vergel, Dario – sequence: 3 givenname: Joana surname: Fradinho fullname: Fradinho, Joana – sequence: 4 givenname: Maria A.M. surname: Reis fullname: Reis, Maria A.M. – sequence: 5 givenname: João G. surname: Crespo fullname: Crespo, João G. – sequence: 6 givenname: Svetlozar surname: Velizarov fullname: Velizarov, Svetlozar |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28331694$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24275472$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU-LFDEQxYOsuLOrH0HJRfDSY_50p9N4EFlcFVa8KB5Durqyk6G7Mybp1fXTb4YZFbzM6RXF7xXFexfkbA4zEvKcszVnXL3errcb-3uyeS0Yl2W3Zqp9RFZct7KSUqozsmKS1ZXUXX1OLlLaMsZ429RPyLmoRRlasSLfP2OEJd7TiFO4syN1MUz0p80YacoR7ZRo3sSw3G6KIvVhpvgLNna-RTrh1Ec7I-19KCjkECmEGXCXn5LHzo4Jnx31kny7fv_16mN18-XDp6t3NxU0kueq70D3itmhrnUjgFsnhZNNr7QDQKF7bduBK4DG6q6zWknnrGsUEwqsHoS8JK8Od3cx_FgwZTP5BDiO5a2wJMO1VEqoTvPTaN2xthHlr4K-OKJLP-FgdtFPNt6bP7kV4OURsAns6EoK4NM_TkvJVVcXrjlwEENKEd1fhDOz79FszbFHs-9xvy49Ft-b_3zgs80l_RytH0-63x7cWJK_8xhNAo-ll8FHhGyG4E9ceAAeF7z4 |
CODEN | JHMAD9 |
CitedBy_id | crossref_primary_10_1007_s13369_024_09674_3 crossref_primary_10_1016_j_cherd_2022_04_002 crossref_primary_10_1002_app_53361 crossref_primary_10_1080_10643389_2018_1487227 crossref_primary_10_5004_dwt_2019_24193 crossref_primary_10_1002_ep_12342 crossref_primary_10_1007_s10311_021_01184_0 crossref_primary_10_1016_j_cej_2015_06_043 crossref_primary_10_1016_j_chemosphere_2018_10_072 crossref_primary_10_1021_acs_iecr_6b01359 crossref_primary_10_1007_s11356_024_33047_w crossref_primary_10_1007_s11802_020_4069_1 crossref_primary_10_1007_s11270_016_2790_6 crossref_primary_10_1016_j_jece_2022_108194 crossref_primary_10_1007_s13738_022_02529_4 crossref_primary_10_2166_wqrjc_2015_006 crossref_primary_10_1007_s10800_021_01577_7 crossref_primary_10_1016_j_talanta_2016_02_033 crossref_primary_10_1002_adfm_202008499 crossref_primary_10_1016_j_ijbiomac_2019_08_070 crossref_primary_10_1016_j_jhazmat_2020_124221 crossref_primary_10_1039_C5AY00488H crossref_primary_10_1007_s11356_015_5880_x crossref_primary_10_1021_acsomega_8b00789 crossref_primary_10_1039_C9EW00625G crossref_primary_10_12944_CWE_19_1_2 crossref_primary_10_1016_j_molliq_2022_120810 crossref_primary_10_1007_s10163_023_01720_w crossref_primary_10_1016_j_apsusc_2019_05_227 crossref_primary_10_1016_j_jwpe_2016_10_010 crossref_primary_10_1080_0954898X_2022_2059117 crossref_primary_10_1016_j_jcis_2020_07_103 crossref_primary_10_1016_j_ijbiomac_2019_03_007 crossref_primary_10_1016_j_jcis_2019_07_029 crossref_primary_10_1016_j_microc_2016_06_014 crossref_primary_10_1007_s10971_017_4362_7 crossref_primary_10_1016_j_chemosphere_2020_126647 crossref_primary_10_1016_j_dwt_2024_100700 crossref_primary_10_1016_j_jcis_2015_06_007 crossref_primary_10_1007_s11356_019_06310_8 crossref_primary_10_1061__ASCE_EE_1943_7870_0001515 crossref_primary_10_1016_j_jwpe_2017_03_005 crossref_primary_10_1021_acssuschemeng_7b04884 crossref_primary_10_1109_TED_2025_3529401 crossref_primary_10_1016_j_jclepro_2017_10_245 crossref_primary_10_1016_j_biortech_2014_11_045 crossref_primary_10_1016_j_chemosphere_2023_138552 crossref_primary_10_1016_j_cjche_2017_06_002 crossref_primary_10_1016_j_seppur_2020_117183 crossref_primary_10_1016_j_colsurfa_2022_130694 crossref_primary_10_3390_molecules27134044 crossref_primary_10_29130_dubited_1089013 crossref_primary_10_1016_j_cherd_2016_07_007 crossref_primary_10_1016_j_seppur_2024_128354 crossref_primary_10_1039_C5RA22008D crossref_primary_10_1007_s11270_018_3859_1 crossref_primary_10_3390_nano12223961 crossref_primary_10_1007_s00253_016_8079_2 crossref_primary_10_1016_j_scitotenv_2017_10_119 crossref_primary_10_1016_j_colsurfa_2019_124205 crossref_primary_10_1016_j_microc_2016_11_011 crossref_primary_10_1021_acs_energyfuels_9b01908 crossref_primary_10_1007_s13201_021_01453_x crossref_primary_10_23939_chcht16_02_203 crossref_primary_10_1002_jemt_23995 crossref_primary_10_3390_min10010043 crossref_primary_10_1080_00032719_2024_2333332 crossref_primary_10_1021_acs_iecr_0c01562 crossref_primary_10_1016_j_scitotenv_2023_162013 crossref_primary_10_1186_s40543_019_0173_5 crossref_primary_10_1016_j_seppur_2021_119880 crossref_primary_10_1016_j_cherd_2018_06_025 crossref_primary_10_1016_j_jece_2016_11_031 crossref_primary_10_1515_kern_2021_0006 crossref_primary_10_1016_j_eti_2020_101085 crossref_primary_10_22507_pml_v12n1a4 crossref_primary_10_1016_j_cej_2020_124635 crossref_primary_10_1039_D1RA02025K crossref_primary_10_1016_j_chemosphere_2019_05_076 crossref_primary_10_1016_j_cherd_2024_11_009 crossref_primary_10_1016_j_jclepro_2020_122143 crossref_primary_10_1002_cjce_22615 crossref_primary_10_1016_j_envpol_2019_112966 crossref_primary_10_1021_acsomega_0c02085 crossref_primary_10_1016_j_matpr_2018_07_020 crossref_primary_10_17795_jjhs_30174 crossref_primary_10_3390_polym14245458 crossref_primary_10_1016_j_enmm_2020_100283 crossref_primary_10_1016_j_cej_2018_05_022 crossref_primary_10_1021_acsanm_4c03368 crossref_primary_10_1007_s10570_023_05331_4 crossref_primary_10_1016_j_chemosphere_2018_01_123 crossref_primary_10_1016_j_seppur_2020_117833 crossref_primary_10_1039_C6RA20181D crossref_primary_10_1016_j_carbpol_2022_119207 crossref_primary_10_1007_s10661_024_13078_z crossref_primary_10_1007_s00289_016_1816_y crossref_primary_10_3390_membranes11040269 crossref_primary_10_1007_s43994_023_00071_4 crossref_primary_10_1016_j_jhazmat_2021_125044 crossref_primary_10_1016_j_jhazmat_2022_130405 crossref_primary_10_2139_ssrn_3994545 crossref_primary_10_1007_s11356_023_26002_8 crossref_primary_10_1016_j_chemosphere_2021_130654 crossref_primary_10_1021_acssuschemeng_7b00477 crossref_primary_10_3390_ijerph17051488 crossref_primary_10_1016_j_enmm_2021_100478 crossref_primary_10_1039_C4NJ00418C crossref_primary_10_1016_j_jhazmat_2024_135205 crossref_primary_10_1021_acsanm_2c00325 crossref_primary_10_1016_j_colsurfa_2024_135101 crossref_primary_10_3390_app9071390 crossref_primary_10_1016_j_cej_2022_140522 crossref_primary_10_1021_acssuschemeng_9b00567 crossref_primary_10_1007_s10895_018_2330_4 crossref_primary_10_3390_w14172718 crossref_primary_10_1016_j_watres_2019_05_066 crossref_primary_10_3390_molecules25122721 crossref_primary_10_1007_s10971_019_04923_6 crossref_primary_10_1039_D0DT01054E |
Cites_doi | 10.1016/j.jhazmat.2008.10.094 10.1016/j.envpol.2013.01.008 10.1016/S0048-9697(00)00540-4 10.1007/s002530051457 10.1007/BF03214924 10.1016/j.seppur.2011.09.027 10.1007/s11270-006-9130-1 10.1016/j.envpol.2011.09.023 10.1021/es015838g 10.1007/s00253-003-1322-7 10.1016/j.jhazmat.2007.07.038 10.1264/jsme2.ME11112 10.1002/(SICI)1097-0290(19980220)57:4<462::AID-BIT10>3.0.CO;2-E 10.1021/jp910580f 10.1021/es062707c 10.1016/j.scitotenv.2008.10.065 10.1016/j.watres.2005.06.012 10.1016/0376-7388(94)00310-U 10.1016/j.watres.2005.10.022 10.1021/es801176f 10.1016/j.scitotenv.2008.08.043 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2015 INIST-CNRS Copyright © 2013 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright © 2013 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2013.10.067 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law Applied Sciences |
EISSN | 1873-3336 |
EndPage | 70 |
ExternalDocumentID | 24275472 28331694 10_1016_j_jhazmat_2013_10_067 S0304389413008169 |
Genre | Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- SCE SEN SEW SSH T9H TAE VH1 WUQ IQODW UAO CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c531t-b9c8b60ad44852c1af32f35b68fcce28b8a7d16cc5a899a863ffaf56026ca8d23 |
IEDL.DBID | AIKHN |
ISSN | 0304-3894 1873-3336 |
IngestDate | Sun Sep 28 07:18:51 EDT 2025 Sun Sep 28 08:56:16 EDT 2025 Thu Apr 03 07:04:25 EDT 2025 Wed Apr 02 07:35:53 EDT 2025 Tue Jul 01 00:50:28 EDT 2025 Thu Apr 24 22:55:32 EDT 2025 Fri Feb 23 02:18:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water treatment Donnan dialysis Mixed microbial cultures Ion exchange membrane bioreactor (IEMB) Mercury bioremediation Drinking water Biological purification Transport process Ion exchange membrane Health and environment Decontamination Production Stream Bioremediation Public health Reaction product Contamination Heavy metal Bioreactor Industrial waste water Environment impact Surface water Cation exchange membrane Dialysis Water pollution Mercury |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-b9c8b60ad44852c1af32f35b68fcce28b8a7d16cc5a899a863ffaf56026ca8d23 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 24275472 |
PQID | 1490752531 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1836626981 proquest_miscellaneous_1490752531 pubmed_primary_24275472 pascalfrancis_primary_28331694 crossref_primary_10_1016_j_jhazmat_2013_10_067 crossref_citationtrail_10_1016_j_jhazmat_2013_10_067 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2013_10_067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-15 |
PublicationDateYYYYMMDD | 2014-01-15 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | APHA, AWWA, WPCF (bib0100) 1995 Jiang, Shi, Feng (bib0015) 2006; 40 Chang, Law (bib0070) 1998; 57 Delimi, Sandeaux, Sandeaux, Gavach (bib0105) 1995; 103 Matos, Velizarov, Crespo, Reis (bib0060) 2006; 40 Fortunato, Crespo, Reis (bib0075) 2005; 39 Carvalho, Almeida, Fradinho, Oehmen, Reis, Barreto Crespo (bib0095) 2011; 26 Oehmen, Fradinho, Serra, Carvalho, Capelo, Velizarov, Crespo, Reis (bib0080) 2009; 165 Sizmur, Canario, Gerwing, Mallory, O’Driscoll (bib0030) 2013; 176 Sata (bib0110) 2004 Agarwal, Chaudhury, Mhatre, Goswami (bib0115) 2010; 114 Reis, Rodrigues, Araujo, Coelho, Pereira, Duarte (bib0035) 2009; 407 Yan, Feng, Shang, Qiu, Dai, Wang, Hou (bib0045) 2008; 407 Heaven, Ilyushchenko, Tanton, Ullrich, Yanin (bib0040) 2000; 260 Barringer, Szabo (bib0020) 2006; 175 Bolger, Szlag (bib0090) 2002; 36 Matos, Velizarov, Reis, Crespo (bib0065) 2008; 42 Oehmen, Valerio, Llanos, Fradinho, Serra, Reis, Crespo, Velizarov (bib0055) 2011; 83 Wagner-Dobler (bib0010) 2003; 62 Nies (bib0005) 1999; 51 Mei, Shen, Zhao, Wang, Zhang (bib0085) 2008; 152 Lisha, Anshup, Pradeep (bib0025) 2009; 42 Liu, Yan, Wang, Li, Guedron, Spangenberg, Feng, Dominik (bib0050) 2012; 160 Fortunato (10.1016/j.jhazmat.2013.10.067_bib0075) 2005; 39 Oehmen (10.1016/j.jhazmat.2013.10.067_bib0080) 2009; 165 APHA (10.1016/j.jhazmat.2013.10.067_bib0100) 1995 Agarwal (10.1016/j.jhazmat.2013.10.067_bib0115) 2010; 114 Delimi (10.1016/j.jhazmat.2013.10.067_bib0105) 1995; 103 Nies (10.1016/j.jhazmat.2013.10.067_bib0005) 1999; 51 Carvalho (10.1016/j.jhazmat.2013.10.067_bib0095) 2011; 26 Matos (10.1016/j.jhazmat.2013.10.067_bib0065) 2008; 42 Lisha (10.1016/j.jhazmat.2013.10.067_bib0025) 2009; 42 Reis (10.1016/j.jhazmat.2013.10.067_bib0035) 2009; 407 Oehmen (10.1016/j.jhazmat.2013.10.067_bib0055) 2011; 83 Chang (10.1016/j.jhazmat.2013.10.067_bib0070) 1998; 57 Matos (10.1016/j.jhazmat.2013.10.067_bib0060) 2006; 40 Bolger (10.1016/j.jhazmat.2013.10.067_bib0090) 2002; 36 Sata (10.1016/j.jhazmat.2013.10.067_bib0110) 2004 Jiang (10.1016/j.jhazmat.2013.10.067_bib0015) 2006; 40 Sizmur (10.1016/j.jhazmat.2013.10.067_bib0030) 2013; 176 Yan (10.1016/j.jhazmat.2013.10.067_bib0045) 2008; 407 Heaven (10.1016/j.jhazmat.2013.10.067_bib0040) 2000; 260 Wagner-Dobler (10.1016/j.jhazmat.2013.10.067_bib0010) 2003; 62 Liu (10.1016/j.jhazmat.2013.10.067_bib0050) 2012; 160 Mei (10.1016/j.jhazmat.2013.10.067_bib0085) 2008; 152 Barringer (10.1016/j.jhazmat.2013.10.067_bib0020) 2006; 175 |
References_xml | – year: 1995 ident: bib0100 article-title: Standard Methods for the Examination of Water and Wastewater – volume: 160 start-page: 109 year: 2012 end-page: 117 ident: bib0050 article-title: Insights into low fish mercury bioaccumulation in a mercury-contaminated reservoir, Guizhou, China publication-title: Environ. Pollut. – volume: 36 start-page: 4430 year: 2002 end-page: 4435 ident: bib0090 article-title: An electrochemical system for removing and recovering elemental mercury from a gas stream publication-title: Environ. Sci. Technol. – volume: 42 start-page: 7702 year: 2008 end-page: 7708 ident: bib0065 article-title: Removal of bromate from drinking water using the ion exchange membrane bioreactor concept publication-title: Environ. Sci. Technol. – volume: 103 start-page: 83 year: 1995 end-page: 94 ident: bib0105 article-title: Properties of an anion exchange membrane in contact with aqueous solutions of sodium chloride and sodium benzenecarboxylate or benzenesulfonate publication-title: J. Membr. Sci. – volume: 114 start-page: 4471 year: 2010 end-page: 4476 ident: bib0115 article-title: Anion dependence of transport of mercury ion through Nafion-117 membrane publication-title: J. Phys. Chem. B – volume: 39 start-page: 3511 year: 2005 end-page: 3522 ident: bib0075 article-title: Biodegradation of thiomersal containing effluents by a mercury resistant publication-title: Water Res. – volume: 407 start-page: 497 year: 2008 end-page: 506 ident: bib0045 article-title: The variations of mercury in sediment profiles from a historically mercury-contaminated reservoir, Guizhou province, China publication-title: Sci. Total Environ. – volume: 26 start-page: 293 year: 2011 end-page: 300 ident: bib0095 article-title: Microbial characterization of mercury-reducing mixed cultures enriched with different carbon sources publication-title: Microbes Environ. – volume: 40 start-page: 3672 year: 2006 end-page: 3678 ident: bib0015 article-title: Mercury pollution in China publication-title: Environ. Sci. Technol. – volume: 175 start-page: 193 year: 2006 end-page: 221 ident: bib0020 article-title: Overview of investigations into mercury in ground water, soils, and septage, New Jersey coastal plain publication-title: Water Air Soil Pollut. – volume: 83 start-page: 137 year: 2011 end-page: 143 ident: bib0055 article-title: Arsenic removal from drinking water through a hybrid ion exchange membrane – coagulation process publication-title: Sep. Purif. Technol. – volume: 152 start-page: 721 year: 2008 end-page: 729 ident: bib0085 article-title: Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon publication-title: J. Hazard. Mater. – year: 2004 ident: bib0110 article-title: Ion Exchange Membranes: Preparation, Characterization, Modification and Application – volume: 40 start-page: 231 year: 2006 end-page: 240 ident: bib0060 article-title: Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept publication-title: Water Res. – volume: 51 start-page: 730 year: 1999 end-page: 750 ident: bib0005 article-title: Microbial heavy-metal resistance publication-title: Appl. Microbiol. Biotechnol. – volume: 165 start-page: 1040 year: 2009 end-page: 1048 ident: bib0080 article-title: The effect of carbon source on the biological reduction of ionic mercury publication-title: J. Hazard. Mater. – volume: 62 start-page: 124 year: 2003 end-page: 133 ident: bib0010 article-title: Pilot plant for bioremediation of mercury-containing industrial wastewater publication-title: Appl. Microbiol. Biotechnol. – volume: 176 start-page: 18 year: 2013 end-page: 25 ident: bib0030 article-title: Mercury and methylmercury bioaccumulation by polychaete worms is governed by both feeding ecology and mercury bioavailability in coastal mudflats publication-title: Environ. Pollut. – volume: 42 start-page: 144 year: 2009 end-page: 152 ident: bib0025 article-title: Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles publication-title: Gold Bull. – volume: 57 start-page: 462 year: 1998 end-page: 470 ident: bib0070 article-title: Development of microbial mercury detoxification processes using mercury-hyperresistant strain of publication-title: Biotechnol. Bioeng. – volume: 407 start-page: 2689 year: 2009 end-page: 2700 ident: bib0035 article-title: Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population publication-title: Sci. Total Environ. – volume: 260 start-page: 35 year: 2000 end-page: 44 ident: bib0040 article-title: Mercury in the River Nura and its floodplain, Central Kazakhstan: I. River sediments and water publication-title: Sci. Total Environ. – year: 2004 ident: 10.1016/j.jhazmat.2013.10.067_bib0110 – volume: 165 start-page: 1040 year: 2009 ident: 10.1016/j.jhazmat.2013.10.067_bib0080 article-title: The effect of carbon source on the biological reduction of ionic mercury publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.10.094 – volume: 176 start-page: 18 year: 2013 ident: 10.1016/j.jhazmat.2013.10.067_bib0030 article-title: Mercury and methylmercury bioaccumulation by polychaete worms is governed by both feeding ecology and mercury bioavailability in coastal mudflats publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.01.008 – volume: 260 start-page: 35 year: 2000 ident: 10.1016/j.jhazmat.2013.10.067_bib0040 article-title: Mercury in the River Nura and its floodplain, Central Kazakhstan: I. River sediments and water publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(00)00540-4 – volume: 51 start-page: 730 year: 1999 ident: 10.1016/j.jhazmat.2013.10.067_bib0005 article-title: Microbial heavy-metal resistance publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051457 – volume: 42 start-page: 144 year: 2009 ident: 10.1016/j.jhazmat.2013.10.067_bib0025 article-title: Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles publication-title: Gold Bull. doi: 10.1007/BF03214924 – volume: 83 start-page: 137 year: 2011 ident: 10.1016/j.jhazmat.2013.10.067_bib0055 article-title: Arsenic removal from drinking water through a hybrid ion exchange membrane – coagulation process publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2011.09.027 – volume: 175 start-page: 193 year: 2006 ident: 10.1016/j.jhazmat.2013.10.067_bib0020 article-title: Overview of investigations into mercury in ground water, soils, and septage, New Jersey coastal plain publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-006-9130-1 – volume: 160 start-page: 109 year: 2012 ident: 10.1016/j.jhazmat.2013.10.067_bib0050 article-title: Insights into low fish mercury bioaccumulation in a mercury-contaminated reservoir, Guizhou, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.09.023 – volume: 36 start-page: 4430 year: 2002 ident: 10.1016/j.jhazmat.2013.10.067_bib0090 article-title: An electrochemical system for removing and recovering elemental mercury from a gas stream publication-title: Environ. Sci. Technol. doi: 10.1021/es015838g – year: 1995 ident: 10.1016/j.jhazmat.2013.10.067_bib0100 – volume: 62 start-page: 124 year: 2003 ident: 10.1016/j.jhazmat.2013.10.067_bib0010 article-title: Pilot plant for bioremediation of mercury-containing industrial wastewater publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-003-1322-7 – volume: 152 start-page: 721 year: 2008 ident: 10.1016/j.jhazmat.2013.10.067_bib0085 article-title: Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.07.038 – volume: 26 start-page: 293 year: 2011 ident: 10.1016/j.jhazmat.2013.10.067_bib0095 article-title: Microbial characterization of mercury-reducing mixed cultures enriched with different carbon sources publication-title: Microbes Environ. doi: 10.1264/jsme2.ME11112 – volume: 57 start-page: 462 year: 1998 ident: 10.1016/j.jhazmat.2013.10.067_bib0070 article-title: Development of microbial mercury detoxification processes using mercury-hyperresistant strain of Pseudomonas aeruginosa PU21 publication-title: Biotechnol. Bioeng. doi: 10.1002/(SICI)1097-0290(19980220)57:4<462::AID-BIT10>3.0.CO;2-E – volume: 114 start-page: 4471 year: 2010 ident: 10.1016/j.jhazmat.2013.10.067_bib0115 article-title: Anion dependence of transport of mercury ion through Nafion-117 membrane publication-title: J. Phys. Chem. B doi: 10.1021/jp910580f – volume: 40 start-page: 3672 year: 2006 ident: 10.1016/j.jhazmat.2013.10.067_bib0015 article-title: Mercury pollution in China publication-title: Environ. Sci. Technol. doi: 10.1021/es062707c – volume: 407 start-page: 2689 year: 2009 ident: 10.1016/j.jhazmat.2013.10.067_bib0035 article-title: Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.10.065 – volume: 39 start-page: 3511 year: 2005 ident: 10.1016/j.jhazmat.2013.10.067_bib0075 article-title: Biodegradation of thiomersal containing effluents by a mercury resistant Pseudomonas putida strain publication-title: Water Res. doi: 10.1016/j.watres.2005.06.012 – volume: 103 start-page: 83 year: 1995 ident: 10.1016/j.jhazmat.2013.10.067_bib0105 article-title: Properties of an anion exchange membrane in contact with aqueous solutions of sodium chloride and sodium benzenecarboxylate or benzenesulfonate publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(94)00310-U – volume: 40 start-page: 231 year: 2006 ident: 10.1016/j.jhazmat.2013.10.067_bib0060 article-title: Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept publication-title: Water Res. doi: 10.1016/j.watres.2005.10.022 – volume: 42 start-page: 7702 year: 2008 ident: 10.1016/j.jhazmat.2013.10.067_bib0065 article-title: Removal of bromate from drinking water using the ion exchange membrane bioreactor concept publication-title: Environ. Sci. Technol. doi: 10.1021/es801176f – volume: 407 start-page: 497 year: 2008 ident: 10.1016/j.jhazmat.2013.10.067_bib0045 article-title: The variations of mercury in sediment profiles from a historically mercury-contaminated reservoir, Guizhou province, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.08.043 |
SSID | ssj0001754 |
Score | 2.475307 |
Snippet | •Mercury removal from water achieved through the ion exchange membrane bioreactor.•Mercury removal to levels below the 1ppb drinking water limit were... Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 65 |
SubjectTerms | Applied sciences Biological and medical sciences Bioreactors Biotechnology byproducts cation exchange Chemical engineering Continental surface waters Donnan dialysis drinking water environmental impact Exact sciences and technology Fundamental and applied biological sciences. Psychology Hazardous Substances - isolation & purification heavy metals human health industrial effluents Ion Exchange Ion exchange membrane bioreactor (IEMB) Membranes, Artificial mercury Mercury - isolation & purification Mercury bioremediation Methods. Procedures. Technologies Mixed microbial cultures Natural water pollution Others Pollution Reactors streams toxicity Various methods and equipments Waste Water - chemistry Water Pollutants, Chemical - isolation & purification water pollution Water Purification - instrumentation Water treatment Water treatment and pollution |
Title | Mercury removal from water streams through the ion exchange membrane bioreactor concept |
URI | https://dx.doi.org/10.1016/j.jhazmat.2013.10.067 https://www.ncbi.nlm.nih.gov/pubmed/24275472 https://www.proquest.com/docview/1490752531 https://www.proquest.com/docview/1836626981 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5i59JSQpu-nLRGhV7XD8laa48hJLiP5NKG5rZIWi21qR_YDgk59Lf3G6_WaaBtoKdlFwmJmdHMN6t5EL0vegFA1LuEbV8CoSgSB38nAVYuuD2VlZLznc_O09HF4OOlvtyh4zoXhsMqo-6vdPpGW8cv3UjN7mI87n7hSz2YW9bC3D0ia9CuhLU3Tdo9-vBpdL5VyLCQVRUpvgTAhLtEnu6kM_lub4ENOchLdTjOa9Nx_o8m6snCrkC4sup48XdIujFNp09pL2JKcVRt-xnthNk-Pf6t0uA-NT7b6-f07SwsPYgolmE6h4gJTi4R14CbS8FJI3a6ErFxD55BgGci3FS5wWIapvCsZ0G48RxD-We_8FXS4wu6OD35ejxKYmeFxOPMrROXeePSni3gnGnp-7ZUslTapab0PkjjjB0W_dR7beGPWZOqsrSl5nZV3ppCqpfUnM1n4TWJDSQJmep5K9nQWZ1mLlirgxrKQqctGtTEzH0sO87dL37kdXzZJI88yJkH_Bk8aFFnO21R1d14aIKpOZXfE6ActuGhqe17nN0uCOilIFiDFr2rWZ3j9PGVCsg9v1rBccqAuSSI-o8xRqVwGzODMa8qOblbYSAhnEN58P-7P6RHeONQoqSv31BzvbwKbwGU1q5Njc7Pfjseh1_4FBK4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOSwIIV4LBRa8Etf0Ycepc0QIVKDtZUHLLbIdR7TaPtSHQPx6ZhqnLBIPiVOkxFaimfHMN_GMP4DTtOYQiFoTUOwL0CjSwGC-EyBWTomeSnNO_c7tTtS8C6_v5f0SnBe9MFRW6X1_7tPn3trfqXppVkfdbvUPbephuCUvTOwR8TKshERqXYKVs6ubZmfhkDFC5qdI0SYATnht5Kn2Kr0H_YzYkIq8RIXqvOaM8--GqPWRnqDgspzx4mNIOg9Nl5uw4TElO8s_ewuW3GAb1v47aXAbllv6cQf-tt3YohDZ2PWHaGKMmkvYI8LNMaOmEd2fME_cg1fHUGfMPeW9wazv-phZDxwz3SEOpZ_9zOZNj7twd3lxe94MPLNCYHHNTQMTW2Wimk4xOZPc1nUmeCakiVRmrePKKN1I65G1UmM-plUkskxnkuiqrFYpFz-hNBgO3D6wOSRxsahZzSnQaRnFxmktnWjwVEZlCAthJtYfO07sF_-Sor6sl3gdJKQDuo06KENlMW2Un7vx1QRVaCp5Y0AJxoavph6_0ezihQi9BBpWWIbfhaoTXH20pYLiHs4mmDjFiLk4CvWTMUpEmDbGCsfs5Xby-oaQo3E2-MH3v_4EfjRv262kddW5OYRVfEJlRUFdHkFpOp65XwiapubYL4oXbq0Ung |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mercury+removal+from+water+streams+through+the+ion+exchange+membrane+bioreactor+concept&rft.jtitle=Journal+of+hazardous+materials&rft.au=OEHMEN%2C+Adrian&rft.au=VERGEL%2C+Dario&rft.au=FRADINHO%2C+Joana&rft.au=REIS%2C+Maria+A.+M&rft.date=2014-01-15&rft.pub=Elsevier&rft.issn=0304-3894&rft.volume=264&rft.spage=65&rft.epage=70&rft_id=info:doi/10.1016%2Fj.jhazmat.2013.10.067&rft.externalDBID=n%2Fa&rft.externalDocID=28331694 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |