An ECM-Mimetic Hydrogel to Promote the Therapeutic Efficacy of Osteoblast-Derived Extracellular Vesicles for Bone Regeneration
The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs h...
Saved in:
Published in | Frontiers in bioengineering and biotechnology Vol. 10; p. 829969 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
30.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-4185 2296-4185 |
DOI | 10.3389/fbioe.2022.829969 |
Cover
Abstract | The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels (
p
≤ 0.001). EV release was strongly associated with collagen concentration (R
2
> 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA (
p
≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells (
p
≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner (
p
≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy. |
---|---|
AbstractList | The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels (p ≤ 0.001). EV release was strongly associated with collagen concentration (R2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA (p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells (p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner (p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy.The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels (p ≤ 0.001). EV release was strongly associated with collagen concentration (R2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA (p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells (p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner (p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy. The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels ( p ≤ 0.001). EV release was strongly associated with collagen concentration (R 2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA ( p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells ( p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner ( p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy. The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels (p ≤ 0.001). EV release was strongly associated with collagen concentration (R2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA (p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells (p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner (p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy. The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels ( ≤ 0.001). EV release was strongly associated with collagen concentration (R > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA ( ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells ( ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner ( ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy. |
Author | Brunet, Mathieu Y. Hoey, David A. Cox, Sophie C. Man, Kenny Federici, Angelica S. |
AuthorAffiliation | 2 Trinity Centre for Biomedical Engineering , Trinity Biomedical Sciences Institute , Trinity College Dublin , Dublin , Ireland 1 School of Chemical Engineering , University of Birmingham , Birmingham , United Kingdom 4 Advanced Materials and Bioengineering Research Centre , Trinity College Dublin and RCSI , Dublin , Ireland 3 Dept. of Mechanical , Manufacturing, and Biomedical Engineering , School of Engineering , Trinity College Dublin , Dublin , Ireland |
AuthorAffiliation_xml | – name: 1 School of Chemical Engineering , University of Birmingham , Birmingham , United Kingdom – name: 2 Trinity Centre for Biomedical Engineering , Trinity Biomedical Sciences Institute , Trinity College Dublin , Dublin , Ireland – name: 3 Dept. of Mechanical , Manufacturing, and Biomedical Engineering , School of Engineering , Trinity College Dublin , Dublin , Ireland – name: 4 Advanced Materials and Bioengineering Research Centre , Trinity College Dublin and RCSI , Dublin , Ireland |
Author_xml | – sequence: 1 givenname: Kenny surname: Man fullname: Man, Kenny – sequence: 2 givenname: Mathieu Y. surname: Brunet fullname: Brunet, Mathieu Y. – sequence: 3 givenname: Angelica S. surname: Federici fullname: Federici, Angelica S. – sequence: 4 givenname: David A. surname: Hoey fullname: Hoey, David A. – sequence: 5 givenname: Sophie C. surname: Cox fullname: Cox, Sophie C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35433655$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstu1DAUhiNUREvpA7BBXrLJ4HucDVKZDm2lVkWosLUc-2TGVSYebKdiNjx7k5kWtUisbB3_5zsX_2-Lgz70UBTvCZ4xpupPbeMDzCimdKZoXcv6VXFEaS1LTpQ4eHY_LE5SusMYEyoqoeib4pAJzpgU4qj4c9qjxfy6vPZryN6ii62LYQkdygF9i2EdMqC8AnS7gmg2MEyaRdt6a-wWhRbdpAyh6UzK5RlEfw8OLX7naCx03dCZiH5C8raDhNoQ0ZdxBPQdltCPtOxD_6543ZouwcnjeVz8-Lq4nV-UVzfnl_PTq9IKRnJZ4XHASmLsiJLEVcw1NeVOAJasZo2ilhjMsZBQSWMZ4U5K1hAu-Rh3jLPj4nLPdcHc6U30axO3Ohivd4EQl9rEPDWqLa2Vws4KUTEuuFXc0JZVDltClQA1sj7vWZuhWYOz0I_zdi-gL196v9LLcK9rjEVVT4CPj4AYfg2Qsl77NC3M9BCGpKkUFDPKmBilH57X-lvk6QNHQbUX2BhSitBq6_NutWNp32mC9eQWvXOLntyi924ZM8k_mU_w_-c8AFNSwxU |
CitedBy_id | crossref_primary_10_3390_bioengineering10101122 crossref_primary_10_3390_biomedicines11041053 crossref_primary_10_1016_j_tice_2024_102684 crossref_primary_10_1186_s12951_023_01895_2 crossref_primary_10_3389_fbioe_2023_1160703 crossref_primary_10_1016_j_ijbiomac_2024_134344 crossref_primary_10_1088_1748_605X_ad525c crossref_primary_10_3390_app12157472 crossref_primary_10_34133_bmr_0085 crossref_primary_10_3390_ijms24087564 crossref_primary_10_3390_polym14224907 crossref_primary_10_1016_j_bbrc_2024_150841 crossref_primary_10_1177_20417314241286606 crossref_primary_10_1088_1748_605X_ace0ec crossref_primary_10_1016_j_ijbiomac_2025_140753 crossref_primary_10_1016_j_bbrc_2024_150778 crossref_primary_10_1002_adtp_202300428 crossref_primary_10_1016_j_reth_2023_09_007 crossref_primary_10_3390_gels11030175 crossref_primary_10_3390_jfb14040226 crossref_primary_10_1089_ten_teb_2023_0357 crossref_primary_10_3389_fbioe_2023_1162263 crossref_primary_10_1016_j_mtbio_2022_100522 crossref_primary_10_3390_life12091417 |
Cites_doi | 10.1002/bip.20871 10.1016/j.ijbiomac.2018.10.014 10.1038/s41598-017-13027-6 10.1371/journal.pmed.1000029 10.1002/jps.21528 10.4252/wjsc.v7.i4.728 10.1302/2046-3758.74.BJR-2018-0006 10.1016/j.bioactmat.2018.05.006 10.1021/acsbiomaterials.9b01374 10.3390/ijms18061190 10.1186/s12964-020-00630-w 10.1002/biot.202100401 10.1038/nm0405-367 10.3389/fncel.2014.00377 10.1186/1741-7015-9-66 10.1074/jbc.M005648200 10.1038/nmat3758 10.1186/s13287-018-0798-0 10.1016/j.bbrc.2006.06.110 10.1038/nrd3978 10.1371/journal.pone.0077538 10.1186/s13287-021-02262-4 10.3402/jev.v4.26238 10.1016/s0020-1383(13)70002-0 10.1161/res.123.suppl_1.490 10.3389/fbioe.2021.757220 10.3727/096368910X516637 10.1016/j.ijpx.2019.100007 10.1007/s000180050069 10.1002/adhm.201900847 10.1016/j.intimp.2011.12.027 10.3389/fphar.2019.01368 10.1186/1479-5876-9-29 10.1177/0022034516633189 10.3390/ijms23020832 10.1021/acsami.9b10126 10.3389/fbioe.2020.01015 10.1186/s13578-020-00527-8 10.1002/jev2.12118 10.1038/nbt.1830 10.3389/fbioe.2019.00352 10.1016/s0142-9612(03)00026-7 10.1186/scrt217 10.1016/j.biomaterials.2010.01.131 10.1002/adhm.201801604 10.3928/0147-7447-20020502-04 10.1590/s0104-14282011005000008 10.1089/ten.TEB.2018.0012 10.1016/j.mattod.2015.06.011 10.2217/rme.14.73 10.3892/etm.2017.5586 10.1016/j.joca.2016.06.022 10.3390/ijms21249364 10.1002/jbm.a.32696 10.1016/j.jcyt.2015.11.009 10.1038/s12276-019-0223-5 10.1016/j.addr.2020.04.004 10.3390/nano10091838 10.1016/j.actbio.2011.08.012 10.1039/c3sm52176a 10.1002/adhm.202100312 10.1007/s10561-020-09867-8 10.3390/ijms22105224 10.3389/fbioe.2017.00068 10.1093/rap/rkz036 10.1016/j.biomaterials.2005.03.016 10.1016/j.biomaterials.2016.09.029 10.4103/2152-7806.114813 10.1002/adfm.201909125 10.1080/10717544.2020.1818880 10.1016/j.bioactmat.2020.07.002 10.1002/jev2.12138 10.1155/s1110724304306017 10.1038/s41413-018-0039-2 10.1007/s00281-018-0682-0 10.3390/md8071962 10.1016/j.bone.2015.05.022 10.1083/jcb.201211138 10.1089/ten.TEB.2015.0357 10.1016/j.carbpol.2017.03.053 10.1089/ten.2004.10.1148 10.3389/fphar.2020.00622 10.1007/s10856-011-4386-4 10.1002/immu.200310028 10.1002/sctm.19-0405 10.1590/S1679-45082017GS3902 10.3389/fbioe.2020.00633 10.4161/org.23306 10.1186/s12964-019-0319-5 10.1155/2021/6640893 10.3390/ph14040289 10.1016/j.mattod.2017.10.005 10.5483/bmbrep.2014.47.10.164 10.1016/j.bioactmat.2020.12.012 10.2147/RRBC.S58281 10.3390/ijms18071450 10.2106/JBJS.16.00299 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Man, Brunet, Federici, Hoey and Cox. Copyright © 2022 Man, Brunet, Federici, Hoey and Cox. 2022 Man, Brunet, Federici, Hoey and Cox |
Copyright_xml | – notice: Copyright © 2022 Man, Brunet, Federici, Hoey and Cox. – notice: Copyright © 2022 Man, Brunet, Federici, Hoey and Cox. 2022 Man, Brunet, Federici, Hoey and Cox |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fbioe.2022.829969 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Man et al |
EISSN | 2296-4185 |
ExternalDocumentID | oai_doaj_org_article_c29880dc5573454c84a2f37d0c1285e8 PMC9005798 35433655 10_3389_fbioe_2022_829969 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: EP/S016589/1 EP/S017844/1 – fundername: ; grantid: 19/FFP/6533 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM IAO IEA IHR IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c531t-709967600d1861d73db924d5e06393b82c1a04056e76ac314d663b14641a0d343 |
IEDL.DBID | M48 |
ISSN | 2296-4185 |
IngestDate | Wed Aug 27 01:29:10 EDT 2025 Thu Aug 21 14:10:25 EDT 2025 Sun Aug 24 03:55:56 EDT 2025 Thu Jan 02 22:54:02 EST 2025 Tue Jul 01 03:36:13 EDT 2025 Thu Apr 24 23:02:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | controlled release tissue engineering bone drug delivery hydrogel extracellular vesicle |
Language | English |
License | Copyright © 2022 Man, Brunet, Federici, Hoey and Cox. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-709967600d1861d73db924d5e06393b82c1a04056e76ac314d663b14641a0d343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lisa Jane White, University of Nottingham, United Kingdom Reviewed by: Dake Hao, University of California, Davis, United States Edited by: Nuno M. Neves, University of Minho, Portugal This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fbioe.2022.829969 |
PMID | 35433655 |
PQID | 2652032335 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c29880dc5573454c84a2f37d0c1285e8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9005798 proquest_miscellaneous_2652032335 pubmed_primary_35433655 crossref_citationtrail_10_3389_fbioe_2022_829969 crossref_primary_10_3389_fbioe_2022_829969 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-30 |
PublicationDateYYYYMMDD | 2022-03-30 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in bioengineering and biotechnology |
PublicationTitleAlternate | Front Bioeng Biotechnol |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | van den Boorn (B87) 2011; 29 Sensebé (B80) 2013; 4 Man (B59) 2021; 10 Zhao (B98) 2021; 12 Wang (B89) 2010; 31 Raposo (B75) 2013; 200 Baroli (B6) 2009; 98 Altei (B2) 2020; 18 Shen (B81) 2020; 5 Betz (B7) 2002; 25 Li (B55) 2016; 18 von der Mark (B88) 1997; 53 Chance-Larsen (B11) 2019; 3 Kong (B52) 2018; 15 Perez (B71) 2015; 18 Zhang (B95) 2010; 8 Elsharkasy (B23) 2020; 159 Hustedt (B42) 2014; 87 Marrella (B66) 2018; 21 Epstein (B24) 2013; 4 McBane (B67) 2013; 8 Gresham (B34) 2021; 6 Chung (B13) 2012; 12 Nikravesh (B70) 2019; 8 Riau (B76) 2019; 10 Hesse (B40) 2010; 94 Peschel (B72) 2012; 8 Di Martino (B19) 2005; 26 Yang (B93) 2004; 10 Herberts (B39) 2011; 9 Khor (B47) 2003; 24 Giannoudis (B30) 2013; 44 Murphy (B69) 2019; 51 Kundu (B54) 2006; 347 Saravanan (B79) 2019; 121 Deng (B18) 2015; 79 Eichholz (B21) 2020; 9 Ghasemi-Mobarakeh (B28) 2015; 7 Kearney (B46) 2013; 12 Kobayashi (B50) 2015; 5 Dimitriou (B20) 2011; 9 Huynh (B43) 2016; 95 Ramírez (B74) 2020; 27 Zhang (B96) 2016; 24 Man (B63) 2021; 22 Davies (B17) 2017; 7 Fernandes (B25) 2011; 21 Xin (B91) 2014; 8 Kumar (B53) 2021; 10 Costa (B15) 2017; 15 Kim (B48) 2010; 19 Tao (B85) 2019; 17 Clayton (B14) 2003; 33 Man (B62) 2021; 9 Tang (B84) 2021; 11 Zhu (B99) 2021; 22 Chicatun (B12) 2013; 9 Gimona (B31) 2017; 18 Ferreira (B26) 2018; 7 Salasznyk (B78) 2004; 2004 Gnecchi (B33) 2005; 11 Mol (B68) 2019; 8 Man (B60) 2020; 10 Gupta (B36) 2020; 21 Grosso (B35) 2017; 5 Sun (B82) 2011; 22 Huang (B41) 2016; 111 Li (B56) 2018; 123 Kirsch (B49) 2000; 275 Brennan (B9) 2020; 30 Kolawole (B51) 2019; 1 Marolt Presen (B65) 2019; 7 Man (B61) 2022; 23 Roberts (B77) 2012; 8 Börger (B8) 2017; 18 Imai (B44) 2015; 4 Wang (B90) 2018; 24 EL Andaloussi (B22) 2013; 12 Liu (B57) 2020; 6 Yan (B92) 2020; 8 Bai (B5) 2018; 3 Luo (B58) 2021 Tatara (B86) 2016; 98 Gao (B27) 2018; 6 Ahmadi (B1) 2015; 10 Sun (B83) 2018; 9 Yoon (B94) 2014; 47 Zhang (B97) 2020; 11 James (B45) 2016; 22 Buzás (B10) 2018; 40 Glowacki (B32) 2008; 89 Hao (B37) 2020; 8 Rahmanian-Devin (B73) 2021; 2021 Mardpour (B64) 2019; 11 Ansari (B4) 2021; 14 Dang (B16) 2017; 167 Heathman (B38) 2015; 10 Gholami (B29) 2021; 11 Amariglio (B3) 2009; 6 |
References_xml | – volume: 89 start-page: 338 year: 2008 ident: B32 article-title: Collagen Scaffolds for Tissue Engineering publication-title: Biopolymers doi: 10.1002/bip.20871 – volume: 121 start-page: 38 year: 2019 ident: B79 article-title: A Review on Injectable Chitosan/beta Glycerophosphate Hydrogels for Bone Tissue Regeneration publication-title: Int. J. Biol. Macromolecules doi: 10.1016/j.ijbiomac.2018.10.014 – volume: 7 start-page: 12639 year: 2017 ident: B17 article-title: Annexin-enriched Osteoblast-Derived Vesicles Act as an Extracellular Site of mineral Nucleation within Developing Stem Cell Cultures publication-title: Sci. Rep. doi: 10.1038/s41598-017-13027-6 – volume: 6 start-page: e1000029 year: 2009 ident: B3 article-title: Donor-derived Brain Tumor Following Neural Stem Cell Transplantation in an Ataxia Telangiectasia Patient publication-title: Plos Med. doi: 10.1371/journal.pmed.1000029 – volume: 98 start-page: 1317 year: 2009 ident: B6 article-title: From Natural Bone Grafts to Tissue Engineering Therapeutics: Brainstorming on Pharmaceutical Formulative Requirements and Challenges publication-title: J. Pharm. Sci. doi: 10.1002/jps.21528 – volume: 7 start-page: 728 year: 2015 ident: B28 article-title: Structural Properties of Scaffolds: Crucial Parameters towards Stem Cells Differentiation publication-title: World J. Stem Cell doi: 10.4252/wjsc.v7.i4.728 – volume: 7 start-page: 263 year: 2018 ident: B26 article-title: Harnessing Extracellular Vesicles to Direct Endochondral Repair of Large Bone Defects publication-title: Bone Jt. Res doi: 10.1302/2046-3758.74.BJR-2018-0006 – volume: 3 start-page: 401 year: 2018 ident: B5 article-title: Bioactive Hydrogels for Bone Regeneration publication-title: Bioact Mater. doi: 10.1016/j.bioactmat.2018.05.006 – volume: 6 start-page: 1500 year: 2020 ident: B57 article-title: Phosphorylated Chitosan Hydrogels Inducing Osteogenic Differentiation of Osteoblasts via Jnk and P38 Signaling Pathways publication-title: Acs Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b01374 – volume: 18 start-page: 1190 year: 2017 ident: B31 article-title: Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18061190 – volume: 18 start-page: 1158 year: 2020 ident: B2 article-title: Inhibition of αvβ3 Integrin Impairs Adhesion and Uptake of Tumor-Derived Small Extracellular Vesicles publication-title: Cell Commun Signal doi: 10.1186/s12964-020-00630-w – start-page: e2100401 year: 2021 ident: B58 article-title: Hydrostatic Pressure Promotes Chondrogenic Differentiation and Microvesicle Release from Human Embryonic and Bone Marrow Stem Cells publication-title: Biotechnol. J. doi: 10.1002/biot.202100401 – volume: 11 start-page: 367 year: 2005 ident: B33 article-title: Paracrine Action Accounts for Marked protection of Ischemic Heart by Akt-Modified Mesenchymal Stem Cells publication-title: Nat. Med. doi: 10.1038/nm0405-367 – volume: 8 start-page: 377 year: 2014 ident: B91 article-title: Exosomes/mirnas as Mediating Cell-Based Therapy of Stroke publication-title: Front Cell Neurosci doi: 10.3389/fncel.2014.00377 – volume: 9 start-page: 66 year: 2011 ident: B20 article-title: Bone Regeneration: Current Concepts and Future Directions publication-title: BMC Med. doi: 10.1186/1741-7015-9-66 – volume: 275 start-page: 35577 year: 2000 ident: B49 article-title: The Roles of Annexins and Types Ii and X Collagen in Matrix Vesicle-Mediated Mineralization of Growth Plate Cartilage publication-title: J. Biol. Chem. doi: 10.1074/jbc.M005648200 – volume: 12 start-page: 1004 year: 2013 ident: B46 article-title: Macroscale Delivery Systems for Molecular and Cellular Payloads publication-title: Nat. Mater. doi: 10.1038/nmat3758 – volume: 9 start-page: 52 year: 2018 ident: B83 article-title: Extracellular Matrix Stiffness Controls Osteogenic Differentiation of Mesenchymal Stem Cells Mediated by Integrin α5 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-018-0798-0 – volume: 347 start-page: 347 year: 2006 ident: B54 article-title: Vitronectin and Collagen I Differentially Regulate Osteogenesis in Mesenchymal Stem Cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2006.06.110 – volume: 12 start-page: 347 year: 2013 ident: B22 article-title: Extracellular Vesicles: Biology and Emerging Therapeutic Opportunities publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3978 – volume: 10 start-page: 1 year: 2015 ident: B1 article-title: Chitosan Based Hydrogels: Characteristics and Pharmaceutical Applications publication-title: Res. Pharm. Sci. – volume: 8 start-page: e77538 year: 2013 ident: B67 article-title: Evaluation of a Collagen-Chitosan Hydrogel for Potential Use as a Pro-angiogenic Site for Islet Transplantation publication-title: PLoS One doi: 10.1371/journal.pone.0077538 – volume: 12 start-page: 196 year: 2021 ident: B98 article-title: Chitosan Hydrogel-Loaded Msc-Derived Extracellular Vesicles Promote Skin Rejuvenation by Ameliorating the Senescence of Dermal Fibroblasts publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02262-4 – volume: 4 start-page: 26238 year: 2015 ident: B44 article-title: Macrophage-dependent Clearance of Systemically Administered B16bl6-Derived Exosomes from the Blood Circulation in Mice publication-title: J. Extracell Vesicles doi: 10.3402/jev.v4.26238 – volume: 44 start-page: S1 year: 2013 ident: B30 article-title: Bone Regeneration Strategies: Current Trends but what the Future Holds? publication-title: Injury doi: 10.1016/s0020-1383(13)70002-0 – volume: 123 year: 2018 ident: B56 article-title: Enhanced Therapeutic Effects of Msc-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment publication-title: Circ. Res. doi: 10.1161/res.123.suppl_1.490 – volume: 9 start-page: 757220 year: 2021 ident: B62 article-title: Development of a Bone-Mimetic 3d Printed Ti6al4v Scaffold to Enhance Osteoblast-Derived Extracellular Vesicles’ Therapeutic Efficacy for Bone Regeneration publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.757220 – volume: 19 start-page: 1635 year: 2010 ident: B48 article-title: Human Cord Blood-Derived Endothelial Progenitor Cells and Their Conditioned media Exhibit Therapeutic Equivalence for Diabetic Wound Healing publication-title: Cell Transpl. doi: 10.3727/096368910X516637 – volume: 1 start-page: 100007 year: 2019 ident: B51 article-title: Chitosan/β-glycerophosphate In Situ Gelling Mucoadhesive Systems for Intravesical Delivery of Mitomycin-C publication-title: Int. J. Pharmaceutics: X doi: 10.1016/j.ijpx.2019.100007 – volume: 53 start-page: 539 year: 1997 ident: B88 article-title: Annexin V Interactions with Collagen publication-title: Cell Mol. Life Sci. (Cmls) doi: 10.1007/s000180050069 – volume: 8 start-page: e1900847 year: 2019 ident: B68 article-title: Injectable Supramolecular Ureidopyrimidinone Hydrogels Provide Sustained Release of Extracellular Vesicle Therapeutics publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201900847 – volume: 12 start-page: 453 year: 2012 ident: B13 article-title: Anti-inflammatory Effects of Low-Molecular Weight Chitosan Oligosaccharides in Ige-Antigen Complex-Stimulated Rbl-2h3 Cells and Asthma Model Mice publication-title: Int. Immunopharmacol doi: 10.1016/j.intimp.2011.12.027 – volume: 10 start-page: 1368 year: 2019 ident: B76 article-title: Sustained Delivery System for Stem Cell-Derived Exosomes publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.01368 – volume: 9 start-page: 29 year: 2011 ident: B39 article-title: Risk Factors in the Development of Stem Cell Therapy publication-title: J. Transl Med. doi: 10.1186/1479-5876-9-29 – volume: 95 start-page: 673 year: 2016 ident: B43 article-title: Characterization of Regulatory Extracellular Vesicles from Osteoclasts publication-title: J. Dent Res. doi: 10.1177/0022034516633189 – volume: 23 start-page: 832 year: 2022 ident: B61 article-title: Controlled Release of Epigenetically-Enhanced Extracellular Vesicles from a Gelma/nanoclay Composite Hydrogel to Promote Bone Repair publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23020832 – volume: 11 start-page: 37421 year: 2019 ident: B64 article-title: Hydrogel-mediated Sustained Systemic Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improves Hepatic Regeneration in Chronic Liver Failure publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.9b10126 – volume: 8 start-page: 1015 year: 2020 ident: B92 article-title: The Delivery of Extracellular Vesicles Loaded in Biomaterial Scaffolds for Bone Regeneration publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.01015 – volume: 11 start-page: 16 year: 2021 ident: B29 article-title: Extracellular Vesicles in Bone and Periodontal Regeneration: Current and Potential Therapeutic Applications publication-title: Cell Biosci doi: 10.1186/s13578-020-00527-8 – volume: 10 start-page: e12118 year: 2021 ident: B59 article-title: Epigenetic Reprogramming Enhances the Therapeutic Efficacy of Osteoblast-Derived Extracellular Vesicles to Promote Human Bone Marrow Stem Cell Osteogenic Differentiation publication-title: J. Extracell Vesicles doi: 10.1002/jev2.12118 – volume: 29 start-page: 325 year: 2011 ident: B87 article-title: Sirna Delivery with Exosome Nanoparticles publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1830 – volume: 7 start-page: 352 year: 2019 ident: B65 article-title: Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00352 – volume: 24 start-page: 2339 year: 2003 ident: B47 article-title: Implantable Applications of Chitin and Chitosan publication-title: Biomaterials doi: 10.1016/s0142-9612(03)00026-7 – volume: 4 start-page: 66 year: 2013 ident: B80 article-title: Production of Mesenchymal Stromal/stem Cells According to Good Manufacturing Practices: A Review publication-title: Stem Cell Res Ther doi: 10.1186/scrt217 – volume: 31 start-page: 3976 year: 2010 ident: B89 article-title: Thermogelling Chitosan and Collagen Composite Hydrogels Initiated with Beta-Glycerophosphate for Bone Tissue Engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.131 – volume: 87 start-page: 549 year: 2014 ident: B42 article-title: The Controversy Surrounding Bone Morphogenetic Proteins in the Spine: A Review of Current Research publication-title: Yale J. Biol. Med. – volume: 8 start-page: e1801604 year: 2019 ident: B70 article-title: Physical Structuring of Injectable Polymeric Systems to Controllably Deliver Nanosized Extracellular Vesicles publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201801604 – volume: 25 start-page: S561 year: 2002 ident: B7 article-title: Limitations of Autograft and Allograft: New Synthetic Solutions publication-title: Orthopedics doi: 10.3928/0147-7447-20020502-04 – volume: 21 start-page: 1 year: 2011 ident: B25 article-title: Cytocompatibility of Chitosan and Collagen-Chitosan Scaffolds for Tissue Engineering publication-title: Polímeros doi: 10.1590/s0104-14282011005000008 – volume: 24 start-page: 463 year: 2018 ident: B90 article-title: Biomaterials Enabled Cell-free Strategies for Endogenous Bone Regeneration publication-title: Tissue Eng. Part. B Rev. doi: 10.1089/ten.TEB.2018.0012 – volume: 18 start-page: 573 year: 2015 ident: B71 article-title: Therapeutically Relevant Aspects in Bone Repair and Regeneration publication-title: Mater. Today doi: 10.1016/j.mattod.2015.06.011 – volume: 10 start-page: 49 year: 2015 ident: B38 article-title: The Translation of Cell-Based Therapies: Clinical Landscape and Manufacturing Challenges publication-title: Regen. Med. doi: 10.2217/rme.14.73 – volume: 15 start-page: 1442 year: 2018 ident: B52 article-title: Chitosan Temperature-Sensitive Gel Loaded with Drug Microspheres Has Excellent Effectiveness, Biocompatibility and Safety as an Ophthalmic Drug Delivery System publication-title: Exp. Ther. Med. doi: 10.3892/etm.2017.5586 – volume: 24 start-page: 2135 year: 2016 ident: B96 article-title: Exosomes Derived from Human Embryonic Mesenchymal Stem Cells Promote Osteochondral Regeneration publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2016.06.022 – volume: 21 start-page: 9364 year: 2020 ident: B36 article-title: Cell-free Stem Cell-Derived Extract Formulation for Regenerative Medicine Applications publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21249364 – volume: 94 start-page: 442 year: 2010 ident: B40 article-title: Collagen Type I Hydrogel Allows Migration, Proliferation, and Osteogenic Differentiation of Rat Bone Marrow Stromal Cells publication-title: J. Biomed. Mater. Res. A. doi: 10.1002/jbm.a.32696 – volume: 18 start-page: 253 year: 2016 ident: B55 article-title: Exosomes Derived from Endothelial Progenitor Cells Attenuate Vascular Repair and Accelerate Reendothelialization by Enhancing Endothelial Function publication-title: Cytotherapy doi: 10.1016/j.jcyt.2015.11.009 – volume: 51 start-page: 1 year: 2019 ident: B69 article-title: Extracellular Vesicle-Based Therapeutics: Natural versus Engineered Targeting and Trafficking publication-title: Exp. Mol. Med. doi: 10.1038/s12276-019-0223-5 – volume: 159 start-page: 332 year: 2020 ident: B23 article-title: Extracellular Vesicles as Drug Delivery Systems: Why and How? publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.04.004 – volume: 10 start-page: 1838 year: 2020 ident: B60 article-title: Engineered Extracellular Vesicles: Tailored-Made Nanomaterials for Medical Applications publication-title: Nanomaterials (Basel) doi: 10.3390/nano10091838 – volume: 8 start-page: 183 year: 2012 ident: B72 article-title: Modulation of Osteogenic Activity of Bmp-2 by Cellulose and Chitosan Derivatives publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.08.012 – volume: 9 start-page: 10811 year: 2013 ident: B12 article-title: Effect of Chitosan Incorporation on the Consolidation Process of Highly Hydrated Collagen Hydrogel Scaffolds publication-title: Soft Matter doi: 10.1039/c3sm52176a – volume: 11 start-page: e2100312 year: 2021 ident: B84 article-title: Injection-free Delivery of Msc-Derived Extracellular Vesicles for Myocardial Infarction Therapeutics publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202100312 – volume: 22 start-page: 77 year: 2021 ident: B99 article-title: Osteogenically-induced Exosomes Stimulate Osteogenesis of Human Adipose-Derived Stem Cells publication-title: Cell Tissue Bank doi: 10.1007/s10561-020-09867-8 – volume: 22 start-page: 1 year: 2021 ident: B63 article-title: The Selective Histone Deacetylase Inhibitor Mi192 Enhances the Osteogenic Differentiation Efficacy of Human Dental Pulp Stromal Cells publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22105224 – volume: 5 start-page: 68 year: 2017 ident: B35 article-title: It Takes Two to Tango: Coupling of Angiogenesis and Osteogenesis for Bone Regeneration publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2017.00068 – volume: 3 start-page: rkz036 year: 2019 ident: B11 article-title: Developing a National Musculoskeletal Core Capabilities Framework for First point of Contact Practitioners publication-title: Rheumatol. Adv. Pract. doi: 10.1093/rap/rkz036 – volume: 26 start-page: 5983 year: 2005 ident: B19 article-title: Chitosan: A Versatile Biopolymer for Orthopaedic Tissue-Engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.03.016 – volume: 111 start-page: 103 year: 2016 ident: B41 article-title: Exosomes as Biomimetic Tools for Stem Cell Differentiation: Applications in Dental Pulp Tissue Regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.09.029 – volume: 4 start-page: S343 year: 2013 ident: B24 article-title: Complications Due to the Use of Bmp/infuse in Spine Surgery: The Evidence Continues to Mount publication-title: Surg. Neurol. Int. doi: 10.4103/2152-7806.114813 – volume: 30 start-page: 1909125 year: 2020 ident: B9 article-title: Biomaterials Functionalized with Msc Secreted Extracellular Vesicles and Soluble Factors for Tissue Regeneration publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909125 – volume: 27 start-page: 1308 year: 2020 ident: B74 article-title: Type I Collagen Hydrogels as a Delivery Matrix for Royal Jelly Derived Extracellular Vesicles publication-title: Drug Deliv. doi: 10.1080/10717544.2020.1818880 – volume: 5 start-page: 1113 year: 2020 ident: B81 article-title: Chitosan Hydrogel Incorporated with Dental Pulp Stem Cell-Derived Exosomes Alleviates Periodontitis in Mice via a Macrophage-dependent Mechanism publication-title: Bioact Mater. doi: 10.1016/j.bioactmat.2020.07.002 – volume: 10 start-page: e12138 year: 2021 ident: B53 article-title: The Polysaccharide Chitosan Facilitates the Isolation of Small Extracellular Vesicles from Multiple Biofluids publication-title: J. Extracell Vesicles doi: 10.1002/jev2.12138 – volume: 2004 start-page: 24 year: 2004 ident: B78 article-title: Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells publication-title: J. Biomed. Biotechnol. doi: 10.1155/s1110724304306017 – volume: 6 start-page: 36 year: 2018 ident: B27 article-title: Exosomes-the Enigmatic Regulators of Bone Homeostasis publication-title: Bone Res. doi: 10.1038/s41413-018-0039-2 – volume: 40 start-page: 453 year: 2018 ident: B10 article-title: Molecular Interactions at the Surface of Extracellular Vesicles publication-title: Semin. Immunopathol doi: 10.1007/s00281-018-0682-0 – volume: 8 start-page: 1962 year: 2010 ident: B95 article-title: Chitosan Modification and Pharmaceutical/biomedical Applications publication-title: Mar. Drugs doi: 10.3390/md8071962 – volume: 79 start-page: 37 year: 2015 ident: B18 article-title: Osteoblast-derived Microvesicles: A Novel Mechanism for Communication between Osteoblasts and Osteoclasts publication-title: Bone doi: 10.1016/j.bone.2015.05.022 – volume: 200 start-page: 373 year: 2013 ident: B75 article-title: Extracellular Vesicles: Exosomes, Microvesicles, and Friends publication-title: J. Cell Biol doi: 10.1083/jcb.201211138 – volume: 22 start-page: 284 year: 2016 ident: B45 article-title: A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2 publication-title: Tissue Eng. Part. B Rev. doi: 10.1089/ten.TEB.2015.0357 – volume: 167 start-page: 145 year: 2017 ident: B16 article-title: Fabrication and Evaluation of Thermosensitive Chitosan/collagen/α, β-glycerophosphate Hydrogels for Tissue Regeneration publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.03.053 – volume: 10 start-page: 1148 year: 2004 ident: B93 article-title: Biomimetic Collagen Scaffolds for Human Bone Cell Growth and Differentiation publication-title: Tissue Eng. doi: 10.1089/ten.2004.10.1148 – volume: 11 start-page: 622 year: 2020 ident: B97 article-title: Advancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.00622 – volume: 22 start-page: 2111 year: 2011 ident: B82 article-title: The Osteogenic Differentiation of Dog Bone Marrow Mesenchymal Stem Cells in a Thermo-Sensitive Injectable Chitosan/collagen/β-Glycerophosphate Hydrogel: In Vitro and In Vivo publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-011-4386-4 – volume: 33 start-page: 522 year: 2003 ident: B14 article-title: Antigen-presenting Cell Exosomes Are Protected from Complement-Mediated Lysis by Expression of Cd55 and Cd59 publication-title: Eur. J. Immunol. doi: 10.1002/immu.200310028 – volume: 9 start-page: 1431 year: 2020 ident: B21 article-title: Human Bone Marrow Stem/stromal Cell Osteogenesis Is Regulated via Mechanically Activated Osteocyte-Derived Extracellular Vesicles publication-title: Stem Cell Transl Med doi: 10.1002/sctm.19-0405 – volume: 15 start-page: 200 year: 2017 ident: B15 article-title: Assessment of Operative Times of Multiple Surgical Specialties in a Public university Hospital publication-title: Einstein (Sao Paulo) doi: 10.1590/S1679-45082017GS3902 – volume: 8 start-page: 633 year: 2020 ident: B37 article-title: Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified with Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00633 – volume: 8 start-page: 114 year: 2012 ident: B77 article-title: Bone Grafts, Bone Substitutes and Orthobiologics: the Bridge between Basic Science and Clinical Advancements in Fracture Healing publication-title: Organogenesis doi: 10.4161/org.23306 – volume: 17 year: 2019 ident: B85 article-title: Extracellular Vesicles in Bone: "Dogrobbers" in the "eternal Battle Field publication-title: Cell Commun. Signaling doi: 10.1186/s12964-019-0319-5 – volume: 2021 start-page: 6640893 year: 2021 ident: B73 article-title: Thermosensitive Chitosan-β-Glycerophosphate Hydrogels as Targeted Drug Delivery Systems: An Overview on Preparation and Their Applications publication-title: Adv. Pharmacol. Pharm. Sci. doi: 10.1155/2021/6640893 – volume: 14 start-page: 289 year: 2021 ident: B4 article-title: Matrix Vesicles: Role in Bone Mineralization and Potential Use as Therapeutics publication-title: Pharmaceuticals (Basel) doi: 10.3390/ph14040289 – volume: 21 start-page: 362 year: 2018 ident: B66 article-title: Engineering Vascularized and Innervated Bone Biomaterials for Improved Skeletal Tissue Regeneration publication-title: Mater. Today (Kidlington) doi: 10.1016/j.mattod.2017.10.005 – volume: 47 start-page: 531 year: 2014 ident: B94 article-title: Extracellular Vesicles as Emerging Intercellular Communicasomes publication-title: BMB Rep. doi: 10.5483/bmbrep.2014.47.10.164 – volume: 6 start-page: 1945 year: 2021 ident: B34 article-title: Growth Factor Delivery Using Extracellular Matrix-Mimicking Substrates for Musculoskeletal Tissue Engineering and Repair publication-title: Bioactive Mater. doi: 10.1016/j.bioactmat.2020.12.012 – volume: 5 start-page: 101 year: 2015 ident: B50 article-title: Exosomes Are Fingerprints of Originating Cells: Potential Biomarkers for Ovarian Cancer publication-title: Res. Rep. Biochem. doi: 10.2147/RRBC.S58281 – volume: 18 start-page: 1450 year: 2017 ident: B8 article-title: Mesenchymal Stem/stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18071450 – volume: 98 start-page: 1132 year: 2016 ident: B86 article-title: Tissue Engineering in Orthopaedics publication-title: J. Bone Jt. Surg Am doi: 10.2106/JBJS.16.00299 |
SSID | ssj0001257582 |
Score | 2.3544092 |
Snippet | The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 829969 |
SubjectTerms | Bioengineering and Biotechnology bone controlled release drug delivery extracellular vesicle hydrogel tissue engineering |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnugB8SiwPCoj9YQU6sSPOMc-tlohbYtQi3qzYnu2rNQmqE2r9sJvZ8bZLlmE4MLVdmJrZmx_Y898ZmxbKB_QLSkzATZkStZlVgsIlOxuI26HAgzlO0-PzORUfTrTZ4OnvigmrKcH7gW3E4oKTSwGrUuptApW1cVMllEEXFk1pDRfUYmBM9WfriAMsUV_jYleWLUz8_OWaDGL4qPFJZgCnAcbUeLr_xPI_D1WcrD5HD5hjxeoke_2o33K1qB5xjYGXILP2Y_dho_3p9l0fkl5iXxyH6_ac7jgXcs_p5g74Aj2-MmvhCs-Jv6IOtzzdsaPUd2tRyzdZQf4y1uIfHyHY6GTfQpV5V_hOoXQcYS5fK9tgH-B80RaTbrdZKeH45P9SbZ4XCELOO26rERoaOhWLubW5LGU0aMrFjUQZpHeFiGvcYJrA6Wpg8xVRGzicV1VWB6lki_YeoN9vWIcnZ4a3RaJu6BWEL0PZuZNVYRgo_GQj5h4kLQLC-ZxegDjwqEHQspxSTmOlON65YzYh-Un33vajb813iP1LRsSY3YqQDtyCzty_7KjEXv_oHyHM4yEWzfQ3ly7wmh6Zl5KPWIve2NYdiW1ktJorClXzGRlLKs1zfxbYvGuUh6wff0_Bv-GPSJ5pFxJ8Zatd1c38A7BUue30rz4CbgdEWw priority: 102 providerName: Directory of Open Access Journals |
Title | An ECM-Mimetic Hydrogel to Promote the Therapeutic Efficacy of Osteoblast-Derived Extracellular Vesicles for Bone Regeneration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35433655 https://www.proquest.com/docview/2652032335 https://pubmed.ncbi.nlm.nih.gov/PMC9005798 https://doaj.org/article/c29880dc5573454c84a2f37d0c1285e8 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGeIEHxPgssMlIPCFlJP6K84DQNjpVSAWEVrQ3K_5oV6kk0GZofdnfvjsnLSuqEK9xEic-n-939t3vCHmTCuvALcmTNGiXCF7mSZkGh8nu2oM5TIPCfOfhZzUYiU_n8nyHrMpbdQO42OraYT2p0Xx2ePVr-QEU_j16nGBv343ttEbGS8YONayuqrhD7sbjIozk69B-u-UC2CSWj2KsUAnStrTnnNvfsmGpIqH_NhT6dzDlLet0-pA86GAlPWrnwR7ZCdUjcv8W2eBjcn1U0f7JMBlOf2DiIh0s_byehBltavo1BuUFCmiQnv3JyKJ9JJgo3ZLWY_oF5kNtAWw3yUd45e_gaf8KvgW3_jGWlX4PixhjRwEH0-O6CvRbmERWaxT-EzI67Z-dDJKu-kLiQC-bJAfsqPDYzmdaZT7n3oKv5mVAUMOtZi4rYQWQKuSqdDwTHsCLhYVXwHXPBX9Kdivo6zmh4BWV4NdwMJNSBG-tU2OrCuac9sqGrEfS1Ugb11GTY4WMmQEXBYVjonAMCse0wumRt-tHfra8HP-6-RjFt74RKbXjhXo-MZ2GGscKWMu8kzLnQgqnRcnGPPepAxMug-6R1yvhG1BBHNyyCvXlwjAlsQ4957JHnrWTYd0Vl4JzJaEl35gmG9-y2VJNLyLNdxEThfWL_-j3JbmHvxtzJdNXZLeZX4Z9AEuNPYibDAdREW4AwBsSjQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ECM-Mimetic+Hydrogel+to+Promote+the+Therapeutic+Efficacy+of+Osteoblast-Derived+Extracellular+Vesicles+for+Bone+Regeneration&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Man%2C+Kenny&rft.au=Brunet%2C+Mathieu+Y&rft.au=Federici%2C+Angelica+S&rft.au=Hoey%2C+David+A&rft.date=2022-03-30&rft.issn=2296-4185&rft.eissn=2296-4185&rft.volume=10&rft.spage=829969&rft_id=info:doi/10.3389%2Ffbioe.2022.829969&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon |