An ECM-Mimetic Hydrogel to Promote the Therapeutic Efficacy of Osteoblast-Derived Extracellular Vesicles for Bone Regeneration

The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs h...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in bioengineering and biotechnology Vol. 10; p. 829969
Main Authors Man, Kenny, Brunet, Mathieu Y., Federici, Angelica S., Hoey, David A., Cox, Sophie C.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 30.03.2022
Subjects
Online AccessGet full text
ISSN2296-4185
2296-4185
DOI10.3389/fbioe.2022.829969

Cover

Abstract The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels ( p ≤ 0.001). EV release was strongly associated with collagen concentration (R 2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA ( p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells ( p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner ( p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy.
AbstractList The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels (p ≤ 0.001). EV release was strongly associated with collagen concentration (R2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA (p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells (p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner (p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy.The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels (p ≤ 0.001). EV release was strongly associated with collagen concentration (R2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA (p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells (p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner (p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy.
The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels ( p ≤ 0.001). EV release was strongly associated with collagen concentration (R 2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA ( p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells ( p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner ( p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy.
The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels (p ≤ 0.001). EV release was strongly associated with collagen concentration (R2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA (p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells (p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner (p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy.
The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels ( ≤ 0.001). EV release was strongly associated with collagen concentration (R > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA ( ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells ( ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner ( ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy.
Author Brunet, Mathieu Y.
Hoey, David A.
Cox, Sophie C.
Man, Kenny
Federici, Angelica S.
AuthorAffiliation 2 Trinity Centre for Biomedical Engineering , Trinity Biomedical Sciences Institute , Trinity College Dublin , Dublin , Ireland
1 School of Chemical Engineering , University of Birmingham , Birmingham , United Kingdom
4 Advanced Materials and Bioengineering Research Centre , Trinity College Dublin and RCSI , Dublin , Ireland
3 Dept. of Mechanical , Manufacturing, and Biomedical Engineering , School of Engineering , Trinity College Dublin , Dublin , Ireland
AuthorAffiliation_xml – name: 1 School of Chemical Engineering , University of Birmingham , Birmingham , United Kingdom
– name: 2 Trinity Centre for Biomedical Engineering , Trinity Biomedical Sciences Institute , Trinity College Dublin , Dublin , Ireland
– name: 3 Dept. of Mechanical , Manufacturing, and Biomedical Engineering , School of Engineering , Trinity College Dublin , Dublin , Ireland
– name: 4 Advanced Materials and Bioengineering Research Centre , Trinity College Dublin and RCSI , Dublin , Ireland
Author_xml – sequence: 1
  givenname: Kenny
  surname: Man
  fullname: Man, Kenny
– sequence: 2
  givenname: Mathieu Y.
  surname: Brunet
  fullname: Brunet, Mathieu Y.
– sequence: 3
  givenname: Angelica S.
  surname: Federici
  fullname: Federici, Angelica S.
– sequence: 4
  givenname: David A.
  surname: Hoey
  fullname: Hoey, David A.
– sequence: 5
  givenname: Sophie C.
  surname: Cox
  fullname: Cox, Sophie C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35433655$$D View this record in MEDLINE/PubMed
BookMark eNp1kstu1DAUhiNUREvpA7BBXrLJ4HucDVKZDm2lVkWosLUc-2TGVSYebKdiNjx7k5kWtUisbB3_5zsX_2-Lgz70UBTvCZ4xpupPbeMDzCimdKZoXcv6VXFEaS1LTpQ4eHY_LE5SusMYEyoqoeib4pAJzpgU4qj4c9qjxfy6vPZryN6ii62LYQkdygF9i2EdMqC8AnS7gmg2MEyaRdt6a-wWhRbdpAyh6UzK5RlEfw8OLX7naCx03dCZiH5C8raDhNoQ0ZdxBPQdltCPtOxD_6543ZouwcnjeVz8-Lq4nV-UVzfnl_PTq9IKRnJZ4XHASmLsiJLEVcw1NeVOAJasZo2ilhjMsZBQSWMZ4U5K1hAu-Rh3jLPj4nLPdcHc6U30axO3Ohivd4EQl9rEPDWqLa2Vws4KUTEuuFXc0JZVDltClQA1sj7vWZuhWYOz0I_zdi-gL196v9LLcK9rjEVVT4CPj4AYfg2Qsl77NC3M9BCGpKkUFDPKmBilH57X-lvk6QNHQbUX2BhSitBq6_NutWNp32mC9eQWvXOLntyi924ZM8k_mU_w_-c8AFNSwxU
CitedBy_id crossref_primary_10_3390_bioengineering10101122
crossref_primary_10_3390_biomedicines11041053
crossref_primary_10_1016_j_tice_2024_102684
crossref_primary_10_1186_s12951_023_01895_2
crossref_primary_10_3389_fbioe_2023_1160703
crossref_primary_10_1016_j_ijbiomac_2024_134344
crossref_primary_10_1088_1748_605X_ad525c
crossref_primary_10_3390_app12157472
crossref_primary_10_34133_bmr_0085
crossref_primary_10_3390_ijms24087564
crossref_primary_10_3390_polym14224907
crossref_primary_10_1016_j_bbrc_2024_150841
crossref_primary_10_1177_20417314241286606
crossref_primary_10_1088_1748_605X_ace0ec
crossref_primary_10_1016_j_ijbiomac_2025_140753
crossref_primary_10_1016_j_bbrc_2024_150778
crossref_primary_10_1002_adtp_202300428
crossref_primary_10_1016_j_reth_2023_09_007
crossref_primary_10_3390_gels11030175
crossref_primary_10_3390_jfb14040226
crossref_primary_10_1089_ten_teb_2023_0357
crossref_primary_10_3389_fbioe_2023_1162263
crossref_primary_10_1016_j_mtbio_2022_100522
crossref_primary_10_3390_life12091417
Cites_doi 10.1002/bip.20871
10.1016/j.ijbiomac.2018.10.014
10.1038/s41598-017-13027-6
10.1371/journal.pmed.1000029
10.1002/jps.21528
10.4252/wjsc.v7.i4.728
10.1302/2046-3758.74.BJR-2018-0006
10.1016/j.bioactmat.2018.05.006
10.1021/acsbiomaterials.9b01374
10.3390/ijms18061190
10.1186/s12964-020-00630-w
10.1002/biot.202100401
10.1038/nm0405-367
10.3389/fncel.2014.00377
10.1186/1741-7015-9-66
10.1074/jbc.M005648200
10.1038/nmat3758
10.1186/s13287-018-0798-0
10.1016/j.bbrc.2006.06.110
10.1038/nrd3978
10.1371/journal.pone.0077538
10.1186/s13287-021-02262-4
10.3402/jev.v4.26238
10.1016/s0020-1383(13)70002-0
10.1161/res.123.suppl_1.490
10.3389/fbioe.2021.757220
10.3727/096368910X516637
10.1016/j.ijpx.2019.100007
10.1007/s000180050069
10.1002/adhm.201900847
10.1016/j.intimp.2011.12.027
10.3389/fphar.2019.01368
10.1186/1479-5876-9-29
10.1177/0022034516633189
10.3390/ijms23020832
10.1021/acsami.9b10126
10.3389/fbioe.2020.01015
10.1186/s13578-020-00527-8
10.1002/jev2.12118
10.1038/nbt.1830
10.3389/fbioe.2019.00352
10.1016/s0142-9612(03)00026-7
10.1186/scrt217
10.1016/j.biomaterials.2010.01.131
10.1002/adhm.201801604
10.3928/0147-7447-20020502-04
10.1590/s0104-14282011005000008
10.1089/ten.TEB.2018.0012
10.1016/j.mattod.2015.06.011
10.2217/rme.14.73
10.3892/etm.2017.5586
10.1016/j.joca.2016.06.022
10.3390/ijms21249364
10.1002/jbm.a.32696
10.1016/j.jcyt.2015.11.009
10.1038/s12276-019-0223-5
10.1016/j.addr.2020.04.004
10.3390/nano10091838
10.1016/j.actbio.2011.08.012
10.1039/c3sm52176a
10.1002/adhm.202100312
10.1007/s10561-020-09867-8
10.3390/ijms22105224
10.3389/fbioe.2017.00068
10.1093/rap/rkz036
10.1016/j.biomaterials.2005.03.016
10.1016/j.biomaterials.2016.09.029
10.4103/2152-7806.114813
10.1002/adfm.201909125
10.1080/10717544.2020.1818880
10.1016/j.bioactmat.2020.07.002
10.1002/jev2.12138
10.1155/s1110724304306017
10.1038/s41413-018-0039-2
10.1007/s00281-018-0682-0
10.3390/md8071962
10.1016/j.bone.2015.05.022
10.1083/jcb.201211138
10.1089/ten.TEB.2015.0357
10.1016/j.carbpol.2017.03.053
10.1089/ten.2004.10.1148
10.3389/fphar.2020.00622
10.1007/s10856-011-4386-4
10.1002/immu.200310028
10.1002/sctm.19-0405
10.1590/S1679-45082017GS3902
10.3389/fbioe.2020.00633
10.4161/org.23306
10.1186/s12964-019-0319-5
10.1155/2021/6640893
10.3390/ph14040289
10.1016/j.mattod.2017.10.005
10.5483/bmbrep.2014.47.10.164
10.1016/j.bioactmat.2020.12.012
10.2147/RRBC.S58281
10.3390/ijms18071450
10.2106/JBJS.16.00299
ContentType Journal Article
Copyright Copyright © 2022 Man, Brunet, Federici, Hoey and Cox.
Copyright © 2022 Man, Brunet, Federici, Hoey and Cox. 2022 Man, Brunet, Federici, Hoey and Cox
Copyright_xml – notice: Copyright © 2022 Man, Brunet, Federici, Hoey and Cox.
– notice: Copyright © 2022 Man, Brunet, Federici, Hoey and Cox. 2022 Man, Brunet, Federici, Hoey and Cox
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fbioe.2022.829969
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Man et al
EISSN 2296-4185
ExternalDocumentID oai_doaj_org_article_c29880dc5573454c84a2f37d0c1285e8
PMC9005798
35433655
10_3389_fbioe_2022_829969
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: EP/S016589/1 EP/S017844/1
– fundername: ;
  grantid: 19/FFP/6533
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c531t-709967600d1861d73db924d5e06393b82c1a04056e76ac314d663b14641a0d343
IEDL.DBID M48
ISSN 2296-4185
IngestDate Wed Aug 27 01:29:10 EDT 2025
Thu Aug 21 14:10:25 EDT 2025
Sun Aug 24 03:55:56 EDT 2025
Thu Jan 02 22:54:02 EST 2025
Tue Jul 01 03:36:13 EDT 2025
Thu Apr 24 23:02:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords controlled release
tissue engineering
bone
drug delivery
hydrogel
extracellular vesicle
Language English
License Copyright © 2022 Man, Brunet, Federici, Hoey and Cox.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-709967600d1861d73db924d5e06393b82c1a04056e76ac314d663b14641a0d343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lisa Jane White, University of Nottingham, United Kingdom
Reviewed by: Dake Hao, University of California, Davis, United States
Edited by: Nuno M. Neves, University of Minho, Portugal
This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fbioe.2022.829969
PMID 35433655
PQID 2652032335
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c29880dc5573454c84a2f37d0c1285e8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9005798
proquest_miscellaneous_2652032335
pubmed_primary_35433655
crossref_citationtrail_10_3389_fbioe_2022_829969
crossref_primary_10_3389_fbioe_2022_829969
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-30
PublicationDateYYYYMMDD 2022-03-30
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-30
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in bioengineering and biotechnology
PublicationTitleAlternate Front Bioeng Biotechnol
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References van den Boorn (B87) 2011; 29
Sensebé (B80) 2013; 4
Man (B59) 2021; 10
Zhao (B98) 2021; 12
Wang (B89) 2010; 31
Raposo (B75) 2013; 200
Baroli (B6) 2009; 98
Altei (B2) 2020; 18
Shen (B81) 2020; 5
Betz (B7) 2002; 25
Li (B55) 2016; 18
von der Mark (B88) 1997; 53
Chance-Larsen (B11) 2019; 3
Kong (B52) 2018; 15
Perez (B71) 2015; 18
Zhang (B95) 2010; 8
Elsharkasy (B23) 2020; 159
Hustedt (B42) 2014; 87
Marrella (B66) 2018; 21
Epstein (B24) 2013; 4
McBane (B67) 2013; 8
Gresham (B34) 2021; 6
Chung (B13) 2012; 12
Nikravesh (B70) 2019; 8
Riau (B76) 2019; 10
Hesse (B40) 2010; 94
Peschel (B72) 2012; 8
Di Martino (B19) 2005; 26
Yang (B93) 2004; 10
Herberts (B39) 2011; 9
Khor (B47) 2003; 24
Giannoudis (B30) 2013; 44
Murphy (B69) 2019; 51
Kundu (B54) 2006; 347
Saravanan (B79) 2019; 121
Deng (B18) 2015; 79
Eichholz (B21) 2020; 9
Ghasemi-Mobarakeh (B28) 2015; 7
Kearney (B46) 2013; 12
Kobayashi (B50) 2015; 5
Dimitriou (B20) 2011; 9
Huynh (B43) 2016; 95
Ramírez (B74) 2020; 27
Zhang (B96) 2016; 24
Man (B63) 2021; 22
Davies (B17) 2017; 7
Fernandes (B25) 2011; 21
Xin (B91) 2014; 8
Kumar (B53) 2021; 10
Costa (B15) 2017; 15
Kim (B48) 2010; 19
Tao (B85) 2019; 17
Clayton (B14) 2003; 33
Man (B62) 2021; 9
Tang (B84) 2021; 11
Zhu (B99) 2021; 22
Chicatun (B12) 2013; 9
Gimona (B31) 2017; 18
Ferreira (B26) 2018; 7
Salasznyk (B78) 2004; 2004
Gnecchi (B33) 2005; 11
Mol (B68) 2019; 8
Man (B60) 2020; 10
Gupta (B36) 2020; 21
Grosso (B35) 2017; 5
Sun (B82) 2011; 22
Huang (B41) 2016; 111
Li (B56) 2018; 123
Kirsch (B49) 2000; 275
Brennan (B9) 2020; 30
Kolawole (B51) 2019; 1
Marolt Presen (B65) 2019; 7
Man (B61) 2022; 23
Roberts (B77) 2012; 8
Börger (B8) 2017; 18
Imai (B44) 2015; 4
Wang (B90) 2018; 24
EL Andaloussi (B22) 2013; 12
Liu (B57) 2020; 6
Yan (B92) 2020; 8
Bai (B5) 2018; 3
Luo (B58) 2021
Tatara (B86) 2016; 98
Gao (B27) 2018; 6
Ahmadi (B1) 2015; 10
Sun (B83) 2018; 9
Yoon (B94) 2014; 47
Zhang (B97) 2020; 11
James (B45) 2016; 22
Buzás (B10) 2018; 40
Glowacki (B32) 2008; 89
Hao (B37) 2020; 8
Rahmanian-Devin (B73) 2021; 2021
Mardpour (B64) 2019; 11
Ansari (B4) 2021; 14
Dang (B16) 2017; 167
Heathman (B38) 2015; 10
Gholami (B29) 2021; 11
Amariglio (B3) 2009; 6
References_xml – volume: 89
  start-page: 338
  year: 2008
  ident: B32
  article-title: Collagen Scaffolds for Tissue Engineering
  publication-title: Biopolymers
  doi: 10.1002/bip.20871
– volume: 121
  start-page: 38
  year: 2019
  ident: B79
  article-title: A Review on Injectable Chitosan/beta Glycerophosphate Hydrogels for Bone Tissue Regeneration
  publication-title: Int. J. Biol. Macromolecules
  doi: 10.1016/j.ijbiomac.2018.10.014
– volume: 7
  start-page: 12639
  year: 2017
  ident: B17
  article-title: Annexin-enriched Osteoblast-Derived Vesicles Act as an Extracellular Site of mineral Nucleation within Developing Stem Cell Cultures
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13027-6
– volume: 6
  start-page: e1000029
  year: 2009
  ident: B3
  article-title: Donor-derived Brain Tumor Following Neural Stem Cell Transplantation in an Ataxia Telangiectasia Patient
  publication-title: Plos Med.
  doi: 10.1371/journal.pmed.1000029
– volume: 98
  start-page: 1317
  year: 2009
  ident: B6
  article-title: From Natural Bone Grafts to Tissue Engineering Therapeutics: Brainstorming on Pharmaceutical Formulative Requirements and Challenges
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.21528
– volume: 7
  start-page: 728
  year: 2015
  ident: B28
  article-title: Structural Properties of Scaffolds: Crucial Parameters towards Stem Cells Differentiation
  publication-title: World J. Stem Cell
  doi: 10.4252/wjsc.v7.i4.728
– volume: 7
  start-page: 263
  year: 2018
  ident: B26
  article-title: Harnessing Extracellular Vesicles to Direct Endochondral Repair of Large Bone Defects
  publication-title: Bone Jt. Res
  doi: 10.1302/2046-3758.74.BJR-2018-0006
– volume: 3
  start-page: 401
  year: 2018
  ident: B5
  article-title: Bioactive Hydrogels for Bone Regeneration
  publication-title: Bioact Mater.
  doi: 10.1016/j.bioactmat.2018.05.006
– volume: 6
  start-page: 1500
  year: 2020
  ident: B57
  article-title: Phosphorylated Chitosan Hydrogels Inducing Osteogenic Differentiation of Osteoblasts via Jnk and P38 Signaling Pathways
  publication-title: Acs Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b01374
– volume: 18
  start-page: 1190
  year: 2017
  ident: B31
  article-title: Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18061190
– volume: 18
  start-page: 1158
  year: 2020
  ident: B2
  article-title: Inhibition of αvβ3 Integrin Impairs Adhesion and Uptake of Tumor-Derived Small Extracellular Vesicles
  publication-title: Cell Commun Signal
  doi: 10.1186/s12964-020-00630-w
– start-page: e2100401
  year: 2021
  ident: B58
  article-title: Hydrostatic Pressure Promotes Chondrogenic Differentiation and Microvesicle Release from Human Embryonic and Bone Marrow Stem Cells
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.202100401
– volume: 11
  start-page: 367
  year: 2005
  ident: B33
  article-title: Paracrine Action Accounts for Marked protection of Ischemic Heart by Akt-Modified Mesenchymal Stem Cells
  publication-title: Nat. Med.
  doi: 10.1038/nm0405-367
– volume: 8
  start-page: 377
  year: 2014
  ident: B91
  article-title: Exosomes/mirnas as Mediating Cell-Based Therapy of Stroke
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2014.00377
– volume: 9
  start-page: 66
  year: 2011
  ident: B20
  article-title: Bone Regeneration: Current Concepts and Future Directions
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-9-66
– volume: 275
  start-page: 35577
  year: 2000
  ident: B49
  article-title: The Roles of Annexins and Types Ii and X Collagen in Matrix Vesicle-Mediated Mineralization of Growth Plate Cartilage
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M005648200
– volume: 12
  start-page: 1004
  year: 2013
  ident: B46
  article-title: Macroscale Delivery Systems for Molecular and Cellular Payloads
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3758
– volume: 9
  start-page: 52
  year: 2018
  ident: B83
  article-title: Extracellular Matrix Stiffness Controls Osteogenic Differentiation of Mesenchymal Stem Cells Mediated by Integrin α5
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-018-0798-0
– volume: 347
  start-page: 347
  year: 2006
  ident: B54
  article-title: Vitronectin and Collagen I Differentially Regulate Osteogenesis in Mesenchymal Stem Cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.06.110
– volume: 12
  start-page: 347
  year: 2013
  ident: B22
  article-title: Extracellular Vesicles: Biology and Emerging Therapeutic Opportunities
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3978
– volume: 10
  start-page: 1
  year: 2015
  ident: B1
  article-title: Chitosan Based Hydrogels: Characteristics and Pharmaceutical Applications
  publication-title: Res. Pharm. Sci.
– volume: 8
  start-page: e77538
  year: 2013
  ident: B67
  article-title: Evaluation of a Collagen-Chitosan Hydrogel for Potential Use as a Pro-angiogenic Site for Islet Transplantation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0077538
– volume: 12
  start-page: 196
  year: 2021
  ident: B98
  article-title: Chitosan Hydrogel-Loaded Msc-Derived Extracellular Vesicles Promote Skin Rejuvenation by Ameliorating the Senescence of Dermal Fibroblasts
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02262-4
– volume: 4
  start-page: 26238
  year: 2015
  ident: B44
  article-title: Macrophage-dependent Clearance of Systemically Administered B16bl6-Derived Exosomes from the Blood Circulation in Mice
  publication-title: J. Extracell Vesicles
  doi: 10.3402/jev.v4.26238
– volume: 44
  start-page: S1
  year: 2013
  ident: B30
  article-title: Bone Regeneration Strategies: Current Trends but what the Future Holds?
  publication-title: Injury
  doi: 10.1016/s0020-1383(13)70002-0
– volume: 123
  year: 2018
  ident: B56
  article-title: Enhanced Therapeutic Effects of Msc-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment
  publication-title: Circ. Res.
  doi: 10.1161/res.123.suppl_1.490
– volume: 9
  start-page: 757220
  year: 2021
  ident: B62
  article-title: Development of a Bone-Mimetic 3d Printed Ti6al4v Scaffold to Enhance Osteoblast-Derived Extracellular Vesicles’ Therapeutic Efficacy for Bone Regeneration
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.757220
– volume: 19
  start-page: 1635
  year: 2010
  ident: B48
  article-title: Human Cord Blood-Derived Endothelial Progenitor Cells and Their Conditioned media Exhibit Therapeutic Equivalence for Diabetic Wound Healing
  publication-title: Cell Transpl.
  doi: 10.3727/096368910X516637
– volume: 1
  start-page: 100007
  year: 2019
  ident: B51
  article-title: Chitosan/β-glycerophosphate In Situ Gelling Mucoadhesive Systems for Intravesical Delivery of Mitomycin-C
  publication-title: Int. J. Pharmaceutics: X
  doi: 10.1016/j.ijpx.2019.100007
– volume: 53
  start-page: 539
  year: 1997
  ident: B88
  article-title: Annexin V Interactions with Collagen
  publication-title: Cell Mol. Life Sci. (Cmls)
  doi: 10.1007/s000180050069
– volume: 8
  start-page: e1900847
  year: 2019
  ident: B68
  article-title: Injectable Supramolecular Ureidopyrimidinone Hydrogels Provide Sustained Release of Extracellular Vesicle Therapeutics
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201900847
– volume: 12
  start-page: 453
  year: 2012
  ident: B13
  article-title: Anti-inflammatory Effects of Low-Molecular Weight Chitosan Oligosaccharides in Ige-Antigen Complex-Stimulated Rbl-2h3 Cells and Asthma Model Mice
  publication-title: Int. Immunopharmacol
  doi: 10.1016/j.intimp.2011.12.027
– volume: 10
  start-page: 1368
  year: 2019
  ident: B76
  article-title: Sustained Delivery System for Stem Cell-Derived Exosomes
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.01368
– volume: 9
  start-page: 29
  year: 2011
  ident: B39
  article-title: Risk Factors in the Development of Stem Cell Therapy
  publication-title: J. Transl Med.
  doi: 10.1186/1479-5876-9-29
– volume: 95
  start-page: 673
  year: 2016
  ident: B43
  article-title: Characterization of Regulatory Extracellular Vesicles from Osteoclasts
  publication-title: J. Dent Res.
  doi: 10.1177/0022034516633189
– volume: 23
  start-page: 832
  year: 2022
  ident: B61
  article-title: Controlled Release of Epigenetically-Enhanced Extracellular Vesicles from a Gelma/nanoclay Composite Hydrogel to Promote Bone Repair
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23020832
– volume: 11
  start-page: 37421
  year: 2019
  ident: B64
  article-title: Hydrogel-mediated Sustained Systemic Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improves Hepatic Regeneration in Chronic Liver Failure
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.9b10126
– volume: 8
  start-page: 1015
  year: 2020
  ident: B92
  article-title: The Delivery of Extracellular Vesicles Loaded in Biomaterial Scaffolds for Bone Regeneration
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.01015
– volume: 11
  start-page: 16
  year: 2021
  ident: B29
  article-title: Extracellular Vesicles in Bone and Periodontal Regeneration: Current and Potential Therapeutic Applications
  publication-title: Cell Biosci
  doi: 10.1186/s13578-020-00527-8
– volume: 10
  start-page: e12118
  year: 2021
  ident: B59
  article-title: Epigenetic Reprogramming Enhances the Therapeutic Efficacy of Osteoblast-Derived Extracellular Vesicles to Promote Human Bone Marrow Stem Cell Osteogenic Differentiation
  publication-title: J. Extracell Vesicles
  doi: 10.1002/jev2.12118
– volume: 29
  start-page: 325
  year: 2011
  ident: B87
  article-title: Sirna Delivery with Exosome Nanoparticles
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1830
– volume: 7
  start-page: 352
  year: 2019
  ident: B65
  article-title: Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00352
– volume: 24
  start-page: 2339
  year: 2003
  ident: B47
  article-title: Implantable Applications of Chitin and Chitosan
  publication-title: Biomaterials
  doi: 10.1016/s0142-9612(03)00026-7
– volume: 4
  start-page: 66
  year: 2013
  ident: B80
  article-title: Production of Mesenchymal Stromal/stem Cells According to Good Manufacturing Practices: A Review
  publication-title: Stem Cell Res Ther
  doi: 10.1186/scrt217
– volume: 31
  start-page: 3976
  year: 2010
  ident: B89
  article-title: Thermogelling Chitosan and Collagen Composite Hydrogels Initiated with Beta-Glycerophosphate for Bone Tissue Engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.01.131
– volume: 87
  start-page: 549
  year: 2014
  ident: B42
  article-title: The Controversy Surrounding Bone Morphogenetic Proteins in the Spine: A Review of Current Research
  publication-title: Yale J. Biol. Med.
– volume: 8
  start-page: e1801604
  year: 2019
  ident: B70
  article-title: Physical Structuring of Injectable Polymeric Systems to Controllably Deliver Nanosized Extracellular Vesicles
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201801604
– volume: 25
  start-page: S561
  year: 2002
  ident: B7
  article-title: Limitations of Autograft and Allograft: New Synthetic Solutions
  publication-title: Orthopedics
  doi: 10.3928/0147-7447-20020502-04
– volume: 21
  start-page: 1
  year: 2011
  ident: B25
  article-title: Cytocompatibility of Chitosan and Collagen-Chitosan Scaffolds for Tissue Engineering
  publication-title: Polímeros
  doi: 10.1590/s0104-14282011005000008
– volume: 24
  start-page: 463
  year: 2018
  ident: B90
  article-title: Biomaterials Enabled Cell-free Strategies for Endogenous Bone Regeneration
  publication-title: Tissue Eng. Part. B Rev.
  doi: 10.1089/ten.TEB.2018.0012
– volume: 18
  start-page: 573
  year: 2015
  ident: B71
  article-title: Therapeutically Relevant Aspects in Bone Repair and Regeneration
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.06.011
– volume: 10
  start-page: 49
  year: 2015
  ident: B38
  article-title: The Translation of Cell-Based Therapies: Clinical Landscape and Manufacturing Challenges
  publication-title: Regen. Med.
  doi: 10.2217/rme.14.73
– volume: 15
  start-page: 1442
  year: 2018
  ident: B52
  article-title: Chitosan Temperature-Sensitive Gel Loaded with Drug Microspheres Has Excellent Effectiveness, Biocompatibility and Safety as an Ophthalmic Drug Delivery System
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2017.5586
– volume: 24
  start-page: 2135
  year: 2016
  ident: B96
  article-title: Exosomes Derived from Human Embryonic Mesenchymal Stem Cells Promote Osteochondral Regeneration
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2016.06.022
– volume: 21
  start-page: 9364
  year: 2020
  ident: B36
  article-title: Cell-free Stem Cell-Derived Extract Formulation for Regenerative Medicine Applications
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21249364
– volume: 94
  start-page: 442
  year: 2010
  ident: B40
  article-title: Collagen Type I Hydrogel Allows Migration, Proliferation, and Osteogenic Differentiation of Rat Bone Marrow Stromal Cells
  publication-title: J. Biomed. Mater. Res. A.
  doi: 10.1002/jbm.a.32696
– volume: 18
  start-page: 253
  year: 2016
  ident: B55
  article-title: Exosomes Derived from Endothelial Progenitor Cells Attenuate Vascular Repair and Accelerate Reendothelialization by Enhancing Endothelial Function
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2015.11.009
– volume: 51
  start-page: 1
  year: 2019
  ident: B69
  article-title: Extracellular Vesicle-Based Therapeutics: Natural versus Engineered Targeting and Trafficking
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-019-0223-5
– volume: 159
  start-page: 332
  year: 2020
  ident: B23
  article-title: Extracellular Vesicles as Drug Delivery Systems: Why and How?
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.04.004
– volume: 10
  start-page: 1838
  year: 2020
  ident: B60
  article-title: Engineered Extracellular Vesicles: Tailored-Made Nanomaterials for Medical Applications
  publication-title: Nanomaterials (Basel)
  doi: 10.3390/nano10091838
– volume: 8
  start-page: 183
  year: 2012
  ident: B72
  article-title: Modulation of Osteogenic Activity of Bmp-2 by Cellulose and Chitosan Derivatives
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.08.012
– volume: 9
  start-page: 10811
  year: 2013
  ident: B12
  article-title: Effect of Chitosan Incorporation on the Consolidation Process of Highly Hydrated Collagen Hydrogel Scaffolds
  publication-title: Soft Matter
  doi: 10.1039/c3sm52176a
– volume: 11
  start-page: e2100312
  year: 2021
  ident: B84
  article-title: Injection-free Delivery of Msc-Derived Extracellular Vesicles for Myocardial Infarction Therapeutics
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202100312
– volume: 22
  start-page: 77
  year: 2021
  ident: B99
  article-title: Osteogenically-induced Exosomes Stimulate Osteogenesis of Human Adipose-Derived Stem Cells
  publication-title: Cell Tissue Bank
  doi: 10.1007/s10561-020-09867-8
– volume: 22
  start-page: 1
  year: 2021
  ident: B63
  article-title: The Selective Histone Deacetylase Inhibitor Mi192 Enhances the Osteogenic Differentiation Efficacy of Human Dental Pulp Stromal Cells
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22105224
– volume: 5
  start-page: 68
  year: 2017
  ident: B35
  article-title: It Takes Two to Tango: Coupling of Angiogenesis and Osteogenesis for Bone Regeneration
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2017.00068
– volume: 3
  start-page: rkz036
  year: 2019
  ident: B11
  article-title: Developing a National Musculoskeletal Core Capabilities Framework for First point of Contact Practitioners
  publication-title: Rheumatol. Adv. Pract.
  doi: 10.1093/rap/rkz036
– volume: 26
  start-page: 5983
  year: 2005
  ident: B19
  article-title: Chitosan: A Versatile Biopolymer for Orthopaedic Tissue-Engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.03.016
– volume: 111
  start-page: 103
  year: 2016
  ident: B41
  article-title: Exosomes as Biomimetic Tools for Stem Cell Differentiation: Applications in Dental Pulp Tissue Regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.09.029
– volume: 4
  start-page: S343
  year: 2013
  ident: B24
  article-title: Complications Due to the Use of Bmp/infuse in Spine Surgery: The Evidence Continues to Mount
  publication-title: Surg. Neurol. Int.
  doi: 10.4103/2152-7806.114813
– volume: 30
  start-page: 1909125
  year: 2020
  ident: B9
  article-title: Biomaterials Functionalized with Msc Secreted Extracellular Vesicles and Soluble Factors for Tissue Regeneration
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909125
– volume: 27
  start-page: 1308
  year: 2020
  ident: B74
  article-title: Type I Collagen Hydrogels as a Delivery Matrix for Royal Jelly Derived Extracellular Vesicles
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2020.1818880
– volume: 5
  start-page: 1113
  year: 2020
  ident: B81
  article-title: Chitosan Hydrogel Incorporated with Dental Pulp Stem Cell-Derived Exosomes Alleviates Periodontitis in Mice via a Macrophage-dependent Mechanism
  publication-title: Bioact Mater.
  doi: 10.1016/j.bioactmat.2020.07.002
– volume: 10
  start-page: e12138
  year: 2021
  ident: B53
  article-title: The Polysaccharide Chitosan Facilitates the Isolation of Small Extracellular Vesicles from Multiple Biofluids
  publication-title: J. Extracell Vesicles
  doi: 10.1002/jev2.12138
– volume: 2004
  start-page: 24
  year: 2004
  ident: B78
  article-title: Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells
  publication-title: J. Biomed. Biotechnol.
  doi: 10.1155/s1110724304306017
– volume: 6
  start-page: 36
  year: 2018
  ident: B27
  article-title: Exosomes-the Enigmatic Regulators of Bone Homeostasis
  publication-title: Bone Res.
  doi: 10.1038/s41413-018-0039-2
– volume: 40
  start-page: 453
  year: 2018
  ident: B10
  article-title: Molecular Interactions at the Surface of Extracellular Vesicles
  publication-title: Semin. Immunopathol
  doi: 10.1007/s00281-018-0682-0
– volume: 8
  start-page: 1962
  year: 2010
  ident: B95
  article-title: Chitosan Modification and Pharmaceutical/biomedical Applications
  publication-title: Mar. Drugs
  doi: 10.3390/md8071962
– volume: 79
  start-page: 37
  year: 2015
  ident: B18
  article-title: Osteoblast-derived Microvesicles: A Novel Mechanism for Communication between Osteoblasts and Osteoclasts
  publication-title: Bone
  doi: 10.1016/j.bone.2015.05.022
– volume: 200
  start-page: 373
  year: 2013
  ident: B75
  article-title: Extracellular Vesicles: Exosomes, Microvesicles, and Friends
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.201211138
– volume: 22
  start-page: 284
  year: 2016
  ident: B45
  article-title: A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2
  publication-title: Tissue Eng. Part. B Rev.
  doi: 10.1089/ten.TEB.2015.0357
– volume: 167
  start-page: 145
  year: 2017
  ident: B16
  article-title: Fabrication and Evaluation of Thermosensitive Chitosan/collagen/α, β-glycerophosphate Hydrogels for Tissue Regeneration
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.03.053
– volume: 10
  start-page: 1148
  year: 2004
  ident: B93
  article-title: Biomimetic Collagen Scaffolds for Human Bone Cell Growth and Differentiation
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2004.10.1148
– volume: 11
  start-page: 622
  year: 2020
  ident: B97
  article-title: Advancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.00622
– volume: 22
  start-page: 2111
  year: 2011
  ident: B82
  article-title: The Osteogenic Differentiation of Dog Bone Marrow Mesenchymal Stem Cells in a Thermo-Sensitive Injectable Chitosan/collagen/β-Glycerophosphate Hydrogel: In Vitro and In Vivo
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-011-4386-4
– volume: 33
  start-page: 522
  year: 2003
  ident: B14
  article-title: Antigen-presenting Cell Exosomes Are Protected from Complement-Mediated Lysis by Expression of Cd55 and Cd59
  publication-title: Eur. J. Immunol.
  doi: 10.1002/immu.200310028
– volume: 9
  start-page: 1431
  year: 2020
  ident: B21
  article-title: Human Bone Marrow Stem/stromal Cell Osteogenesis Is Regulated via Mechanically Activated Osteocyte-Derived Extracellular Vesicles
  publication-title: Stem Cell Transl Med
  doi: 10.1002/sctm.19-0405
– volume: 15
  start-page: 200
  year: 2017
  ident: B15
  article-title: Assessment of Operative Times of Multiple Surgical Specialties in a Public university Hospital
  publication-title: Einstein (Sao Paulo)
  doi: 10.1590/S1679-45082017GS3902
– volume: 8
  start-page: 633
  year: 2020
  ident: B37
  article-title: Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified with Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00633
– volume: 8
  start-page: 114
  year: 2012
  ident: B77
  article-title: Bone Grafts, Bone Substitutes and Orthobiologics: the Bridge between Basic Science and Clinical Advancements in Fracture Healing
  publication-title: Organogenesis
  doi: 10.4161/org.23306
– volume: 17
  year: 2019
  ident: B85
  article-title: Extracellular Vesicles in Bone: "Dogrobbers" in the "eternal Battle Field
  publication-title: Cell Commun. Signaling
  doi: 10.1186/s12964-019-0319-5
– volume: 2021
  start-page: 6640893
  year: 2021
  ident: B73
  article-title: Thermosensitive Chitosan-β-Glycerophosphate Hydrogels as Targeted Drug Delivery Systems: An Overview on Preparation and Their Applications
  publication-title: Adv. Pharmacol. Pharm. Sci.
  doi: 10.1155/2021/6640893
– volume: 14
  start-page: 289
  year: 2021
  ident: B4
  article-title: Matrix Vesicles: Role in Bone Mineralization and Potential Use as Therapeutics
  publication-title: Pharmaceuticals (Basel)
  doi: 10.3390/ph14040289
– volume: 21
  start-page: 362
  year: 2018
  ident: B66
  article-title: Engineering Vascularized and Innervated Bone Biomaterials for Improved Skeletal Tissue Regeneration
  publication-title: Mater. Today (Kidlington)
  doi: 10.1016/j.mattod.2017.10.005
– volume: 47
  start-page: 531
  year: 2014
  ident: B94
  article-title: Extracellular Vesicles as Emerging Intercellular Communicasomes
  publication-title: BMB Rep.
  doi: 10.5483/bmbrep.2014.47.10.164
– volume: 6
  start-page: 1945
  year: 2021
  ident: B34
  article-title: Growth Factor Delivery Using Extracellular Matrix-Mimicking Substrates for Musculoskeletal Tissue Engineering and Repair
  publication-title: Bioactive Mater.
  doi: 10.1016/j.bioactmat.2020.12.012
– volume: 5
  start-page: 101
  year: 2015
  ident: B50
  article-title: Exosomes Are Fingerprints of Originating Cells: Potential Biomarkers for Ovarian Cancer
  publication-title: Res. Rep. Biochem.
  doi: 10.2147/RRBC.S58281
– volume: 18
  start-page: 1450
  year: 2017
  ident: B8
  article-title: Mesenchymal Stem/stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18071450
– volume: 98
  start-page: 1132
  year: 2016
  ident: B86
  article-title: Tissue Engineering in Orthopaedics
  publication-title: J. Bone Jt. Surg Am
  doi: 10.2106/JBJS.16.00299
SSID ssj0001257582
Score 2.3544092
Snippet The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 829969
SubjectTerms Bioengineering and Biotechnology
bone
controlled release
drug delivery
extracellular vesicle
hydrogel
tissue engineering
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnugB8SiwPCoj9YQU6sSPOMc-tlohbYtQi3qzYnu2rNQmqE2r9sJvZ8bZLlmE4MLVdmJrZmx_Y898ZmxbKB_QLSkzATZkStZlVgsIlOxuI26HAgzlO0-PzORUfTrTZ4OnvigmrKcH7gW3E4oKTSwGrUuptApW1cVMllEEXFk1pDRfUYmBM9WfriAMsUV_jYleWLUz8_OWaDGL4qPFJZgCnAcbUeLr_xPI_D1WcrD5HD5hjxeoke_2o33K1qB5xjYGXILP2Y_dho_3p9l0fkl5iXxyH6_ac7jgXcs_p5g74Aj2-MmvhCs-Jv6IOtzzdsaPUd2tRyzdZQf4y1uIfHyHY6GTfQpV5V_hOoXQcYS5fK9tgH-B80RaTbrdZKeH45P9SbZ4XCELOO26rERoaOhWLubW5LGU0aMrFjUQZpHeFiGvcYJrA6Wpg8xVRGzicV1VWB6lki_YeoN9vWIcnZ4a3RaJu6BWEL0PZuZNVYRgo_GQj5h4kLQLC-ZxegDjwqEHQspxSTmOlON65YzYh-Un33vajb813iP1LRsSY3YqQDtyCzty_7KjEXv_oHyHM4yEWzfQ3ly7wmh6Zl5KPWIve2NYdiW1ktJorClXzGRlLKs1zfxbYvGuUh6wff0_Bv-GPSJ5pFxJ8Zatd1c38A7BUue30rz4CbgdEWw
  priority: 102
  providerName: Directory of Open Access Journals
Title An ECM-Mimetic Hydrogel to Promote the Therapeutic Efficacy of Osteoblast-Derived Extracellular Vesicles for Bone Regeneration
URI https://www.ncbi.nlm.nih.gov/pubmed/35433655
https://www.proquest.com/docview/2652032335
https://pubmed.ncbi.nlm.nih.gov/PMC9005798
https://doaj.org/article/c29880dc5573454c84a2f37d0c1285e8
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGeIEHxPgssMlIPCFlJP6K84DQNjpVSAWEVrQ3K_5oV6kk0GZofdnfvjsnLSuqEK9xEic-n-939t3vCHmTCuvALcmTNGiXCF7mSZkGh8nu2oM5TIPCfOfhZzUYiU_n8nyHrMpbdQO42OraYT2p0Xx2ePVr-QEU_j16nGBv343ttEbGS8YONayuqrhD7sbjIozk69B-u-UC2CSWj2KsUAnStrTnnNvfsmGpIqH_NhT6dzDlLet0-pA86GAlPWrnwR7ZCdUjcv8W2eBjcn1U0f7JMBlOf2DiIh0s_byehBltavo1BuUFCmiQnv3JyKJ9JJgo3ZLWY_oF5kNtAWw3yUd45e_gaf8KvgW3_jGWlX4PixhjRwEH0-O6CvRbmERWaxT-EzI67Z-dDJKu-kLiQC-bJAfsqPDYzmdaZT7n3oKv5mVAUMOtZi4rYQWQKuSqdDwTHsCLhYVXwHXPBX9Kdivo6zmh4BWV4NdwMJNSBG-tU2OrCuac9sqGrEfS1Ugb11GTY4WMmQEXBYVjonAMCse0wumRt-tHfra8HP-6-RjFt74RKbXjhXo-MZ2GGscKWMu8kzLnQgqnRcnGPPepAxMug-6R1yvhG1BBHNyyCvXlwjAlsQ4957JHnrWTYd0Vl4JzJaEl35gmG9-y2VJNLyLNdxEThfWL_-j3JbmHvxtzJdNXZLeZX4Z9AEuNPYibDAdREW4AwBsSjQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ECM-Mimetic+Hydrogel+to+Promote+the+Therapeutic+Efficacy+of+Osteoblast-Derived+Extracellular+Vesicles+for+Bone+Regeneration&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Man%2C+Kenny&rft.au=Brunet%2C+Mathieu+Y&rft.au=Federici%2C+Angelica+S&rft.au=Hoey%2C+David+A&rft.date=2022-03-30&rft.issn=2296-4185&rft.eissn=2296-4185&rft.volume=10&rft.spage=829969&rft_id=info:doi/10.3389%2Ffbioe.2022.829969&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon