Estimation of sky luminance in the tropics using artificial neural networks: Modeling and performance comparison with the CIE model

An artificial neural network (ANN) model for estimating sky luminance was developed. A 3-year period (2007–2009) of sky luminance data obtained from measurements at Nakhon Pathom (13.82°N, 100.04°E) and a 1-year period (2008) of the same type of data at Songkhla (7.20°N, 100.60°E), Thailand were use...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 88; no. 3; pp. 840 - 847
Main Authors Janjai, Serm, Plaon, Piyanuch
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2011
Elsevier
SeriesApplied Energy
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2010.09.004

Cover

Abstract An artificial neural network (ANN) model for estimating sky luminance was developed. A 3-year period (2007–2009) of sky luminance data obtained from measurements at Nakhon Pathom (13.82°N, 100.04°E) and a 1-year period (2008) of the same type of data at Songkhla (7.20°N, 100.60°E), Thailand were used in this study. The ANN model was trained using a back propagation algorithm, based on 2 years data (2007–2008) at Nakhon Pathom for clear, partly cloudy and overcast skies. The trained ANN model was used to predict sky luminance at Nakhon Pathom for the year 2009 for the case of clear, partly cloudy and overcast skies. The results were compared with those of the CIE model. It was found that the ANN model performed better than CIE models for most cases. The ANN model trained with Nakhon Pathom data were also used to predict sky luminance at Songkhla and satisfactory results were obtained.
AbstractList An artificial neural network (ANN) model for estimating sky luminance was developed. A 3-year period (2007-2009) of sky luminance data obtained from measurements at Nakhon Pathom (13.82°N, 100.04°E) and a 1-year period (2008) of the same type of data at Songkhla (7.20°N, 100.60°E), Thailand were used in this study. The ANN model was trained using a back propagation algorithm, based on 2 years data (2007-2008) at Nakhon Pathom for clear, partly cloudy and overcast skies. The trained ANN model was used to predict sky luminance at Nakhon Pathom for the year 2009 for the case of clear, partly cloudy and overcast skies. The results were compared with those of the CIE model. It was found that the ANN model performed better than CIE models for most cases. The ANN model trained with Nakhon Pathom data were also used to predict sky luminance at Songkhla and satisfactory results were obtained.
An artificial neural network (ANN) model for estimating sky luminance was developed. A 3-year period (2007–2009) of sky luminance data obtained from measurements at Nakhon Pathom (13.82°N, 100.04°E) and a 1-year period (2008) of the same type of data at Songkhla (7.20°N, 100.60°E), Thailand were used in this study. The ANN model was trained using a back propagation algorithm, based on 2 years data (2007–2008) at Nakhon Pathom for clear, partly cloudy and overcast skies. The trained ANN model was used to predict sky luminance at Nakhon Pathom for the year 2009 for the case of clear, partly cloudy and overcast skies. The results were compared with those of the CIE model. It was found that the ANN model performed better than CIE models for most cases. The ANN model trained with Nakhon Pathom data were also used to predict sky luminance at Songkhla and satisfactory results were obtained.
An artificial neural network (ANN) model for estimating sky luminance was developed. A 3-year period (2007–2009) of sky luminance data obtained from measurements at Nakhon Pathom (13.82°N, 100.04°E) and a 1-year period (2008) of the same type of data at Songkhla (7.20°N, 100.60°E), Thailand were used in this study. The ANN model was trained using a back propagation algorithm, based on 2years data (2007–2008) at Nakhon Pathom for clear, partly cloudy and overcast skies. The trained ANN model was used to predict sky luminance at Nakhon Pathom for the year 2009 for the case of clear, partly cloudy and overcast skies. The results were compared with those of the CIE model. It was found that the ANN model performed better than CIE models for most cases. The ANN model trained with Nakhon Pathom data were also used to predict sky luminance at Songkhla and satisfactory results were obtained.
An artificial neural network (ANN) model for estimating sky luminance was developed. A 3-year period (2007-2009) of sky luminance data obtained from measurements at Nakhon Pathom (13.82 degree N, 100.04 degree E) and a 1-year period (2008) of the same type of data at Songkhla (7.20 degree N, 100.60 degree E), Thailand were used in this study. The ANN model was trained using a back propagation algorithm, based on 2 years data (2007-2008) at Nakhon Pathom for clear, partly cloudy and overcast skies. The trained ANN model was used to predict sky luminance at Nakhon Pathom for the year 2009 for the case of clear, partly cloudy and overcast skies. The results were compared with those of the CIE model. It was found that the ANN model performed better than CIE models for most cases. The ANN model trained with Nakhon Pathom data were also used to predict sky luminance at Songkhla and satisfactory results were obtained.
Author Plaon, Piyanuch
Janjai, Serm
Author_xml – sequence: 1
  givenname: Serm
  surname: Janjai
  fullname: Janjai, Serm
  email: serm@su.ac.th
– sequence: 2
  givenname: Piyanuch
  surname: Plaon
  fullname: Plaon, Piyanuch
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23825426$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeappene/v_3a88_3ay_3a2011_3ai_3a3_3ap_3a840-847.htm$$DView record in RePEc
BookMark eNqFkk9vEzEQxVeoSKSFrwC-ILgk-M-ud404gKIARUUcoGfL68wmTnftre20ypkvziRpOXAgh9mR7N-8Wfm98-LMBw9F8ZLRGaNMvtvMzAge4mo34xQPqZpRWj4pJqyp-VQx1pwVEyqonHLJ1LPiPKUNpZQzTifF70XKbjDZBU9CR9LNjvTbwXnjLRDnSV4DyTGMziayTc6viInZdc460xMP23ho-T7Em_SefA9L6A-QX5IRYhficFCyYRhNdAm33Lu8PsjOLxdk2A88L552pk_w4qFfFNefF7_mX6dXP75czj9dTW0lWJ5KowRrhWpbBpWwrWGAJeq6bKkAyrjkSrQd8Ba46vCu4U2jhGkqW7elseKieHPUHWO43ULKenDJQt8bD2GbdFNVNVO0oki-_S_J6rpmgnKlTqNSCsmFFCWi345ohBGsHiM-fNxpADDj3kF9p_FvG_zssNBLhs1hCaxxf1dS3ZS1XucBxV4_7DXJmr6L-M4u_RXlouFVySVyH46cjSGlCJ22Lh_8ztG4XjOq9ynSG_2YIr1PkaZKY4pwXP4z_rjh5OCr42BngjYr9F5f_0SgwuhJKXmNxMcjAej5nYOok3WAaVm6CDbrZXCnlvwBQMzyNw
CODEN APENDX
CitedBy_id crossref_primary_10_1016_j_rser_2013_12_018
crossref_primary_10_1016_j_energy_2016_02_054
crossref_primary_10_1016_j_apenergy_2015_11_046
crossref_primary_10_1177_14771535241276338
crossref_primary_10_1016_j_solener_2012_06_022
crossref_primary_10_1016_j_apenergy_2024_123480
crossref_primary_10_1016_j_renene_2016_11_008
crossref_primary_10_1080_2093761X_2015_1129369
crossref_primary_10_1016_j_solener_2020_11_051
crossref_primary_10_1080_19401493_2022_2102676
crossref_primary_10_1177_14780771231186259
crossref_primary_10_1016_j_rser_2018_05_060
crossref_primary_10_1016_j_solener_2022_02_053
crossref_primary_10_1016_j_solener_2017_04_010
crossref_primary_10_1016_j_solener_2020_03_104
crossref_primary_10_1109_MCG_2016_67
crossref_primary_10_1080_19401493_2019_1610067
crossref_primary_10_5370_JEET_2015_10_4_1822
crossref_primary_10_1016_j_enbuild_2016_01_027
crossref_primary_10_1016_j_solener_2019_10_072
crossref_primary_10_1080_1463922X_2011_617112
crossref_primary_10_1080_13467581_2020_1752217
crossref_primary_10_1108_SASBE_08_2021_0146
Cites_doi 10.1016/j.apenergy.2009.09.008
10.1016/j.apenergy.2010.03.004
10.1016/j.buildenv.2008.11.012
10.1016/j.solener.2004.11.013
10.1016/S1364-6826(02)00283-3
10.1177/1365782806070683
10.1016/j.apenergy.2003.11.004
10.1016/j.solener.2004.04.016
10.1016/S0960-1481(98)00068-8
10.1016/0038-092X(93)90017-I
10.1016/j.apenergy.2010.05.006
10.1016/j.jastp.2004.12.008
10.1016/j.apenergy.2008.06.003
10.1016/j.renene.2006.06.004
10.1016/j.apenergy.2009.09.034
10.1016/S0306-2619(03)00137-5
10.1016/j.solener.2009.07.004
10.1016/j.renene.2007.09.012
10.1016/j.enconman.2009.03.035
10.1016/j.apenergy.2010.02.018
10.1016/S0306-2619(02)00016-8
10.1016/0038-092X(90)90055-H
10.1016/j.buildenv.2007.12.009
10.1016/j.apenergy.2009.03.004
10.1016/j.enconman.2008.02.014
10.1016/j.enpol.2008.06.030
10.1016/j.apenergy.2008.09.004
10.1016/S0196-8904(03)00009-8
10.1016/S0167-7012(00)00201-3
10.1191/1477153504li117oa
10.1016/j.energy.2004.05.002
10.1177/096032718101300402
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
DKI
X2L
7S9
L.6
7SU
7TA
8FD
C1K
FR3
JG9
7ST
SOI
DOI 10.1016/j.apenergy.2010.09.004
DatabaseName AGRIS
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Materials Business File
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Materials Research Database
Engineering Research Database
Technology Research Database
Materials Business File
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList


Environment Abstracts
AGRICOLA
Materials Research Database
Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 847
ExternalDocumentID eeeappene_v_3a88_3ay_3a2011_3ai_3a3_3ap_3a840_847_htm
23825426
10_1016_j_apenergy_2010_09_004
US201500066627
S0306261910003685
GeographicLocations Thailand
Far East
Asia
GeographicLocations_xml – name: Thailand
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
IQODW
02
0R
1
8P
AAPBV
ABPTK
ADALY
DKI
G-
HZ
IPNFZ
K
M
X2L
7S9
L.6
7SU
7TA
8FD
C1K
FR3
JG9
7ST
SOI
ID FETCH-LOGICAL-c531t-6a931b39bb1e53cba1eba13774b03e0126293bfe2be29feba828893a85c7b4ac3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Tue Oct 07 09:24:40 EDT 2025
Tue Oct 07 09:24:44 EDT 2025
Sun Sep 28 07:00:49 EDT 2025
Thu Dec 16 09:11:49 EST 2021
Mon Jul 21 09:14:21 EDT 2025
Thu Oct 09 00:34:31 EDT 2025
Thu Apr 24 22:59:29 EDT 2025
Thu Apr 03 09:43:56 EDT 2025
Fri Feb 23 02:30:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords The tropics
Sky luminance
Daylight
CIE model
Artificial neural network
Modeling
Backpropagation algorithm
Luminance
neural networks
tropical zone
Cloudiness
Forecast model
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-6a931b39bb1e53cba1eba13774b03e0126293bfe2be29feba828893a85c7b4ac3
Notes http://dx.doi.org/10.1016/j.apenergy.2010.09.004
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663623634
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_855719050
proquest_miscellaneous_1777130299
proquest_miscellaneous_1663623634
repec_primary_eeeappene_v_3a88_3ay_3a2011_3ai_3a3_3ap_3a840_847_htm
pascalfrancis_primary_23825426
crossref_citationtrail_10_1016_j_apenergy_2010_09_004
crossref_primary_10_1016_j_apenergy_2010_09_004
fao_agris_US201500066627
elsevier_sciencedirect_doi_10_1016_j_apenergy_2010_09_004
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationSeriesTitle Applied Energy
PublicationTitle Applied energy
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Li, Tsang, Cheung, Tam (b0010) 2010; 87
Pokrowski (b0030) 1929; 30
Chirarattananon (b0005) 2005
Matsuura K, Iwata, T. A model of daylight source for the daylight illuminance calculations on the all weather conditions. In: Spiridonov A. Proceedings of 3rd international daylighting conference; 1990.
Kittler R. Luminance models of homogeneous skies for design and energy performance predictions. In: Proceedings of international daylight conference, Long Beach, California, USA: American Society of Heating, Refrigerating and Air-conditioning Engineerings, Inc.; 1989.
Jiang (b0150) 2008; 36
Bartzokas, Durala, Kambezidis, Kittler (b0110) 2003; 65
Kittler R. Standardization of outdoor conditions for the calculation of daylight factor with clear skies. In: Proceedings of the conference on sunlight in buildings, Rotterdam, Netherlands; 1967. p. 273–80.
Perez, Ineichen, Seals, Michalsky, Stewart (b0065) 1990; 44
Dorvlo, Jervase, Al-Lawati (b0170) 2002; 71
Kocifaj (b0080) 2009; 83
Basheer, Hajmeer (b0200) 2000; 43
Igawa, Koga, Matsuzawa, Nakamura (b0075) 2004; 77
Soares, Oliveira, Boznar, Mlakar, Escobedo, Machado (b0155) 2004; 79
Al-Alawi, Al-Hinai (b0145) 1998; 14
Pattanasethanon, Lertsatitthanakorn, Atthajariyakul, Soponronnarit (b0190) 2008; 49
Reddy, Ranjan (b0140) 2003; 44
Sozen, Arcaklioglu, Ozalp, Kanit (b0160) 2004; 77
Senkal, Kuleli (b0180) 2009; 86
Li (b0095) 2010; 87
CIE, Spatial distribution of daylight-CIE standard general sky, Report No. CIE S011/E:2003, Vienna, Austria: Centre International d’Eclairage; 2003.
Bartzokas, Kambezidis, Durala, Kittler (b0115) 2005; 67
Chel, Tiwari, Singh (b0025) 2010; 87
Hontoria, Aguilera, Zufiria (b0135) 2005; 79
Benghanem, Mellit, Alamri (b0185) 2009; 50
Moon, Spencer (b0040) 1942; 37
Perraudeau M. Luminance models. National lighting conference and daylighting colloquium. Cambridge, England: Robinson College; 1988.
Janjai, Masiri, Nunez, Laksanaboonsong (b0085) 2008; 43
Alam, Kaushik, Garg (b0165) 2009; 86
Markou, Kambezidis, Bartzokas, Katsoulis, Muneer (b0105) 2005; 30
Wittkopf, Soon (b0125) 2007; 3991
Perez, Seals, Michalsky (b0060) 1993; 50
Tregenza (b0100) 2004; 36
Chirarattananon, Chaiwiwatworakul (b0120) 2007; 32
Kazanasmaz, Gunaydin, Binol (b0195) 2009; 44
Darula, Kittler, Kocifaj (b0015) 2010; 87
De Rosa, Ferraro, Kaliakatsos, Marinelli (b0130) 2010; 87
Bosch, Lopez, Batlles (b0175) 2008; 33
Littlefair (b0045) 1981; 13
Chel, Tiwari, Chandra (b0020) 2009; 86
10.1016/j.apenergy.2010.09.004_b0035
Bartzokas (10.1016/j.apenergy.2010.09.004_b0110) 2003; 65
10.1016/j.apenergy.2010.09.004_b0055
Perez (10.1016/j.apenergy.2010.09.004_b0060) 1993; 50
Benghanem (10.1016/j.apenergy.2010.09.004_b0185) 2009; 50
Dorvlo (10.1016/j.apenergy.2010.09.004_b0170) 2002; 71
Senkal (10.1016/j.apenergy.2010.09.004_b0180) 2009; 86
10.1016/j.apenergy.2010.09.004_b0050
Bartzokas (10.1016/j.apenergy.2010.09.004_b0115) 2005; 67
10.1016/j.apenergy.2010.09.004_b0070
Markou (10.1016/j.apenergy.2010.09.004_b0105) 2005; 30
10.1016/j.apenergy.2010.09.004_b0090
Li (10.1016/j.apenergy.2010.09.004_b0010) 2010; 87
Li (10.1016/j.apenergy.2010.09.004_b0095) 2010; 87
Soares (10.1016/j.apenergy.2010.09.004_b0155) 2004; 79
Wittkopf (10.1016/j.apenergy.2010.09.004_b0125) 2007; 3991
Chirarattananon (10.1016/j.apenergy.2010.09.004_b0005) 2005
Kazanasmaz (10.1016/j.apenergy.2010.09.004_b0195) 2009; 44
Jiang (10.1016/j.apenergy.2010.09.004_b0150) 2008; 36
Reddy (10.1016/j.apenergy.2010.09.004_b0140) 2003; 44
Hontoria (10.1016/j.apenergy.2010.09.004_b0135) 2005; 79
Pattanasethanon (10.1016/j.apenergy.2010.09.004_b0190) 2008; 49
Littlefair (10.1016/j.apenergy.2010.09.004_b0045) 1981; 13
Bosch (10.1016/j.apenergy.2010.09.004_b0175) 2008; 33
Perez (10.1016/j.apenergy.2010.09.004_b0065) 1990; 44
Chirarattananon (10.1016/j.apenergy.2010.09.004_b0120) 2007; 32
Alam (10.1016/j.apenergy.2010.09.004_b0165) 2009; 86
Chel (10.1016/j.apenergy.2010.09.004_b0025) 2010; 87
Igawa (10.1016/j.apenergy.2010.09.004_b0075) 2004; 77
Moon (10.1016/j.apenergy.2010.09.004_b0040) 1942; 37
Janjai (10.1016/j.apenergy.2010.09.004_b0085) 2008; 43
Sozen (10.1016/j.apenergy.2010.09.004_b0160) 2004; 77
Pokrowski (10.1016/j.apenergy.2010.09.004_b0030) 1929; 30
Al-Alawi (10.1016/j.apenergy.2010.09.004_b0145) 1998; 14
De Rosa (10.1016/j.apenergy.2010.09.004_b0130) 2010; 87
Kocifaj (10.1016/j.apenergy.2010.09.004_b0080) 2009; 83
Tregenza (10.1016/j.apenergy.2010.09.004_b0100) 2004; 36
Chel (10.1016/j.apenergy.2010.09.004_b0020) 2009; 86
Basheer (10.1016/j.apenergy.2010.09.004_b0200) 2000; 43
Darula (10.1016/j.apenergy.2010.09.004_b0015) 2010; 87
References_xml – volume: 49
  start-page: 1999
  year: 2008
  end-page: 2005
  ident: b0190
  article-title: An accuracy assessment of an empirical sine model, a novel sine model and an artificial neural network model for forecasting illuminance/irradiance on horizontal plane of all sky types at Mahasarakham, Thailand
  publication-title: Energy Convers Manage
– volume: 44
  start-page: 1751
  year: 2009
  end-page: 1757
  ident: b0195
  article-title: Artificial neural networks to predict daylight illuminance in office buildings
  publication-title: Build Environ
– volume: 43
  start-page: 2059
  year: 2008
  end-page: 2073
  ident: b0085
  article-title: Modeling sky luminance using satellite data to classify sky conditions
  publication-title: Build Environ
– volume: 44
  start-page: 271
  year: 1990
  end-page: 289
  ident: b0065
  article-title: Modeling daylight availability and irradiance components
  publication-title: Solar Energy
– volume: 36
  start-page: 271
  year: 2004
  end-page: 281
  ident: b0100
  article-title: Analysing sly luminance scans to obtain frequency distributions of CIE standard general skies
  publication-title: Light Res Technol
– volume: 86
  start-page: 1222
  year: 2009
  end-page: 1228
  ident: b0180
  article-title: Estimation of solar radiation over Turkey using artificial neural network and satellite data
  publication-title: Appl Energy
– reference: Kittler R. Luminance models of homogeneous skies for design and energy performance predictions. In: Proceedings of international daylight conference, Long Beach, California, USA: American Society of Heating, Refrigerating and Air-conditioning Engineerings, Inc.; 1989.
– volume: 87
  start-page: 806
  year: 2010
  end-page: 813
  ident: b0130
  article-title: Calculating indoor natural illuminance in overcast sky conditions
  publication-title: Appl Energy
– volume: 50
  start-page: 235
  year: 1993
  end-page: 245
  ident: b0060
  article-title: All-weather model for sky luminance distribution-preliminary configuration and validation
  publication-title: Solar Energy
– volume: 65
  start-page: 113
  year: 2003
  end-page: 119
  ident: b0110
  article-title: Sky luminance distribution in Central Europe and the Mediterranean area during the winter period
  publication-title: J Atmos Sol – Terr Phys
– volume: 77
  start-page: 273
  year: 2004
  end-page: 286
  ident: b0160
  article-title: Use of artificial neural networks for mapping of solar potential in Turkey
  publication-title: Appl Energy
– volume: 30
  start-page: 697
  year: 1929
  ident: b0030
  article-title: Uber die Helligkeitsverteilung am Himmel
  publication-title: Phys Zeitschr
– volume: 86
  start-page: 554
  year: 2009
  end-page: 564
  ident: b0165
  article-title: Assessment of diffuse solar energy under general sky condition using artificial neural network
  publication-title: Appl Energy
– reference: Perraudeau M. Luminance models. National lighting conference and daylighting colloquium. Cambridge, England: Robinson College; 1988.
– volume: 79
  start-page: 523
  year: 2005
  end-page: 530
  ident: b0135
  article-title: An application of the multilayer perceptron: solar radiation maps in Spain
  publication-title: Solar Energy
– year: 2005
  ident: b0005
  article-title: Building for Energy Efficiency
– volume: 36
  start-page: 3833
  year: 2008
  end-page: 3837
  ident: b0150
  article-title: Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models
  publication-title: Energy Policy
– volume: 32
  start-page: 1328
  year: 2007
  end-page: 1345
  ident: b0120
  article-title: Distribution of sly luminance and radiance of North Bangkok under standard distributions
  publication-title: Renew Energy
– volume: 13
  start-page: 192
  year: 1981
  end-page: 198
  ident: b0045
  article-title: The luminance distribution of an average sky
  publication-title: Light Res Technol
– reference: Matsuura K, Iwata, T. A model of daylight source for the daylight illuminance calculations on the all weather conditions. In: Spiridonov A. Proceedings of 3rd international daylighting conference; 1990.
– volume: 86
  start-page: 2507
  year: 2009
  end-page: 2519
  ident: b0020
  article-title: A model for estimation of daylight factor for skylight: an experimental validation using pyramid shape skylight over vault roof mud-house in New Delhi (India)
  publication-title: Appl Energy
– volume: 79
  start-page: 201
  year: 2004
  end-page: 214
  ident: b0155
  article-title: Modeling hourly diffuse solar-radiation in the city of Sao Paulo using a neural-network technique
  publication-title: Appl Energy
– volume: 77
  start-page: 137
  year: 2004
  end-page: 157
  ident: b0075
  article-title: Models of sky radiance distribution and sky luminance distribution
  publication-title: Solar Energy
– volume: 37
  start-page: 707
  year: 1942
  end-page: 726
  ident: b0040
  article-title: Illumination from a non-uniform sky
  publication-title: Illum Eng
– volume: 87
  start-page: 3460
  year: 2010
  end-page: 3466
  ident: b0015
  article-title: Luminous effectiveness of tubular light-guides in tropics
  publication-title: Appl Energy
– volume: 30
  start-page: 1667
  year: 2005
  end-page: 1674
  ident: b0105
  article-title: Sky type classification in Central England during winter
  publication-title: Energy
– volume: 14
  start-page: 199
  year: 1998
  end-page: 204
  ident: b0145
  article-title: An ANN-based approach for predicting global radiation in location with no direct measurement instrumentation
  publication-title: Renew Energy
– volume: 67
  start-page: 709
  year: 2005
  end-page: 718
  ident: b0115
  article-title: Comparison between winter and summer sky luminance distribution in Central Europe and in the eastern Mediterranean
  publication-title: J Atmos Sol – Terr Phys
– volume: 43
  start-page: 3
  year: 2000
  end-page: 31
  ident: b0200
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: J Microbiol Methods
– volume: 87
  start-page: 799
  year: 2010
  end-page: 805
  ident: b0010
  article-title: An analysis of light-pipe system via full-scale measurements
  publication-title: Appl Energy
– volume: 50
  start-page: 1644
  year: 2009
  end-page: 1655
  ident: b0185
  article-title: ANN-based modelling and estimation of daily global solar radiation data: a case study
  publication-title: Energy Convers Manage
– reference: Kittler R. Standardization of outdoor conditions for the calculation of daylight factor with clear skies. In: Proceedings of the conference on sunlight in buildings, Rotterdam, Netherlands; 1967. p. 273–80.
– volume: 83
  start-page: 1914
  year: 2009
  end-page: 1922
  ident: b0080
  article-title: Sky luminance /radiance model with multiple scattering effect
  publication-title: Solar Energy
– volume: 44
  start-page: 2519
  year: 2003
  end-page: 2530
  ident: b0140
  article-title: Solar resource estimation using artificial neural networks and comparison with other correlation models
  publication-title: Energy Convers Manage
– volume: 33
  start-page: 1622
  year: 2008
  end-page: 1628
  ident: b0175
  article-title: Daily solar irradiation estimation over a mountainous area using artificial neural networks
  publication-title: Renew Energy
– reference: CIE, Spatial distribution of daylight-CIE standard general sky, Report No. CIE S011/E:2003, Vienna, Austria: Centre International d’Eclairage; 2003.
– volume: 71
  start-page: 307
  year: 2002
  end-page: 319
  ident: b0170
  article-title: Solar radiation estimation using artificial neural networks
  publication-title: Appl Energy
– volume: 3991
  start-page: 31
  year: 2007
  end-page: 51
  ident: b0125
  article-title: Analysing sly luminance scans and predicting frequent sky patterns in Singapore
  publication-title: Light Res Technol
– volume: 87
  start-page: 3037
  year: 2010
  end-page: 3050
  ident: b0025
  article-title: A modified model for estimation of daylight factor for skylight integrated with dome roof structure of mud-house in New Delhi (India)
  publication-title: Appl Energy
– volume: 87
  start-page: 2109
  year: 2010
  end-page: 2118
  ident: b0095
  article-title: A review of daylight illuminance determinations and energy implications
  publication-title: Appl Energy
– volume: 87
  start-page: 799
  year: 2010
  ident: 10.1016/j.apenergy.2010.09.004_b0010
  article-title: An analysis of light-pipe system via full-scale measurements
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.09.008
– volume: 87
  start-page: 2109
  year: 2010
  ident: 10.1016/j.apenergy.2010.09.004_b0095
  article-title: A review of daylight illuminance determinations and energy implications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.03.004
– year: 2005
  ident: 10.1016/j.apenergy.2010.09.004_b0005
– volume: 44
  start-page: 1751
  year: 2009
  ident: 10.1016/j.apenergy.2010.09.004_b0195
  article-title: Artificial neural networks to predict daylight illuminance in office buildings
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2008.11.012
– ident: 10.1016/j.apenergy.2010.09.004_b0090
– volume: 79
  start-page: 523
  year: 2005
  ident: 10.1016/j.apenergy.2010.09.004_b0135
  article-title: An application of the multilayer perceptron: solar radiation maps in Spain
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2004.11.013
– volume: 65
  start-page: 113
  year: 2003
  ident: 10.1016/j.apenergy.2010.09.004_b0110
  article-title: Sky luminance distribution in Central Europe and the Mediterranean area during the winter period
  publication-title: J Atmos Sol – Terr Phys
  doi: 10.1016/S1364-6826(02)00283-3
– volume: 3991
  start-page: 31
  year: 2007
  ident: 10.1016/j.apenergy.2010.09.004_b0125
  article-title: Analysing sly luminance scans and predicting frequent sky patterns in Singapore
  publication-title: Light Res Technol
  doi: 10.1177/1365782806070683
– volume: 79
  start-page: 201
  year: 2004
  ident: 10.1016/j.apenergy.2010.09.004_b0155
  article-title: Modeling hourly diffuse solar-radiation in the city of Sao Paulo using a neural-network technique
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2003.11.004
– volume: 77
  start-page: 137
  year: 2004
  ident: 10.1016/j.apenergy.2010.09.004_b0075
  article-title: Models of sky radiance distribution and sky luminance distribution
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2004.04.016
– volume: 14
  start-page: 199
  year: 1998
  ident: 10.1016/j.apenergy.2010.09.004_b0145
  article-title: An ANN-based approach for predicting global radiation in location with no direct measurement instrumentation
  publication-title: Renew Energy
  doi: 10.1016/S0960-1481(98)00068-8
– volume: 50
  start-page: 235
  issue: 3
  year: 1993
  ident: 10.1016/j.apenergy.2010.09.004_b0060
  article-title: All-weather model for sky luminance distribution-preliminary configuration and validation
  publication-title: Solar Energy
  doi: 10.1016/0038-092X(93)90017-I
– volume: 87
  start-page: 3460
  year: 2010
  ident: 10.1016/j.apenergy.2010.09.004_b0015
  article-title: Luminous effectiveness of tubular light-guides in tropics
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.05.006
– volume: 67
  start-page: 709
  year: 2005
  ident: 10.1016/j.apenergy.2010.09.004_b0115
  article-title: Comparison between winter and summer sky luminance distribution in Central Europe and in the eastern Mediterranean
  publication-title: J Atmos Sol – Terr Phys
  doi: 10.1016/j.jastp.2004.12.008
– ident: 10.1016/j.apenergy.2010.09.004_b0050
– volume: 86
  start-page: 1222
  year: 2009
  ident: 10.1016/j.apenergy.2010.09.004_b0180
  article-title: Estimation of solar radiation over Turkey using artificial neural network and satellite data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.06.003
– volume: 32
  start-page: 1328
  year: 2007
  ident: 10.1016/j.apenergy.2010.09.004_b0120
  article-title: Distribution of sly luminance and radiance of North Bangkok under standard distributions
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2006.06.004
– volume: 87
  start-page: 806
  year: 2010
  ident: 10.1016/j.apenergy.2010.09.004_b0130
  article-title: Calculating indoor natural illuminance in overcast sky conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.09.034
– volume: 77
  start-page: 273
  year: 2004
  ident: 10.1016/j.apenergy.2010.09.004_b0160
  article-title: Use of artificial neural networks for mapping of solar potential in Turkey
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(03)00137-5
– volume: 83
  start-page: 1914
  year: 2009
  ident: 10.1016/j.apenergy.2010.09.004_b0080
  article-title: Sky luminance /radiance model with multiple scattering effect
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2009.07.004
– volume: 33
  start-page: 1622
  year: 2008
  ident: 10.1016/j.apenergy.2010.09.004_b0175
  article-title: Daily solar irradiation estimation over a mountainous area using artificial neural networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.09.012
– volume: 50
  start-page: 1644
  year: 2009
  ident: 10.1016/j.apenergy.2010.09.004_b0185
  article-title: ANN-based modelling and estimation of daily global solar radiation data: a case study
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2009.03.035
– ident: 10.1016/j.apenergy.2010.09.004_b0035
– volume: 87
  start-page: 3037
  year: 2010
  ident: 10.1016/j.apenergy.2010.09.004_b0025
  article-title: A modified model for estimation of daylight factor for skylight integrated with dome roof structure of mud-house in New Delhi (India)
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.02.018
– volume: 71
  start-page: 307
  year: 2002
  ident: 10.1016/j.apenergy.2010.09.004_b0170
  article-title: Solar radiation estimation using artificial neural networks
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(02)00016-8
– volume: 44
  start-page: 271
  year: 1990
  ident: 10.1016/j.apenergy.2010.09.004_b0065
  article-title: Modeling daylight availability and irradiance components
  publication-title: Solar Energy
  doi: 10.1016/0038-092X(90)90055-H
– volume: 43
  start-page: 2059
  year: 2008
  ident: 10.1016/j.apenergy.2010.09.004_b0085
  article-title: Modeling sky luminance using satellite data to classify sky conditions
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2007.12.009
– volume: 86
  start-page: 2507
  year: 2009
  ident: 10.1016/j.apenergy.2010.09.004_b0020
  article-title: A model for estimation of daylight factor for skylight: an experimental validation using pyramid shape skylight over vault roof mud-house in New Delhi (India)
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.03.004
– volume: 49
  start-page: 1999
  year: 2008
  ident: 10.1016/j.apenergy.2010.09.004_b0190
  article-title: An accuracy assessment of an empirical sine model, a novel sine model and an artificial neural network model for forecasting illuminance/irradiance on horizontal plane of all sky types at Mahasarakham, Thailand
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.02.014
– volume: 36
  start-page: 3833
  year: 2008
  ident: 10.1016/j.apenergy.2010.09.004_b0150
  article-title: Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.06.030
– volume: 86
  start-page: 554
  year: 2009
  ident: 10.1016/j.apenergy.2010.09.004_b0165
  article-title: Assessment of diffuse solar energy under general sky condition using artificial neural network
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.09.004
– volume: 44
  start-page: 2519
  year: 2003
  ident: 10.1016/j.apenergy.2010.09.004_b0140
  article-title: Solar resource estimation using artificial neural networks and comparison with other correlation models
  publication-title: Energy Convers Manage
  doi: 10.1016/S0196-8904(03)00009-8
– volume: 43
  start-page: 3
  year: 2000
  ident: 10.1016/j.apenergy.2010.09.004_b0200
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: J Microbiol Methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 36
  start-page: 271
  year: 2004
  ident: 10.1016/j.apenergy.2010.09.004_b0100
  article-title: Analysing sly luminance scans to obtain frequency distributions of CIE standard general skies
  publication-title: Light Res Technol
  doi: 10.1191/1477153504li117oa
– ident: 10.1016/j.apenergy.2010.09.004_b0055
– volume: 30
  start-page: 697
  issue: 20
  year: 1929
  ident: 10.1016/j.apenergy.2010.09.004_b0030
  article-title: Uber die Helligkeitsverteilung am Himmel
  publication-title: Phys Zeitschr
– ident: 10.1016/j.apenergy.2010.09.004_b0070
– volume: 30
  start-page: 1667
  issue: 9
  year: 2005
  ident: 10.1016/j.apenergy.2010.09.004_b0105
  article-title: Sky type classification in Central England during winter
  publication-title: Energy
  doi: 10.1016/j.energy.2004.05.002
– volume: 13
  start-page: 192
  issue: 4
  year: 1981
  ident: 10.1016/j.apenergy.2010.09.004_b0045
  article-title: The luminance distribution of an average sky
  publication-title: Light Res Technol
  doi: 10.1177/096032718101300402
– volume: 37
  start-page: 707
  year: 1942
  ident: 10.1016/j.apenergy.2010.09.004_b0040
  article-title: Illumination from a non-uniform sky
  publication-title: Illum Eng
SSID ssj0002120
Score 2.1042278
Snippet An artificial neural network (ANN) model for estimating sky luminance was developed. A 3-year period (2007–2009) of sky luminance data obtained from...
An artificial neural network (ANN) model for estimating sky luminance was developed. A 3-year period (2007-2009) of sky luminance data obtained from...
SourceID proquest
repec
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 840
SubjectTerms algorithms
Artificial neural network
Artificial neural networks
Back propagation algorithms
CIE model
cloud cover
Daylight
Earth atmosphere
Earth, ocean, space
Estimating
Exact sciences and technology
External geophysics
Learning theory
lighting
Mathematical models
Meteorology
Modeling
Neural networks
Radiative transfer. Solar radiation
Sky
Sky luminance
Sky luminance Daylight Modeling Artificial neural network The tropics CIE model
Thailand
The tropics
Tropics
Title Estimation of sky luminance in the tropics using artificial neural networks: Modeling and performance comparison with the CIE model
URI https://dx.doi.org/10.1016/j.apenergy.2010.09.004
http://econpapers.repec.org/article/eeeappene/v_3a88_3ay_3a2011_3ai_3a3_3ap_3a840-847.htm
https://www.proquest.com/docview/1663623634
https://www.proquest.com/docview/1777130299
https://www.proquest.com/docview/855719050
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbSZGmHok0bRH0YLNBVsSRSr26B68Bu0CypgWwEKZ9SpakkWEqBLF36x3tHSX4MaYYOtGDzKNB3x-Mn6h6MfQQfgmQpfNeXIFwZxuAmGo2hERK7YpmlPsUOf72IZgv55Sq82mOTIRaG3Cp729_ZdGut-1_GPTfHdVGMLwntEv73bVKVhALNpYypisHJ742bR9CnZkRil6i3ooRvTnQNNsKud_Gi1JXyoQ3qSa4r8pzUDTIv76pe7MDSgxXUkG3tTmcv2PMeVvLTbuYv2R6Uh-zZVrLBQ3Y03cS0IWm_qJtX7M8Ul3kXwcirnDc_7jlaLJuJA3hRcoSIvF1VdZE1nNzkrzkxqMs8wSkfpr1Yb_LmE6fiareWqFzyehOWwLN1xUNOh7_2tpP5lNtaPK_Z4mz6bTJz-9oMboartnUjnQrfiNQYH0KRGe0DNoFg0ngCcNeLEEeYHAIDQZpjHz7ZITTSSZjFRupMHLH9sirhmPE8NRJBg4lzLWS6zBNEHBI0GgtPL_0cHBYOAlFZn7ic6mfcqsFD7UYNglQkSOWlCgXpsPF6XN2l7nh0RDrIW-0oocL95dGxx6ggSl8jI9XiMqCTJMJzURA7bLSjNevZIFzC5_MgctiHQY0Urm56ZaNLqO4a5SMgRIAaCfkPmjiO6fVzmjqMP0CThGGM0C_0HDaxarqeAwDomv6P-qVQPAl-3GMjXIiXApvAVlOf9BRiGfW9_fnmPxj1lj3tzuXJj-8d229Xd_AegV1rRnbljtjB6fx8doHfPp_P_wIj50-6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED7kMbQdijZtEPWRskBXxZZIvboVhgOnTbIkBrIRpHxKnaayYDkFsnTpH-8dJfkxpBk60ALMo0HfHY8fqXsAfMIAw3QiAz9QKH0VJeinhoyhlYq6EpVnAccOn53Ho7H6ehVdbcGgi4Vht8rW9jc23Vnr9ptey81eNZ32LhjtMv4PXFKVNNqGXRWFCZ_Ajn6v_DzCNjcjUftMvhYmfHNkKnQhdq2PF-euVA_tUNuFmbHrpKmJe0VT9mIDl-7OscJ8bXs6fgHPW1wpvjRTfwlbWO7Bs7Vsg3uwP1wFtRFpu6rrV_BnSOu8CWEUs0LUP-4FmSyXigPFtBSEEcViPqumeS3YT_5aMIea1BOCE2K6h3Mnrz8Lrq5264jKiahWcQkiX5Y8FHz76352cDIUrhjPaxgfDy8HI78tzuDntGwXfmwyGViZWRtgJHNrAqQmCU3avkTa9mICErbA0GKYFdRHRzvCRiaN8sQqk8t92ClnJR6AKDKrCDXYpDBSZZMiJcih0JC16JtJUKAHUScQnbeZy7mAxq3uXNRudCdIzYLU_UyTID3oLcdVTe6OR0dknbz1hhZq2mAeHXtACqLNNTFSjy9CvkpiQBeHiQeHG1qznA3hJTqgh7EHHzs10rS8-Z2NKXF2V-uAECEh1Fiqf9AkScLvn7PMA_EATRpFCWG_qO_BwKnpcg6IaCr-P_qXJvGk9HFPjYEhPabUJLWK-1RfE5jR3xc_3_wHoz7Ak9Hl2ak-PTn_9haeNpf07NT3DnYW8zt8TyhvYQ_dKv4LlhpQVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+sky+luminance+in+the+tropics+using+artificial+neural+networks%3A+Modeling+and+performance+comparison+with+the+CIE+model&rft.jtitle=Applied+energy&rft.au=Janjai%2C+Serm&rft.au=Plaon%2C+Piyanuch&rft.date=2011-03-01&rft.issn=0306-2619&rft.volume=88&rft.issue=3+p.840-847&rft.spage=840&rft.epage=847&rft_id=info:doi/10.1016%2Fj.apenergy.2010.09.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon