A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia

Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 12; p. 641066
Main Authors Zheng, Jianwei, Fu, Guohua, Abudayyeh, Islam, Yacoub, Magdi, Chang, Anthony, Feaster, William W., Ehwerhemuepha, Louis, El-Askary, Hesham, Du, Xianfeng, He, Bin, Feng, Mingjun, Yu, Yibo, Wang, Binhao, Liu, Jing, Yao, Hai, Chu, Huimin, Rakovski, Cyril
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 25.02.2021
Subjects
Online AccessGet full text
ISSN1664-042X
1664-042X
DOI10.3389/fphys.2021.641066

Cover

Abstract Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model. We randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold. The proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44-99.99), weighted F1-score of 98.46 (90-100), AUC of 98.99 (96.89-100), sensitivity (SE) of 96.97 (82.54-99.89), and specificity (SP) of 100 (62.97-100). The proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies.
AbstractList Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model. We randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold. The proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44-99.99), weighted F1-score of 98.46 (90-100), AUC of 98.99 (96.89-100), sensitivity (SE) of 96.97 (82.54-99.89), and specificity (SP) of 100 (62.97-100). The proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies.
Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model.INTRODUCTIONMultiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model.We randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted via our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold.METHODSWe randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted via our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold.The proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44-99.99), weighted F1-score of 98.46 (90-100), AUC of 98.99 (96.89-100), sensitivity (SE) of 96.97 (82.54-99.89), and specificity (SP) of 100 (62.97-100).RESULTSThe proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44-99.99), weighted F1-score of 98.46 (90-100), AUC of 98.99 (96.89-100), sensitivity (SE) of 96.97 (82.54-99.89), and specificity (SP) of 100 (62.97-100).The proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies.CONCLUSIONSThe proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies.
IntroductionMultiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model.MethodsWe randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted via our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold.ResultsThe proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44–99.99), weighted F1-score of 98.46 (90–100), AUC of 98.99 (96.89–100), sensitivity (SE) of 96.97 (82.54–99.89), and specificity (SP) of 100 (62.97–100).ConclusionsThe proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies.
Author Zheng, Jianwei
He, Bin
Liu, Jing
El-Askary, Hesham
Du, Xianfeng
Chu, Huimin
Feng, Mingjun
Rakovski, Cyril
Yu, Yibo
Feaster, William W.
Abudayyeh, Islam
Wang, Binhao
Yacoub, Magdi
Fu, Guohua
Ehwerhemuepha, Louis
Chang, Anthony
Yao, Hai
AuthorAffiliation 4 Harefield Heart Science Center, Imperial College London , London , United Kingdom
7 Zhejiang Cachet Jetboom Medical Devices Co., Ltd. , Hangzhou , China
1 Computational and Data Science, Chapman University , Orange, CA , United States
3 Department of Cardiology, Loma Linda University , Loma Linda, CA , United States
6 Department of Environmental Sciences, Faculty of Science, Alexandria University , Alexandria , Egypt
2 Department of Cardiology, Ningbo First Hospital of Zhejiang University , Hangzhou , China
5 CHOC Children’s Hospital , Orange, CA , United States
AuthorAffiliation_xml – name: 2 Department of Cardiology, Ningbo First Hospital of Zhejiang University , Hangzhou , China
– name: 3 Department of Cardiology, Loma Linda University , Loma Linda, CA , United States
– name: 7 Zhejiang Cachet Jetboom Medical Devices Co., Ltd. , Hangzhou , China
– name: 6 Department of Environmental Sciences, Faculty of Science, Alexandria University , Alexandria , Egypt
– name: 4 Harefield Heart Science Center, Imperial College London , London , United Kingdom
– name: 5 CHOC Children’s Hospital , Orange, CA , United States
– name: 1 Computational and Data Science, Chapman University , Orange, CA , United States
Author_xml – sequence: 1
  givenname: Jianwei
  surname: Zheng
  fullname: Zheng, Jianwei
– sequence: 2
  givenname: Guohua
  surname: Fu
  fullname: Fu, Guohua
– sequence: 3
  givenname: Islam
  surname: Abudayyeh
  fullname: Abudayyeh, Islam
– sequence: 4
  givenname: Magdi
  surname: Yacoub
  fullname: Yacoub, Magdi
– sequence: 5
  givenname: Anthony
  surname: Chang
  fullname: Chang, Anthony
– sequence: 6
  givenname: William W.
  surname: Feaster
  fullname: Feaster, William W.
– sequence: 7
  givenname: Louis
  surname: Ehwerhemuepha
  fullname: Ehwerhemuepha, Louis
– sequence: 8
  givenname: Hesham
  surname: El-Askary
  fullname: El-Askary, Hesham
– sequence: 9
  givenname: Xianfeng
  surname: Du
  fullname: Du, Xianfeng
– sequence: 10
  givenname: Bin
  surname: He
  fullname: He, Bin
– sequence: 11
  givenname: Mingjun
  surname: Feng
  fullname: Feng, Mingjun
– sequence: 12
  givenname: Yibo
  surname: Yu
  fullname: Yu, Yibo
– sequence: 13
  givenname: Binhao
  surname: Wang
  fullname: Wang, Binhao
– sequence: 14
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
– sequence: 15
  givenname: Hai
  surname: Yao
  fullname: Yao, Hai
– sequence: 16
  givenname: Huimin
  surname: Chu
  fullname: Chu, Huimin
– sequence: 17
  givenname: Cyril
  surname: Rakovski
  fullname: Rakovski, Cyril
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33716788$$D View this record in MEDLINE/PubMed
BookMark eNqNklFvUyEUx2_MjJtzH8AXw6MvrcClcO-LSdOoW1IzY6rxjRy40LJQqMB16beXrnPZfDDyAjnn_H_nwJ-XzUmIwTTNa4Knbdv17-xus89TiimZckYw58-aM8I5m2BGf5w8Op82Fznf4LoYphiTF81p2wrCRdedNX6OLt16M_mSjHbZxYA-g964YNDSQAourNHcr2NyZbNFJaKFh5yd3de0LQjCgL5WeUHXY7E-3qJVAl3QdxNKcnr0kNCq8vYa0uDgVfPcgs_m4n4_b759_LBaXE6W15-uFvPlRM9aUiZc4B7PWqyBE0UUNzNLKO0ZttQKAVhRpTgYAkAw00NHNWsV7ltGKVY9Z-15c3XkDhFu5C65LaS9jODkXSCmtYRUnPZGCqOE4GAt6QyzlHRDpxhnSgwVaayuLHpkjWEH-1vw_gFIsDw4Ie-ckAcn5NGJKnp_FO1GtTWDPjwH-CeTPM0Et5Hr-EuKngnKDoC394AUf44mF7l1WRvvIZg41mYzTFhHOiJq6ZvHvR6a_PG4FpBjgU4x52Tsf11A_KXRrkCp_6OO6_w_lL8B7E7PFg
CitedBy_id crossref_primary_10_1159_000529670
crossref_primary_10_3390_jpm12050764
crossref_primary_10_3389_fcvm_2022_868634
crossref_primary_10_1002_joa3_13096
crossref_primary_10_3390_bios14100513
crossref_primary_10_1093_europace_euae240
crossref_primary_10_1016_j_jacep_2023_05_025
crossref_primary_10_1109_ACCESS_2022_3185615
crossref_primary_10_1109_TBME_2022_3193906
crossref_primary_10_1016_j_cpcardiol_2023_102097
crossref_primary_10_1253_circj_CJ_22_0065
crossref_primary_10_1016_j_artmed_2024_102809
crossref_primary_10_1186_s12874_024_02421_0
crossref_primary_10_1111_pace_15089
crossref_primary_10_3390_diagnostics13193094
crossref_primary_10_1016_j_ibmed_2023_100089
crossref_primary_10_3389_fcvm_2022_809027
crossref_primary_10_3389_fphys_2022_909372
crossref_primary_10_1111_pace_14995
Cites_doi 10.1186/1475-925X-5-11
10.1080/01621459.1995.10476626
10.1016/j.hlc.2018.08.025
10.1111/j.1540-8167.2005.50163.x
10.1016/j.jacep.2015.04.005
10.1016/j.hrthm.2015.04.004
10.1161/01.cir.98.15.1525
10.1093/europace/eut355
10.1038/s41597-020-0440-8
10.1111/j.1540-8159.2000.tb07055.x
10.1016/j.jacc.2004.10.037
10.1093/europace/euz132
10.2307/2531595
10.1161/CIRCEP.118.006243
10.1007/s10840-019-00612-0
10.1093/europace/eup231
10.1016/j.hrthm.2019.04.002
10.1111/jce.12392
10.1046/j.1540-8167.2003.03211.x
10.1016/j.ijcard.2012.12.013
10.1016/j.jacc.2011.01.035
10.1214/aos/1176345632
10.1016/S0735-1097(01)01767-3
10.1111/j.1540-8167.2009.01462.x
10.1111/jce.13747
10.1111/jce.14152
10.1016/j.hrthm.2010.11.023
10.1111/jce.13493
10.1049/htl.2014.0073
10.1016/j.jacc.2015.04.062
10.1111/j.1540-8167.2006.00577.x
ContentType Journal Article
Copyright Copyright © 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski.
Copyright © 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski. 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski
Copyright_xml – notice: Copyright © 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski.
– notice: Copyright © 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski. 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fphys.2021.641066
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1664-042X
ExternalDocumentID oai_doaj_org_article_7eb776aff18e4f218d8b464b7d3b0efc
10.3389/fphys.2021.641066
PMC7947246
33716788
10_3389_fphys_2021_641066
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
ACXDI
IPNFZ
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c531t-67090530ca61b1b6e5f122940f2f77a0b2bb6ae1aa104cd82c43b0934220b9643
IEDL.DBID M48
ISSN 1664-042X
IngestDate Fri Oct 03 12:46:18 EDT 2025
Sun Oct 26 03:18:25 EDT 2025
Thu Aug 21 13:56:18 EDT 2025
Fri Sep 05 07:14:38 EDT 2025
Mon Jul 21 05:17:52 EDT 2025
Wed Oct 01 03:24:41 EDT 2025
Thu Apr 24 22:58:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords outflow tract ventricular tachycardia
catheter ablation
classification
artificial intelligence algorithm
electrocardiography
Language English
License Copyright © 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-67090530ca61b1b6e5f122940f2f77a0b2bb6ae1aa104cd82c43b0934220b9643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Xiaopeng Zhao, The University of Tennessee, Knoxville, United States
This article was submitted to Cardiac Electrophysiology, a section of the journal Frontiers in Physiology
These authors have contributed equally to this work
Reviewed by: Peter Van Dam, Radboud University Nijmegen, Netherlands; Marianna Meo, Institut de Rythmologie et Modélisation Cardiaque (IHU-Liryc), France
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2021.641066
PMID 33716788
PQID 2501481817
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7eb776aff18e4f218d8b464b7d3b0efc
unpaywall_primary_10_3389_fphys_2021_641066
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7947246
proquest_miscellaneous_2501481817
pubmed_primary_33716788
crossref_primary_10_3389_fphys_2021_641066
crossref_citationtrail_10_3389_fphys_2021_641066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-25
PublicationDateYYYYMMDD 2021-02-25
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-25
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physiology
PublicationTitleAlternate Front Physiol
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Ito (B17) 2003; 14
Joshi (B18) 2005; 16
Lahmiri (B20) 2014; 1
Xie (B27) 2018; 29
Betensky (B2) 2011; 57
Abi-Abdallah (B1) 2006; 5
He (B16) 2018; 29
Cheng (B4) 2018; 11
Bunch (B3) 2006; 17
Stein (B25) 1981; 9
Yamada (B28) 2019; 30
Enriquez (B12) 2019; 16
Nakano (B23) 2014; 16
Yoshida (B29) 2011; 8
Yoshida (B30) 2014; 25
DeLong (B8) 1988; 44
Hachiya (B13) 2000; 23
Zheng (B32) 2020; 7
Haqqani (B14) 2019; 28
Latchamsetty (B21) 2015; 1
Ouyang (B24) 2002; 39
Cronin (B6) 2019; 21
Dukes (B10) 2015; 66
Tanner (B26) 2005; 45
Zhang (B31) 2009; 11
Di (B9) 2019; 56
Cheng (B5) 2013; 168
Efimova (B11) 2015; 12
Lundberg (B22) 2017
Haqqani (B15) 2009; 20
David (B7) 1995; 90
Kamakura (B19) 1998; 98
References_xml – volume: 5
  year: 2006
  ident: B1
  article-title: Reference signal extraction from corrupted ECG using wavelet decomposition for MRI sequence triggering: application to small animals.
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-5-11
– volume: 90
  start-page: 1200
  year: 1995
  ident: B7
  article-title: Adapting to unknown smoothness via wavelet shrinkage.
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476626
– volume: 28
  start-page: 39
  year: 2019
  ident: B14
  article-title: The surface electrocardiograph in ventricular arrhythmias: lessons in localisation.
  publication-title: Heart Lung Circ.
  doi: 10.1016/j.hlc.2018.08.025
– volume: 16
  start-page: S52
  year: 2005
  ident: B18
  article-title: Ablation of idiopathic right ventricular outflow tract tachycardia: current perspectives.
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/j.1540-8167.2005.50163.x
– volume: 1
  start-page: 116
  year: 2015
  ident: B21
  article-title: Multicenter outcomes for catheter ablation of idiopathic premature ventricular complexes.
  publication-title: JACC Clin. Electrophysiol.
  doi: 10.1016/j.jacep.2015.04.005
– volume: 12
  start-page: 1534
  year: 2015
  ident: B11
  article-title: Differentiating the origin of outflow tract ventricular arrhythmia using a simple, novel approach.
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2015.04.004
– volume: 98
  start-page: 1525
  year: 1998
  ident: B19
  article-title: Localization of optimal ablation site of idiopathic ventricular tachycardia from right and left ventricular outflow tract by body surface ECG.
  publication-title: Circulation
  doi: 10.1161/01.cir.98.15.1525
– volume: 16
  start-page: 1373
  year: 2014
  ident: B23
  article-title: Estimation of the origin of ventricular outflow tract arrhythmia using synthesized right-sided chest leads.
  publication-title: Europace
  doi: 10.1093/europace/eut355
– volume: 7
  year: 2020
  ident: B32
  article-title: A 12-Lead ECG database to identify origins of idiopathic ventricular arrhythmia containing 334 patients.
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0440-8
– volume: 23
  start-page: 1930
  year: 2000
  ident: B13
  article-title: Electrocardiographic characteristics of left ventricular outflow tract tachycardia.
  publication-title: Pacing Clin. Electrophysiol.
  doi: 10.1111/j.1540-8159.2000.tb07055.x
– volume: 45
  start-page: 418
  year: 2005
  ident: B26
  article-title: Outflow tract tachycardia with R/S transition in lead V3: six different anatomic approaches for successful ablation.
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2004.10.037
– volume: 21
  start-page: 1143
  year: 2019
  ident: B6
  article-title: HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias.
  publication-title: Europace
  doi: 10.1093/europace/euz132
– volume: 44
  start-page: 837
  year: 1988
  ident: B8
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach.
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 11
  year: 2018
  ident: B4
  article-title: V3R/V7 index: a novel electrocardiographic criterion for differentiating left from right ventricular outflow tract arrhythmias origins.
  publication-title: Circ. Arrhythm. Electrophysiol.
  doi: 10.1161/CIRCEP.118.006243
– volume: 56
  start-page: 37
  year: 2019
  ident: B9
  article-title: The V1-V3 transition index as a novel electrocardiographic criterion for differentiating left from right ventricular outflow tract ventricular arrhythmias.
  publication-title: J. Interv. Card. Electrophysiol.
  doi: 10.1007/s10840-019-00612-0
– volume: 11
  start-page: 1214
  year: 2009
  ident: B31
  article-title: Electrocardiographic algorithm to identify the optimal target ablation site for idiopathic right ventricular outflow tract ventricular premature contraction.
  publication-title: Europace
  doi: 10.1093/europace/eup231
– volume: 16
  start-page: 1538
  year: 2019
  ident: B12
  article-title: How to use the 12-lead ECG to predict the site of origin of idiopathic ventricular arrhythmias.
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2019.04.002
– volume: 25
  start-page: 747
  year: 2014
  ident: B30
  article-title: A novel electrocardiographic criterion for differentiating a left from right ventricular outflow tract tachycardia origin: the V2S/V3R index.
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/jce.12392
– volume: 14
  start-page: 1280
  year: 2003
  ident: B17
  article-title: Development and validation of an ECG algorithm for identifying the optimal ablation site for idiopathic ventricular outflow tract tachycardia.
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1046/j.1540-8167.2003.03211.x
– year: 2017
  ident: B22
  article-title: A unified approach to interpreting model predictions.
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems.
– volume: 168
  start-page: 1342
  year: 2013
  ident: B5
  article-title: The R-wave deflection interval in lead V3 combining with R-wave amplitude index in lead V1: a new surface ECG algorithm for distinguishing left from right ventricular outflow tract tachycardia origin in patients with transitional lead at V3.
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2012.12.013
– volume: 57
  start-page: 2255
  year: 2011
  ident: B2
  article-title: The V(2) transition ratio: a new electrocardiographic criterion for distinguishing left from right ventricular outflow tract tachycardia origin.
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2011.01.035
– volume: 9
  start-page: 1135
  year: 1981
  ident: B25
  article-title: Estimation of the mean of a multivariate normal distribution.
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176345632
– volume: 39
  start-page: 500
  year: 2002
  ident: B24
  article-title: Repetitive monomorphic ventricular tachycardia originating from the aortic sinus cusp: electrocardiographic characterization for guiding catheter ablation.
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(01)01767-3
– volume: 20
  start-page: 825
  year: 2009
  ident: B15
  article-title: Using the 12-lead ECG to localize the origin of atrial and ventricular tachycardias: part 2–ventricular tachycardia.
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/j.1540-8167.2009.01462.x
– volume: 29
  start-page: 1515
  year: 2018
  ident: B27
  article-title: Lead I R-wave amplitude to differentiate idiopathic ventricular arrhythmias with left bundle branch block right inferior axis originating from the left versus right ventricular outflow tract.
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/jce.13747
– volume: 30
  start-page: 2603
  year: 2019
  ident: B28
  article-title: Twelve-lead electrocardiographic localization of idiopathic premature ventricular contraction origins.
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/jce.14152
– volume: 8
  start-page: 349
  year: 2011
  ident: B29
  article-title: Novel transitional zone index allows more accurate differentiation between idiopathic right ventricular outflow tract and aortic sinus cusp ventricular arrhythmias.
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2010.11.023
– volume: 29
  start-page: 908
  year: 2018
  ident: B16
  article-title: An electrocardiographic diagnostic model for differentiating left from right ventricular outflow tract tachycardia origin.
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/jce.13493
– volume: 1
  start-page: 104
  year: 2014
  ident: B20
  article-title: Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains.
  publication-title: Healthc Technol. Lett.
  doi: 10.1049/htl.2014.0073
– volume: 66
  start-page: 101
  year: 2015
  ident: B10
  article-title: Ventricular ectopy as a predictor of heart failure and death.
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2015.04.062
– volume: 17
  start-page: 1059
  year: 2006
  ident: B3
  article-title: Right meets left: a common mechanism underlying right and left ventricular outflow tract tachycardias.
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/j.1540-8167.2006.00577.x
SSID ssj0000402001
Score 2.402006
Snippet Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow...
IntroductionMultiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 641066
SubjectTerms artificial intelligence algorithm
catheter ablation
classification
electrocardiography
outflow tract ventricular tachycardia
Physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlPIItMhIiAMo1Ha8tnNcUKsKqYDQFvUW2Y7drpQm1Sqrav99Z5x0tSsqeuEa52F7Hp7PnnxDyAdvrbKi0DksTi6XoTTgB4XLJ2BYsXTM8oj7Hac_1MmZ_H4-Od8o9YU5YQM98DBxhzo4rZWNkZsgIyxItXFSSafrwrEQPXpfZsoNMJV8MMIixodjTEBh5WHEnQLAg4J_URJwkNpaiBJf_31B5t-5ko-X7bVd3dim2ViIjp-Rp2MESadDz3fJo9A-J3vTFtDz1Yp-pCmnM22W75FmSjGRI_-1GEvp0NOUPBnoyKt6QafNRbeY95dXtO9oKpE5jytojj21bU1_I3inP5d9bLobOsN_qugf7OQ8JbDSGbxv5ZOavSBnx0ezbyf5WF8h92B5fY7UbWCDzFvFHXcqTCIXopQsiqi1ZU44p2zg1gJm87URXsKcl4UUgjnk8XpJdtquDa8JLSKEJUIFzkova2uNjE4bEJ3nLhhpM8LuJrvyI_k41sBoKgAhKJ8qyadC-VSDfDLyaf3I9cC88a-bv6IE1zciaXa6AKpUjapUPaRKGXl_J_8KjAxPTmwbuiV8CU9fIbThOiOvBn1Yf6ooAHJqYzKitzRlqy_bLe38MhF5gy_UQkLnP6916uGhvvkfQ31LnuAr07_5k32y0y-W4QCiq969S4Z0CyH1JPA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4AXvsZH-JKREA-gdLHj2sljQUwT0saEWlSeItuxt4osrapEU_nruXPSaoUJhHhMYif2-S6-n33-HSGvrdZS81TFMDmZWLg8g_8gN_EIDMvnJtHM43rH8Yk8mopPs9HsylkYDKv0eHQfE0HP644puA8RQwsHRJUfeET9gO04G0oBmEYeLEt_k-zJEfjjA7I3PTkdf0OkJSVGWfBZt515fd2dCSnw9l_nbP4eM3mrrZd6famr6sqEdHiX2E1XujiU78O2MUP74xeWx__r6z1yp_dX6bircJ_ccPUDsj-uAatfrOkbGiJIw9L8PqnGFMNG4tNVn7iHHodQTUd7FtczOq7OFqt5c35BmwUNCTnnfg2PfUN1XdIvuFRAP7eNrxaXdIInuOhXFMU8hMvSCbxvbYNSPyTTw4-TD0dxn80htmDnTYxEcWDxidWSGWakG3nGeS4Sz71SOjHcGKkd0xoQoi0zbkVqkjwVnCcGWcMekUG9qN0TQlMPThCXjiW5FaXWmfBGZc4oy4zLhI5IshnSwvZU55hxoyoA8qBUiyDVAqVadFKNyNttlWXH8_Gnwu9RT7YFkaI73IARLPoRLBS0R0ntPcuc8OBJlZkRUhhVQrectxF5tdGyAkwa92l07RYtfAn3esGRYioijzut234qTQHgqiyLiNrRx5227D6p5-eBNhz-vIoLaPy7reb-vatP_6n0M3Ibr8KR_9FzMmhWrXsBTltjXvZW-RMiVEIr
  priority: 102
  providerName: Unpaywall
Title A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia
URI https://www.ncbi.nlm.nih.gov/pubmed/33716788
https://www.proquest.com/docview/2501481817
https://pubmed.ncbi.nlm.nih.gov/PMC7947246
https://www.frontiersin.org/articles/10.3389/fphys.2021.641066/pdf
https://doaj.org/article/7eb776aff18e4f218d8b464b7d3b0efc
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (PMC)
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1664-042X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000402001
  issn: 1664-042X
  databaseCode: M48
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELbGJsFeJmD86IDKSIgHULbYce3kAaGCmCakjgm1qDxFdmJ3lbJklFQj_z13TlqoKPCaOMkld-e7z77cR8iLTGupeaQCCE4mEDaJYR7kJhiAY7nEhJo5XO8Yncuzifg4HUx3yIreqvuA37dCO-STmiyK4x_fmrfg8G8QcUK8PXG4CABQj7NjKQDiyFtkDwJVgkwOoy7b9xMzYiVPiMykxPILPm33ObffZZ_cjiKAE8qzsvwKWr63_7aE9M-6yjvL8lo3N7oofgtap3fJQZdt0mFrHvfIji3vk8NhCUj7qqEvqa__9Avrh6QYUiz6CC4WHe0OHflCS0u7HqwzOixm1WJeX17RuqKeTnPuGjjtaqrLnH5GoE8_LWtXVDd0jP9f0S8o5NwXu9Ix3K_JvEk-IJPTD-P3Z0HHxRBk4KV1gG3ewF_DTEtmmJF24BjniQgdd0rp0HBjpLZMa8B3WR7zTEQmTCLBeWiw59dDsltWpX1MaOQgheHSsjDJRK51LJxRsTUqY8bGQvdIuPrYadY1Kke-jCIFwIKqSr2qUlRV2qqqR16tL7luu3T8a_A71OB6IDbY9geqxSzt_DVVII-S2jkWW-EgD8pjI6QwKofXsi7rkecr_afgkLjLoktbLeFJuFMLaRBTPfKotYf1o1b21CNqw1I2ZNk8U84vfdNvmDcVFyD867VN_f9Vj_4qwROyj-P8z_mDp2S3XiztM0ivatP3yxJ97zp9sjc5vxh-_QmnxCON
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4AXvsZH-JKREA-gdLHj2sljQUwT0saEWlSeItuxt4osrapEU_nruXPSaoUJhHhMYif2-S6-n33-HSGvrdZS81TFMDmZWLg8g_8gN_EIDMvnJtHM43rH8Yk8mopPs9HsylkYDKv0eHQfE0HP644puA8RQwsHRJUfeET9gO04G0oBmEYeLEt_k-zJEfjjA7I3PTkdf0OkJSVGWfBZt515fd2dCSnw9l_nbP4eM3mrrZd6famr6sqEdHiX2E1XujiU78O2MUP74xeWx__r6z1yp_dX6bircJ_ccPUDsj-uAatfrOkbGiJIw9L8PqnGFMNG4tNVn7iHHodQTUd7FtczOq7OFqt5c35BmwUNCTnnfg2PfUN1XdIvuFRAP7eNrxaXdIInuOhXFMU8hMvSCbxvbYNSPyTTw4-TD0dxn80htmDnTYxEcWDxidWSGWakG3nGeS4Sz71SOjHcGKkd0xoQoi0zbkVqkjwVnCcGWcMekUG9qN0TQlMPThCXjiW5FaXWmfBGZc4oy4zLhI5IshnSwvZU55hxoyoA8qBUiyDVAqVadFKNyNttlWXH8_Gnwu9RT7YFkaI73IARLPoRLBS0R0ntPcuc8OBJlZkRUhhVQrectxF5tdGyAkwa92l07RYtfAn3esGRYioijzut234qTQHgqiyLiNrRx5227D6p5-eBNhz-vIoLaPy7reb-vatP_6n0M3Ibr8KR_9FzMmhWrXsBTltjXvZW-RMiVEIr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+High-Precision+Machine+Learning+Algorithm+to+Classify+Left+and+Right+Outflow+Tract+Ventricular+Tachycardia&rft.jtitle=Frontiers+in+physiology&rft.au=Zheng%2C+Jianwei&rft.au=Fu%2C+Guohua&rft.au=Abudayyeh%2C+Islam&rft.au=Yacoub%2C+Magdi&rft.date=2021-02-25&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=12&rft.spage=641066&rft_id=info:doi/10.3389%2Ffphys.2021.641066&rft_id=info%3Apmid%2F33716788&rft.externalDocID=33716788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon