A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia
Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-...
Saved in:
| Published in | Frontiers in physiology Vol. 12; p. 641066 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Media S.A
25.02.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1664-042X 1664-042X |
| DOI | 10.3389/fphys.2021.641066 |
Cover
| Abstract | Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model.
We randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted
our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold.
The proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44-99.99), weighted F1-score of 98.46 (90-100), AUC of 98.99 (96.89-100), sensitivity (SE) of 96.97 (82.54-99.89), and specificity (SP) of 100 (62.97-100).
The proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies. |
|---|---|
| AbstractList | Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model.
We randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted
our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold.
The proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44-99.99), weighted F1-score of 98.46 (90-100), AUC of 98.99 (96.89-100), sensitivity (SE) of 96.97 (82.54-99.89), and specificity (SP) of 100 (62.97-100).
The proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies. Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model.INTRODUCTIONMultiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model.We randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted via our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold.METHODSWe randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted via our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold.The proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44-99.99), weighted F1-score of 98.46 (90-100), AUC of 98.99 (96.89-100), sensitivity (SE) of 96.97 (82.54-99.89), and specificity (SP) of 100 (62.97-100).RESULTSThe proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44-99.99), weighted F1-score of 98.46 (90-100), AUC of 98.99 (96.89-100), sensitivity (SE) of 96.97 (82.54-99.89), and specificity (SP) of 100 (62.97-100).The proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies.CONCLUSIONSThe proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies. IntroductionMultiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model.MethodsWe randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted via our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold.ResultsThe proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44–99.99), weighted F1-score of 98.46 (90–100), AUC of 98.99 (96.89–100), sensitivity (SE) of 96.97 (82.54–99.89), and specificity (SP) of 100 (62.97–100).ConclusionsThe proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies. |
| Author | Zheng, Jianwei He, Bin Liu, Jing El-Askary, Hesham Du, Xianfeng Chu, Huimin Feng, Mingjun Rakovski, Cyril Yu, Yibo Feaster, William W. Abudayyeh, Islam Wang, Binhao Yacoub, Magdi Fu, Guohua Ehwerhemuepha, Louis Chang, Anthony Yao, Hai |
| AuthorAffiliation | 4 Harefield Heart Science Center, Imperial College London , London , United Kingdom 7 Zhejiang Cachet Jetboom Medical Devices Co., Ltd. , Hangzhou , China 1 Computational and Data Science, Chapman University , Orange, CA , United States 3 Department of Cardiology, Loma Linda University , Loma Linda, CA , United States 6 Department of Environmental Sciences, Faculty of Science, Alexandria University , Alexandria , Egypt 2 Department of Cardiology, Ningbo First Hospital of Zhejiang University , Hangzhou , China 5 CHOC Children’s Hospital , Orange, CA , United States |
| AuthorAffiliation_xml | – name: 2 Department of Cardiology, Ningbo First Hospital of Zhejiang University , Hangzhou , China – name: 3 Department of Cardiology, Loma Linda University , Loma Linda, CA , United States – name: 7 Zhejiang Cachet Jetboom Medical Devices Co., Ltd. , Hangzhou , China – name: 6 Department of Environmental Sciences, Faculty of Science, Alexandria University , Alexandria , Egypt – name: 4 Harefield Heart Science Center, Imperial College London , London , United Kingdom – name: 5 CHOC Children’s Hospital , Orange, CA , United States – name: 1 Computational and Data Science, Chapman University , Orange, CA , United States |
| Author_xml | – sequence: 1 givenname: Jianwei surname: Zheng fullname: Zheng, Jianwei – sequence: 2 givenname: Guohua surname: Fu fullname: Fu, Guohua – sequence: 3 givenname: Islam surname: Abudayyeh fullname: Abudayyeh, Islam – sequence: 4 givenname: Magdi surname: Yacoub fullname: Yacoub, Magdi – sequence: 5 givenname: Anthony surname: Chang fullname: Chang, Anthony – sequence: 6 givenname: William W. surname: Feaster fullname: Feaster, William W. – sequence: 7 givenname: Louis surname: Ehwerhemuepha fullname: Ehwerhemuepha, Louis – sequence: 8 givenname: Hesham surname: El-Askary fullname: El-Askary, Hesham – sequence: 9 givenname: Xianfeng surname: Du fullname: Du, Xianfeng – sequence: 10 givenname: Bin surname: He fullname: He, Bin – sequence: 11 givenname: Mingjun surname: Feng fullname: Feng, Mingjun – sequence: 12 givenname: Yibo surname: Yu fullname: Yu, Yibo – sequence: 13 givenname: Binhao surname: Wang fullname: Wang, Binhao – sequence: 14 givenname: Jing surname: Liu fullname: Liu, Jing – sequence: 15 givenname: Hai surname: Yao fullname: Yao, Hai – sequence: 16 givenname: Huimin surname: Chu fullname: Chu, Huimin – sequence: 17 givenname: Cyril surname: Rakovski fullname: Rakovski, Cyril |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33716788$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNklFvUyEUx2_MjJtzH8AXw6MvrcClcO-LSdOoW1IzY6rxjRy40LJQqMB16beXrnPZfDDyAjnn_H_nwJ-XzUmIwTTNa4Knbdv17-xus89TiimZckYw58-aM8I5m2BGf5w8Op82Fznf4LoYphiTF81p2wrCRdedNX6OLt16M_mSjHbZxYA-g964YNDSQAourNHcr2NyZbNFJaKFh5yd3de0LQjCgL5WeUHXY7E-3qJVAl3QdxNKcnr0kNCq8vYa0uDgVfPcgs_m4n4_b759_LBaXE6W15-uFvPlRM9aUiZc4B7PWqyBE0UUNzNLKO0ZttQKAVhRpTgYAkAw00NHNWsV7ltGKVY9Z-15c3XkDhFu5C65LaS9jODkXSCmtYRUnPZGCqOE4GAt6QyzlHRDpxhnSgwVaayuLHpkjWEH-1vw_gFIsDw4Ie-ckAcn5NGJKnp_FO1GtTWDPjwH-CeTPM0Et5Hr-EuKngnKDoC394AUf44mF7l1WRvvIZg41mYzTFhHOiJq6ZvHvR6a_PG4FpBjgU4x52Tsf11A_KXRrkCp_6OO6_w_lL8B7E7PFg |
| CitedBy_id | crossref_primary_10_1159_000529670 crossref_primary_10_3390_jpm12050764 crossref_primary_10_3389_fcvm_2022_868634 crossref_primary_10_1002_joa3_13096 crossref_primary_10_3390_bios14100513 crossref_primary_10_1093_europace_euae240 crossref_primary_10_1016_j_jacep_2023_05_025 crossref_primary_10_1109_ACCESS_2022_3185615 crossref_primary_10_1109_TBME_2022_3193906 crossref_primary_10_1016_j_cpcardiol_2023_102097 crossref_primary_10_1253_circj_CJ_22_0065 crossref_primary_10_1016_j_artmed_2024_102809 crossref_primary_10_1186_s12874_024_02421_0 crossref_primary_10_1111_pace_15089 crossref_primary_10_3390_diagnostics13193094 crossref_primary_10_1016_j_ibmed_2023_100089 crossref_primary_10_3389_fcvm_2022_809027 crossref_primary_10_3389_fphys_2022_909372 crossref_primary_10_1111_pace_14995 |
| Cites_doi | 10.1186/1475-925X-5-11 10.1080/01621459.1995.10476626 10.1016/j.hlc.2018.08.025 10.1111/j.1540-8167.2005.50163.x 10.1016/j.jacep.2015.04.005 10.1016/j.hrthm.2015.04.004 10.1161/01.cir.98.15.1525 10.1093/europace/eut355 10.1038/s41597-020-0440-8 10.1111/j.1540-8159.2000.tb07055.x 10.1016/j.jacc.2004.10.037 10.1093/europace/euz132 10.2307/2531595 10.1161/CIRCEP.118.006243 10.1007/s10840-019-00612-0 10.1093/europace/eup231 10.1016/j.hrthm.2019.04.002 10.1111/jce.12392 10.1046/j.1540-8167.2003.03211.x 10.1016/j.ijcard.2012.12.013 10.1016/j.jacc.2011.01.035 10.1214/aos/1176345632 10.1016/S0735-1097(01)01767-3 10.1111/j.1540-8167.2009.01462.x 10.1111/jce.13747 10.1111/jce.14152 10.1016/j.hrthm.2010.11.023 10.1111/jce.13493 10.1049/htl.2014.0073 10.1016/j.jacc.2015.04.062 10.1111/j.1540-8167.2006.00577.x |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski. Copyright © 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski. 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski |
| Copyright_xml | – notice: Copyright © 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski. – notice: Copyright © 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski. 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski |
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fphys.2021.641066 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1664-042X |
| ExternalDocumentID | oai_doaj_org_article_7eb776aff18e4f218d8b464b7d3b0efc 10.3389/fphys.2021.641066 PMC7947246 33716788 10_3389_fphys_2021_641066 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM ACXDI IPNFZ NPM RIG 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c531t-67090530ca61b1b6e5f122940f2f77a0b2bb6ae1aa104cd82c43b0934220b9643 |
| IEDL.DBID | M48 |
| ISSN | 1664-042X |
| IngestDate | Fri Oct 03 12:46:18 EDT 2025 Sun Oct 26 03:18:25 EDT 2025 Thu Aug 21 13:56:18 EDT 2025 Fri Sep 05 07:14:38 EDT 2025 Mon Jul 21 05:17:52 EDT 2025 Wed Oct 01 03:24:41 EDT 2025 Thu Apr 24 22:58:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | outflow tract ventricular tachycardia catheter ablation classification artificial intelligence algorithm electrocardiography |
| Language | English |
| License | Copyright © 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c531t-67090530ca61b1b6e5f122940f2f77a0b2bb6ae1aa104cd82c43b0934220b9643 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Xiaopeng Zhao, The University of Tennessee, Knoxville, United States This article was submitted to Cardiac Electrophysiology, a section of the journal Frontiers in Physiology These authors have contributed equally to this work Reviewed by: Peter Van Dam, Radboud University Nijmegen, Netherlands; Marianna Meo, Institut de Rythmologie et Modélisation Cardiaque (IHU-Liryc), France |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2021.641066 |
| PMID | 33716788 |
| PQID | 2501481817 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7eb776aff18e4f218d8b464b7d3b0efc unpaywall_primary_10_3389_fphys_2021_641066 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7947246 proquest_miscellaneous_2501481817 pubmed_primary_33716788 crossref_primary_10_3389_fphys_2021_641066 crossref_citationtrail_10_3389_fphys_2021_641066 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-25 |
| PublicationDateYYYYMMDD | 2021-02-25 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in physiology |
| PublicationTitleAlternate | Front Physiol |
| PublicationYear | 2021 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Ito (B17) 2003; 14 Joshi (B18) 2005; 16 Lahmiri (B20) 2014; 1 Xie (B27) 2018; 29 Betensky (B2) 2011; 57 Abi-Abdallah (B1) 2006; 5 He (B16) 2018; 29 Cheng (B4) 2018; 11 Bunch (B3) 2006; 17 Stein (B25) 1981; 9 Yamada (B28) 2019; 30 Enriquez (B12) 2019; 16 Nakano (B23) 2014; 16 Yoshida (B29) 2011; 8 Yoshida (B30) 2014; 25 DeLong (B8) 1988; 44 Hachiya (B13) 2000; 23 Zheng (B32) 2020; 7 Haqqani (B14) 2019; 28 Latchamsetty (B21) 2015; 1 Ouyang (B24) 2002; 39 Cronin (B6) 2019; 21 Dukes (B10) 2015; 66 Tanner (B26) 2005; 45 Zhang (B31) 2009; 11 Di (B9) 2019; 56 Cheng (B5) 2013; 168 Efimova (B11) 2015; 12 Lundberg (B22) 2017 Haqqani (B15) 2009; 20 David (B7) 1995; 90 Kamakura (B19) 1998; 98 |
| References_xml | – volume: 5 year: 2006 ident: B1 article-title: Reference signal extraction from corrupted ECG using wavelet decomposition for MRI sequence triggering: application to small animals. publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-5-11 – volume: 90 start-page: 1200 year: 1995 ident: B7 article-title: Adapting to unknown smoothness via wavelet shrinkage. publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476626 – volume: 28 start-page: 39 year: 2019 ident: B14 article-title: The surface electrocardiograph in ventricular arrhythmias: lessons in localisation. publication-title: Heart Lung Circ. doi: 10.1016/j.hlc.2018.08.025 – volume: 16 start-page: S52 year: 2005 ident: B18 article-title: Ablation of idiopathic right ventricular outflow tract tachycardia: current perspectives. publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/j.1540-8167.2005.50163.x – volume: 1 start-page: 116 year: 2015 ident: B21 article-title: Multicenter outcomes for catheter ablation of idiopathic premature ventricular complexes. publication-title: JACC Clin. Electrophysiol. doi: 10.1016/j.jacep.2015.04.005 – volume: 12 start-page: 1534 year: 2015 ident: B11 article-title: Differentiating the origin of outflow tract ventricular arrhythmia using a simple, novel approach. publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2015.04.004 – volume: 98 start-page: 1525 year: 1998 ident: B19 article-title: Localization of optimal ablation site of idiopathic ventricular tachycardia from right and left ventricular outflow tract by body surface ECG. publication-title: Circulation doi: 10.1161/01.cir.98.15.1525 – volume: 16 start-page: 1373 year: 2014 ident: B23 article-title: Estimation of the origin of ventricular outflow tract arrhythmia using synthesized right-sided chest leads. publication-title: Europace doi: 10.1093/europace/eut355 – volume: 7 year: 2020 ident: B32 article-title: A 12-Lead ECG database to identify origins of idiopathic ventricular arrhythmia containing 334 patients. publication-title: Sci. Data doi: 10.1038/s41597-020-0440-8 – volume: 23 start-page: 1930 year: 2000 ident: B13 article-title: Electrocardiographic characteristics of left ventricular outflow tract tachycardia. publication-title: Pacing Clin. Electrophysiol. doi: 10.1111/j.1540-8159.2000.tb07055.x – volume: 45 start-page: 418 year: 2005 ident: B26 article-title: Outflow tract tachycardia with R/S transition in lead V3: six different anatomic approaches for successful ablation. publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2004.10.037 – volume: 21 start-page: 1143 year: 2019 ident: B6 article-title: HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. publication-title: Europace doi: 10.1093/europace/euz132 – volume: 44 start-page: 837 year: 1988 ident: B8 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. publication-title: Biometrics doi: 10.2307/2531595 – volume: 11 year: 2018 ident: B4 article-title: V3R/V7 index: a novel electrocardiographic criterion for differentiating left from right ventricular outflow tract arrhythmias origins. publication-title: Circ. Arrhythm. Electrophysiol. doi: 10.1161/CIRCEP.118.006243 – volume: 56 start-page: 37 year: 2019 ident: B9 article-title: The V1-V3 transition index as a novel electrocardiographic criterion for differentiating left from right ventricular outflow tract ventricular arrhythmias. publication-title: J. Interv. Card. Electrophysiol. doi: 10.1007/s10840-019-00612-0 – volume: 11 start-page: 1214 year: 2009 ident: B31 article-title: Electrocardiographic algorithm to identify the optimal target ablation site for idiopathic right ventricular outflow tract ventricular premature contraction. publication-title: Europace doi: 10.1093/europace/eup231 – volume: 16 start-page: 1538 year: 2019 ident: B12 article-title: How to use the 12-lead ECG to predict the site of origin of idiopathic ventricular arrhythmias. publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2019.04.002 – volume: 25 start-page: 747 year: 2014 ident: B30 article-title: A novel electrocardiographic criterion for differentiating a left from right ventricular outflow tract tachycardia origin: the V2S/V3R index. publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/jce.12392 – volume: 14 start-page: 1280 year: 2003 ident: B17 article-title: Development and validation of an ECG algorithm for identifying the optimal ablation site for idiopathic ventricular outflow tract tachycardia. publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1046/j.1540-8167.2003.03211.x – year: 2017 ident: B22 article-title: A unified approach to interpreting model predictions. publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems. – volume: 168 start-page: 1342 year: 2013 ident: B5 article-title: The R-wave deflection interval in lead V3 combining with R-wave amplitude index in lead V1: a new surface ECG algorithm for distinguishing left from right ventricular outflow tract tachycardia origin in patients with transitional lead at V3. publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2012.12.013 – volume: 57 start-page: 2255 year: 2011 ident: B2 article-title: The V(2) transition ratio: a new electrocardiographic criterion for distinguishing left from right ventricular outflow tract tachycardia origin. publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2011.01.035 – volume: 9 start-page: 1135 year: 1981 ident: B25 article-title: Estimation of the mean of a multivariate normal distribution. publication-title: Ann. Stat. doi: 10.1214/aos/1176345632 – volume: 39 start-page: 500 year: 2002 ident: B24 article-title: Repetitive monomorphic ventricular tachycardia originating from the aortic sinus cusp: electrocardiographic characterization for guiding catheter ablation. publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(01)01767-3 – volume: 20 start-page: 825 year: 2009 ident: B15 article-title: Using the 12-lead ECG to localize the origin of atrial and ventricular tachycardias: part 2–ventricular tachycardia. publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/j.1540-8167.2009.01462.x – volume: 29 start-page: 1515 year: 2018 ident: B27 article-title: Lead I R-wave amplitude to differentiate idiopathic ventricular arrhythmias with left bundle branch block right inferior axis originating from the left versus right ventricular outflow tract. publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/jce.13747 – volume: 30 start-page: 2603 year: 2019 ident: B28 article-title: Twelve-lead electrocardiographic localization of idiopathic premature ventricular contraction origins. publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/jce.14152 – volume: 8 start-page: 349 year: 2011 ident: B29 article-title: Novel transitional zone index allows more accurate differentiation between idiopathic right ventricular outflow tract and aortic sinus cusp ventricular arrhythmias. publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2010.11.023 – volume: 29 start-page: 908 year: 2018 ident: B16 article-title: An electrocardiographic diagnostic model for differentiating left from right ventricular outflow tract tachycardia origin. publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/jce.13493 – volume: 1 start-page: 104 year: 2014 ident: B20 article-title: Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. publication-title: Healthc Technol. Lett. doi: 10.1049/htl.2014.0073 – volume: 66 start-page: 101 year: 2015 ident: B10 article-title: Ventricular ectopy as a predictor of heart failure and death. publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2015.04.062 – volume: 17 start-page: 1059 year: 2006 ident: B3 article-title: Right meets left: a common mechanism underlying right and left ventricular outflow tract tachycardias. publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/j.1540-8167.2006.00577.x |
| SSID | ssj0000402001 |
| Score | 2.402006 |
| Snippet | Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow... IntroductionMultiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 641066 |
| SubjectTerms | artificial intelligence algorithm catheter ablation classification electrocardiography outflow tract ventricular tachycardia Physiology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlPIItMhIiAMo1Ha8tnNcUKsKqYDQFvUW2Y7drpQm1Sqrav99Z5x0tSsqeuEa52F7Hp7PnnxDyAdvrbKi0DksTi6XoTTgB4XLJ2BYsXTM8oj7Hac_1MmZ_H4-Od8o9YU5YQM98DBxhzo4rZWNkZsgIyxItXFSSafrwrEQPXpfZsoNMJV8MMIixodjTEBh5WHEnQLAg4J_URJwkNpaiBJf_31B5t-5ko-X7bVd3dim2ViIjp-Rp2MESadDz3fJo9A-J3vTFtDz1Yp-pCmnM22W75FmSjGRI_-1GEvp0NOUPBnoyKt6QafNRbeY95dXtO9oKpE5jytojj21bU1_I3inP5d9bLobOsN_qugf7OQ8JbDSGbxv5ZOavSBnx0ezbyf5WF8h92B5fY7UbWCDzFvFHXcqTCIXopQsiqi1ZU44p2zg1gJm87URXsKcl4UUgjnk8XpJdtquDa8JLSKEJUIFzkova2uNjE4bEJ3nLhhpM8LuJrvyI_k41sBoKgAhKJ8qyadC-VSDfDLyaf3I9cC88a-bv6IE1zciaXa6AKpUjapUPaRKGXl_J_8KjAxPTmwbuiV8CU9fIbThOiOvBn1Yf6ooAHJqYzKitzRlqy_bLe38MhF5gy_UQkLnP6916uGhvvkfQ31LnuAr07_5k32y0y-W4QCiq969S4Z0CyH1JPA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4AXvsZH-JKREA-gdLHj2sljQUwT0saEWlSeItuxt4osrapEU_nruXPSaoUJhHhMYif2-S6-n33-HSGvrdZS81TFMDmZWLg8g_8gN_EIDMvnJtHM43rH8Yk8mopPs9HsylkYDKv0eHQfE0HP644puA8RQwsHRJUfeET9gO04G0oBmEYeLEt_k-zJEfjjA7I3PTkdf0OkJSVGWfBZt515fd2dCSnw9l_nbP4eM3mrrZd6famr6sqEdHiX2E1XujiU78O2MUP74xeWx__r6z1yp_dX6bircJ_ccPUDsj-uAatfrOkbGiJIw9L8PqnGFMNG4tNVn7iHHodQTUd7FtczOq7OFqt5c35BmwUNCTnnfg2PfUN1XdIvuFRAP7eNrxaXdIInuOhXFMU8hMvSCbxvbYNSPyTTw4-TD0dxn80htmDnTYxEcWDxidWSGWakG3nGeS4Sz71SOjHcGKkd0xoQoi0zbkVqkjwVnCcGWcMekUG9qN0TQlMPThCXjiW5FaXWmfBGZc4oy4zLhI5IshnSwvZU55hxoyoA8qBUiyDVAqVadFKNyNttlWXH8_Gnwu9RT7YFkaI73IARLPoRLBS0R0ntPcuc8OBJlZkRUhhVQrectxF5tdGyAkwa92l07RYtfAn3esGRYioijzut234qTQHgqiyLiNrRx5227D6p5-eBNhz-vIoLaPy7reb-vatP_6n0M3Ibr8KR_9FzMmhWrXsBTltjXvZW-RMiVEIr priority: 102 providerName: Unpaywall |
| Title | A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33716788 https://www.proquest.com/docview/2501481817 https://pubmed.ncbi.nlm.nih.gov/PMC7947246 https://www.frontiersin.org/articles/10.3389/fphys.2021.641066/pdf https://doaj.org/article/7eb776aff18e4f218d8b464b7d3b0efc |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (PMC) customDbUrl: eissn: 1664-042X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1664-042X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000402001 issn: 1664-042X databaseCode: M48 dateStart: 20100601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELbGJsFeJmD86IDKSIgHULbYce3kAaGCmCakjgm1qDxFdmJ3lbJklFQj_z13TlqoKPCaOMkld-e7z77cR8iLTGupeaQCCE4mEDaJYR7kJhiAY7nEhJo5XO8Yncuzifg4HUx3yIreqvuA37dCO-STmiyK4x_fmrfg8G8QcUK8PXG4CABQj7NjKQDiyFtkDwJVgkwOoy7b9xMzYiVPiMykxPILPm33ObffZZ_cjiKAE8qzsvwKWr63_7aE9M-6yjvL8lo3N7oofgtap3fJQZdt0mFrHvfIji3vk8NhCUj7qqEvqa__9Avrh6QYUiz6CC4WHe0OHflCS0u7HqwzOixm1WJeX17RuqKeTnPuGjjtaqrLnH5GoE8_LWtXVDd0jP9f0S8o5NwXu9Ix3K_JvEk-IJPTD-P3Z0HHxRBk4KV1gG3ewF_DTEtmmJF24BjniQgdd0rp0HBjpLZMa8B3WR7zTEQmTCLBeWiw59dDsltWpX1MaOQgheHSsjDJRK51LJxRsTUqY8bGQvdIuPrYadY1Kke-jCIFwIKqSr2qUlRV2qqqR16tL7luu3T8a_A71OB6IDbY9geqxSzt_DVVII-S2jkWW-EgD8pjI6QwKofXsi7rkecr_afgkLjLoktbLeFJuFMLaRBTPfKotYf1o1b21CNqw1I2ZNk8U84vfdNvmDcVFyD867VN_f9Vj_4qwROyj-P8z_mDp2S3XiztM0ivatP3yxJ97zp9sjc5vxh-_QmnxCON |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4AXvsZH-JKREA-gdLHj2sljQUwT0saEWlSeItuxt4osrapEU_nruXPSaoUJhHhMYif2-S6-n33-HSGvrdZS81TFMDmZWLg8g_8gN_EIDMvnJtHM43rH8Yk8mopPs9HsylkYDKv0eHQfE0HP644puA8RQwsHRJUfeET9gO04G0oBmEYeLEt_k-zJEfjjA7I3PTkdf0OkJSVGWfBZt515fd2dCSnw9l_nbP4eM3mrrZd6famr6sqEdHiX2E1XujiU78O2MUP74xeWx__r6z1yp_dX6bircJ_ccPUDsj-uAatfrOkbGiJIw9L8PqnGFMNG4tNVn7iHHodQTUd7FtczOq7OFqt5c35BmwUNCTnnfg2PfUN1XdIvuFRAP7eNrxaXdIInuOhXFMU8hMvSCbxvbYNSPyTTw4-TD0dxn80htmDnTYxEcWDxidWSGWakG3nGeS4Sz71SOjHcGKkd0xoQoi0zbkVqkjwVnCcGWcMekUG9qN0TQlMPThCXjiW5FaXWmfBGZc4oy4zLhI5IshnSwvZU55hxoyoA8qBUiyDVAqVadFKNyNttlWXH8_Gnwu9RT7YFkaI73IARLPoRLBS0R0ntPcuc8OBJlZkRUhhVQrectxF5tdGyAkwa92l07RYtfAn3esGRYioijzut234qTQHgqiyLiNrRx5227D6p5-eBNhz-vIoLaPy7reb-vatP_6n0M3Ibr8KR_9FzMmhWrXsBTltjXvZW-RMiVEIr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+High-Precision+Machine+Learning+Algorithm+to+Classify+Left+and+Right+Outflow+Tract+Ventricular+Tachycardia&rft.jtitle=Frontiers+in+physiology&rft.au=Zheng%2C+Jianwei&rft.au=Fu%2C+Guohua&rft.au=Abudayyeh%2C+Islam&rft.au=Yacoub%2C+Magdi&rft.date=2021-02-25&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=12&rft.spage=641066&rft_id=info:doi/10.3389%2Ffphys.2021.641066&rft_id=info%3Apmid%2F33716788&rft.externalDocID=33716788 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |