3D measurements in conventional X-ray imaging with RGB-D sensors

•Method for deriving 3D internal information in ordinary X-ray settings is proposed.•The system is based on the combination of pairs of radiographs and depth information.•Depth and X-ray systems are 1st calibrated to find their joint spatial transformation.•We can resolve anatomical positions and le...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 42; pp. 73 - 79
Main Authors Albiol, Francisco, Corbi, Alberto, Albiol, Alberto
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2017
Subjects
Online AccessGet full text
ISSN1350-4533
1873-4030
1873-4030
DOI10.1016/j.medengphy.2017.01.024

Cover

Abstract •Method for deriving 3D internal information in ordinary X-ray settings is proposed.•The system is based on the combination of pairs of radiographs and depth information.•Depth and X-ray systems are 1st calibrated to find their joint spatial transformation.•We can resolve anatomical positions and lengths with a millimeter level of precision.•The solution reduces examinations invasiveness and dose levels by avoiding CT usage. A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient’ s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and X-ray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient’s body.
AbstractList A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient' s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and X-ray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient's body.A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient' s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and X-ray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient's body.
Highlights • Method for deriving 3D internal information in ordinary X-ray settings is proposed. • The system is based on the combination of pairs of radiographs and depth information. • Depth and X-ray systems are 1st calibrated to find their joint spatial transformation. • We can resolve anatomical positions and lengths with a millimeter level of precision. • The solution reduces examinations invasiveness and dose levels by avoiding CT usage.
•Method for deriving 3D internal information in ordinary X-ray settings is proposed.•The system is based on the combination of pairs of radiographs and depth information.•Depth and X-ray systems are 1st calibrated to find their joint spatial transformation.•We can resolve anatomical positions and lengths with a millimeter level of precision.•The solution reduces examinations invasiveness and dose levels by avoiding CT usage. A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient’ s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and X-ray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient’s body.
A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient' s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and X-ray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient's body.
Author Corbi, Alberto
Albiol, Alberto
Albiol, Francisco
Author_xml – sequence: 1
  givenname: Francisco
  surname: Albiol
  fullname: Albiol, Francisco
  organization: Instituto de Física Corpuscular, Universitat de València, Consejo Superior de Investigaciones Científicas, Spain
– sequence: 2
  givenname: Alberto
  orcidid: 0000-0002-7282-4557
  surname: Corbi
  fullname: Corbi, Alberto
  email: alberto.corbi@ific.uv.es
  organization: Instituto de Física Corpuscular, Universitat de València, Consejo Superior de Investigaciones Científicas, Spain
– sequence: 3
  givenname: Alberto
  surname: Albiol
  fullname: Albiol, Alberto
  organization: Instituto de Telecomunicaciones y Aplicaciones Multimedia (iTeam), Universitat Politècnica de València, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28223012$$D View this record in MEDLINE/PubMed
BookMark eNqVkklPHDEQhS1ExDLhL5A-5tJN2e5tDknYwiIhRYJE4mZ53DWDJ257sLtB_e_j1hAOSEjDySWr3qunr2qfbFtnkZAvFDIKtDxaZi02aBerhyFjQKsMaAYs3yJ7tK54mgOH7VjzAtK84HyX7IewBIA8L_kO2WU1Yxwo2yPH_DxpUYbeY4u2C4m2iXL2KdbaWWmS-9TLIdGtXGi7SJ5195DcXp6m50lAG5wPn8mnuTQBD17eCflz8fP32VV68-vy-uzkJlUFp13KZ7WaSoACq1I2FFRB5yVySUuG8Q9iLqRsWkDDWENnRVPxUiIAqoYBLys-IfXat7crOTxLY8TKx1h-EBTECEUsxSsUMUIRQEWEEqVf19KVd489hk60Oig0Rlp0fRARGUzruoqgJuTwpbWfRbPXEf-BxYZq3aC8C8Hj_AMpvr1RKt3JkXLnpTYb6E_WeoyUnzR6EZRGq7DRHlUnGqc38Pj-xkMZbbWS5i8OGJau93HnkYgITIC4Gw9ovB9acYhbuI8GP9432CjCP9Is16g
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2895925
crossref_primary_10_1109_ACCESS_2018_2886224
Cites_doi 10.5194/isprsarchives-XXXVIII-5-W12-133-2011
10.3390/s120201437
10.1007/s10278-012-9567-2
10.1016/j.medengphy.2013.12.018
10.1109/TMI.2016.2540929
10.1109/TVCG.2012.56
10.1016/j.medengphy.2014.04.001
10.1080/1025584031000065956
10.1016/j.patcog.2014.01.005
10.1109/34.121791
ContentType Journal Article
Copyright 2017 IPEM
IPEM
Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 IPEM
– notice: IPEM
– notice: Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.medengphy.2017.01.024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 79
ExternalDocumentID 10.1016/j.medengphy.2017.01.024
28223012
10_1016_j_medengphy_2017_01_024
S135045331730036X
1_s2_0_S135045331730036X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c531t-3b8c9a005e76ad10c51f6e3a162e5e70463e12950d22d1b5d736ae00ecd203673
IEDL.DBID .~1
ISSN 1350-4533
1873-4030
IngestDate Sun Oct 26 04:00:30 EDT 2025
Thu Oct 02 05:06:35 EDT 2025
Mon Jul 21 05:59:51 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Wed Oct 01 05:03:28 EDT 2025
Fri Feb 23 02:29:18 EST 2024
Tue Feb 25 20:06:44 EST 2025
Tue Oct 14 19:35:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dense surface mapping
3D reconstruction
X-ray
Depth cameras
Epipolar geometry
Movement tracking
Language English
License Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-3b8c9a005e76ad10c51f6e3a162e5e70463e12950d22d1b5d736ae00ecd203673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7282-4557
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S135045331730036X
PMID 28223012
PQID 1870988753
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1016_j_medengphy_2017_01_024
proquest_miscellaneous_1870988753
pubmed_primary_28223012
crossref_primary_10_1016_j_medengphy_2017_01_024
crossref_citationtrail_10_1016_j_medengphy_2017_01_024
elsevier_sciencedirect_doi_10_1016_j_medengphy_2017_01_024
elsevier_clinicalkeyesjournals_1_s2_0_S135045331730036X
elsevier_clinicalkey_doi_10_1016_j_medengphy_2017_01_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cook, Couch, Couch, Kim, Boonn (bib0007) 2013; 26
Bauer, Wasza, Haase, Marosi, Hornegger (bib0011) 2011
Schumann, Thelen, Ballestra, Nolte, Büchler, Zheng (bib0001) 2014; 36
Albiol, Corbi, Albiol (bib0013) 2016; 35
Dryden (bib0022) 1998
Aoki, Ono, Kamikawa, Kozono, Arimura, Toyofuku (bib0005) 2013
Meister, Izadi, Kohli, Hämmerle, Rother, Kondermann (bib0018) 2012; 2
Wheat, Choppin, Goyal (bib0010) 2014; 36
Garrido-Jurado, Muñoz Salinas, Madrid-Cuevas, Marín-Jiménez (bib0015) 2014; 47
Kozono (bib0008) 2013
Tong, Zhou, Liu, Pan, Yan (bib0017) 2012; 18
Caponetti, Fanelli (bib0002) 1990
Biswas, Basu (bib0019) 2011
Khoshelham (bib0004) 2012; 38
Hartley, Zisserman (bib0014) 2004
Tahavori, Alnowami, Jones, Elangovan, Donovan, Wells (bib0009) 2013
Noonan, Howard, Tout, Armstrong, Williams, Cootes (bib0012) 2012
Newcombe, Izadi, Hilliges, Molyneaux, Kim, Davison (bib0016) 2011
Laporte, Skalli, De Guise, Lavaste, Mitton (bib0023) 2003; 6
Badal, Zafar, Dong, Badano (bib0006) 2013; 8668
Schaub, Tsiotras, Junkins (bib0020) 1995; 33
Besl, McKay (bib0021) 1992; 14
Khoshelham, Elberink (bib0003) 2012; 12
Aoki (10.1016/j.medengphy.2017.01.024_bib0005) 2013
Besl (10.1016/j.medengphy.2017.01.024_bib0021) 1992; 14
Tong (10.1016/j.medengphy.2017.01.024_bib0017) 2012; 18
Khoshelham (10.1016/j.medengphy.2017.01.024_bib0003) 2012; 12
Biswas (10.1016/j.medengphy.2017.01.024_bib0019) 2011
Schumann (10.1016/j.medengphy.2017.01.024_bib0001) 2014; 36
Tahavori (10.1016/j.medengphy.2017.01.024_bib0009) 2013
Bauer (10.1016/j.medengphy.2017.01.024_bib0011) 2011
Badal (10.1016/j.medengphy.2017.01.024_bib0006) 2013; 8668
Hartley (10.1016/j.medengphy.2017.01.024_bib0014) 2004
Dryden (10.1016/j.medengphy.2017.01.024_bib0022) 1998
Cook (10.1016/j.medengphy.2017.01.024_bib0007) 2013; 26
Noonan (10.1016/j.medengphy.2017.01.024_bib0012) 2012
Meister (10.1016/j.medengphy.2017.01.024_bib0018) 2012; 2
Schaub (10.1016/j.medengphy.2017.01.024_bib0020) 1995; 33
Caponetti (10.1016/j.medengphy.2017.01.024_bib0002) 1990
Kozono (10.1016/j.medengphy.2017.01.024_bib0008) 2013
Wheat (10.1016/j.medengphy.2017.01.024_bib0010) 2014; 36
Khoshelham (10.1016/j.medengphy.2017.01.024_bib0004) 2012; 38
Garrido-Jurado (10.1016/j.medengphy.2017.01.024_bib0015) 2014; 47
Newcombe (10.1016/j.medengphy.2017.01.024_bib0016) 2011
Albiol (10.1016/j.medengphy.2017.01.024_bib0013) 2016; 35
Laporte (10.1016/j.medengphy.2017.01.024_bib0023) 2003; 6
References_xml – year: 2004
  ident: bib0014
  article-title: Multiple view geometry in computer vision
– year: 1998
  ident: bib0022
  article-title: Statistical shape analysis
– start-page: 1456
  year: 2013
  end-page: 1459
  ident: bib0005
  article-title: Development of a real-time patient monitoring system using Microsoft Kinect
  publication-title: Proceedings of the world congress on medical physics and biomedical engineering
– year: 2013
  ident: bib0008
  article-title: A study on a real-time X-ray entrance dose monitoring system in interventional radiology using Microsoft Kinect
  publication-title: Proceedings of the japan radiology congress
– start-page: 100
  year: 2011
  end-page: 103
  ident: bib0019
  article-title: Gesture recognition using microsoft kinect
  publication-title: Proceedings of the international conference on automation, robotics and applications
– volume: 36
  start-page: 968
  year: 2014
  end-page: 974
  ident: bib0001
  article-title: X-ray image calibration and its application to clinical orthopedics
  publication-title: Med Eng Phys
– start-page: 127
  year: 2011
  end-page: 136
  ident: bib0016
  article-title: KinectFusion: real-time dense surface mapping and tracking
  publication-title: Proceedings of the 10th IEEE international symposium on mixed and augmented reality
– start-page: 1175
  year: 2011
  end-page: 1181
  ident: bib0011
  article-title: Multi-modal surface registration for markerless initial patient setup in radiation therapy using Microsoft’s Kinect sensor
  publication-title: Proceedings of the IEEE international conference on computer vision workshops
– volume: 12
  start-page: 1437
  year: 2012
  end-page: 1454
  ident: bib0003
  article-title: Accuracy and resolution of Kinect depth data for indoor mapping applications
  publication-title: Sensors
– volume: 33
  start-page: 2277
  year: 1995
  end-page: 2295
  ident: bib0020
  article-title: Principal rotation representations of proper orthogonal matrices
  publication-title: Proceedings of the international journal of engineering science
– start-page: 208
  year: 1990
  end-page: 210
  ident: bib0002
  article-title: 3d bone reconstruction from two x-ray views
  publication-title: Proceedings of the twelfth annual international conference of the IEEE engineering in medicine and biology society
– start-page: 3973
  year: 2012
  end-page: 3974
  ident: bib0012
  article-title: Accurate markerless respiratory tracking for gated whole body PET using the microsoft kinect
  publication-title: Proceedings of the IEEE Nuclear science symposium and medical imaging conference
– volume: 8668
  year: 2013
  ident: bib0006
  article-title: A real-time radiation dose monitoring system for patients and staff during interventional fluoroscopy using a GPU-accelerated Monte Carlo simulator and an automatic 3D localization system based on a depth camera
  publication-title: Proceedings of the physics of medical imaging, SPIE
– volume: 26
  start-page: 657
  year: 2013
  end-page: 662
  ident: bib0007
  article-title: Using the Microsoft Kinect for patient size estimation and radiation dose normalization
  publication-title: J Dig Imag
– volume: 36
  start-page: 732
  year: 2014
  end-page: 738
  ident: bib0010
  article-title: Development and assessment of a Microsoft Kinect based system for imaging the breast in three dimensions
  publication-title: Med Eng Phys
– start-page: 1
  year: 2013
  end-page: 5
  ident: bib0009
  article-title: Assessment of Microsoft Kinect technology (Kinect for Xbox and Kinect for Windows) for patient monitoring during external beam radiotherapy
  publication-title: Proceedings of the nuclear science symposium and medical imaging conference
– volume: 6
  start-page: 1
  year: 2003
  end-page: 6
  ident: bib0023
  article-title: A biplanar reconstruction method based on 2d and 3d contours: application to the distal femur
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 47
  start-page: 2280
  year: 2014
  end-page: 2292
  ident: bib0015
  article-title: Automatic generation and detection of highly reliable fiducial markers under occlusion
  publication-title: Pattern Recog
– volume: 2
  year: 2012
  ident: bib0018
  article-title: When can we use KinectFusion for ground truth acquisition
  publication-title: Proceedings of the workshop on color-depth camera fusion in robotics.
– volume: 14
  start-page: 239
  year: 1992
  end-page: 256
  ident: bib0021
  article-title: Method for registration of 3-D shapes
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 38
  start-page: 133
  year: 2012
  end-page: 138
  ident: bib0004
  article-title: Accuracy analysis of kinect depth data
  publication-title: Int Arch Photogramm Remote Sens Sp Inf Sci
– volume: 18
  start-page: 643
  year: 2012
  end-page: 650
  ident: bib0017
  article-title: Scanning 3D full human bodies using Kinects
  publication-title: IEEE Trans Vis Comput Gr
– volume: 35
  start-page: 1952
  year: 2016
  end-page: 1961
  ident: bib0013
  article-title: Geometrical calibration of x-ray imaging with RGB cameras for 3d reconstruction
  publication-title: IEEE Trans Med Imaging
– year: 2004
  ident: 10.1016/j.medengphy.2017.01.024_bib0014
– start-page: 3973
  year: 2012
  ident: 10.1016/j.medengphy.2017.01.024_bib0012
  article-title: Accurate markerless respiratory tracking for gated whole body PET using the microsoft kinect
– start-page: 127
  year: 2011
  ident: 10.1016/j.medengphy.2017.01.024_bib0016
  article-title: KinectFusion: real-time dense surface mapping and tracking
– volume: 38
  start-page: 133
  year: 2012
  ident: 10.1016/j.medengphy.2017.01.024_bib0004
  article-title: Accuracy analysis of kinect depth data
  publication-title: Int Arch Photogramm Remote Sens Sp Inf Sci
  doi: 10.5194/isprsarchives-XXXVIII-5-W12-133-2011
– start-page: 1175
  year: 2011
  ident: 10.1016/j.medengphy.2017.01.024_bib0011
  article-title: Multi-modal surface registration for markerless initial patient setup in radiation therapy using Microsoft’s Kinect sensor
– volume: 2
  year: 2012
  ident: 10.1016/j.medengphy.2017.01.024_bib0018
  article-title: When can we use KinectFusion for ground truth acquisition
– start-page: 1
  year: 2013
  ident: 10.1016/j.medengphy.2017.01.024_bib0009
  article-title: Assessment of Microsoft Kinect technology (Kinect for Xbox and Kinect for Windows) for patient monitoring during external beam radiotherapy
– volume: 12
  start-page: 1437
  issue: 2
  year: 2012
  ident: 10.1016/j.medengphy.2017.01.024_bib0003
  article-title: Accuracy and resolution of Kinect depth data for indoor mapping applications
  publication-title: Sensors
  doi: 10.3390/s120201437
– volume: 8668
  year: 2013
  ident: 10.1016/j.medengphy.2017.01.024_bib0006
  article-title: A real-time radiation dose monitoring system for patients and staff during interventional fluoroscopy using a GPU-accelerated Monte Carlo simulator and an automatic 3D localization system based on a depth camera
– volume: 26
  start-page: 657
  issue: 4
  year: 2013
  ident: 10.1016/j.medengphy.2017.01.024_bib0007
  article-title: Using the Microsoft Kinect for patient size estimation and radiation dose normalization
  publication-title: J Dig Imag
  doi: 10.1007/s10278-012-9567-2
– volume: 36
  start-page: 732
  issue: 6
  year: 2014
  ident: 10.1016/j.medengphy.2017.01.024_bib0010
  article-title: Development and assessment of a Microsoft Kinect based system for imaging the breast in three dimensions
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2013.12.018
– year: 2013
  ident: 10.1016/j.medengphy.2017.01.024_bib0008
  article-title: A study on a real-time X-ray entrance dose monitoring system in interventional radiology using Microsoft Kinect
– start-page: 100
  year: 2011
  ident: 10.1016/j.medengphy.2017.01.024_bib0019
  article-title: Gesture recognition using microsoft kinect
– volume: 33
  start-page: 2277
  year: 1995
  ident: 10.1016/j.medengphy.2017.01.024_bib0020
  article-title: Principal rotation representations of proper orthogonal matrices
– volume: 35
  start-page: 1952
  year: 2016
  ident: 10.1016/j.medengphy.2017.01.024_bib0013
  article-title: Geometrical calibration of x-ray imaging with RGB cameras for 3d reconstruction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2540929
– volume: 18
  start-page: 643
  year: 2012
  ident: 10.1016/j.medengphy.2017.01.024_bib0017
  article-title: Scanning 3D full human bodies using Kinects
  publication-title: IEEE Trans Vis Comput Gr
  doi: 10.1109/TVCG.2012.56
– start-page: 1456
  year: 2013
  ident: 10.1016/j.medengphy.2017.01.024_bib0005
  article-title: Development of a real-time patient monitoring system using Microsoft Kinect
– volume: 36
  start-page: 968
  year: 2014
  ident: 10.1016/j.medengphy.2017.01.024_bib0001
  article-title: X-ray image calibration and its application to clinical orthopedics
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2014.04.001
– volume: 6
  start-page: 1
  year: 2003
  ident: 10.1016/j.medengphy.2017.01.024_bib0023
  article-title: A biplanar reconstruction method based on 2d and 3d contours: application to the distal femur
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/1025584031000065956
– volume: 47
  start-page: 2280
  issue: 6
  year: 2014
  ident: 10.1016/j.medengphy.2017.01.024_bib0015
  article-title: Automatic generation and detection of highly reliable fiducial markers under occlusion
  publication-title: Pattern Recog
  doi: 10.1016/j.patcog.2014.01.005
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  ident: 10.1016/j.medengphy.2017.01.024_bib0021
  article-title: Method for registration of 3-D shapes
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.121791
– start-page: 208
  year: 1990
  ident: 10.1016/j.medengphy.2017.01.024_bib0002
  article-title: 3d bone reconstruction from two x-ray views
– year: 1998
  ident: 10.1016/j.medengphy.2017.01.024_bib0022
SSID ssj0004463
Score 2.1785133
Snippet •Method for deriving 3D internal information in ordinary X-ray settings is proposed.•The system is based on the combination of pairs of radiographs and depth...
Highlights • Method for deriving 3D internal information in ordinary X-ray settings is proposed. • The system is based on the combination of pairs of...
A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 73
SubjectTerms 3D reconstruction
Dense surface mapping
Depth cameras
Epipolar geometry
Humans
Imaging, Three-Dimensional - instrumentation
Movement tracking
Phantoms, Imaging
Radiology
Tomography, X-Ray Computed - instrumentation
X-ray
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVKL0wCO8lpeMxNWNvY7XG06UlFIhtUJApHCybK8XBdJNlE2Eyq9nnH2QUlAruO1aHln2jGfG9jczAC9sptBI8pwOlPG0z62iJmGWqjhENsYh43eIRj4-SY5G_XdjOd6CYRMLE2CVte6vdPpaW9ctvXo1e_PJpPeRC4n-iEADKEJWlfE12E4kOuQd2B6dvN__vD5qSUZDn_CdKoGnJcHOobzQ5PjiC84ooLxUlcGz_zcbddEH3YWdVTE3Z9_NdLphlw5vQdbMqIKjfNtbLe2e-_Fbssf_nPJtuFn7rWS_6ncHtnzRhZ1hUy6uC7sbmQ27cP24frO_C6_EATn9dRNZkklBNrHuZEwX5oxMTtf1kki4GCYf3r6mB6TEI_ZsUd6D0eGbT8MjWtdtoA539JIKm7qBwe3tVWIyzpzkeeKF4UnssS3kKPPoZkiWxXHGrcyUSIxnzLssPIsqcR86xazwDwPwSjozEFaxTPSdd9bnxkib2dQ44fM8gqThlHZ1UvNQW2OqG_TaV92yWAcWa8Y1sjgC1hLOq7wel5OkjSjoJmwVFa1G23M5qfoTqS9rhVFqrstYM32BwxG8bCnPCcnVhn3eSKxGaQhPQabwsxUOh2p6kIazagQPKlFulyEAi1HtxxHwVravukaP_oHmMdwIfxUc6gl0louVf4qe3tI-q3fyT14xUJw
  priority: 102
  providerName: Unpaywall
Title 3D measurements in conventional X-ray imaging with RGB-D sensors
URI https://www.clinicalkey.com/#!/content/1-s2.0-S135045331730036X
https://www.clinicalkey.es/playcontent/1-s2.0-S135045331730036X
https://dx.doi.org/10.1016/j.medengphy.2017.01.024
https://www.ncbi.nlm.nih.gov/pubmed/28223012
https://www.proquest.com/docview/1870988753
https://www.sciencedirect.com/science/article/pii/S135045331730036X
UnpaywallVersion publishedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: AKRWK
  dateStart: 19940101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9Nm8TYwwQFRviYgsSrqR03ccsTpWMU0CoEVCpPlu04qKhLq6YV2gt_O3fNxzoNtEk8RbF8iXM5353t390BvLSpQiMpMtZTxrOOsIqZhFumIopsjCjjN0Ujn42S4bjzcRJPdmBQx8IQrLLS_aVO32jrqqVdcbO9mE7bX4WM0R-RaAAlZVWZUAQ7Ph5l-tXvS5gHLnc2IHvszKj3FYwXGhyf_8DvIYyXKvN3dv5loa57oAewv84X5uKXmc22rNLpPTis3MmwX474Puz4vAX7g7qKWwsOthIOtuDOWXWU_gDeyJPw_HKDsAinebgNQQ8nbGkuwun5poxRSPu14Zf3b9lJWODKd74sHsL49N23wZBV5RSYw4m2YtJ2Xc_grPMqMangLhZZ4qURSeSxjVKHebT-MU-jKBU2TpVMjOfcu5ROK5V8BLv5PPePCQ8VO9OTVvFUdpx31mfGxDa1XeOkz7IAkpqF2lW5xqnkxUzXoLKfuuG9Jt5rLjTyPgDeEC7KdBs3k3Trf6TraFLUfxpNws2k6m-kvqjmcaGFLiLN9TVZC-B1Q3lFXG_32he1KGmUBjqhMbmfr_F1qD17XVpCBnBUyljDBsL7ojaOAhCN0N2WR0_-Z7hP4S7dlXClZ7C7Wq79c_TEVvZ4M9WOYa__4dNwhNfx6HP_-x_3zTNl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NIVH2gKB8hc8g8Wpqx0nc8gR0jALrHmCT-mbZjoOKurRqWqG98Ldz13ys00CbxGvik53Lfdn-3R3Aa5spdJIiZwNlPIuFVcyk3DIVUWZjRBW_KRt5fJSOTuIvk2SyA8MmF4ZglbXtr2z6xlrXT3o1N3uL6bT3XcgE4xGJDlBSVZXJDbgZJ5GiHdib3-c4D9zvbFD2OJrR8AsgL_Q4vviBH0QgL1UV8Iz_5aIuh6B70FkXC3P2y8xmW27p4C7cqePJ8H215Huw44sudIZNG7cu7G1VHOzCrXF9l34f3sn98PT8hLAMp0W4jUEPJ2xpzsLp6aaPUUgHtuG3Tx_Yflji1ne-LB_AycHH4-GI1f0UmENNWzFp-25gUO28Sk0muEtEnnppRBp5fEa1wzy6_4RnUZQJm2RKpsZz7l1G15VKPoTdYl74xwSISpwZSKt4JmPnnfW5MYnNbN846fM8gLRhoXZ1sXHqeTHTDarsp255r4n3mguNvA-At4SLqt7G1ST95h_pJp0UDaBGn3A1qfobqS9rRS610GWkub4kbAG8bSkvyOv1pn3ViJJGaaArGlP4-RqnQ_M56NMeMoBHlYy1bCDAL5rjKADRCt11efTkf5b7Ejqj4_GhPvx89PUp3KY3FXbpGeyulmv_HMOylX2xUbs_K04zSg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVKL0wCO8lpeMxNWNvY7XG06UlFIhtUJApHCybK8XBdJNlE2Eyq9nnH2QUlAruO1aHln2jGfG9jczAC9sptBI8pwOlPG0z62iJmGWqjhENsYh43eIRj4-SY5G_XdjOd6CYRMLE2CVte6vdPpaW9ctvXo1e_PJpPeRC4n-iEADKEJWlfE12E4kOuQd2B6dvN__vD5qSUZDn_CdKoGnJcHOobzQ5PjiC84ooLxUlcGz_zcbddEH3YWdVTE3Z9_NdLphlw5vQdbMqIKjfNtbLe2e-_Fbssf_nPJtuFn7rWS_6ncHtnzRhZ1hUy6uC7sbmQ27cP24frO_C6_EATn9dRNZkklBNrHuZEwX5oxMTtf1kki4GCYf3r6mB6TEI_ZsUd6D0eGbT8MjWtdtoA539JIKm7qBwe3tVWIyzpzkeeKF4UnssS3kKPPoZkiWxXHGrcyUSIxnzLssPIsqcR86xazwDwPwSjozEFaxTPSdd9bnxkib2dQ44fM8gqThlHZ1UvNQW2OqG_TaV92yWAcWa8Y1sjgC1hLOq7wel5OkjSjoJmwVFa1G23M5qfoTqS9rhVFqrstYM32BwxG8bCnPCcnVhn3eSKxGaQhPQabwsxUOh2p6kIazagQPKlFulyEAi1HtxxHwVravukaP_oHmMdwIfxUc6gl0louVf4qe3tI-q3fyT14xUJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+measurements+in+conventional+X-ray+imaging+with+RGB-D+sensors&rft.jtitle=Medical+engineering+%26+physics&rft.au=Albiol%2C+Francisco&rft.au=Corbi%2C+Alberto&rft.au=Albiol%2C+Alberto&rft.date=2017-04-01&rft.issn=1350-4533&rft.volume=42&rft.spage=73&rft.epage=79&rft_id=info:doi/10.1016%2Fj.medengphy.2017.01.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_medengphy_2017_01_024
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453316X00173%2Fcov150h.gif