3D measurements in conventional X-ray imaging with RGB-D sensors
•Method for deriving 3D internal information in ordinary X-ray settings is proposed.•The system is based on the combination of pairs of radiographs and depth information.•Depth and X-ray systems are 1st calibrated to find their joint spatial transformation.•We can resolve anatomical positions and le...
Saved in:
| Published in | Medical engineering & physics Vol. 42; pp. 73 - 79 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.04.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1350-4533 1873-4030 1873-4030 |
| DOI | 10.1016/j.medengphy.2017.01.024 |
Cover
| Abstract | •Method for deriving 3D internal information in ordinary X-ray settings is proposed.•The system is based on the combination of pairs of radiographs and depth information.•Depth and X-ray systems are 1st calibrated to find their joint spatial transformation.•We can resolve anatomical positions and lengths with a millimeter level of precision.•The solution reduces examinations invasiveness and dose levels by avoiding CT usage.
A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient’ s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and X-ray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient’s body. |
|---|---|
| AbstractList | A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient' s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and X-ray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient's body.A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient' s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and X-ray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient's body. Highlights • Method for deriving 3D internal information in ordinary X-ray settings is proposed. • The system is based on the combination of pairs of radiographs and depth information. • Depth and X-ray systems are 1st calibrated to find their joint spatial transformation. • We can resolve anatomical positions and lengths with a millimeter level of precision. • The solution reduces examinations invasiveness and dose levels by avoiding CT usage. •Method for deriving 3D internal information in ordinary X-ray settings is proposed.•The system is based on the combination of pairs of radiographs and depth information.•Depth and X-ray systems are 1st calibrated to find their joint spatial transformation.•We can resolve anatomical positions and lengths with a millimeter level of precision.•The solution reduces examinations invasiveness and dose levels by avoiding CT usage. A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient’ s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and X-ray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient’s body. A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient' s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and X-ray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient's body. |
| Author | Corbi, Alberto Albiol, Alberto Albiol, Francisco |
| Author_xml | – sequence: 1 givenname: Francisco surname: Albiol fullname: Albiol, Francisco organization: Instituto de Física Corpuscular, Universitat de València, Consejo Superior de Investigaciones Científicas, Spain – sequence: 2 givenname: Alberto orcidid: 0000-0002-7282-4557 surname: Corbi fullname: Corbi, Alberto email: alberto.corbi@ific.uv.es organization: Instituto de Física Corpuscular, Universitat de València, Consejo Superior de Investigaciones Científicas, Spain – sequence: 3 givenname: Alberto surname: Albiol fullname: Albiol, Alberto organization: Instituto de Telecomunicaciones y Aplicaciones Multimedia (iTeam), Universitat Politècnica de València, Spain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28223012$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkklPHDEQhS1ExDLhL5A-5tJN2e5tDknYwiIhRYJE4mZ53DWDJ257sLtB_e_j1hAOSEjDySWr3qunr2qfbFtnkZAvFDIKtDxaZi02aBerhyFjQKsMaAYs3yJ7tK54mgOH7VjzAtK84HyX7IewBIA8L_kO2WU1Yxwo2yPH_DxpUYbeY4u2C4m2iXL2KdbaWWmS-9TLIdGtXGi7SJ5195DcXp6m50lAG5wPn8mnuTQBD17eCflz8fP32VV68-vy-uzkJlUFp13KZ7WaSoACq1I2FFRB5yVySUuG8Q9iLqRsWkDDWENnRVPxUiIAqoYBLys-IfXat7crOTxLY8TKx1h-EBTECEUsxSsUMUIRQEWEEqVf19KVd489hk60Oig0Rlp0fRARGUzruoqgJuTwpbWfRbPXEf-BxYZq3aC8C8Hj_AMpvr1RKt3JkXLnpTYb6E_WeoyUnzR6EZRGq7DRHlUnGqc38Pj-xkMZbbWS5i8OGJau93HnkYgITIC4Gw9ovB9acYhbuI8GP9432CjCP9Is16g |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2895925 crossref_primary_10_1109_ACCESS_2018_2886224 |
| Cites_doi | 10.5194/isprsarchives-XXXVIII-5-W12-133-2011 10.3390/s120201437 10.1007/s10278-012-9567-2 10.1016/j.medengphy.2013.12.018 10.1109/TMI.2016.2540929 10.1109/TVCG.2012.56 10.1016/j.medengphy.2014.04.001 10.1080/1025584031000065956 10.1016/j.patcog.2014.01.005 10.1109/34.121791 |
| ContentType | Journal Article |
| Copyright | 2017 IPEM IPEM Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2017 IPEM – notice: IPEM – notice: Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.medengphy.2017.01.024 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Chemistry |
| EISSN | 1873-4030 |
| EndPage | 79 |
| ExternalDocumentID | 10.1016/j.medengphy.2017.01.024 28223012 10_1016_j_medengphy_2017_01_024 S135045331730036X 1_s2_0_S135045331730036X |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- ~HD AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c531t-3b8c9a005e76ad10c51f6e3a162e5e70463e12950d22d1b5d736ae00ecd203673 |
| IEDL.DBID | .~1 |
| ISSN | 1350-4533 1873-4030 |
| IngestDate | Sun Oct 26 04:00:30 EDT 2025 Thu Oct 02 05:06:35 EDT 2025 Mon Jul 21 05:59:51 EDT 2025 Thu Apr 24 23:04:22 EDT 2025 Wed Oct 01 05:03:28 EDT 2025 Fri Feb 23 02:29:18 EST 2024 Tue Feb 25 20:06:44 EST 2025 Tue Oct 14 19:35:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dense surface mapping 3D reconstruction X-ray Depth cameras Epipolar geometry Movement tracking |
| Language | English |
| License | Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c531t-3b8c9a005e76ad10c51f6e3a162e5e70463e12950d22d1b5d736ae00ecd203673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7282-4557 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S135045331730036X |
| PMID | 28223012 |
| PQID | 1870988753 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1016_j_medengphy_2017_01_024 proquest_miscellaneous_1870988753 pubmed_primary_28223012 crossref_primary_10_1016_j_medengphy_2017_01_024 crossref_citationtrail_10_1016_j_medengphy_2017_01_024 elsevier_sciencedirect_doi_10_1016_j_medengphy_2017_01_024 elsevier_clinicalkeyesjournals_1_s2_0_S135045331730036X elsevier_clinicalkey_doi_10_1016_j_medengphy_2017_01_024 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-01 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Medical engineering & physics |
| PublicationTitleAlternate | Med Eng Phys |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cook, Couch, Couch, Kim, Boonn (bib0007) 2013; 26 Bauer, Wasza, Haase, Marosi, Hornegger (bib0011) 2011 Schumann, Thelen, Ballestra, Nolte, Büchler, Zheng (bib0001) 2014; 36 Albiol, Corbi, Albiol (bib0013) 2016; 35 Dryden (bib0022) 1998 Aoki, Ono, Kamikawa, Kozono, Arimura, Toyofuku (bib0005) 2013 Meister, Izadi, Kohli, Hämmerle, Rother, Kondermann (bib0018) 2012; 2 Wheat, Choppin, Goyal (bib0010) 2014; 36 Garrido-Jurado, Muñoz Salinas, Madrid-Cuevas, Marín-Jiménez (bib0015) 2014; 47 Kozono (bib0008) 2013 Tong, Zhou, Liu, Pan, Yan (bib0017) 2012; 18 Caponetti, Fanelli (bib0002) 1990 Biswas, Basu (bib0019) 2011 Khoshelham (bib0004) 2012; 38 Hartley, Zisserman (bib0014) 2004 Tahavori, Alnowami, Jones, Elangovan, Donovan, Wells (bib0009) 2013 Noonan, Howard, Tout, Armstrong, Williams, Cootes (bib0012) 2012 Newcombe, Izadi, Hilliges, Molyneaux, Kim, Davison (bib0016) 2011 Laporte, Skalli, De Guise, Lavaste, Mitton (bib0023) 2003; 6 Badal, Zafar, Dong, Badano (bib0006) 2013; 8668 Schaub, Tsiotras, Junkins (bib0020) 1995; 33 Besl, McKay (bib0021) 1992; 14 Khoshelham, Elberink (bib0003) 2012; 12 Aoki (10.1016/j.medengphy.2017.01.024_bib0005) 2013 Besl (10.1016/j.medengphy.2017.01.024_bib0021) 1992; 14 Tong (10.1016/j.medengphy.2017.01.024_bib0017) 2012; 18 Khoshelham (10.1016/j.medengphy.2017.01.024_bib0003) 2012; 12 Biswas (10.1016/j.medengphy.2017.01.024_bib0019) 2011 Schumann (10.1016/j.medengphy.2017.01.024_bib0001) 2014; 36 Tahavori (10.1016/j.medengphy.2017.01.024_bib0009) 2013 Bauer (10.1016/j.medengphy.2017.01.024_bib0011) 2011 Badal (10.1016/j.medengphy.2017.01.024_bib0006) 2013; 8668 Hartley (10.1016/j.medengphy.2017.01.024_bib0014) 2004 Dryden (10.1016/j.medengphy.2017.01.024_bib0022) 1998 Cook (10.1016/j.medengphy.2017.01.024_bib0007) 2013; 26 Noonan (10.1016/j.medengphy.2017.01.024_bib0012) 2012 Meister (10.1016/j.medengphy.2017.01.024_bib0018) 2012; 2 Schaub (10.1016/j.medengphy.2017.01.024_bib0020) 1995; 33 Caponetti (10.1016/j.medengphy.2017.01.024_bib0002) 1990 Kozono (10.1016/j.medengphy.2017.01.024_bib0008) 2013 Wheat (10.1016/j.medengphy.2017.01.024_bib0010) 2014; 36 Khoshelham (10.1016/j.medengphy.2017.01.024_bib0004) 2012; 38 Garrido-Jurado (10.1016/j.medengphy.2017.01.024_bib0015) 2014; 47 Newcombe (10.1016/j.medengphy.2017.01.024_bib0016) 2011 Albiol (10.1016/j.medengphy.2017.01.024_bib0013) 2016; 35 Laporte (10.1016/j.medengphy.2017.01.024_bib0023) 2003; 6 |
| References_xml | – year: 2004 ident: bib0014 article-title: Multiple view geometry in computer vision – year: 1998 ident: bib0022 article-title: Statistical shape analysis – start-page: 1456 year: 2013 end-page: 1459 ident: bib0005 article-title: Development of a real-time patient monitoring system using Microsoft Kinect publication-title: Proceedings of the world congress on medical physics and biomedical engineering – year: 2013 ident: bib0008 article-title: A study on a real-time X-ray entrance dose monitoring system in interventional radiology using Microsoft Kinect publication-title: Proceedings of the japan radiology congress – start-page: 100 year: 2011 end-page: 103 ident: bib0019 article-title: Gesture recognition using microsoft kinect publication-title: Proceedings of the international conference on automation, robotics and applications – volume: 36 start-page: 968 year: 2014 end-page: 974 ident: bib0001 article-title: X-ray image calibration and its application to clinical orthopedics publication-title: Med Eng Phys – start-page: 127 year: 2011 end-page: 136 ident: bib0016 article-title: KinectFusion: real-time dense surface mapping and tracking publication-title: Proceedings of the 10th IEEE international symposium on mixed and augmented reality – start-page: 1175 year: 2011 end-page: 1181 ident: bib0011 article-title: Multi-modal surface registration for markerless initial patient setup in radiation therapy using Microsoft’s Kinect sensor publication-title: Proceedings of the IEEE international conference on computer vision workshops – volume: 12 start-page: 1437 year: 2012 end-page: 1454 ident: bib0003 article-title: Accuracy and resolution of Kinect depth data for indoor mapping applications publication-title: Sensors – volume: 33 start-page: 2277 year: 1995 end-page: 2295 ident: bib0020 article-title: Principal rotation representations of proper orthogonal matrices publication-title: Proceedings of the international journal of engineering science – start-page: 208 year: 1990 end-page: 210 ident: bib0002 article-title: 3d bone reconstruction from two x-ray views publication-title: Proceedings of the twelfth annual international conference of the IEEE engineering in medicine and biology society – start-page: 3973 year: 2012 end-page: 3974 ident: bib0012 article-title: Accurate markerless respiratory tracking for gated whole body PET using the microsoft kinect publication-title: Proceedings of the IEEE Nuclear science symposium and medical imaging conference – volume: 8668 year: 2013 ident: bib0006 article-title: A real-time radiation dose monitoring system for patients and staff during interventional fluoroscopy using a GPU-accelerated Monte Carlo simulator and an automatic 3D localization system based on a depth camera publication-title: Proceedings of the physics of medical imaging, SPIE – volume: 26 start-page: 657 year: 2013 end-page: 662 ident: bib0007 article-title: Using the Microsoft Kinect for patient size estimation and radiation dose normalization publication-title: J Dig Imag – volume: 36 start-page: 732 year: 2014 end-page: 738 ident: bib0010 article-title: Development and assessment of a Microsoft Kinect based system for imaging the breast in three dimensions publication-title: Med Eng Phys – start-page: 1 year: 2013 end-page: 5 ident: bib0009 article-title: Assessment of Microsoft Kinect technology (Kinect for Xbox and Kinect for Windows) for patient monitoring during external beam radiotherapy publication-title: Proceedings of the nuclear science symposium and medical imaging conference – volume: 6 start-page: 1 year: 2003 end-page: 6 ident: bib0023 article-title: A biplanar reconstruction method based on 2d and 3d contours: application to the distal femur publication-title: Comput Methods Biomech Biomed Eng – volume: 47 start-page: 2280 year: 2014 end-page: 2292 ident: bib0015 article-title: Automatic generation and detection of highly reliable fiducial markers under occlusion publication-title: Pattern Recog – volume: 2 year: 2012 ident: bib0018 article-title: When can we use KinectFusion for ground truth acquisition publication-title: Proceedings of the workshop on color-depth camera fusion in robotics. – volume: 14 start-page: 239 year: 1992 end-page: 256 ident: bib0021 article-title: Method for registration of 3-D shapes publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 38 start-page: 133 year: 2012 end-page: 138 ident: bib0004 article-title: Accuracy analysis of kinect depth data publication-title: Int Arch Photogramm Remote Sens Sp Inf Sci – volume: 18 start-page: 643 year: 2012 end-page: 650 ident: bib0017 article-title: Scanning 3D full human bodies using Kinects publication-title: IEEE Trans Vis Comput Gr – volume: 35 start-page: 1952 year: 2016 end-page: 1961 ident: bib0013 article-title: Geometrical calibration of x-ray imaging with RGB cameras for 3d reconstruction publication-title: IEEE Trans Med Imaging – year: 2004 ident: 10.1016/j.medengphy.2017.01.024_bib0014 – start-page: 3973 year: 2012 ident: 10.1016/j.medengphy.2017.01.024_bib0012 article-title: Accurate markerless respiratory tracking for gated whole body PET using the microsoft kinect – start-page: 127 year: 2011 ident: 10.1016/j.medengphy.2017.01.024_bib0016 article-title: KinectFusion: real-time dense surface mapping and tracking – volume: 38 start-page: 133 year: 2012 ident: 10.1016/j.medengphy.2017.01.024_bib0004 article-title: Accuracy analysis of kinect depth data publication-title: Int Arch Photogramm Remote Sens Sp Inf Sci doi: 10.5194/isprsarchives-XXXVIII-5-W12-133-2011 – start-page: 1175 year: 2011 ident: 10.1016/j.medengphy.2017.01.024_bib0011 article-title: Multi-modal surface registration for markerless initial patient setup in radiation therapy using Microsoft’s Kinect sensor – volume: 2 year: 2012 ident: 10.1016/j.medengphy.2017.01.024_bib0018 article-title: When can we use KinectFusion for ground truth acquisition – start-page: 1 year: 2013 ident: 10.1016/j.medengphy.2017.01.024_bib0009 article-title: Assessment of Microsoft Kinect technology (Kinect for Xbox and Kinect for Windows) for patient monitoring during external beam radiotherapy – volume: 12 start-page: 1437 issue: 2 year: 2012 ident: 10.1016/j.medengphy.2017.01.024_bib0003 article-title: Accuracy and resolution of Kinect depth data for indoor mapping applications publication-title: Sensors doi: 10.3390/s120201437 – volume: 8668 year: 2013 ident: 10.1016/j.medengphy.2017.01.024_bib0006 article-title: A real-time radiation dose monitoring system for patients and staff during interventional fluoroscopy using a GPU-accelerated Monte Carlo simulator and an automatic 3D localization system based on a depth camera – volume: 26 start-page: 657 issue: 4 year: 2013 ident: 10.1016/j.medengphy.2017.01.024_bib0007 article-title: Using the Microsoft Kinect for patient size estimation and radiation dose normalization publication-title: J Dig Imag doi: 10.1007/s10278-012-9567-2 – volume: 36 start-page: 732 issue: 6 year: 2014 ident: 10.1016/j.medengphy.2017.01.024_bib0010 article-title: Development and assessment of a Microsoft Kinect based system for imaging the breast in three dimensions publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2013.12.018 – year: 2013 ident: 10.1016/j.medengphy.2017.01.024_bib0008 article-title: A study on a real-time X-ray entrance dose monitoring system in interventional radiology using Microsoft Kinect – start-page: 100 year: 2011 ident: 10.1016/j.medengphy.2017.01.024_bib0019 article-title: Gesture recognition using microsoft kinect – volume: 33 start-page: 2277 year: 1995 ident: 10.1016/j.medengphy.2017.01.024_bib0020 article-title: Principal rotation representations of proper orthogonal matrices – volume: 35 start-page: 1952 year: 2016 ident: 10.1016/j.medengphy.2017.01.024_bib0013 article-title: Geometrical calibration of x-ray imaging with RGB cameras for 3d reconstruction publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2540929 – volume: 18 start-page: 643 year: 2012 ident: 10.1016/j.medengphy.2017.01.024_bib0017 article-title: Scanning 3D full human bodies using Kinects publication-title: IEEE Trans Vis Comput Gr doi: 10.1109/TVCG.2012.56 – start-page: 1456 year: 2013 ident: 10.1016/j.medengphy.2017.01.024_bib0005 article-title: Development of a real-time patient monitoring system using Microsoft Kinect – volume: 36 start-page: 968 year: 2014 ident: 10.1016/j.medengphy.2017.01.024_bib0001 article-title: X-ray image calibration and its application to clinical orthopedics publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2014.04.001 – volume: 6 start-page: 1 year: 2003 ident: 10.1016/j.medengphy.2017.01.024_bib0023 article-title: A biplanar reconstruction method based on 2d and 3d contours: application to the distal femur publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/1025584031000065956 – volume: 47 start-page: 2280 issue: 6 year: 2014 ident: 10.1016/j.medengphy.2017.01.024_bib0015 article-title: Automatic generation and detection of highly reliable fiducial markers under occlusion publication-title: Pattern Recog doi: 10.1016/j.patcog.2014.01.005 – volume: 14 start-page: 239 issue: 2 year: 1992 ident: 10.1016/j.medengphy.2017.01.024_bib0021 article-title: Method for registration of 3-D shapes publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.121791 – start-page: 208 year: 1990 ident: 10.1016/j.medengphy.2017.01.024_bib0002 article-title: 3d bone reconstruction from two x-ray views – year: 1998 ident: 10.1016/j.medengphy.2017.01.024_bib0022 |
| SSID | ssj0004463 |
| Score | 2.1785133 |
| Snippet | •Method for deriving 3D internal information in ordinary X-ray settings is proposed.•The system is based on the combination of pairs of radiographs and depth... Highlights • Method for deriving 3D internal information in ordinary X-ray settings is proposed. • The system is based on the combination of pairs of... A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 73 |
| SubjectTerms | 3D reconstruction Dense surface mapping Depth cameras Epipolar geometry Humans Imaging, Three-Dimensional - instrumentation Movement tracking Phantoms, Imaging Radiology Tomography, X-Ray Computed - instrumentation X-ray |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVKL0wCO8lpeMxNWNvY7XG06UlFIhtUJApHCybK8XBdJNlE2Eyq9nnH2QUlAruO1aHln2jGfG9jczAC9sptBI8pwOlPG0z62iJmGWqjhENsYh43eIRj4-SY5G_XdjOd6CYRMLE2CVte6vdPpaW9ctvXo1e_PJpPeRC4n-iEADKEJWlfE12E4kOuQd2B6dvN__vD5qSUZDn_CdKoGnJcHOobzQ5PjiC84ooLxUlcGz_zcbddEH3YWdVTE3Z9_NdLphlw5vQdbMqIKjfNtbLe2e-_Fbssf_nPJtuFn7rWS_6ncHtnzRhZ1hUy6uC7sbmQ27cP24frO_C6_EATn9dRNZkklBNrHuZEwX5oxMTtf1kki4GCYf3r6mB6TEI_ZsUd6D0eGbT8MjWtdtoA539JIKm7qBwe3tVWIyzpzkeeKF4UnssS3kKPPoZkiWxXHGrcyUSIxnzLssPIsqcR86xazwDwPwSjozEFaxTPSdd9bnxkib2dQ44fM8gqThlHZ1UvNQW2OqG_TaV92yWAcWa8Y1sjgC1hLOq7wel5OkjSjoJmwVFa1G23M5qfoTqS9rhVFqrstYM32BwxG8bCnPCcnVhn3eSKxGaQhPQabwsxUOh2p6kIazagQPKlFulyEAi1HtxxHwVravukaP_oHmMdwIfxUc6gl0louVf4qe3tI-q3fyT14xUJw priority: 102 providerName: Unpaywall |
| Title | 3D measurements in conventional X-ray imaging with RGB-D sensors |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S135045331730036X https://www.clinicalkey.es/playcontent/1-s2.0-S135045331730036X https://dx.doi.org/10.1016/j.medengphy.2017.01.024 https://www.ncbi.nlm.nih.gov/pubmed/28223012 https://www.proquest.com/docview/1870988753 https://www.sciencedirect.com/science/article/pii/S135045331730036X |
| UnpaywallVersion | publishedVersion |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: AKRWK dateStart: 19940101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9Nm8TYwwQFRviYgsSrqR03ccsTpWMU0CoEVCpPlu04qKhLq6YV2gt_O3fNxzoNtEk8RbF8iXM5353t390BvLSpQiMpMtZTxrOOsIqZhFumIopsjCjjN0Ujn42S4bjzcRJPdmBQx8IQrLLS_aVO32jrqqVdcbO9mE7bX4WM0R-RaAAlZVWZUAQ7Ph5l-tXvS5gHLnc2IHvszKj3FYwXGhyf_8DvIYyXKvN3dv5loa57oAewv84X5uKXmc22rNLpPTis3MmwX474Puz4vAX7g7qKWwsOthIOtuDOWXWU_gDeyJPw_HKDsAinebgNQQ8nbGkuwun5poxRSPu14Zf3b9lJWODKd74sHsL49N23wZBV5RSYw4m2YtJ2Xc_grPMqMangLhZZ4qURSeSxjVKHebT-MU-jKBU2TpVMjOfcu5ROK5V8BLv5PPePCQ8VO9OTVvFUdpx31mfGxDa1XeOkz7IAkpqF2lW5xqnkxUzXoLKfuuG9Jt5rLjTyPgDeEC7KdBs3k3Trf6TraFLUfxpNws2k6m-kvqjmcaGFLiLN9TVZC-B1Q3lFXG_32he1KGmUBjqhMbmfr_F1qD17XVpCBnBUyljDBsL7ojaOAhCN0N2WR0_-Z7hP4S7dlXClZ7C7Wq79c_TEVvZ4M9WOYa__4dNwhNfx6HP_-x_3zTNl |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NIVH2gKB8hc8g8Wpqx0nc8gR0jALrHmCT-mbZjoOKurRqWqG98Ldz13ys00CbxGvik53Lfdn-3R3Aa5spdJIiZwNlPIuFVcyk3DIVUWZjRBW_KRt5fJSOTuIvk2SyA8MmF4ZglbXtr2z6xlrXT3o1N3uL6bT3XcgE4xGJDlBSVZXJDbgZJ5GiHdib3-c4D9zvbFD2OJrR8AsgL_Q4vviBH0QgL1UV8Iz_5aIuh6B70FkXC3P2y8xmW27p4C7cqePJ8H215Huw44sudIZNG7cu7G1VHOzCrXF9l34f3sn98PT8hLAMp0W4jUEPJ2xpzsLp6aaPUUgHtuG3Tx_Yflji1ne-LB_AycHH4-GI1f0UmENNWzFp-25gUO28Sk0muEtEnnppRBp5fEa1wzy6_4RnUZQJm2RKpsZz7l1G15VKPoTdYl74xwSISpwZSKt4JmPnnfW5MYnNbN846fM8gLRhoXZ1sXHqeTHTDarsp255r4n3mguNvA-At4SLqt7G1ST95h_pJp0UDaBGn3A1qfobqS9rRS610GWkub4kbAG8bSkvyOv1pn3ViJJGaaArGlP4-RqnQ_M56NMeMoBHlYy1bCDAL5rjKADRCt11efTkf5b7Ejqj4_GhPvx89PUp3KY3FXbpGeyulmv_HMOylX2xUbs_K04zSg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVKL0wCO8lpeMxNWNvY7XG06UlFIhtUJApHCybK8XBdJNlE2Eyq9nnH2QUlAruO1aHln2jGfG9jczAC9sptBI8pwOlPG0z62iJmGWqjhENsYh43eIRj4-SY5G_XdjOd6CYRMLE2CVte6vdPpaW9ctvXo1e_PJpPeRC4n-iEADKEJWlfE12E4kOuQd2B6dvN__vD5qSUZDn_CdKoGnJcHOobzQ5PjiC84ooLxUlcGz_zcbddEH3YWdVTE3Z9_NdLphlw5vQdbMqIKjfNtbLe2e-_Fbssf_nPJtuFn7rWS_6ncHtnzRhZ1hUy6uC7sbmQ27cP24frO_C6_EATn9dRNZkklBNrHuZEwX5oxMTtf1kki4GCYf3r6mB6TEI_ZsUd6D0eGbT8MjWtdtoA539JIKm7qBwe3tVWIyzpzkeeKF4UnssS3kKPPoZkiWxXHGrcyUSIxnzLssPIsqcR86xazwDwPwSjozEFaxTPSdd9bnxkib2dQ44fM8gqThlHZ1UvNQW2OqG_TaV92yWAcWa8Y1sjgC1hLOq7wel5OkjSjoJmwVFa1G23M5qfoTqS9rhVFqrstYM32BwxG8bCnPCcnVhn3eSKxGaQhPQabwsxUOh2p6kIazagQPKlFulyEAi1HtxxHwVravukaP_oHmMdwIfxUc6gl0louVf4qe3tI-q3fyT14xUJw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+measurements+in+conventional+X-ray+imaging+with+RGB-D+sensors&rft.jtitle=Medical+engineering+%26+physics&rft.au=Albiol%2C+Francisco&rft.au=Corbi%2C+Alberto&rft.au=Albiol%2C+Alberto&rft.date=2017-04-01&rft.issn=1350-4533&rft.volume=42&rft.spage=73&rft.epage=79&rft_id=info:doi/10.1016%2Fj.medengphy.2017.01.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_medengphy_2017_01_024 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453316X00173%2Fcov150h.gif |