Intrinsic Restriction of TNF-Mediated Inflammatory Osteoclastogenesis and Bone Resorption

TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in immunity and inflammatory bone destruction. Homeostatic osteoclastogenesis is effectively induced by RANKL (Receptor activator of nuclear factor kappa-B ligand). In contrast, TNF often acts on cell types other than...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in endocrinology (Lausanne) Vol. 11; p. 583561
Main Author Zhao, Baohong
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 08.10.2020
Subjects
Online AccessGet full text
ISSN1664-2392
1664-2392
DOI10.3389/fendo.2020.583561

Cover

Abstract TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in immunity and inflammatory bone destruction. Homeostatic osteoclastogenesis is effectively induced by RANKL (Receptor activator of nuclear factor kappa-B ligand). In contrast, TNF often acts on cell types other than osteoclasts, or synergically with RANKL to indirectly promote osteoclastogenesis and bone resorption. TNF and RANKL are members of the TNF superfamily. However, the direct osteoclastogenic capacity of TNF is much weaker than that of RANKL. Recent studies have uncovered key intrinsic mechanisms by which TNF acts on osteoclast precursors to restrain osteoclastogenesis, including the mechanisms mediated by RBP-J signaling, RBP-J and ITAM (Immunoreceptor tyrosine-based activation motif) crosstalk, RBP-J mediated regulatory network, NF- B p100, IRF8, and Def6. Some of these mechanisms, such as RBP-J and its mediated regulatory network, uniquely and predominantly limit osteoclastogenesis mediated by TNF but not by RANKL. As a consequence, targeting RBP-J activities suppresses inflammatory bone destruction but does not significantly impact normal bone remodeling or inflammation. Hence, discovery of these intrinsic inhibitory mechanisms addresses why TNF has a weak osteoclastogenic potential, explains a significant difference between RANKL and TNF signaling, and provides potentially new or complementary therapeutic strategies to selectively treat inflammatory bone resorption, without undesirable effects on normal bone remodeling or immune response in disease settings.
AbstractList TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in immunity and inflammatory bone destruction. Homeostatic osteoclastogenesis is effectively induced by RANKL (Receptor activator of nuclear factor kappa-B ligand). In contrast, TNF often acts on cell types other than osteoclasts, or synergically with RANKL to indirectly promote osteoclastogenesis and bone resorption. TNF and RANKL are members of the TNF superfamily. However, the direct osteoclastogenic capacity of TNF is much weaker than that of RANKL. Recent studies have uncovered key intrinsic mechanisms by which TNF acts on osteoclast precursors to restrain osteoclastogenesis, including the mechanisms mediated by RBP-J signaling, RBP-J and ITAM (Immunoreceptor tyrosine-based activation motif) crosstalk, RBP-J mediated regulatory network, NF- B p100, IRF8, and Def6. Some of these mechanisms, such as RBP-J and its mediated regulatory network, uniquely and predominantly limit osteoclastogenesis mediated by TNF but not by RANKL. As a consequence, targeting RBP-J activities suppresses inflammatory bone destruction but does not significantly impact normal bone remodeling or inflammation. Hence, discovery of these intrinsic inhibitory mechanisms addresses why TNF has a weak osteoclastogenic potential, explains a significant difference between RANKL and TNF signaling, and provides potentially new or complementary therapeutic strategies to selectively treat inflammatory bone resorption, without undesirable effects on normal bone remodeling or immune response in disease settings.
TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in immunity and inflammatory bone destruction. Homeostatic osteoclastogenesis is effectively induced by RANKL (Receptor activator of nuclear factor kappa-B ligand). In contrast, TNF often acts on cell types other than osteoclasts, or synergically with RANKL to indirectly promote osteoclastogenesis and bone resorption. TNF and RANKL are members of the TNF superfamily. However, the direct osteoclastogenic capacity of TNF is much weaker than that of RANKL. Recent studies have uncovered key intrinsic mechanisms by which TNF acts on osteoclast precursors to restrain osteoclastogenesis, including the mechanisms mediated by RBP-J signaling, RBP-J and ITAM (Immunoreceptor tyrosine-based activation motif) crosstalk, RBP-J mediated regulatory network, NF- κ B p100, IRF8, and Def6. Some of these mechanisms, such as RBP-J and its mediated regulatory network, uniquely and predominantly limit osteoclastogenesis mediated by TNF but not by RANKL. As a consequence, targeting RBP-J activities suppresses inflammatory bone destruction but does not significantly impact normal bone remodeling or inflammation. Hence, discovery of these intrinsic inhibitory mechanisms addresses why TNF has a weak osteoclastogenic potential, explains a significant difference between RANKL and TNF signaling, and provides potentially new or complementary therapeutic strategies to selectively treat inflammatory bone resorption, without undesirable effects on normal bone remodeling or immune response in disease settings.
TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in immunity and inflammatory bone destruction. Homeostatic osteoclastogenesis is effectively induced by RANKL (Receptor activator of nuclear factor kappa-B ligand). In contrast, TNF often acts on cell types other than osteoclasts, or synergically with RANKL to indirectly promote osteoclastogenesis and bone resorption. TNF and RANKL are members of the TNF superfamily. However, the direct osteoclastogenic capacity of TNF is much weaker than that of RANKL. Recent studies have uncovered key intrinsic mechanisms by which TNF acts on osteoclast precursors to restrain osteoclastogenesis, including the mechanisms mediated by RBP-J signaling, RBP-J and ITAM (Immunoreceptor tyrosine-based activation motif) crosstalk, RBP-J mediated regulatory network, NF-κB p100, IRF8, and Def6. Some of these mechanisms, such as RBP-J and its mediated regulatory network, uniquely and predominantly limit osteoclastogenesis mediated by TNF but not by RANKL. As a consequence, targeting RBP-J activities suppresses inflammatory bone destruction but does not significantly impact normal bone remodeling or inflammation. Hence, discovery of these intrinsic inhibitory mechanisms addresses why TNF has a weak osteoclastogenic potential, explains a significant difference between RANKL and TNF signaling, and provides potentially new or complementary therapeutic strategies to selectively treat inflammatory bone resorption, without undesirable effects on normal bone remodeling or immune response in disease settings.TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in immunity and inflammatory bone destruction. Homeostatic osteoclastogenesis is effectively induced by RANKL (Receptor activator of nuclear factor kappa-B ligand). In contrast, TNF often acts on cell types other than osteoclasts, or synergically with RANKL to indirectly promote osteoclastogenesis and bone resorption. TNF and RANKL are members of the TNF superfamily. However, the direct osteoclastogenic capacity of TNF is much weaker than that of RANKL. Recent studies have uncovered key intrinsic mechanisms by which TNF acts on osteoclast precursors to restrain osteoclastogenesis, including the mechanisms mediated by RBP-J signaling, RBP-J and ITAM (Immunoreceptor tyrosine-based activation motif) crosstalk, RBP-J mediated regulatory network, NF-κB p100, IRF8, and Def6. Some of these mechanisms, such as RBP-J and its mediated regulatory network, uniquely and predominantly limit osteoclastogenesis mediated by TNF but not by RANKL. As a consequence, targeting RBP-J activities suppresses inflammatory bone destruction but does not significantly impact normal bone remodeling or inflammation. Hence, discovery of these intrinsic inhibitory mechanisms addresses why TNF has a weak osteoclastogenic potential, explains a significant difference between RANKL and TNF signaling, and provides potentially new or complementary therapeutic strategies to selectively treat inflammatory bone resorption, without undesirable effects on normal bone remodeling or immune response in disease settings.
TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in immunity and inflammatory bone destruction. Homeostatic osteoclastogenesis is effectively induced by RANKL (Receptor activator of nuclear factor kappa-B ligand). In contrast, TNF often acts on cell types other than osteoclasts, or synergically with RANKL to indirectly promote osteoclastogenesis and bone resorption. TNF and RANKL are members of the TNF superfamily. However, the direct osteoclastogenic capacity of TNF is much weaker than that of RANKL. Recent studies have uncovered key intrinsic mechanisms by which TNF acts on osteoclast precursors to restrain osteoclastogenesis, including the mechanisms mediated by RBP-J signaling, RBP-J and ITAM (Immunoreceptor tyrosine-based activation motif) crosstalk, RBP-J mediated regulatory network, NF-κB p100, IRF8, and Def6. Some of these mechanisms, such as RBP-J and its mediated regulatory network, uniquely and predominantly limit osteoclastogenesis mediated by TNF but not by RANKL. As a consequence, targeting RBP-J activities suppresses inflammatory bone destruction but does not significantly impact normal bone remodeling or inflammation. Hence, discovery of these intrinsic inhibitory mechanisms addresses why TNF has a weak osteoclastogenic potential, explains a significant difference between RANKL and TNF signaling, and provides potentially new or complementary therapeutic strategies to selectively treat inflammatory bone resorption, without undesirable effects on normal bone remodeling or immune response in disease settings.
Author Zhao, Baohong
AuthorAffiliation 1 Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery , New York, NY , United States
3 Department of Medicine, Weill Cornell Medical College , New York, NY , United States
2 Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences , New York, NY , United States
AuthorAffiliation_xml – name: 2 Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences , New York, NY , United States
– name: 3 Department of Medicine, Weill Cornell Medical College , New York, NY , United States
– name: 1 Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery , New York, NY , United States
Author_xml – sequence: 1
  givenname: Baohong
  surname: Zhao
  fullname: Zhao, Baohong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33133025$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1PHDEMhiNEBZTyA3qp5tjLLHEyno9LpRaVdiVapAoOnCJvktkGzSTbZBaJf98MSxFwaC6xktePLft9y_Z98Jax98AXUrbdaW-9CQvBBV9gK7GGPXYEdV2VQnZi_1l8yE5SuuX5VBy6rj1gh1KClFzgEbtZ-ik6n5wuftmUQz254IvQF1c_z8sf1jiarCmWvh9oHGkK8b64TJMNeqA0hbX1NrlUkDfFl9zfDAlxMzPesTc9DcmePN7H7Pr869XZ9_Li8tvy7PNFqVHCVAojORnDSWoQKDUSpx4alNivKuiN7FZca9G1vEJNnUAE3axqq-s254CVx2y545pAt2oT3UjxXgVy6uEhxLWiODk9WFVB0wg0pjdYVy1IqrkVBDWaxvCWZtanHWuzXY3WaJuHQ8ML6Msf736rdbhTDTZtBZgBHx8BMfzZ5oGq0SVth4G8DdukRIV1i1gBZOmH57WeivzbTRbATqBjSCna_kkCXM0WUA8WULMF1M4COad5laPdRPM6crtu-E_mXzO3uA0
CitedBy_id crossref_primary_10_3389_fcimb_2025_1529692
crossref_primary_10_1002_jcp_31299
crossref_primary_10_4049_jimmunol_2300317
crossref_primary_10_1016_j_bone_2022_116540
crossref_primary_10_3390_ijms23094693
crossref_primary_10_3389_fcimb_2022_908859
crossref_primary_10_1016_j_ejphar_2022_174865
crossref_primary_10_1016_j_jds_2022_02_007
crossref_primary_10_1016_j_micpath_2023_106518
crossref_primary_10_7717_peerj_18269
crossref_primary_10_3390_ijms25010651
crossref_primary_10_1080_17452759_2024_2399175
crossref_primary_10_1096_fj_202302230R
crossref_primary_10_1016_j_jep_2024_119270
crossref_primary_10_1007_s00223_022_01056_x
crossref_primary_10_1038_s41467_022_31475_1
crossref_primary_10_1002_mco2_657
crossref_primary_10_1186_s12903_021_01788_6
crossref_primary_10_1002_iid3_1278
crossref_primary_10_18632_aging_204172
crossref_primary_10_1080_10408398_2022_2115457
crossref_primary_10_3390_jfb13030103
Cites_doi 10.1038/s41467-018-06446-0
10.5772/55370
10.1196/annals.1402.084
10.1038/nrrheum.2012.153
10.1136/ard.2007.076091
10.1084/jem.20111566
10.1128/JVI.01999-08
10.1002/jbmr.4
10.3803/EnM.2015.30.1.35
10.1101/gad.13.18.2412
10.1073/pnas.1109023108
10.1016/j.bone.2006.09.023
10.1096/fj.201902227R
10.1084/jem.20091957
10.1016/S0198-8859(03)00024-7
10.1002/art.11095
10.1074/jbc.M512624200
10.1182/blood-2006-09-048249
10.1146/annurev.pathmechdis.3.121806.151431
10.1002/art.11419
10.1371/journal.pone.0007955
10.1128/MCB.01962-07
10.1101/gad.211912.112
10.4049/jimmunol.1501466
10.1186/ar1857
10.1016/S0002-9440(10)63016-7
10.1016/j.semcancer.2004.04.018
10.1146/annurev.immunol.23.021704.115747
10.1359/jbmr.090533
10.1007/s11914-017-0358-z
10.1172/JCI68901
10.1038/ni.2304
10.1038/nm.2007
10.1073/pnas.97.4.1566
10.1038/nature04940
10.1097/01.bor.0000231912.24740.a5
10.1172/JCI11176
10.1128/MCB.18.1.644
10.1084/jem.191.2.275
10.1186/ar2391
10.1371/journal.pone.0020022
10.1189/jlb.0308219
10.1128/MCB.17.7.3733
10.1084/jem.20050978
10.1359/jbmr.091030
10.1016/S1074-7613(03)00054-2
10.1038/bonekey.2012.59
10.1155/2013/181849
10.3389/fimmu.2014.00511
10.4049/jimmunol.1502044
10.1007/s13238-016-0248-7
10.1007/s13238-016-0250-0
10.1172/JCI71882
10.4049/jimmunol.1601716
10.1084/jem.20062648
10.1007/s11033-012-2268-6
10.1074/jbc.M707000200
10.1359/jbmr.091032
10.1073/pnas.1415213112
10.1074/jbc.275.7.4858
10.1128/MCB.26.1.117-130.2006
10.1038/ng.582
10.1097/01.bor.0000231913.32364.32
10.1016/j.cell.2009.03.045
10.1073/pnas.0708576105
10.1016/j.immuni.2008.08.016
10.1172/JCI38716
10.1016/j.immuni.2008.10.011
10.1128/MCB.01839-06
10.1084/jem.20030116
10.1182/blood-2005-07-2798
10.1038/nm.3774
10.1073/pnas.1010030108
ContentType Journal Article
Copyright Copyright © 2020 Zhao.
Copyright © 2020 Zhao 2020 Zhao
Copyright_xml – notice: Copyright © 2020 Zhao.
– notice: Copyright © 2020 Zhao 2020 Zhao
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fendo.2020.583561
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2392
ExternalDocumentID oai_doaj_org_article_417725ddfd564813a60e2a165d7d08ae
PMC7578415
33133025
10_3389_fendo_2020_583561
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR071463
– fundername: NIAMS NIH HHS
  grantid: R01 AR068970
– fundername: National Institutes of Health
  grantid: AR068970, AR071463
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c531t-2d30add0a3c1253c5a0af17535fb41fd39b0cc298045ca92551c7b6ec680a31e3
IEDL.DBID M48
ISSN 1664-2392
IngestDate Wed Aug 27 01:29:18 EDT 2025
Thu Aug 21 18:25:23 EDT 2025
Thu Sep 04 19:50:26 EDT 2025
Thu Jan 02 22:57:40 EST 2025
Tue Jul 01 04:27:31 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Def6
tumor necrosis factor
bone resorption
osteoclasts
IRF8
rheumatoid arthritis
RBP-J
Language English
License Copyright © 2020 Zhao.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-2d30add0a3c1253c5a0af17535fb41fd39b0cc298045ca92551c7b6ec680a31e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Aline Bozec, University of Erlangen Nuremberg, Germany; Sudip Sen, All India Institute of Medical Sciences, India
This article was submitted to Bone Research, a section of the journal Frontiers in Endocrinology
Edited by: Deborah Veis, Washington University School of Medicine in St. Louis, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fendo.2020.583561
PMID 33133025
PQID 2456855411
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_417725ddfd564813a60e2a165d7d08ae
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7578415
proquest_miscellaneous_2456855411
pubmed_primary_33133025
crossref_primary_10_3389_fendo_2020_583561
crossref_citationtrail_10_3389_fendo_2020_583561
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-08
PublicationDateYYYYMMDD 2020-10-08
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-08
  day: 08
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in endocrinology (Lausanne)
PublicationTitleAlternate Front Endocrinol (Lausanne)
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Plaisance (B29) 1997; 17
Castel (B44) 2013; 27
Otero (B50) 2010; 25
Gupta (B66) 2003; 64
Yarilina (B11) 2011; 108
Chen (B68) 2008; 29
Asagiri (B51) 2007; 40
Chan (B57) 2009; 4
Boyce (B12) 2006; 18
Xu (B26) 2012; 13
Zhang (B73) 2014; 124
Swarnkar (B31) 2015; 112
Fang (B63) 2016; 196
Zhang (B21) 2008; 10
Anandarajah (B18) 2008; 67
Soysa (B55) 2010; 25
Sato (B5) 2006; 18
Tanaka (B65) 2003; 18
Miller (B46) 2016; 196
Androutsellis-Theotokis (B71) 2006; 442
Ivashkiv (B72) 2003; 48
Kopan (B24) 2009; 137
Taniguchi (B34) 1998; 18
Caton (B38) 2007; 204
Hu (B27) 2008; 29
Hamidi (B43) 2011; 6
Boyce (B8) 2015; 30
Kim (B15) 2005; 202
Maruyama (B53) 2010; 25
Binder (B69) 2017; 198
Maillard (B36) 2005; 23
Teitelbaum (B7) 2006; 8
Li (B20) 2004; 50
Shang (B39) 2016; 7
Lee (B56) 2006; 107
Bai (B41) 2008; 283
Li (B32) 2014; 124
Beres (B35) 2006; 26
Long (B42) 2012; 1
Nishikawa (B62) 2015; 21
Walsh (B23) 2014; 5
Wang (B45) 2011; 108
Zhao (B25) 2012; 209
Hayward (B33) 2004; 14
Marchesi (B64) 2013
Chen (B67) 2009; 85
Novack (B2) 2008; 3
Yao (B54) 2009; 119
Inoue (B48) 2020; 34
Ma (B40) 2013; 40
Vaira (B49) 2008; 105
Miyauchi (B61) 2010; 207
Lam (B13) 2000; 106
Shimizu (B28) 2008; 28
Schett (B3) 2009; 24
Novack (B52) 2003; 198
Boyce (B4) 2007; 1116
Azuma (B17) 2000; 275
Kobayashi (B16) 2000; 191
Izumiya (B30) 2009; 83
Zhao (B60) 2009; 15
Kim (B59) 2007; 109
Li (B14) 2000; 97
Hu (B58) 2007; 27
Pettit (B10) 2001; 159
Yao (B19) 2006; 281
Kitaura (B22) 2013; 2013
Foldi (B37) 2016; 7
Schett (B1) 2012; 8
Dougall (B9) 1999; 13
Zhao (B6) 2017; 15
Stahl (B70) 2010; 42
Inoue (B47) 2018; 9
References_xml – volume: 9
  start-page: 4108
  year: 2018
  ident: B47
  article-title: Bone protection by inhibition of microRNA-182
  publication-title: Nat Communications
  doi: 10.1038/s41467-018-06446-0
– start-page: Ch. 06
  volume-title: Chromatin Remodelling
  year: 2013
  ident: B64
  article-title: Role of Enhancer of Zeste Homolog 2 Polycomb Protein and Its Significance in Tumor Progression and Cell Differentiation
  doi: 10.5772/55370
– volume: 1116
  year: 2007
  ident: B4
  article-title: New roles for osteoclasts in bone
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1402.084
– volume: 8
  year: 2012
  ident: B1
  article-title: Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2012.153
– volume: 67
  start-page: 296
  year: 2008
  ident: B18
  article-title: The effect of etanercept on osteoclast precursor frequency and enhancing bone marrow oedema in patients with psoriatic arthritis
  publication-title: Ann Rheum Dis
  doi: 10.1136/ard.2007.076091
– volume: 209
  year: 2012
  ident: B25
  article-title: TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J
  publication-title: J Exp Med
  doi: 10.1084/jem.20111566
– volume: 83
  year: 2009
  ident: B30
  article-title: NF-kappaB serves as a cellular sensor of Kaposi’s sarcoma-associated herpesvirus latency and negatively regulates K-Rta by antagonizing the RBP-Jkappa coactivator
  publication-title: J Virol
  doi: 10.1128/JVI.01999-08
– volume: 25
  year: 2010
  ident: B50
  article-title: IKKbeta activation is sufficient for RANK-independent osteoclast differentiation and osteolysis
  publication-title: J Bone Mineral Res
  doi: 10.1002/jbmr.4
– volume: 30
  start-page: 35
  year: 2015
  ident: B8
  article-title: NF-kappaB-Mediated Regulation of Osteoclastogenesis
  publication-title: Endocrinol Metab (Seoul)
  doi: 10.3803/EnM.2015.30.1.35
– volume: 13
  year: 1999
  ident: B9
  article-title: RANK is essential for osteoclast and lymph node development
  publication-title: Genes Dev
  doi: 10.1101/gad.13.18.2412
– volume: 108
  year: 2011
  ident: B45
  article-title: Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1109023108
– volume: 40
  year: 2007
  ident: B51
  article-title: The molecular understanding of osteoclast differentiation
  publication-title: Bone
  doi: 10.1016/j.bone.2006.09.023
– volume: 34
  year: 2020
  ident: B48
  article-title: Regulatory network mediated by RBP-J/NFATc1-miR182 controls inflammatory bone resorption
  publication-title: FASEB J
  doi: 10.1096/fj.201902227R
– volume: 207
  year: 2010
  ident: B61
  article-title: The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis
  publication-title: J Exp Med
  doi: 10.1084/jem.20091957
– volume: 64
  start-page: 389
  year: 2003
  ident: B66
  article-title: Molecular cloning of IBP, a SWAP-70 homologous GEF, which is highly expressed in the immune system
  publication-title: Hum Immunol
  doi: 10.1016/S0198-8859(03)00024-7
– volume: 48
  year: 2003
  ident: B72
  article-title: The JAK/STAT pathway in rheumatoid arthritis: pathogenic or protective
  publication-title: Arthritis Rheum
  doi: 10.1002/art.11095
– volume: 281
  year: 2006
  ident: B19
  article-title: Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M512624200
– volume: 109
  year: 2007
  ident: B59
  article-title: MafB negatively regulates RANKL-mediated osteoclast differentiation
  publication-title: Blood
  doi: 10.1182/blood-2006-09-048249
– volume: 3
  year: 2008
  ident: B2
  article-title: The osteoclast: friend or foe
  publication-title: Annu Rev Pathol
  doi: 10.1146/annurev.pathmechdis.3.121806.151431
– volume: 50
  year: 2004
  ident: B20
  article-title: Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor alpha-transgenic mice
  publication-title: Arthritis Rheum
  doi: 10.1002/art.11419
– volume: 4
  year: 2009
  ident: B57
  article-title: Id1 represses osteoclast-dependent transcription and affects bone formation and hematopoiesis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0007955
– volume: 28
  year: 2008
  ident: B28
  article-title: Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01962-07
– volume: 27
  year: 2013
  ident: B44
  article-title: Dynamic binding of RBPJ is determined by Notch signaling status
  publication-title: Genes Dev
  doi: 10.1101/gad.211912.112
– volume: 196
  year: 2016
  ident: B63
  article-title: Cutting Edge: EZH2 Promotes Osteoclastogenesis by Epigenetic Silencing of the Negative Regulator IRF8
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1501466
– volume: 8
  start-page: 201
  year: 2006
  ident: B7
  article-title: Osteoclasts; culprits in inflammatory osteolysis
  publication-title: Arthritis Res Ther
  doi: 10.1186/ar1857
– volume: 159
  year: 2001
  ident: B10
  article-title: TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)63016-7
– volume: 14
  year: 2004
  ident: B33
  article-title: Viral interactions with the Notch pathway
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2004.04.018
– volume: 23
  year: 2005
  ident: B36
  article-title: Regulation of lymphoid development, differentiation, and function by the Notch pathway
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.23.021704.115747
– volume: 24
  year: 2009
  ident: B3
  article-title: Osteoclasts and arthritis
  publication-title: J Bone Mineral Res
  doi: 10.1359/jbmr.090533
– volume: 15
  year: 2017
  ident: B6
  article-title: TNF and Bone Remodeling
  publication-title: Curr Osteoporos Rep
  doi: 10.1007/s11914-017-0358-z
– volume: 124
  year: 2014
  ident: B73
  article-title: NOTCH inhibits osteoblast formation in inflammatory arthritis via noncanonical NF-kappaB
  publication-title: J Clin Invest
  doi: 10.1172/JCI68901
– volume: 13
  year: 2012
  ident: B26
  article-title: Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization
  publication-title: Nat Immunol
  doi: 10.1038/ni.2304
– volume: 15
  year: 2009
  ident: B60
  article-title: Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis
  publication-title: Nat Med
  doi: 10.1038/nm.2007
– volume: 97
  year: 2000
  ident: B14
  article-title: RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.4.1566
– volume: 442
  year: 2006
  ident: B71
  article-title: Notch signalling regulates stem cell numbers in vitro and in vivo
  publication-title: Nature
  doi: 10.1038/nature04940
– volume: 18
  year: 2006
  ident: B5
  article-title: Osteoclasts, rheumatoid arthritis, and osteoimmunology
  publication-title: Curr Opin Rheumatol
  doi: 10.1097/01.bor.0000231912.24740.a5
– volume: 106
  year: 2000
  ident: B13
  article-title: TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand
  publication-title: J Clin Invest
  doi: 10.1172/JCI11176
– volume: 18
  year: 1998
  ident: B34
  article-title: LIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.18.1.644
– volume: 191
  year: 2000
  ident: B16
  article-title: Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction
  publication-title: J Exp Med
  doi: 10.1084/jem.191.2.275
– volume: 10
  start-page: R37
  year: 2008
  ident: B21
  article-title: TNF inhibits production of stromal cell-derived factor 1 by bone stromal cells and increases osteoclast precursor mobilization from bone marrow to peripheral blood
  publication-title: Arthritis Res Ther
  doi: 10.1186/ar2391
– volume: 6
  year: 2011
  ident: B43
  article-title: Identification of novel targets of CSL-dependent Notch signaling in hematopoiesis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0020022
– volume: 85
  year: 2009
  ident: B67
  article-title: Regulation of TLR4-mediated signaling by IBP/Def6, a novel activator of Rho GTPases
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0308219
– volume: 17
  year: 1997
  ident: B29
  article-title: Recombination signal sequence binding protein Jkappa is constitutively bound to the NF-kappaB site of the interleukin-6 promoter and acts as a negative regulatory factor
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.17.7.3733
– volume: 202
  year: 2005
  ident: B15
  article-title: Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis
  publication-title: J Exp Med
  doi: 10.1084/jem.20050978
– volume: 25
  year: 2010
  ident: B55
  article-title: The pivotal role of the alternative NF-kappaB pathway in maintenance of basal bone homeostasis and osteoclastogenesis
  publication-title: J Bone Mineral Res
  doi: 10.1359/jbmr.091030
– volume: 18
  year: 2003
  ident: B65
  article-title: SWAP-70-like adapter of T cells, an adapter protein that regulates early TCR-initiated signaling in Th2 lineage cells
  publication-title: Immunity
  doi: 10.1016/S1074-7613(03)00054-2
– volume: 1
  start-page: 59
  year: 2012
  ident: B42
  article-title: Osteoimmunology: the expanding role of immunoreceptors in osteoclasts and bone remodeling
  publication-title: BoneKEy Rep
  doi: 10.1038/bonekey.2012.59
– volume: 2013
  year: 2013
  ident: B22
  article-title: Immunological reaction in TNF-alpha-mediated osteoclast formation and bone resorption in vitro and in vivo
  publication-title: Clin Dev Immunol
  doi: 10.1155/2013/181849
– volume: 5
  year: 2014
  ident: B23
  article-title: Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2014.00511
– volume: 196
  year: 2016
  ident: B46
  article-title: RBP-J-Regulated miR-182 Promotes TNF-alpha-Induced Osteoclastogenesis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1502044
– volume: 7
  year: 2016
  ident: B37
  article-title: RBP-J is required for M2 macrophage polarization in response to chitin and mediates expression of a subset of M2 genes
  publication-title: Protein Cell
  doi: 10.1007/s13238-016-0248-7
– volume: 7
  year: 2016
  ident: B39
  article-title: Role of Notch signaling in regulating innate immunity and inflammation in health and disease
  publication-title: Protein Cell
  doi: 10.1007/s13238-016-0250-0
– volume: 124
  year: 2014
  ident: B32
  article-title: RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis
  publication-title: J Clin Invest
  doi: 10.1172/JCI71882
– volume: 198
  year: 2017
  ident: B69
  article-title: Def6 Restrains Osteoclastogenesis and Inflammatory Bone Resorption
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1601716
– volume: 204
  year: 2007
  ident: B38
  article-title: Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen
  publication-title: J Exp Med
  doi: 10.1084/jem.20062648
– volume: 40
  year: 2013
  ident: B40
  article-title: Disruption of the transcription factor RBP-J results in osteopenia attributable to attenuated osteoclast differentiation
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-012-2268-6
– volume: 283
  year: 2008
  ident: B41
  article-title: NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M707000200
– volume: 25
  year: 2010
  ident: B53
  article-title: Processing of the NF-kappa B2 precursor p100 to p52 is critical for RANKL-induced osteoclast differentiation
  publication-title: J Bone Mineral Res
  doi: 10.1359/jbmr.091032
– volume: 112
  year: 2015
  ident: B31
  article-title: Osteopetrosis in TAK1-deficient mice owing to defective NF-kappaB and NOTCH signaling
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1415213112
– volume: 275
  year: 2000
  ident: B17
  article-title: Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts
  publication-title: J Biol Chem
  doi: 10.1074/jbc.275.7.4858
– volume: 26
  year: 2006
  ident: B35
  article-title: PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.26.1.117-130.2006
– volume: 42
  year: 2010
  ident: B70
  article-title: Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci
  publication-title: Nat Genet
  doi: 10.1038/ng.582
– volume: 18
  year: 2006
  ident: B12
  article-title: Osteoclast precursors: cytokine-stimulated immunomodulators of inflammatory bone disease
  publication-title: Curr Opin Rheumatol
  doi: 10.1097/01.bor.0000231913.32364.32
– volume: 137
  year: 2009
  ident: B24
  article-title: The canonical Notch signaling pathway: unfolding the activation mechanism
  publication-title: Cell
  doi: 10.1016/j.cell.2009.03.045
– volume: 105
  year: 2008
  ident: B49
  article-title: RelB is the NF-kappaB subunit downstream of NIK responsible for osteoclast differentiation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0708576105
– volume: 29
  start-page: 691
  year: 2008
  ident: B27
  article-title: Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.08.016
– volume: 119
  year: 2009
  ident: B54
  article-title: NF-kappaB p100 limits TNF-induced bone resorption in mice by a TRAF3-dependent mechanism
  publication-title: J Clin Invest
  doi: 10.1172/JCI38716
– volume: 29
  start-page: 899
  year: 2008
  ident: B68
  article-title: IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.10.011
– volume: 27
  year: 2007
  ident: B58
  article-title: Eos, MITF, and PU.1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01839-06
– volume: 198
  year: 2003
  ident: B52
  article-title: The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis
  publication-title: J Exp Med
  doi: 10.1084/jem.20030116
– volume: 107
  year: 2006
  ident: B56
  article-title: Id helix-loop-helix proteins negatively regulate TRANCE-mediated osteoclast differentiation
  publication-title: Blood
  doi: 10.1182/blood-2005-07-2798
– volume: 21
  year: 2015
  ident: B62
  article-title: DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway
  publication-title: Nat Med
  doi: 10.1038/nm.3774
– volume: 108
  year: 2011
  ident: B11
  article-title: TNF activates calcium-nuclear factor of activated T cells (NFAT)c1 signaling pathways in human macrophages
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1010030108
SSID ssj0000401998
Score 2.3641772
SecondaryResourceType review_article
Snippet TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in immunity and inflammatory bone destruction. Homeostatic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 583561
SubjectTerms bone resorption
Endocrinology
IRF8
osteoclasts
RBP-J
rheumatoid arthritis
tumor necrosis factor
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQh4oLgrbAFlq5Uk9IATt2vMkRqq7YSruVKpDgZPkTVqIOguX_M-OE1S5CcOk1iWPrzdh5k7HfEPLDRR-ktbYIjXWF5HZYwCzyhVemjvjLocxq-5OpOruQvy-ry6VSX7gnrJMH7oA7lhz4X-V99JWSNRdGsVAario_9Kw2AVdf1rClYCqvwRA2QCDRpTEhCmuOY0geD_uV7KgC1qH4yoco6_W_RjJf7pVc-viMtshmzxrpSTfabbIW0kfyYdLnxT-RqzE0myVAnP4NWIkjn1agbaTn01ExyeU4gqfjFMEB_uXEOv0D9m0dkOd5e40L3uyBmuTpaZsCvqS9z4vJZ3Ix-nX-86zoiyYUDqbTvCi9YIA2M8IBdxGuMsxElOOsopU8etFY5lzZ1MDlnGkgouBuaFVwqoY2PIgdsp6gpz1CgRlVpUMBmOCAddWWKdPI0gophS99PSDsGUHtekVxLGxxqyGyQNB1Bl0j6LoDfUAOF03uOjmNtx4-RbMsHkQl7HwB_EP3_qHf848B-f5sVA0zB9MhJoX28UFjyhc36XHoaLcz8qIrISB2Bzo4IMMV86-MZfVOmt1kdW4sEACs6Mv_GPw-2UA8uj2HB2R9fv8YvgIJmttv2d-fAGqsBh8
  priority: 102
  providerName: Directory of Open Access Journals
Title Intrinsic Restriction of TNF-Mediated Inflammatory Osteoclastogenesis and Bone Resorption
URI https://www.ncbi.nlm.nih.gov/pubmed/33133025
https://www.proquest.com/docview/2456855411
https://pubmed.ncbi.nlm.nih.gov/PMC7578415
https://doaj.org/article/417725ddfd564813a60e2a165d7d08ae
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lBfFFrJ9ntUTwSUhNNtnc7oMUK56tcBWkB-dTyNe2BzVr766g_31nsnuHJ4fgy8Lu5mN3JpP8JjOZIeSNb0JUzjkWa-eZEm7IQIoCC9pWDW45FDna_vhcn07Ul2k53SGr9FY9ARdbVTvMJzWZXx_9uvl9DAL_HjVOWG_fNTEFPMdX8KMSAAUqQ3vZXISefD3azxMz6BJ1zo4rtFasAGjQ2Tm3t7KxUuWA_ttQ6N_OlH-sTqOH5EEPK-mHbhzsk52YHpF7495w_ph8P4NqswQsod8ipurIxxlo29CL8xEb53wdMdCz1MAI-ZEt7_QrDIDWA7petpc4I84W1KZAT9oUsZF2nmebJ2Qy-nTx8ZT1WRWYB3lbsiJIDuzgVnoAN9KXltsG43WWjVOiCbJ23PuirgDseVuDyiH80OnodQV1RJRPyW6Cnp4TCtCpLDxGiIkeYFnluLa1KpxUSoYiVAPCVxQ0vg85jpkvrg2oHkh0k4lukOimI_qAvF1X-dnF2_hX4RNky7oghsrOD9r5peklzygBCkQZQhNKrSohreaxsEKXYRh4ZeOAvF4x1YBoob3EptjeLgzahNGLT0BHzzomr7uSEpR7wIsDMtxg_8a3bL5Js6scvhszCABsevE_f3pA7uNd53z4kuwu57fxFaChpTvMuwhw_TwVh3m83wGQGQm7
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+Restriction+of+TNF-Mediated+Inflammatory+Osteoclastogenesis+and+Bone+Resorption&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Zhao%2C+Baohong&rft.date=2020-10-08&rft.issn=1664-2392&rft.eissn=1664-2392&rft.volume=11&rft_id=info:doi/10.3389%2Ffendo.2020.583561&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fendo_2020_583561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon