Transgene-free Genome Editing in Plants
Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to r...
Saved in:
Published in | Frontiers in genome editing Vol. 3; p. 805317 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
02.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-3439 2673-3439 |
DOI | 10.3389/fgeed.2021.805317 |
Cover
Abstract | Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to remove or prevent the integration of gene editor constructs, which can be divided into three major categories: 1) elimination of transgenic sequences via genetic segregation; 2) transient editor expression from DNA vectors; and 3) DNA-independent editor delivery, including RNA or preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs). Here, we summarize the main strategies employed to date and discuss the advantages and disadvantages of using these different tools. We hope that our work can provide important information concerning the value of alternative genome editing strategies to advance crop breeding. |
---|---|
AbstractList | Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to remove or prevent the integration of gene editor constructs, which can be divided into three major categories: 1) elimination of transgenic sequences via genetic segregation; 2) transient editor expression from DNA vectors; and 3) DNA-independent editor delivery, including RNA or preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs). Here, we summarize the main strategies employed to date and discuss the advantages and disadvantages of using these different tools. We hope that our work can provide important information concerning the value of alternative genome editing strategies to advance crop breeding. Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to remove or prevent the integration of gene editor constructs, which can be divided into three major categories: 1) elimination of transgenic sequences via genetic segregation; 2) transient editor expression from DNA vectors; and 3) DNA-independent editor delivery, including RNA or preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs). Here, we summarize the main strategies employed to date and discuss the advantages and disadvantages of using these different tools. We hope that our work can provide important information concerning the value of alternative genome editing strategies to advance crop breeding.Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to remove or prevent the integration of gene editor constructs, which can be divided into three major categories: 1) elimination of transgenic sequences via genetic segregation; 2) transient editor expression from DNA vectors; and 3) DNA-independent editor delivery, including RNA or preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs). Here, we summarize the main strategies employed to date and discuss the advantages and disadvantages of using these different tools. We hope that our work can provide important information concerning the value of alternative genome editing strategies to advance crop breeding. |
Author | Gu, Xiaoyong Liu, Lijing Zhang, Huawei |
AuthorAffiliation | 2 Institute of Advanced Agricultural Science, Peking University, Weifang , China 1 The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao , China |
AuthorAffiliation_xml | – name: 2 Institute of Advanced Agricultural Science, Peking University, Weifang , China – name: 1 The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao , China |
Author_xml | – sequence: 1 givenname: Xiaoyong surname: Gu fullname: Gu, Xiaoyong – sequence: 2 givenname: Lijing surname: Liu fullname: Liu, Lijing – sequence: 3 givenname: Huawei surname: Zhang fullname: Zhang, Huawei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34927134$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9PFTEUxRuDEUQ-gBvzdrqZZ3vbTjsbE0MQSEh0geumf27HknkttvNI_PbO44EBE1Ztes_9ndt73pKDXDIS8p7RNed6-BxHxLAGCmytqeRMvSJH0CveccGHgyf3Q3LS2g2lFCQD4PCGHHIxgGJcHJGP19XmNmLGLlbE1TnmssHVWUhzyuMq5dWPyea5vSOvo50anjycx-Tnt7Pr04vu6vv55enXq84vI8wdDEEtw0mOTgDTQnJlqQZLe7BO2yCDi9J77ZANLGh0YaARbGRWKEql58fkcs8Nxd6Y25o2tv4xxSZz_1DqaGydk5_QRHDBMcqidMs3OdUCIgXVMx9QgZQL68uedbt1Gwwe81zt9Az6vJLTLzOWO6N7pXu6A3x6ANTye4ttNpvUPE7LRrBsm4GeARX9IMUi_fDU65_J46YXgdoLfC2tVYzGp9nOqeys02QYNbtYzX2sZher2ce6dLL_Oh_hL_f8BSIIpEI |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e41135 crossref_primary_10_1007_s10681_024_03413_3 crossref_primary_10_1186_s12284_023_00652_1 crossref_primary_10_17660_ActaHortic_2023_1362_7 crossref_primary_10_3389_fgeed_2023_1247815 crossref_primary_10_1007_s10142_024_01480_2 crossref_primary_10_3389_fgene_2024_1382445 crossref_primary_10_1093_bib_bbac485 crossref_primary_10_3389_fpls_2022_1051991 crossref_primary_10_1007_s00425_023_04303_z crossref_primary_10_3389_fgeed_2022_1064103 crossref_primary_10_3390_molecules28020866 crossref_primary_10_3390_plants13040541 crossref_primary_10_3390_plants11101297 crossref_primary_10_1016_j_isci_2024_109053 crossref_primary_10_1093_plphys_kiae526 crossref_primary_10_3389_fgeed_2022_1085023 crossref_primary_10_1111_tpj_16870 crossref_primary_10_1007_s13237_023_00462_2 crossref_primary_10_1093_jxb_erae189 crossref_primary_10_3390_ijms23158501 crossref_primary_10_1360_TB_2022_0197 crossref_primary_10_3390_ijms241511920 crossref_primary_10_1079_cabireviews_2023_0008 crossref_primary_10_1111_jipb_13381 crossref_primary_10_1007_s10142_024_01405_z crossref_primary_10_3389_fpls_2023_1157678 crossref_primary_10_3389_fnut_2022_1043655 crossref_primary_10_1042_BST20230532 |
Cites_doi | 10.1038/nrd.2016.280 10.1073/pnas.1420294112 10.1111/pbi.12870 10.1016/j.cell.2015.09.038 10.1111/j.1467-7652.2010.00509.x 10.1073/pnas.89.1.33 10.1007/s11103-006-0058-z 10.1111/pbi.12788 10.1038/ncomms12617 10.3390/ijms21176240 10.1038/nbt.3680 10.1038/s41477-020-0704-5 10.1038/ncomms14261 10.1007/s11248-019-00136-3 10.1016/j.tibtech.2013.04.004 10.1105/tpc.105.038240 10.1146/annurev-biophys-062215-010822 10.1093/oxfordjournals.pcp.a028989 10.1111/tpj.15197 10.1007/978-1-62703-986-4_7 10.1146/annurev-arplant-050718-100049 10.1038/nbt.3389 10.1007/s00299-016-1937-7 10.1038/ncomms13274 10.1038/nplants.2014.11 10.1371/journal.ppat.1005223 10.1038/nplants.2017.107 10.1126/science.1144958 10.1105/tpc.16.00196 10.1146/annurev.pp.43.060192.002523 10.1007/s11103-018-0709-x 10.1038/nrc1074 10.1007/s11033-020-06001-5 10.1038/s41587-019-0038-x 10.1038/mtna.2015.37 10.1016/j.molp.2018.05.005 10.1111/j.1574-6968.1998.tb13205.x 10.1016/j.jplph.2021.153411 10.1093/plphys/kiab356 10.1104/pp.16.00663 10.1038/s41477-019-0386-z 10.1016/j.plantsci.2009.04.006 10.1111/tpj.12338 10.1038/s41580-020-00288-9 10.3389/fpls.2021.630396 10.1038/s41438-018-0023-4 10.1105/tpc.111.093211 10.1016/j.cell.2021.01.005 10.1038/347737a0 10.1016/j.rsci.2018.11.001 10.1111/nph.13015 10.1007/s00122-012-1895-6 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Gu, Liu and Zhang. Copyright © 2021 Gu, Liu and Zhang. 2021 Gu, Liu and Zhang |
Copyright_xml | – notice: Copyright © 2021 Gu, Liu and Zhang. – notice: Copyright © 2021 Gu, Liu and Zhang. 2021 Gu, Liu and Zhang |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fgeed.2021.805317 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Gu et al |
EISSN | 2673-3439 |
ExternalDocumentID | oai_doaj_org_article_f2bdb101f5b34330842f02761cde7255 PMC8678605 34927134 10_3389_fgeed_2021_805317 |
Genre | Journal Article Review |
GroupedDBID | 9T4 AAFWJ AAYXX ACXDI AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 PGMZT RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c531t-29d738953eb42184537a082a062ab8ad5dbf5cc8be191d8ebd90f2af1a47005c3 |
IEDL.DBID | DOA |
ISSN | 2673-3439 |
IngestDate | Wed Aug 27 01:31:31 EDT 2025 Thu Aug 21 18:26:59 EDT 2025 Thu Sep 04 18:48:23 EDT 2025 Thu Jan 02 22:55:25 EST 2025 Tue Jul 01 02:27:03 EDT 2025 Thu Apr 24 23:09:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | genome editing CRISPR/Cas9 editor delivery transgene-free transgene integration |
Language | English |
License | Copyright © 2021 Gu, Liu and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-29d738953eb42184537a082a062ab8ad5dbf5cc8be191d8ebd90f2af1a47005c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Genome Editing in Plants, a section of the journal Frontiers in Genome Editing Edited by: Bing Yang, University of Missouri, United States Reviewed by: Kabin Xie, Huazhong Agricultural University, China |
OpenAccessLink | https://doaj.org/article/f2bdb101f5b34330842f02761cde7255 |
PMID | 34927134 |
PQID | 2612046954 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f2bdb101f5b34330842f02761cde7255 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8678605 proquest_miscellaneous_2612046954 pubmed_primary_34927134 crossref_citationtrail_10_3389_fgeed_2021_805317 crossref_primary_10_3389_fgeed_2021_805317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-02 |
PublicationDateYYYYMMDD | 2021-12-02 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in genome editing |
PublicationTitleAlternate | Front Genome Ed |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Svitashev (B34) 2016; 7 He (B11) 2018; 11 Yin (B47); 3 Zetsche (B48) 2015; 163 Altpeter (B1) 2016; 28 Kong (B18) 2021; 187 Woo (B42) 2015; 33 Anjanappa (B2) 2021; 261 Subburaj (B32) 2016; 35 Ma (B23) 2020; 6 Wang (B40) 2015; 11 Kelliher (B16) 2019; 37 Kim (B17) 2016; 34 Jones (B14) 2015; 1 Tiraby (B36) 1998; 167 Chen (B5) 2018; 5 Jiang (B13) 2017; 46 Zhang (B51) 2016; 7 Xi (B43) 2010; 8 Toda (B37) 2019; 5 Gao (B8) 2021; 184 Yin (B46); 16 Puchta (B29) 2014; 78 Longley (B21) 2003; 3 Sun (B33) 1996; 37 Wang (B39) 2009; 177 He (B10) 2019; 26 Mullen (B25) 1992; 89 Xie (B44) 2015; 112 Chen (B4) 2019; 70 Takemoto (B35) 2014; 1127 Boch (B3) 2014; 204 Dawson (B6) 1992; 43 Römer (B30) 2007; 318 Lin (B20) 2018; 16 Liang (B19) 2017; 8 Yang (B45) 2012; 125 Gaj (B7) 2013; 31 Lu (B22) 2017; 15 Gao (B9) 2016; 171 Hu (B12) 2012; 24 Stuttmann (B31) 2021; 106 Zhang (B49) 2018; 96 Turnbull (B38) 2021; 12 Zhu (B52) 2020; 21 Zhang (B50) 2015; 4 Mariani (B24) 1990; 347 Park (B28) 2019; 28 Ozyigit (B26) 2020; 47 Kantor (B15) 2020; 21 Pan (B27) 2006; 61 Wang (B41) 2006; 18 |
References_xml | – volume: 16 start-page: 387 ident: B46 article-title: Delivery Technologies for Genome Editing publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.280 – volume: 112 start-page: 3570 year: 2015 ident: B44 article-title: Boosting CRISPR/Cas9 Multiplex Editing Capability with the Endogenous tRNA-Processing System publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1420294112 – volume: 16 start-page: 1295 year: 2018 ident: B20 article-title: Application of Protoplast Technology to CRISPR/Cas9 Mutagenesis: from Single-Cell Mutation Detection to Mutant Plant Regeneration publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12870 – volume: 163 start-page: 759 year: 2015 ident: B48 article-title: Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 8 start-page: 796 year: 2010 ident: B43 article-title: Seed-specific Overexpression of Antioxidant Genes in Arabidopsis Enhances Oxidative Stress Tolerance during Germination and Early Seedling Growth publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2010.00509.x – volume: 89 start-page: 33 year: 1992 ident: B25 article-title: Transfer of the Bacterial Gene for Cytosine Deaminase to Mammalian Cells Confers Lethal Sensitivity to 5-fluorocytosine: a Negative Selection System publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.89.1.33 – volume: 61 start-page: 933 year: 2006 ident: B27 article-title: Map-based Cloning of a Novel rice Cytochrome P450 Gene CYP81A6 that Confers Resistance to Two Different Classes of Herbicides publication-title: Plant Mol. Biol. doi: 10.1007/s11103-006-0058-z – volume: 15 start-page: 1371 year: 2017 ident: B22 article-title: CRISPR-S: an Active Interference Element for a Rapid and Inexpensive Selection of Genome-Edited, Transgene-free rice Plants publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12788 – volume: 7 start-page: 12617 year: 2016 ident: B51 article-title: Efficient and Transgene-free Genome Editing in Wheat through Transient Expression of CRISPR/Cas9 DNA or RNA publication-title: Nat. Commun. doi: 10.1038/ncomms12617 – volume: 21 year: 2020 ident: B15 article-title: CRISPR-Cas9 DNA Base-Editing and Prime-Editing publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21176240 – volume: 34 start-page: 1014 year: 2016 ident: B17 article-title: Bypassing GMO Regulations with CRISPR Gene Editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3680 – volume: 6 start-page: 773 year: 2020 ident: B23 article-title: Highly Efficient DNA-free Plant Genome Editing Using Virally Delivered CRISPR-Cas9 publication-title: Nat. Plants doi: 10.1038/s41477-020-0704-5 – volume: 8 start-page: 14261 year: 2017 ident: B19 article-title: Efficient DNA-free Genome Editing of Bread Wheat Using CRISPR/Cas9 Ribonucleoprotein Complexes publication-title: Nat. Commun. doi: 10.1038/ncomms14261 – volume: 28 start-page: 61 year: 2019 ident: B28 article-title: DNA-free Genome Editing with Preassembled CRISPR/Cas9 Ribonucleoproteins in Plants publication-title: Transgenic Res. doi: 10.1007/s11248-019-00136-3 – volume: 31 start-page: 397 year: 2013 ident: B7 article-title: ZFN, TALEN, and CRISPR/Cas-based Methods for Genome Engineering publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2013.04.004 – volume: 18 start-page: 676 year: 2006 ident: B41 article-title: Cytoplasmic Male Sterility of rice with Boro II Cytoplasm Is Caused by a Cytotoxic Peptide and Is Restored by Two Related PPR Motif Genes via Distinct Modes of mRNA Silencing publication-title: Plant Cell doi: 10.1105/tpc.105.038240 – volume: 46 start-page: 505 year: 2017 ident: B13 article-title: CRISPR-Cas9 Structures and Mechanisms publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-062215-010822 – volume: 37 start-page: 612 year: 1996 ident: B33 article-title: Rice Embryo Globulins: Amino-Terminal Amino Acid Sequences, cDNA Cloning and Expression publication-title: Plant Cel Physiol. doi: 10.1093/oxfordjournals.pcp.a028989 – volume: 106 start-page: 8 year: 2021 ident: B31 article-title: Highly Efficient Multiplex Editing: One‐shot Generation of 8× Nicotiana Benthamiana and 12× Arabidopsis Mutants publication-title: Plant J. doi: 10.1111/tpj.15197 – volume: 1127 start-page: 91 year: 2014 ident: B35 article-title: Particle Bombardment-Mediated Transient Expression to Identify Localization Signals in Plant Disease Resistance Proteins and Target Sites for the Proteolytic Activity of Pathogen Effectors publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-986-4_7 – volume: 70 start-page: 667 year: 2019 ident: B4 article-title: CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-100049 – volume: 33 start-page: 1162 year: 2015 ident: B42 article-title: DNA-free Genome Editing in Plants with Preassembled CRISPR-Cas9 Ribonucleoproteins publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3389 – volume: 35 start-page: 1535 year: 2016 ident: B32 article-title: Site-directed Mutagenesis in Petunia × Hybrida Protoplast System Using Direct Delivery of Purified Recombinant Cas9 Ribonucleoproteins publication-title: Plant Cel Rep doi: 10.1007/s00299-016-1937-7 – volume: 7 start-page: 13274 year: 2016 ident: B34 article-title: Genome Editing in maize Directed by CRISPR-Cas9 Ribonucleoprotein Complexes publication-title: Nat. Commun. doi: 10.1038/ncomms13274 – volume: 1 start-page: 14011 year: 2015 ident: B14 article-title: Regulatory Uncertainty over Genome Editing publication-title: Nat. Plants doi: 10.1038/nplants.2014.11 – volume: 11 start-page: e1005223 year: 2015 ident: B40 article-title: Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis publication-title: Plos Pathog. doi: 10.1371/journal.ppat.1005223 – volume: 3 start-page: 17107 ident: B47 article-title: Progress and Prospects in Plant Genome Editing publication-title: Nat. Plants doi: 10.1038/nplants.2017.107 – volume: 318 start-page: 645 year: 2007 ident: B30 article-title: Plant Pathogen Recognition Mediated by Promoter Activation of the Pepper Bs3 Resistance Gene publication-title: Science doi: 10.1126/science.1144958 – volume: 28 start-page: 1510 year: 2016 ident: B1 article-title: Advancing Crop Transformation in the Era of Genome Editing publication-title: Plant Cell doi: 10.1105/tpc.16.00196 – volume: 43 start-page: 527 year: 1992 ident: B6 article-title: Host-Range Determinants of Plant Viruses publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.pp.43.060192.002523 – volume: 96 start-page: 445 year: 2018 ident: B49 article-title: Potential High-Frequency Off-Target Mutagenesis Induced by CRISPR/Cas9 in Arabidopsis and its Prevention publication-title: Plant Mol. Biol. doi: 10.1007/s11103-018-0709-x – volume: 3 start-page: 330 year: 2003 ident: B21 article-title: 5-fluorouracil: Mechanisms of Action and Clinical Strategies publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1074 – volume: 47 start-page: 9831 year: 2020 ident: B26 article-title: Particle Bombardment Technology and its Applications in Plants publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-020-06001-5 – volume: 37 start-page: 287 year: 2019 ident: B16 article-title: One-step Genome Editing of Elite Crop Germplasm during Haploid Induction publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0038-x – volume: 4 start-page: e264 year: 2015 ident: B50 article-title: Off-target Effects in CRISPR/Cas9-mediated Genome Engineering publication-title: Mol. Ther. - Nucleic Acids doi: 10.1038/mtna.2015.37 – volume: 11 start-page: 1210 year: 2018 ident: B11 article-title: Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-free Rice Plants publication-title: Mol. Plant doi: 10.1016/j.molp.2018.05.005 – volume: 167 start-page: 41 year: 1998 ident: B36 article-title: Concomitant Expression ofE. Colicytosine Deaminase and Uracil Phosphoribosyltransferase Improves the Cytotoxicity of 5-fluorocytosine publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1998.tb13205.x – volume: 261 start-page: 153411 year: 2021 ident: B2 article-title: Current Progress and Challenges in Crop Genetic Transformation publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2021.153411 – volume: 187 start-page: 758 year: 2021 ident: B18 article-title: GLABRA2-based Selection Efficiently Enriches Cas9-Generated Nonchimeric Mutants in the T1 Generation publication-title: Plant Physiol. doi: 10.1093/plphys/kiab356 – volume: 171 start-page: 1794 year: 2016 ident: B9 article-title: An Effective Strategy for Reliably Isolating Heritable and Cas9-free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing publication-title: Plant Physiol. doi: 10.1104/pp.16.00663 – volume: 5 start-page: 363 year: 2019 ident: B37 article-title: An Efficient DNA- and Selectable-marker-free Genome-Editing System Using Zygotes in rice publication-title: Nat. Plants doi: 10.1038/s41477-019-0386-z – volume: 177 start-page: 222 year: 2009 ident: B39 article-title: The Effect of Pds Gene Silencing on Chloroplast Pigment Composition, Thylakoid Membrane Structure and Photosynthesis Efficiency in Tobacco Plants publication-title: Plant Sci. doi: 10.1016/j.plantsci.2009.04.006 – volume: 78 start-page: 727 year: 2014 ident: B29 article-title: Synthetic Nucleases for Genome Engineering in Plants: Prospects for a Bright Future publication-title: Plant J. doi: 10.1111/tpj.12338 – volume: 21 start-page: 661 year: 2020 ident: B52 article-title: Applications of CRISPR-Cas in Agriculture and Plant Biotechnology publication-title: Nat. Rev. Mol. Cel Biol doi: 10.1038/s41580-020-00288-9 – volume: 12 start-page: 630396 year: 2021 ident: B38 article-title: Global Regulation of Genetically Modified Crops amid the Gene Edited Crop Boom - A Review publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.630396 – volume: 5 start-page: 13 year: 2018 ident: B5 article-title: A Method for the Production and Expedient Screening of CRISPR/Cas9-mediated Non-transgenic Mutant Plants publication-title: Hortic. Res. doi: 10.1038/s41438-018-0023-4 – volume: 24 start-page: 109 year: 2012 ident: B12 article-title: The Rice Pentatricopeptide Repeat Protein RF5 Restores Fertility in Hong-Lian Cytoplasmic Male-Sterile Lines via a Complex with the Glycine-Rich Protein GRP162 publication-title: Plant Cell doi: 10.1105/tpc.111.093211 – volume: 184 start-page: 1621 year: 2021 ident: B8 article-title: Genome Engineering for Crop Improvement and Future Agriculture publication-title: Cell doi: 10.1016/j.cell.2021.01.005 – volume: 347 start-page: 737 year: 1990 ident: B24 article-title: Induction of Male Sterility in Plants by a Chimaeric Ribonuclease Gene publication-title: Nature doi: 10.1038/347737a0 – volume: 26 start-page: 109 year: 2019 ident: B10 article-title: Improvements of TKC Technology Accelerate Isolation of Transgene-free CRISPR/Cas9-Edited Rice Plants publication-title: Rice Sci. doi: 10.1016/j.rsci.2018.11.001 – volume: 204 start-page: 823 year: 2014 ident: B3 article-title: TAL Effectors - Pathogen Strategies and Plant Resistance Engineering publication-title: New Phytol. doi: 10.1111/nph.13015 – volume: 125 start-page: 1057 year: 2012 ident: B45 article-title: SNP Identification and Allelic-specific PCR Markers Development for TaGW2, a Gene Linked to Wheat Kernel Weight publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-012-1895-6 |
SSID | ssj0002512232 |
Score | 2.3650084 |
SecondaryResourceType | review_article |
Snippet | Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 805317 |
SubjectTerms | CRISPR/Cas9 editor delivery Genome Editing transgene integration transgene-free |
Title | Transgene-free Genome Editing in Plants |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34927134 https://www.proquest.com/docview/2612046954 https://pubmed.ncbi.nlm.nih.gov/PMC8678605 https://doaj.org/article/f2bdb101f5b34330842f02761cde7255 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA4iCL6UqtVu1WOFQqGw3m5-bLKPKqdSaJ8q3FtINpP2oN0TPR_63zuTPY9bkfriazbLDt9MMvMlszOMffYRhABdFzzWvpBOyMJUoi6U5iZSzmJIZ7rff9TXN_LbVE3XWn1RTlhfHrgHbhy5Dx7tJiovJJJvI3lEKlVXbQCN8TDtvmVTrpEp2oPJa2Os0F9jIgtrxvEXegPkg7w6NWR4euCIUr3-l4LM57mSa87n8j17t4wa87Ne2h22Ad0u2-r7SP7bY1-Sx0FTgCLeAeRX0M3_Qj4JM0pqzmddTr2JFvcf2M3l5OfFdbHsgFC0KOKi4E3QKLwS4CVxMSW0Q5_typo7b1xQwUfVtsYD0q5gwIemjNzFykmNy6sV-2yzm3fwkeUYtglwLjhpStk67x2NSA2uVlE1PmPlExy2XZYHpy4VfyzSBELQJgQtIWh7BDP2dfXKbV8b43-Tzwnj1UQqa50GUNl2qWz7mrIzdvKkIYvLgO42XAfzh3tLldCI6iuZsYNeY6tPUQFG-mU2Y3qgy4Eswyfd7HcqtW3QlyPh-_QWwh-ybcIj5cLwI7a5uHuAY4xoFn6UjHeUjpoeAafg8fo |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transgene-free+Genome+Editing+in+Plants&rft.jtitle=Frontiers+in+genome+editing&rft.au=Gu%2C+Xiaoyong&rft.au=Liu%2C+Lijing&rft.au=Zhang%2C+Huawei&rft.date=2021-12-02&rft.eissn=2673-3439&rft.volume=3&rft.spage=805317&rft_id=info:doi/10.3389%2Ffgeed.2021.805317&rft_id=info%3Apmid%2F34927134&rft.externalDocID=34927134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-3439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-3439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-3439&client=summon |