Transgene-free Genome Editing in Plants

Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to r...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in genome editing Vol. 3; p. 805317
Main Authors Gu, Xiaoyong, Liu, Lijing, Zhang, Huawei
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 02.12.2021
Subjects
Online AccessGet full text
ISSN2673-3439
2673-3439
DOI10.3389/fgeed.2021.805317

Cover

Abstract Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to remove or prevent the integration of gene editor constructs, which can be divided into three major categories: 1) elimination of transgenic sequences via genetic segregation; 2) transient editor expression from DNA vectors; and 3) DNA-independent editor delivery, including RNA or preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs). Here, we summarize the main strategies employed to date and discuss the advantages and disadvantages of using these different tools. We hope that our work can provide important information concerning the value of alternative genome editing strategies to advance crop breeding.
AbstractList Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to remove or prevent the integration of gene editor constructs, which can be divided into three major categories: 1) elimination of transgenic sequences via genetic segregation; 2) transient editor expression from DNA vectors; and 3) DNA-independent editor delivery, including RNA or preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs). Here, we summarize the main strategies employed to date and discuss the advantages and disadvantages of using these different tools. We hope that our work can provide important information concerning the value of alternative genome editing strategies to advance crop breeding.
Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to remove or prevent the integration of gene editor constructs, which can be divided into three major categories: 1) elimination of transgenic sequences via genetic segregation; 2) transient editor expression from DNA vectors; and 3) DNA-independent editor delivery, including RNA or preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs). Here, we summarize the main strategies employed to date and discuss the advantages and disadvantages of using these different tools. We hope that our work can provide important information concerning the value of alternative genome editing strategies to advance crop breeding.Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to remove or prevent the integration of gene editor constructs, which can be divided into three major categories: 1) elimination of transgenic sequences via genetic segregation; 2) transient editor expression from DNA vectors; and 3) DNA-independent editor delivery, including RNA or preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs). Here, we summarize the main strategies employed to date and discuss the advantages and disadvantages of using these different tools. We hope that our work can provide important information concerning the value of alternative genome editing strategies to advance crop breeding.
Author Gu, Xiaoyong
Liu, Lijing
Zhang, Huawei
AuthorAffiliation 2 Institute of Advanced Agricultural Science, Peking University, Weifang , China
1 The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao , China
AuthorAffiliation_xml – name: 2 Institute of Advanced Agricultural Science, Peking University, Weifang , China
– name: 1 The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao , China
Author_xml – sequence: 1
  givenname: Xiaoyong
  surname: Gu
  fullname: Gu, Xiaoyong
– sequence: 2
  givenname: Lijing
  surname: Liu
  fullname: Liu, Lijing
– sequence: 3
  givenname: Huawei
  surname: Zhang
  fullname: Zhang, Huawei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34927134$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9PFTEUxRuDEUQ-gBvzdrqZZ3vbTjsbE0MQSEh0geumf27HknkttvNI_PbO44EBE1Ztes_9ndt73pKDXDIS8p7RNed6-BxHxLAGCmytqeRMvSJH0CveccGHgyf3Q3LS2g2lFCQD4PCGHHIxgGJcHJGP19XmNmLGLlbE1TnmssHVWUhzyuMq5dWPyea5vSOvo50anjycx-Tnt7Pr04vu6vv55enXq84vI8wdDEEtw0mOTgDTQnJlqQZLe7BO2yCDi9J77ZANLGh0YaARbGRWKEql58fkcs8Nxd6Y25o2tv4xxSZz_1DqaGydk5_QRHDBMcqidMs3OdUCIgXVMx9QgZQL68uedbt1Gwwe81zt9Az6vJLTLzOWO6N7pXu6A3x6ANTye4ttNpvUPE7LRrBsm4GeARX9IMUi_fDU65_J46YXgdoLfC2tVYzGp9nOqeys02QYNbtYzX2sZher2ce6dLL_Oh_hL_f8BSIIpEI
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e41135
crossref_primary_10_1007_s10681_024_03413_3
crossref_primary_10_1186_s12284_023_00652_1
crossref_primary_10_17660_ActaHortic_2023_1362_7
crossref_primary_10_3389_fgeed_2023_1247815
crossref_primary_10_1007_s10142_024_01480_2
crossref_primary_10_3389_fgene_2024_1382445
crossref_primary_10_1093_bib_bbac485
crossref_primary_10_3389_fpls_2022_1051991
crossref_primary_10_1007_s00425_023_04303_z
crossref_primary_10_3389_fgeed_2022_1064103
crossref_primary_10_3390_molecules28020866
crossref_primary_10_3390_plants13040541
crossref_primary_10_3390_plants11101297
crossref_primary_10_1016_j_isci_2024_109053
crossref_primary_10_1093_plphys_kiae526
crossref_primary_10_3389_fgeed_2022_1085023
crossref_primary_10_1111_tpj_16870
crossref_primary_10_1007_s13237_023_00462_2
crossref_primary_10_1093_jxb_erae189
crossref_primary_10_3390_ijms23158501
crossref_primary_10_1360_TB_2022_0197
crossref_primary_10_3390_ijms241511920
crossref_primary_10_1079_cabireviews_2023_0008
crossref_primary_10_1111_jipb_13381
crossref_primary_10_1007_s10142_024_01405_z
crossref_primary_10_3389_fpls_2023_1157678
crossref_primary_10_3389_fnut_2022_1043655
crossref_primary_10_1042_BST20230532
Cites_doi 10.1038/nrd.2016.280
10.1073/pnas.1420294112
10.1111/pbi.12870
10.1016/j.cell.2015.09.038
10.1111/j.1467-7652.2010.00509.x
10.1073/pnas.89.1.33
10.1007/s11103-006-0058-z
10.1111/pbi.12788
10.1038/ncomms12617
10.3390/ijms21176240
10.1038/nbt.3680
10.1038/s41477-020-0704-5
10.1038/ncomms14261
10.1007/s11248-019-00136-3
10.1016/j.tibtech.2013.04.004
10.1105/tpc.105.038240
10.1146/annurev-biophys-062215-010822
10.1093/oxfordjournals.pcp.a028989
10.1111/tpj.15197
10.1007/978-1-62703-986-4_7
10.1146/annurev-arplant-050718-100049
10.1038/nbt.3389
10.1007/s00299-016-1937-7
10.1038/ncomms13274
10.1038/nplants.2014.11
10.1371/journal.ppat.1005223
10.1038/nplants.2017.107
10.1126/science.1144958
10.1105/tpc.16.00196
10.1146/annurev.pp.43.060192.002523
10.1007/s11103-018-0709-x
10.1038/nrc1074
10.1007/s11033-020-06001-5
10.1038/s41587-019-0038-x
10.1038/mtna.2015.37
10.1016/j.molp.2018.05.005
10.1111/j.1574-6968.1998.tb13205.x
10.1016/j.jplph.2021.153411
10.1093/plphys/kiab356
10.1104/pp.16.00663
10.1038/s41477-019-0386-z
10.1016/j.plantsci.2009.04.006
10.1111/tpj.12338
10.1038/s41580-020-00288-9
10.3389/fpls.2021.630396
10.1038/s41438-018-0023-4
10.1105/tpc.111.093211
10.1016/j.cell.2021.01.005
10.1038/347737a0
10.1016/j.rsci.2018.11.001
10.1111/nph.13015
10.1007/s00122-012-1895-6
ContentType Journal Article
Copyright Copyright © 2021 Gu, Liu and Zhang.
Copyright © 2021 Gu, Liu and Zhang. 2021 Gu, Liu and Zhang
Copyright_xml – notice: Copyright © 2021 Gu, Liu and Zhang.
– notice: Copyright © 2021 Gu, Liu and Zhang. 2021 Gu, Liu and Zhang
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fgeed.2021.805317
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Gu et al
EISSN 2673-3439
ExternalDocumentID oai_doaj_org_article_f2bdb101f5b34330842f02761cde7255
PMC8678605
34927134
10_3389_fgeed_2021_805317
Genre Journal Article
Review
GroupedDBID 9T4
AAFWJ
AAYXX
ACXDI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
PGMZT
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c531t-29d738953eb42184537a082a062ab8ad5dbf5cc8be191d8ebd90f2af1a47005c3
IEDL.DBID DOA
ISSN 2673-3439
IngestDate Wed Aug 27 01:31:31 EDT 2025
Thu Aug 21 18:26:59 EDT 2025
Thu Sep 04 18:48:23 EDT 2025
Thu Jan 02 22:55:25 EST 2025
Tue Jul 01 02:27:03 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords genome editing
CRISPR/Cas9
editor delivery
transgene-free
transgene integration
Language English
License Copyright © 2021 Gu, Liu and Zhang.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-29d738953eb42184537a082a062ab8ad5dbf5cc8be191d8ebd90f2af1a47005c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to Genome Editing in Plants, a section of the journal Frontiers in Genome Editing
Edited by: Bing Yang, University of Missouri, United States
Reviewed by: Kabin Xie, Huazhong Agricultural University, China
OpenAccessLink https://doaj.org/article/f2bdb101f5b34330842f02761cde7255
PMID 34927134
PQID 2612046954
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f2bdb101f5b34330842f02761cde7255
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8678605
proquest_miscellaneous_2612046954
pubmed_primary_34927134
crossref_citationtrail_10_3389_fgeed_2021_805317
crossref_primary_10_3389_fgeed_2021_805317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-02
PublicationDateYYYYMMDD 2021-12-02
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-02
  day: 02
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in genome editing
PublicationTitleAlternate Front Genome Ed
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Svitashev (B34) 2016; 7
He (B11) 2018; 11
Yin (B47); 3
Zetsche (B48) 2015; 163
Altpeter (B1) 2016; 28
Kong (B18) 2021; 187
Woo (B42) 2015; 33
Anjanappa (B2) 2021; 261
Subburaj (B32) 2016; 35
Ma (B23) 2020; 6
Wang (B40) 2015; 11
Kelliher (B16) 2019; 37
Kim (B17) 2016; 34
Jones (B14) 2015; 1
Tiraby (B36) 1998; 167
Chen (B5) 2018; 5
Jiang (B13) 2017; 46
Zhang (B51) 2016; 7
Xi (B43) 2010; 8
Toda (B37) 2019; 5
Gao (B8) 2021; 184
Yin (B46); 16
Puchta (B29) 2014; 78
Longley (B21) 2003; 3
Sun (B33) 1996; 37
Wang (B39) 2009; 177
He (B10) 2019; 26
Mullen (B25) 1992; 89
Xie (B44) 2015; 112
Chen (B4) 2019; 70
Takemoto (B35) 2014; 1127
Boch (B3) 2014; 204
Dawson (B6) 1992; 43
Römer (B30) 2007; 318
Lin (B20) 2018; 16
Liang (B19) 2017; 8
Yang (B45) 2012; 125
Gaj (B7) 2013; 31
Lu (B22) 2017; 15
Gao (B9) 2016; 171
Hu (B12) 2012; 24
Stuttmann (B31) 2021; 106
Zhang (B49) 2018; 96
Turnbull (B38) 2021; 12
Zhu (B52) 2020; 21
Zhang (B50) 2015; 4
Mariani (B24) 1990; 347
Park (B28) 2019; 28
Ozyigit (B26) 2020; 47
Kantor (B15) 2020; 21
Pan (B27) 2006; 61
Wang (B41) 2006; 18
References_xml – volume: 16
  start-page: 387
  ident: B46
  article-title: Delivery Technologies for Genome Editing
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2016.280
– volume: 112
  start-page: 3570
  year: 2015
  ident: B44
  article-title: Boosting CRISPR/Cas9 Multiplex Editing Capability with the Endogenous tRNA-Processing System
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1420294112
– volume: 16
  start-page: 1295
  year: 2018
  ident: B20
  article-title: Application of Protoplast Technology to CRISPR/Cas9 Mutagenesis: from Single-Cell Mutation Detection to Mutant Plant Regeneration
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12870
– volume: 163
  start-page: 759
  year: 2015
  ident: B48
  article-title: Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 8
  start-page: 796
  year: 2010
  ident: B43
  article-title: Seed-specific Overexpression of Antioxidant Genes in Arabidopsis Enhances Oxidative Stress Tolerance during Germination and Early Seedling Growth
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2010.00509.x
– volume: 89
  start-page: 33
  year: 1992
  ident: B25
  article-title: Transfer of the Bacterial Gene for Cytosine Deaminase to Mammalian Cells Confers Lethal Sensitivity to 5-fluorocytosine: a Negative Selection System
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.89.1.33
– volume: 61
  start-page: 933
  year: 2006
  ident: B27
  article-title: Map-based Cloning of a Novel rice Cytochrome P450 Gene CYP81A6 that Confers Resistance to Two Different Classes of Herbicides
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-006-0058-z
– volume: 15
  start-page: 1371
  year: 2017
  ident: B22
  article-title: CRISPR-S: an Active Interference Element for a Rapid and Inexpensive Selection of Genome-Edited, Transgene-free rice Plants
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12788
– volume: 7
  start-page: 12617
  year: 2016
  ident: B51
  article-title: Efficient and Transgene-free Genome Editing in Wheat through Transient Expression of CRISPR/Cas9 DNA or RNA
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12617
– volume: 21
  year: 2020
  ident: B15
  article-title: CRISPR-Cas9 DNA Base-Editing and Prime-Editing
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21176240
– volume: 34
  start-page: 1014
  year: 2016
  ident: B17
  article-title: Bypassing GMO Regulations with CRISPR Gene Editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3680
– volume: 6
  start-page: 773
  year: 2020
  ident: B23
  article-title: Highly Efficient DNA-free Plant Genome Editing Using Virally Delivered CRISPR-Cas9
  publication-title: Nat. Plants
  doi: 10.1038/s41477-020-0704-5
– volume: 8
  start-page: 14261
  year: 2017
  ident: B19
  article-title: Efficient DNA-free Genome Editing of Bread Wheat Using CRISPR/Cas9 Ribonucleoprotein Complexes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14261
– volume: 28
  start-page: 61
  year: 2019
  ident: B28
  article-title: DNA-free Genome Editing with Preassembled CRISPR/Cas9 Ribonucleoproteins in Plants
  publication-title: Transgenic Res.
  doi: 10.1007/s11248-019-00136-3
– volume: 31
  start-page: 397
  year: 2013
  ident: B7
  article-title: ZFN, TALEN, and CRISPR/Cas-based Methods for Genome Engineering
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2013.04.004
– volume: 18
  start-page: 676
  year: 2006
  ident: B41
  article-title: Cytoplasmic Male Sterility of rice with Boro II Cytoplasm Is Caused by a Cytotoxic Peptide and Is Restored by Two Related PPR Motif Genes via Distinct Modes of mRNA Silencing
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.038240
– volume: 46
  start-page: 505
  year: 2017
  ident: B13
  article-title: CRISPR-Cas9 Structures and Mechanisms
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-062215-010822
– volume: 37
  start-page: 612
  year: 1996
  ident: B33
  article-title: Rice Embryo Globulins: Amino-Terminal Amino Acid Sequences, cDNA Cloning and Expression
  publication-title: Plant Cel Physiol.
  doi: 10.1093/oxfordjournals.pcp.a028989
– volume: 106
  start-page: 8
  year: 2021
  ident: B31
  article-title: Highly Efficient Multiplex Editing: One‐shot Generation of 8× Nicotiana Benthamiana and 12× Arabidopsis Mutants
  publication-title: Plant J.
  doi: 10.1111/tpj.15197
– volume: 1127
  start-page: 91
  year: 2014
  ident: B35
  article-title: Particle Bombardment-Mediated Transient Expression to Identify Localization Signals in Plant Disease Resistance Proteins and Target Sites for the Proteolytic Activity of Pathogen Effectors
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-986-4_7
– volume: 70
  start-page: 667
  year: 2019
  ident: B4
  article-title: CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050718-100049
– volume: 33
  start-page: 1162
  year: 2015
  ident: B42
  article-title: DNA-free Genome Editing in Plants with Preassembled CRISPR-Cas9 Ribonucleoproteins
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3389
– volume: 35
  start-page: 1535
  year: 2016
  ident: B32
  article-title: Site-directed Mutagenesis in Petunia × Hybrida Protoplast System Using Direct Delivery of Purified Recombinant Cas9 Ribonucleoproteins
  publication-title: Plant Cel Rep
  doi: 10.1007/s00299-016-1937-7
– volume: 7
  start-page: 13274
  year: 2016
  ident: B34
  article-title: Genome Editing in maize Directed by CRISPR-Cas9 Ribonucleoprotein Complexes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13274
– volume: 1
  start-page: 14011
  year: 2015
  ident: B14
  article-title: Regulatory Uncertainty over Genome Editing
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2014.11
– volume: 11
  start-page: e1005223
  year: 2015
  ident: B40
  article-title: Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis
  publication-title: Plos Pathog.
  doi: 10.1371/journal.ppat.1005223
– volume: 3
  start-page: 17107
  ident: B47
  article-title: Progress and Prospects in Plant Genome Editing
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2017.107
– volume: 318
  start-page: 645
  year: 2007
  ident: B30
  article-title: Plant Pathogen Recognition Mediated by Promoter Activation of the Pepper Bs3 Resistance Gene
  publication-title: Science
  doi: 10.1126/science.1144958
– volume: 28
  start-page: 1510
  year: 2016
  ident: B1
  article-title: Advancing Crop Transformation in the Era of Genome Editing
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00196
– volume: 43
  start-page: 527
  year: 1992
  ident: B6
  article-title: Host-Range Determinants of Plant Viruses
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.pp.43.060192.002523
– volume: 96
  start-page: 445
  year: 2018
  ident: B49
  article-title: Potential High-Frequency Off-Target Mutagenesis Induced by CRISPR/Cas9 in Arabidopsis and its Prevention
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-018-0709-x
– volume: 3
  start-page: 330
  year: 2003
  ident: B21
  article-title: 5-fluorouracil: Mechanisms of Action and Clinical Strategies
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1074
– volume: 47
  start-page: 9831
  year: 2020
  ident: B26
  article-title: Particle Bombardment Technology and its Applications in Plants
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-020-06001-5
– volume: 37
  start-page: 287
  year: 2019
  ident: B16
  article-title: One-step Genome Editing of Elite Crop Germplasm during Haploid Induction
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0038-x
– volume: 4
  start-page: e264
  year: 2015
  ident: B50
  article-title: Off-target Effects in CRISPR/Cas9-mediated Genome Engineering
  publication-title: Mol. Ther. - Nucleic Acids
  doi: 10.1038/mtna.2015.37
– volume: 11
  start-page: 1210
  year: 2018
  ident: B11
  article-title: Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-free Rice Plants
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.05.005
– volume: 167
  start-page: 41
  year: 1998
  ident: B36
  article-title: Concomitant Expression ofE. Colicytosine Deaminase and Uracil Phosphoribosyltransferase Improves the Cytotoxicity of 5-fluorocytosine
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1998.tb13205.x
– volume: 261
  start-page: 153411
  year: 2021
  ident: B2
  article-title: Current Progress and Challenges in Crop Genetic Transformation
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2021.153411
– volume: 187
  start-page: 758
  year: 2021
  ident: B18
  article-title: GLABRA2-based Selection Efficiently Enriches Cas9-Generated Nonchimeric Mutants in the T1 Generation
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiab356
– volume: 171
  start-page: 1794
  year: 2016
  ident: B9
  article-title: An Effective Strategy for Reliably Isolating Heritable and Cas9-free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.00663
– volume: 5
  start-page: 363
  year: 2019
  ident: B37
  article-title: An Efficient DNA- and Selectable-marker-free Genome-Editing System Using Zygotes in rice
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0386-z
– volume: 177
  start-page: 222
  year: 2009
  ident: B39
  article-title: The Effect of Pds Gene Silencing on Chloroplast Pigment Composition, Thylakoid Membrane Structure and Photosynthesis Efficiency in Tobacco Plants
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2009.04.006
– volume: 78
  start-page: 727
  year: 2014
  ident: B29
  article-title: Synthetic Nucleases for Genome Engineering in Plants: Prospects for a Bright Future
  publication-title: Plant J.
  doi: 10.1111/tpj.12338
– volume: 21
  start-page: 661
  year: 2020
  ident: B52
  article-title: Applications of CRISPR-Cas in Agriculture and Plant Biotechnology
  publication-title: Nat. Rev. Mol. Cel Biol
  doi: 10.1038/s41580-020-00288-9
– volume: 12
  start-page: 630396
  year: 2021
  ident: B38
  article-title: Global Regulation of Genetically Modified Crops amid the Gene Edited Crop Boom - A Review
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.630396
– volume: 5
  start-page: 13
  year: 2018
  ident: B5
  article-title: A Method for the Production and Expedient Screening of CRISPR/Cas9-mediated Non-transgenic Mutant Plants
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-018-0023-4
– volume: 24
  start-page: 109
  year: 2012
  ident: B12
  article-title: The Rice Pentatricopeptide Repeat Protein RF5 Restores Fertility in Hong-Lian Cytoplasmic Male-Sterile Lines via a Complex with the Glycine-Rich Protein GRP162
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.093211
– volume: 184
  start-page: 1621
  year: 2021
  ident: B8
  article-title: Genome Engineering for Crop Improvement and Future Agriculture
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.005
– volume: 347
  start-page: 737
  year: 1990
  ident: B24
  article-title: Induction of Male Sterility in Plants by a Chimaeric Ribonuclease Gene
  publication-title: Nature
  doi: 10.1038/347737a0
– volume: 26
  start-page: 109
  year: 2019
  ident: B10
  article-title: Improvements of TKC Technology Accelerate Isolation of Transgene-free CRISPR/Cas9-Edited Rice Plants
  publication-title: Rice Sci.
  doi: 10.1016/j.rsci.2018.11.001
– volume: 204
  start-page: 823
  year: 2014
  ident: B3
  article-title: TAL Effectors - Pathogen Strategies and Plant Resistance Engineering
  publication-title: New Phytol.
  doi: 10.1111/nph.13015
– volume: 125
  start-page: 1057
  year: 2012
  ident: B45
  article-title: SNP Identification and Allelic-specific PCR Markers Development for TaGW2, a Gene Linked to Wheat Kernel Weight
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-012-1895-6
SSID ssj0002512232
Score 2.3650084
SecondaryResourceType review_article
Snippet Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 805317
SubjectTerms CRISPR/Cas9
editor delivery
Genome Editing
transgene integration
transgene-free
Title Transgene-free Genome Editing in Plants
URI https://www.ncbi.nlm.nih.gov/pubmed/34927134
https://www.proquest.com/docview/2612046954
https://pubmed.ncbi.nlm.nih.gov/PMC8678605
https://doaj.org/article/f2bdb101f5b34330842f02761cde7255
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA4iCL6UqtVu1WOFQqGw3m5-bLKPKqdSaJ8q3FtINpP2oN0TPR_63zuTPY9bkfriazbLDt9MMvMlszOMffYRhABdFzzWvpBOyMJUoi6U5iZSzmJIZ7rff9TXN_LbVE3XWn1RTlhfHrgHbhy5Dx7tJiovJJJvI3lEKlVXbQCN8TDtvmVTrpEp2oPJa2Os0F9jIgtrxvEXegPkg7w6NWR4euCIUr3-l4LM57mSa87n8j17t4wa87Ne2h22Ad0u2-r7SP7bY1-Sx0FTgCLeAeRX0M3_Qj4JM0pqzmddTr2JFvcf2M3l5OfFdbHsgFC0KOKi4E3QKLwS4CVxMSW0Q5_typo7b1xQwUfVtsYD0q5gwIemjNzFykmNy6sV-2yzm3fwkeUYtglwLjhpStk67x2NSA2uVlE1PmPlExy2XZYHpy4VfyzSBELQJgQtIWh7BDP2dfXKbV8b43-Tzwnj1UQqa50GUNl2qWz7mrIzdvKkIYvLgO42XAfzh3tLldCI6iuZsYNeY6tPUQFG-mU2Y3qgy4Eswyfd7HcqtW3QlyPh-_QWwh-ybcIj5cLwI7a5uHuAY4xoFn6UjHeUjpoeAafg8fo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transgene-free+Genome+Editing+in+Plants&rft.jtitle=Frontiers+in+genome+editing&rft.au=Gu%2C+Xiaoyong&rft.au=Liu%2C+Lijing&rft.au=Zhang%2C+Huawei&rft.date=2021-12-02&rft.eissn=2673-3439&rft.volume=3&rft.spage=805317&rft_id=info:doi/10.3389%2Ffgeed.2021.805317&rft_id=info%3Apmid%2F34927134&rft.externalDocID=34927134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-3439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-3439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-3439&client=summon