A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

Identification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight compl...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 67; no. 7; pp. 1414 - 1427
Main Authors van Zuydam, Natalie R., Ahlqvist, Emma, Sandholm, Niina, Deshmukh, Harshal, Rayner, N. William, Abdalla, Moustafa, Ladenvall, Claes, Ziemek, Daniel, Fauman, Eric, Robertson, Neil R., McKeigue, Paul M., Valo, Erkka, Forsblom, Carol, Harjutsalo, Valma, Perna, Annalisa, Rurali, Erica, Marcovecchio, M. Loredana, Igo, Robert P., Salem, Rany M., Perico, Norberto, Lajer, Maria, Käräjämäki, Annemari, Imamura, Minako, Kubo, Michiaki, Takahashi, Atsushi, Sim, Xueling, Liu, Jianjun, van Dam, Rob M., Jiang, Guozhi, Tam, Claudia H.T., Luk, Andrea O.Y., Lee, Heung Man, Lim, Cadmon K.P., Szeto, Cheuk Chun, So, Wing Yee, Chan, Juliana C.N., Ang, Su Fen, Dorajoo, Rajkumar, Wang, Ling, Clara, Tan Si Hua, McKnight, Amy-Jayne, Duffy, Seamus, Pezzolesi, Marcus G., Marre, Michel, Gyorgy, Beata, Hadjadj, Samy, Hiraki, Linda T., Ahluwalia, Tarunveer S., Almgren, Peter, Schulz, Christina-Alexandra, Orho-Melander, Marju, Linneberg, Allan, Christensen, Cramer, Witte, Daniel R., Grarup, Niels, Brandslund, Ivan, Melander, Olle, Paterson, Andrew D., Tregouet, David, Maxwell, Alexander P., Lim, Su Chi, Ma, Ronald C.W., Tai, E Shyong, Maeda, Shiro, Lyssenko, Valeriya, Tuomi, Tiinamaija, Krolewski, Andrzej S., Rich, Stephen S., Hirschhorn, Joel N., Florez, Jose C., Dunger, David, Pedersen, Oluf, Hansen, Torben, Rossing, Peter, Remuzzi, Giuseppe, Brosnan, Mary Julia, Palmer, Colin N.A., Groop, Per-Henrik, Colhoun, Helen M., Groop, Leif C., McCarthy, Mark I., Koivula, S., Uggeldahl, T., Forslund, T., Halonen, A., Koistinen, A., Koskiaho, P., Laukkanen, M., Saltevo, J., Tiihonen, M., Forsen, M., Granlund, H., Jonsson, A.-C., Nyroos, B., Kinnunen, P., Orvola, A., Salonen, T., Vähänen, A., Paldanius, Kotka R., Riihelä, M.
Format Journal Article
LanguageEnglish
Published United States American Diabetes Association 01.07.2018
Subjects
Online AccessGet full text
ISSN0012-1797
1939-327X
1939-327X
DOI10.2337/db17-0914

Cover

More Information
Summary:Identification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 × 10−8) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0012-1797
1939-327X
1939-327X
DOI:10.2337/db17-0914