Spinal and supraspinal processing of thermal stimuli: An fMRI study

Purpose To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI). Materials and Methods Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpain...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 41; no. 4; pp. 1046 - 1055
Main Authors Rempe, Torge, Wolff, Stephan, Riedel, Christian, Baron, Ralf, Stroman, Patrick W., Jansen, Olav, Gierthmühlen, Janne
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.04.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.24627

Cover

Abstract Purpose To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI). Materials and Methods Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single‐shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm). Results Increased activity was observed in ipsi‐ and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P < 0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R = 0.52–0.98, P < 0.05). Conclusion Spinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046–1055. © 2014 Wiley Periodicals, Inc.
AbstractList Purpose To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI). Materials and Methods Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single‐shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm). Results Increased activity was observed in ipsi‐ and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P < 0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R = 0.52–0.98, P < 0.05). Conclusion Spinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046–1055. © 2014 Wiley Periodicals, Inc.
To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI).PURPOSETo assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI).Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single-shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm).MATERIALS AND METHODSSpinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single-shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm).Increased activity was observed in ipsi- and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P < 0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R = 0.52-0.98, P < 0.05).RESULTSIncreased activity was observed in ipsi- and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P < 0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R = 0.52-0.98, P < 0.05).Spinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046-1055. © 2014 Wiley Periodicals, Inc.CONCLUSIONSpinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046-1055. © 2014 Wiley Periodicals, Inc.
To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI). Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single-shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm). Increased activity was observed in ipsi- and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P < 0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R = 0.52-0.98, P < 0.05). Spinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046-1055. © 2014 Wiley Periodicals, Inc.
Purpose To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI). Materials and Methods Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single-shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm). Results Increased activity was observed in ipsi- and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P<0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R=0.52-0.98, P<0.05). Conclusion Spinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046-1055. © 2014 Wiley Periodicals, Inc.
Author Jansen, Olav
Wolff, Stephan
Gierthmühlen, Janne
Riedel, Christian
Stroman, Patrick W.
Rempe, Torge
Baron, Ralf
Author_xml – sequence: 1
  givenname: Torge
  surname: Rempe
  fullname: Rempe, Torge
  organization: Department of Neuroradiology, University Hospital of Kiel, Kiel, Germany
– sequence: 2
  givenname: Stephan
  surname: Wolff
  fullname: Wolff, Stephan
  organization: Department of Neuroradiology, University Hospital of Kiel, Kiel, Germany
– sequence: 3
  givenname: Christian
  surname: Riedel
  fullname: Riedel, Christian
  organization: Department of Neuroradiology, University Hospital of Kiel, Kiel, Germany
– sequence: 4
  givenname: Ralf
  surname: Baron
  fullname: Baron, Ralf
  organization: Department of Neurology, University Hospital of Kiel, Kiel, Germany
– sequence: 5
  givenname: Patrick W.
  surname: Stroman
  fullname: Stroman, Patrick W.
  organization: Centre for Neuroscience Studies, Department of Diagnostic Radiology, Department of Physics, Queen's University, Ontario, Kingston, Canada
– sequence: 6
  givenname: Olav
  surname: Jansen
  fullname: Jansen, Olav
  organization: Department of Neuroradiology, University Hospital of Kiel, Kiel, Germany
– sequence: 7
  givenname: Janne
  surname: Gierthmühlen
  fullname: Gierthmühlen, Janne
  email: j.gierthmuehlen@neurologie.uni-kiel.de
  organization: Department of Neuroradiology, University Hospital of Kiel, Kiel, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24737401$$D View this record in MEDLINE/PubMed
BookMark eNp9kElLAzEYhoMo7hd_gAx4EWFq9pl4K8WtuIAreAnpTKKps9RkBu2_N-1oD0U8JXl53o8vzxZYrepKA7CHYA9BiI_HpbM9TDlOVsAmYhjHmKV8NdwhIzFKYbIBtrwfQwiFoGwdbGCakIRCtAkG9xNbqSJSVR75duKU794TV2fae1u9RrWJmjftypD6xpZtYU-ifhWZ67vLELT5dAesGVV4vftzboPHs9OHwUV8dXt-OehfxRkjKIlZLhAjxoxyLmguCGUJTTFTCI9YGhJDFDGKCIIIJ7mBKdOjVJtUcYwExTnZBofd3LDcR6t9I0vrM10UqtJ16yXinCEkEsEDerCEjuvWhY_NKUohYRgGav-HakelzuXE2VK5qfzVE4CjDshc7b3TZoEgKGfu5cy9nLsPMFyCM9uoxtZV45Qt_q6grvJpCz39Z7gcBtu_nbjrWN_or0VHuXfJw9pMPt-cy-HTHeU38EK-kG9yj6MQ
CitedBy_id crossref_primary_10_1016_j_brainresbull_2016_08_007
crossref_primary_10_1371_journal_pone_0112325
crossref_primary_10_3390_brainsci13050777
crossref_primary_10_1162_imag_a_00227
crossref_primary_10_3390_brainsci8090173
crossref_primary_10_1007_s40141_017_0161_x
crossref_primary_10_1016_j_msksp_2022_102664
crossref_primary_10_1016_j_neuroimage_2020_117439
crossref_primary_10_1002_mrm_28844
crossref_primary_10_1016_j_medengphy_2024_104170
crossref_primary_10_3389_fnana_2017_00051
crossref_primary_10_1002_ar_23854
crossref_primary_10_3389_fphar_2023_1159753
crossref_primary_10_1097_j_pain_0000000000001279
crossref_primary_10_2337_db20_0029
crossref_primary_10_1002_hbm_22993
crossref_primary_10_1007_s00586_016_4646_6
crossref_primary_10_1002_hbm_26597
crossref_primary_10_1371_journal_pone_0154553
crossref_primary_10_1016_j_brainresbull_2018_09_004
crossref_primary_10_1111_jon_13158
crossref_primary_10_1097_j_pain_0000000000002078
crossref_primary_10_1162_imag_a_00273
crossref_primary_10_3389_fnhum_2024_1339881
crossref_primary_10_1016_j_neuroimage_2018_09_003
crossref_primary_10_4137_MRI_S23556
crossref_primary_10_1016_j_neuroscience_2016_05_057
crossref_primary_10_1080_23328940_2022_2088028
crossref_primary_10_1177_1073858417703911
crossref_primary_10_3389_fneur_2019_00222
crossref_primary_10_1002_ejp_2251
Cites_doi 10.1016/j.neubiorev.2008.01.003
10.1016/j.mri.2009.05.038
10.1523/JNEUROSCI.2638-08.2008
10.1016/0304-3959(89)90160-7
10.1006/nimg.2000.0562
10.1089/neu.2009.1166
10.1038/35053509
10.1007/978-3-211-73971-6_4
10.1016/j.pain.2010.05.002
10.1523/JNEUROSCI.2305-06.2006
10.1016/j.pain.2005.01.005
10.1016/j.mri.2010.10.007
10.1152/jn.1998.79.1.174
10.1016/j.mri.2008.01.038
10.1152/jn.00449.2005
10.1016/S0014-2999(98)00910-8
10.1113/jphysiol.1992.sp019068
10.1016/S0301-0082(98)00048-3
10.1172/JCI43766
10.1097/00001756-199905140-00022
10.1016/S1474-4422(10)70143-5
10.1016/j.pain.2006.01.041
10.1016/j.ejpain.2006.12.010
10.1016/0006-8993(91)90972-X
10.1016/j.neubiorev.2003.11.008
10.1016/j.mri.2010.01.005
10.1016/j.brainres.2011.01.002
10.1002/ana.24017
10.1016/0006-8993(88)90146-1
10.1016/0006-8993(85)90421-4
10.1002/cne.901860203
10.1016/j.neulet.2008.04.072
10.1016/j.neuroimage.2004.07.020
10.1016/j.pain.2006.08.020
10.1016/0304-3959(96)03121-1
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.24627
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 1055
ExternalDocumentID 3628481651
24737401
10_1002_jmri_24627
JMRI24627
ark_67375_WNG_JVR46N0H_Z
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  funderid: BMBF, 01EM05/04
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c5317-5d9153ffbd694d934574825a12b5894df3a3fa3931363df085eb8ef8a621942d3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 07:07:02 EDT 2025
Fri Jul 25 10:48:31 EDT 2025
Wed Feb 19 01:55:41 EST 2025
Thu Apr 24 23:12:35 EDT 2025
Tue Jul 01 03:56:31 EDT 2025
Wed Jan 22 16:55:10 EST 2025
Sun Sep 21 06:19:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords human pain model
neuropathic pain
spinal functional magnetic resonance imaging
spinal cord
heat allodynia
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5317-5d9153ffbd694d934574825a12b5894df3a3fa3931363df085eb8ef8a621942d3
Notes Bundesministerium für Bildung und Forschung - No. BMBF, 01EM05/04
ArticleID:JMRI24627
ark:/67375/WNG-JVR46N0H-Z
istex:4B056A1C73E339212ACF63F7C8542ED3ABBE8901
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24737401
PQID 1664403520
PQPubID 1006400
PageCount 10
ParticipantIDs proquest_miscellaneous_1665119796
proquest_journals_1664403520
pubmed_primary_24737401
crossref_primary_10_1002_jmri_24627
crossref_citationtrail_10_1002_jmri_24627
wiley_primary_10_1002_jmri_24627_JMRI24627
istex_primary_ark_67375_WNG_JVR46N0H_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2015
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: April 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Becerra L, Morris S, Bazes S, et al. Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 2006;26:10646-10657.
Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev 2004;27:729-737.
McIntosh AR, Lobaugh NJ. Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage 2004;23:250-263.
Figley CR, Leitch JK, Stroman PW. In contrast to BOLD: signal enhancement by extravascular water protons as an alternative mechanism of endogenous fMRI signal change. Magn Reson Imaging 2010;28:1234-1243.
Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. J Clin Invest 2010;120:3779-3787.
Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nat Rev Neurosci 2001;2:83-91.
Stroman PW. Spinal fMRI investigation of human spinal cord function over a range of innocuous thermal sensory stimuli and study-related emotional influences. Magn Reson Imaging 2009;27:1333-1346.
Zemlan FP, Behbehani MM. Nucleus cuneiformis and pain modulation: anatomy and behavioral pharmacology. Brain Res 1988;453:89-102.
Zambreanu L, Wise RG, Brooks JC, Iannetti GD, Tracey I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 2005;114:397-407.
Rolke R, Baron R, Maier C, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 2006;123:231-243.
Xu M, Kontinen VK, Kalso E. Endogenous noradrenergic tone controls symptoms of allodynia in the spinal nerve ligation model of neuropathic pain. Eur J Pharmacol 1999;366:41-45.
Morgan MM. Direct comparison of heat-evoked activity of nociceptive neurons in the dorsal horn with the hindpaw withdrawal reflex in the rat. J Neurophysiol 1998;79:174-180.
LaMotte RH, Lundberg LE, Torebjork HE. Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin. J Physiol 1992;448:749-764.
Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989;37:111-123.
Lovick TA. Pro-nociceptive action of cholecystokinin in the periaqueductal grey: a role in neuropathic and anxiety-induced hyperalgesic states. Neurosci Biobehav Rev 2008;32:852-862.
Petersen KL, Rowbotham MC. A new human experimental pain model: the heat/capsaicin sensitization model. Neuroreport 1999;10:1511-1516.
Light AR, Perl ER. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 1979;186:133-150.
Stroman PW, Figley CR, Cahill CM. Spatial normalization, bulk motion correction and coregistration for functional magnetic resonance imaging of the human cervical spinal cord and brainstem. Magn Reson Imaging 2008;26:809-814.
Clark FM, Proudfit HK. The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry. Brain Res 1991;547:279-288.
Villanueva L, Bouhassira D, Le Bars D. The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain signals. Pain 1996;67:231-240.
Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma 2010;27:729-737.
Maier C, Baron R, Tolle TR, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 2010;150:439-450.
Xu M, Kim CJ, Neubert MJ, Heinricher MM. NMDA receptor-mediated activation of medullary pro-nociceptive neurons is required for secondary thermal hyperalgesia. Pain 2007;127:253-262.
McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP. Variability in fMRI: an examination of intersession differences. Neuroimage 2000;11:708-734.
Farham CJ, Douglas RJ. The response of neurons of the medial pontomedullary reticular formation of rats to peripheral thermal stimuli. Brain Res 1985;336:107-115.
Millan MJ. The induction of pain: an integrative review. Prog Neurobiol 1999;57:1-164.
Cahill CM, Stroman PW. Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study. Magn Reson Imaging 2011;29:342-352.
Lee MC, Zambreanu L, Menon DK, Tracey I. Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans. J Neurosci 2008;28:11642-11649.
Baron R, Hans G, Dickenson AH. Peripheral input and its importance for central sensitization. Ann Neurol 2013;74:630-636.
Kincaid W, Neubert MJ, Xu M, Kim CJ, Heinricher MM. Role for medullary pain facilitating neurons in secondary thermal hyperalgesia. J Neurophysiol 2006;95:33-41.
Haghparast A, Ordikhani-Seyedlar M, Ziaei M. Electrolytic lesion of the nucleus raphe magnus reduced the antinociceptive effects of bilateral morphine microinjected into the nucleus cuneiformis in rats. Neurosci Lett 2008;438:351-355.
Haghparast A, Gheitasi IP, Lashgari R. Involvement of glutamatergic receptors in the nucleus cuneiformis in modulating morphine-induced antinociception in rats. Eur J Pain 2007;11:855-862.
Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM. Duvernoy's atlas of the human brain stem and cerebellum. editors. Wien, New York: Springer; 2009. p 53-93.
Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010;9:807-819.
Jaggi AS, Singh N. Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res 2011;1381:187-201.
1979; 186
2007; 127
2006; 95
2004; 27
2005; 114
2004; 23
2009
1992; 448
2010; 120
2008; 32
1999; 366
1994
2007; 11
2009; 27
2006; 81
2011; 1381
2010; 27
2010; 28
2000; 11
2013; 74
2006; 26
2008; 28
1999; 57
2008; 26
2008; 438
1988; 453
1999; 10
2010; 150
1985; 336
2001; 2
1989; 37
1991; 547
2011; 29
2006; 123
2010; 9
1996; 67
1998; 79
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
Westlund KN (e_1_2_5_10_1) 2006
e_1_2_5_17_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_3_1
e_1_2_5_2_1
Fields HL (e_1_2_5_36_1) 1994
e_1_2_5_19_1
e_1_2_5_18_1
Johanek L (e_1_2_5_4_1) 2006
Ossipov MH (e_1_2_5_8_1) 2006
e_1_2_5_30_1
e_1_2_5_31_1
Pertovaara A (e_1_2_5_9_1) 2006
References_xml – reference: Maier C, Baron R, Tolle TR, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 2010;150:439-450.
– reference: Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989;37:111-123.
– reference: McIntosh AR, Lobaugh NJ. Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage 2004;23:250-263.
– reference: Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma 2010;27:729-737.
– reference: Xu M, Kim CJ, Neubert MJ, Heinricher MM. NMDA receptor-mediated activation of medullary pro-nociceptive neurons is required for secondary thermal hyperalgesia. Pain 2007;127:253-262.
– reference: Baron R, Hans G, Dickenson AH. Peripheral input and its importance for central sensitization. Ann Neurol 2013;74:630-636.
– reference: Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nat Rev Neurosci 2001;2:83-91.
– reference: Stroman PW, Figley CR, Cahill CM. Spatial normalization, bulk motion correction and coregistration for functional magnetic resonance imaging of the human cervical spinal cord and brainstem. Magn Reson Imaging 2008;26:809-814.
– reference: Zambreanu L, Wise RG, Brooks JC, Iannetti GD, Tracey I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 2005;114:397-407.
– reference: Lee MC, Zambreanu L, Menon DK, Tracey I. Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans. J Neurosci 2008;28:11642-11649.
– reference: Morgan MM. Direct comparison of heat-evoked activity of nociceptive neurons in the dorsal horn with the hindpaw withdrawal reflex in the rat. J Neurophysiol 1998;79:174-180.
– reference: Clark FM, Proudfit HK. The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry. Brain Res 1991;547:279-288.
– reference: Millan MJ. The induction of pain: an integrative review. Prog Neurobiol 1999;57:1-164.
– reference: Jaggi AS, Singh N. Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res 2011;1381:187-201.
– reference: Haghparast A, Ordikhani-Seyedlar M, Ziaei M. Electrolytic lesion of the nucleus raphe magnus reduced the antinociceptive effects of bilateral morphine microinjected into the nucleus cuneiformis in rats. Neurosci Lett 2008;438:351-355.
– reference: Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM. Duvernoy's atlas of the human brain stem and cerebellum. editors. Wien, New York: Springer; 2009. p 53-93.
– reference: Xu M, Kontinen VK, Kalso E. Endogenous noradrenergic tone controls symptoms of allodynia in the spinal nerve ligation model of neuropathic pain. Eur J Pharmacol 1999;366:41-45.
– reference: Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010;9:807-819.
– reference: Lovick TA. Pro-nociceptive action of cholecystokinin in the periaqueductal grey: a role in neuropathic and anxiety-induced hyperalgesic states. Neurosci Biobehav Rev 2008;32:852-862.
– reference: Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev 2004;27:729-737.
– reference: Farham CJ, Douglas RJ. The response of neurons of the medial pontomedullary reticular formation of rats to peripheral thermal stimuli. Brain Res 1985;336:107-115.
– reference: Cahill CM, Stroman PW. Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study. Magn Reson Imaging 2011;29:342-352.
– reference: Haghparast A, Gheitasi IP, Lashgari R. Involvement of glutamatergic receptors in the nucleus cuneiformis in modulating morphine-induced antinociception in rats. Eur J Pain 2007;11:855-862.
– reference: Zemlan FP, Behbehani MM. Nucleus cuneiformis and pain modulation: anatomy and behavioral pharmacology. Brain Res 1988;453:89-102.
– reference: Kincaid W, Neubert MJ, Xu M, Kim CJ, Heinricher MM. Role for medullary pain facilitating neurons in secondary thermal hyperalgesia. J Neurophysiol 2006;95:33-41.
– reference: Figley CR, Leitch JK, Stroman PW. In contrast to BOLD: signal enhancement by extravascular water protons as an alternative mechanism of endogenous fMRI signal change. Magn Reson Imaging 2010;28:1234-1243.
– reference: Stroman PW. Spinal fMRI investigation of human spinal cord function over a range of innocuous thermal sensory stimuli and study-related emotional influences. Magn Reson Imaging 2009;27:1333-1346.
– reference: Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. J Clin Invest 2010;120:3779-3787.
– reference: Petersen KL, Rowbotham MC. A new human experimental pain model: the heat/capsaicin sensitization model. Neuroreport 1999;10:1511-1516.
– reference: Villanueva L, Bouhassira D, Le Bars D. The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain signals. Pain 1996;67:231-240.
– reference: Light AR, Perl ER. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 1979;186:133-150.
– reference: Becerra L, Morris S, Bazes S, et al. Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 2006;26:10646-10657.
– reference: LaMotte RH, Lundberg LE, Torebjork HE. Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin. J Physiol 1992;448:749-764.
– reference: McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP. Variability in fMRI: an examination of intersession differences. Neuroimage 2000;11:708-734.
– reference: Rolke R, Baron R, Maier C, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 2006;123:231-243.
– volume: 11
  start-page: 855
  year: 2007
  end-page: 862
  article-title: Involvement of glutamatergic receptors in the nucleus cuneiformis in modulating morphine‐induced antinociception in rats
  publication-title: Eur J Pain
– volume: 11
  start-page: 708
  year: 2000
  end-page: 734
  article-title: Variability in fMRI: an examination of intersession differences
  publication-title: Neuroimage
– volume: 27
  start-page: 729
  year: 2010
  end-page: 737
  article-title: Loss of GABAergic interneurons in laminae I‐III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury
  publication-title: J Neurotrauma
– volume: 28
  start-page: 11642
  year: 2008
  end-page: 11649
  article-title: Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans
  publication-title: J Neurosci
– volume: 186
  start-page: 133
  year: 1979
  end-page: 150
  article-title: Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers
  publication-title: J Comp Neurol
– volume: 37
  start-page: 111
  year: 1989
  end-page: 123
  article-title: Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists
  publication-title: Pain
– volume: 2
  start-page: 83
  year: 2001
  end-page: 91
  article-title: The molecular dynamics of pain control
  publication-title: Nat Rev Neurosci
– volume: 67
  start-page: 231
  year: 1996
  end-page: 240
  article-title: The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain signals
  publication-title: Pain
– volume: 27
  start-page: 729
  year: 2004
  end-page: 737
  article-title: Descending modulation of pain
  publication-title: Neurosci Biobehav Rev
– volume: 27
  start-page: 1333
  year: 2009
  end-page: 1346
  article-title: Spinal fMRI investigation of human spinal cord function over a range of innocuous thermal sensory stimuli and study‐related emotional influences
  publication-title: Magn Reson Imaging
– volume: 547
  start-page: 279
  year: 1991
  end-page: 288
  article-title: The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry
  publication-title: Brain Res
– volume: 453
  start-page: 89
  year: 1988
  end-page: 102
  article-title: Nucleus cuneiformis and pain modulation: anatomy and behavioral pharmacology
  publication-title: Brain Res
– volume: 23
  start-page: 250
  year: 2004
  end-page: 263
  article-title: Partial least squares analysis of neuroimaging data: applications and advances
  publication-title: Neuroimage
– volume: 79
  start-page: 174
  year: 1998
  end-page: 180
  article-title: Direct comparison of heat‐evoked activity of nociceptive neurons in the dorsal horn with the hindpaw withdrawal reflex in the rat
  publication-title: J Neurophysiol
– volume: 81
  start-page: 193
  year: 2006
  end-page: 210
– volume: 123
  start-page: 231
  year: 2006
  end-page: 243
  article-title: Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values
  publication-title: Pain
– volume: 150
  start-page: 439
  year: 2010
  end-page: 450
  article-title: Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes
  publication-title: Pain
– volume: 57
  start-page: 1
  year: 1999
  end-page: 164
  article-title: The induction of pain: an integrative review
  publication-title: Prog Neurobiol
– volume: 26
  start-page: 809
  year: 2008
  end-page: 814
  article-title: Spatial normalization, bulk motion correction and coregistration for functional magnetic resonance imaging of the human cervical spinal cord and brainstem
  publication-title: Magn Reson Imaging
– volume: 32
  start-page: 852
  year: 2008
  end-page: 862
  article-title: Pro‐nociceptive action of cholecystokinin in the periaqueductal grey: a role in neuropathic and anxiety‐induced hyperalgesic states
  publication-title: Neurosci Biobehav Rev
– volume: 81
  start-page: 35
  year: 2006
  end-page: 47
– volume: 448
  start-page: 749
  year: 1992
  end-page: 764
  article-title: Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin
  publication-title: J Physiol
– volume: 336
  start-page: 107
  year: 1985
  end-page: 115
  article-title: The response of neurons of the medial pontomedullary reticular formation of rats to peripheral thermal stimuli
  publication-title: Brain Res
– volume: 29
  start-page: 342
  year: 2011
  end-page: 352
  article-title: Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study
  publication-title: Magn Reson Imaging
– volume: 95
  start-page: 33
  year: 2006
  end-page: 41
  article-title: Role for medullary pain facilitating neurons in secondary thermal hyperalgesia
  publication-title: J Neurophysiol
– volume: 366
  start-page: 41
  year: 1999
  end-page: 45
  article-title: Endogenous noradrenergic tone controls symptoms of allodynia in the spinal nerve ligation model of neuropathic pain
  publication-title: Eur J Pharmacol
– volume: 120
  start-page: 3779
  year: 2010
  end-page: 3787
  article-title: Central modulation of pain
  publication-title: J Clin Invest
– volume: 74
  start-page: 630
  year: 2013
  end-page: 636
  article-title: Peripheral input and its importance for central sensitization
  publication-title: Ann Neurol
– volume: 9
  start-page: 807
  year: 2010
  end-page: 819
  article-title: Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment
  publication-title: Lancet Neurol
– start-page: 243
  year: 1994
  end-page: 257
– volume: 127
  start-page: 253
  year: 2007
  end-page: 262
  article-title: NMDA receptor‐mediated activation of medullary pro‐nociceptive neurons is required for secondary thermal hyperalgesia
  publication-title: Pain
– volume: 1381
  start-page: 187
  year: 2011
  end-page: 201
  article-title: Role of different brain areas in peripheral nerve injury‐induced neuropathic pain
  publication-title: Brain Res
– volume: 114
  start-page: 397
  year: 2005
  end-page: 407
  article-title: A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging
  publication-title: Pain
– start-page: 53
  year: 2009
  end-page: 93
– volume: 28
  start-page: 1234
  year: 2010
  end-page: 1243
  article-title: In contrast to BOLD: signal enhancement by extravascular water protons as an alternative mechanism of endogenous fMRI signal change
  publication-title: Magn Reson Imaging
– volume: 438
  start-page: 351
  year: 2008
  end-page: 355
  article-title: Electrolytic lesion of the nucleus raphe magnus reduced the antinociceptive effects of bilateral morphine microinjected into the nucleus cuneiformis in rats
  publication-title: Neurosci Lett
– volume: 81
  start-page: 179
  year: 2006
  end-page: 192
– volume: 81
  start-page: 178
  year: 2006
  end-page: 186
– volume: 10
  start-page: 1511
  year: 1999
  end-page: 1516
  article-title: A new human experimental pain model: the heat/capsaicin sensitization model
  publication-title: Neuroreport
– volume: 26
  start-page: 10646
  year: 2006
  end-page: 10657
  article-title: Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli
  publication-title: J Neurosci
– ident: e_1_2_5_30_1
  doi: 10.1016/j.neubiorev.2008.01.003
– ident: e_1_2_5_15_1
  doi: 10.1016/j.mri.2009.05.038
– start-page: 35
  volume-title: Handbook of clinical neurology
  year: 2006
  ident: e_1_2_5_4_1
– ident: e_1_2_5_12_1
  doi: 10.1523/JNEUROSCI.2638-08.2008
– ident: e_1_2_5_24_1
  doi: 10.1016/0304-3959(89)90160-7
– ident: e_1_2_5_18_1
  doi: 10.1006/nimg.2000.0562
– ident: e_1_2_5_23_1
  doi: 10.1089/neu.2009.1166
– ident: e_1_2_5_32_1
  doi: 10.1038/35053509
– start-page: 193
  volume-title: Handbook of clinical neurology
  year: 2006
  ident: e_1_2_5_8_1
– ident: e_1_2_5_20_1
  doi: 10.1007/978-3-211-73971-6_4
– ident: e_1_2_5_2_1
  doi: 10.1016/j.pain.2010.05.002
– ident: e_1_2_5_11_1
  doi: 10.1523/JNEUROSCI.2305-06.2006
– ident: e_1_2_5_13_1
  doi: 10.1016/j.pain.2005.01.005
– ident: e_1_2_5_14_1
  doi: 10.1016/j.mri.2010.10.007
– ident: e_1_2_5_26_1
  doi: 10.1152/jn.1998.79.1.174
– ident: e_1_2_5_17_1
  doi: 10.1016/j.mri.2008.01.038
– ident: e_1_2_5_39_1
  doi: 10.1152/jn.00449.2005
– ident: e_1_2_5_35_1
  doi: 10.1016/S0014-2999(98)00910-8
– ident: e_1_2_5_22_1
  doi: 10.1113/jphysiol.1992.sp019068
– ident: e_1_2_5_7_1
  doi: 10.1016/S0301-0082(98)00048-3
– start-page: 243
  volume-title: Textbook of pain
  year: 1994
  ident: e_1_2_5_36_1
– ident: e_1_2_5_38_1
  doi: 10.1172/JCI43766
– ident: e_1_2_5_6_1
  doi: 10.1097/00001756-199905140-00022
– ident: e_1_2_5_3_1
  doi: 10.1016/S1474-4422(10)70143-5
– ident: e_1_2_5_16_1
  doi: 10.1016/j.pain.2006.01.041
– ident: e_1_2_5_27_1
  doi: 10.1016/j.ejpain.2006.12.010
– ident: e_1_2_5_34_1
  doi: 10.1016/0006-8993(91)90972-X
– ident: e_1_2_5_37_1
  doi: 10.1016/j.neubiorev.2003.11.008
– start-page: 179
  volume-title: Handbook of clinical neurology
  year: 2006
  ident: e_1_2_5_9_1
– ident: e_1_2_5_21_1
  doi: 10.1016/j.mri.2010.01.005
– ident: e_1_2_5_31_1
  doi: 10.1016/j.brainres.2011.01.002
– ident: e_1_2_5_5_1
  doi: 10.1002/ana.24017
– ident: e_1_2_5_29_1
  doi: 10.1016/0006-8993(88)90146-1
– ident: e_1_2_5_33_1
  doi: 10.1016/0006-8993(85)90421-4
– ident: e_1_2_5_25_1
  doi: 10.1002/cne.901860203
– ident: e_1_2_5_28_1
  doi: 10.1016/j.neulet.2008.04.072
– ident: e_1_2_5_19_1
  doi: 10.1016/j.neuroimage.2004.07.020
– start-page: 178
  volume-title: Handbook of clinical neurology
  year: 2006
  ident: e_1_2_5_10_1
– ident: e_1_2_5_40_1
  doi: 10.1016/j.pain.2006.08.020
– ident: e_1_2_5_41_1
  doi: 10.1016/0304-3959(96)03121-1
SSID ssj0009945
Score 2.3043191
Snippet Purpose To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal...
To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI)....
Purpose To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal...
To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1046
SubjectTerms Adult
Afferent Pathways - physiopathology
Female
heat allodynia
Hot Temperature
human pain model
Humans
Hyperalgesia - physiopathology
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
neuropathic pain
Nociception - physiology
spinal cord
Spinal Cord - physiopathology
spinal functional magnetic resonance imaging
Young Adult
Title Spinal and supraspinal processing of thermal stimuli: An fMRI study
URI https://api.istex.fr/ark:/67375/WNG-JVR46N0H-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.24627
https://www.ncbi.nlm.nih.gov/pubmed/24737401
https://www.proquest.com/docview/1664403520
https://www.proquest.com/docview/1665119796
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED9KB2VftrV7eWuLxsZgA6exXrZLv5Q-lgWSD9m6lUERsmXB1tUJecDoX9-T5Dh0lEH3zZbPSNbp7n6ypN8BvKOFyxbNZay5oDEXhsUZBupYlJYZyjhLPX3xYCh7Z7x_Ls7X4GB5FibwQ7Q_3JxleH_tDFwXs70Vaeivq-nPDuWSuqPkCZOOOP94tOKOynOfoRjxA4uTrJu23KR0b_XqrWj0wHXsn7ug5m3k6kPP6WO4WDY67Di57CzmRae8_ovP8X-_6gk8ajApOQyDaBPWqnoLNgbNqvtTOPoycbmziK4NmS0mUz0L95NwyACDHxlb4pDkFZaiz3BbrvbJYU3sYPSZeAbbZ3B2evL1qBc3yRfiEs0yjYXJ0RlaWxiZc5MzLlKOs0md0EJkWGKZZlaznGHXM2MRuVVFVtlMS_SBnBr2HNbrcV29BJLw0lBHhUZFxXHGqVMuElZpjXChyCWN4MNSCapsmMldgozfKnAqU-V6RfleieBtKzsJfBx3Sr33umxF9PTS7WBLhfo-_KT630ZcDrs99SOC7aWyVWO8M5VIBImOJ7YbwZv2MZqdW0vRdTVeeBm_ApvLCF6EQdJWRjnWhPPWCD56Vf-joaqPevBXr-4j_BoeInATYQfRNqzPp4tqB8HRvNj1RnADaRAF3Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuQMsrUKgrEBJI2W78SsKtqtput909LC1UXCwnjqW2NLvah4T49YztNKuiCgluiTORE4_H_uwZfwPwnhYuWzSXseaCxlwYFmc4UceitMxQxlnq6YsHQ9k74_1zcd7E5rizMIEfot1wc5bhx2tn4G5DemfJGnp5Pb3oUC5peg_WvIPOYaLRkj0qz32OYkQQLE6ybtqyk9Kd5bu35qM117Q_7wKbt7Grn3wOHocMqzPPWehiTq46i3nRKX_9wej43__1BB41sJTshn60DitVvQH3B43j_SnsfZm49FlE14bMFpOpnoX7SThngPMfGVviwOQ1luKw4aKuPpPdmtjB6Ih4EttncHawf7rXi5v8C3GJlpnGwuQ4HlpbGJlzkzMuUo4LSp3QQmRYYplmVrOcJUwyYxG8VUVW2UxLHAY5New5rNbjunoJJOGloY4NjYqK46JTp1wkrNIaEUORSxrBxxstqLIhJ3c5Mn6oQKtMlWsV5Vslgnet7CRQctwp9cErsxXR0ysXxJYK9W14qPpfR1wOuz31PYLNG22rxn5nKpGIEx1VbDeC7fYxWp5zp-i6Gi-8jHfC5jKCF6GXtJVRjjXh0jWCT17Xf_lQ1Uc9-KtX_yK8BQ96p4MTdXI0PH4NDxHHiRBQtAmr8-mieoNYaV689RbxG83_Cfs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qC8Uv9d1Ga40ogkKul31LIv1Squf19A45bS2CLJtsFrQ2F-4FpL--s7u5HJUi6LdkM2E3Ozs7z2ZnnwF4QXKbLZqJSDFOIsY1jVJ01BEvDNWEMpo4-uLhSPSP2eCUn67B_vIsjOeHaH-4Wctw87U18FqbvRVp6M_z6Y8OYYIkN2CDCfSTFhKNV-RRWeZSFCOAoFGcdpOWnJTsrd694o42bM_-vg5rXoWuzvf0bsH3Zat9yMlZZzHPO8XFH4SO__tZt2GrAaXhgR9Fd2CtrO7C5rDZdr8Hh59rmzwrVJUOZ4t6qmb-vvanDND7hRMTWih5jqU4adiYqzfhQRWa4fgodBS29-G49-7LYT9qsi9EBdplEnGd4WxoTK5FxnRGGU8YLidVTHKeYomhihpFMxpTQbVB6FbmaWlSJXASZETTB7BeTapyG8KYFZpYLjTCS4ZLTpUwHtNSKcQLeSZIAK-WSpBFQ01uM2T8kp5UmUjbK9L1SgDPW9naE3JcK_XS6bIVUdMzG8KWcPl19F4OTsZMjLp9-S2AnaWyZWO9MxkLRImWKLYbwLP2Mdqd3UxRVTlZOBm3BZuJAB76QdJWRhjWhAvXAF47Vf-loXKAenBXj_5F-Clsfnrbkx-PRh8ew00EcdxHE-3A-ny6KJ8gUJrnu84eLgGjxgiq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spinal+and+supraspinal+processing+of+thermal+stimuli%3A+An+fMRI+study&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Rempe%2C+Torge&rft.au=Wolff%2C+Stephan&rft.au=Riedel%2C+Christian&rft.au=Baron%2C+Ralf&rft.date=2015-04-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=41&rft.issue=4&rft.spage=1046&rft.epage=1055&rft_id=info:doi/10.1002%2Fjmri.24627&rft.externalDBID=10.1002%252Fjmri.24627&rft.externalDocID=JMRI24627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon