Spinal and supraspinal processing of thermal stimuli: An fMRI study
Purpose To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI). Materials and Methods Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpain...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 41; no. 4; pp. 1046 - 1055 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.04.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1053-1807 1522-2586 1522-2586 |
DOI | 10.1002/jmri.24627 |
Cover
Abstract | Purpose
To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI).
Materials and Methods
Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single‐shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm).
Results
Increased activity was observed in ipsi‐ and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P < 0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R = 0.52–0.98, P < 0.05).
Conclusion
Spinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046–1055. © 2014 Wiley Periodicals, Inc. |
---|---|
AbstractList | Purpose
To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI).
Materials and Methods
Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single‐shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm).
Results
Increased activity was observed in ipsi‐ and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P < 0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R = 0.52–0.98, P < 0.05).
Conclusion
Spinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046–1055. © 2014 Wiley Periodicals, Inc. To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI).PURPOSETo assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI).Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single-shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm).MATERIALS AND METHODSSpinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single-shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm).Increased activity was observed in ipsi- and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P < 0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R = 0.52-0.98, P < 0.05).RESULTSIncreased activity was observed in ipsi- and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P < 0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R = 0.52-0.98, P < 0.05).Spinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046-1055. © 2014 Wiley Periodicals, Inc.CONCLUSIONSpinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046-1055. © 2014 Wiley Periodicals, Inc. To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI). Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single-shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm). Increased activity was observed in ipsi- and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P < 0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R = 0.52-0.98, P < 0.05). Spinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046-1055. © 2014 Wiley Periodicals, Inc. Purpose To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI). Materials and Methods Spinal/supraspinal activation patterns of 16 healthy subjects were investigated by applying painful and nonpainful heat stimuli to dermatome C6 baseline and after sensitization with the heat/capsaicin model using fMRI (3T, single-shot TSE, TR 9000 msec, TE 38 msec, FOV 288 × 144 × 20 mm, matrix 192 × 96, voxel size 1 × 1 × 2 mm). Results Increased activity was observed in ipsi- and contralateral ventral and dorsal spinal horn during noxious heat and heat allodynia. During noxious heat, but not during heat allodynia, activations were visible in the periaqueductal gray, ipsilateral cuneiform nucleus, and ipsilateral dorsolateral pontine tegmentum (DLPT). However, during heat allodynia activations were observed in bilateral ruber nuclei, contralateral DLPT, and rostral ventromedial medulla oblongata (RVM). Activations in contralateral subnucleus reticularis dorsalis (SRD) were visible during both noxious heat and heat allodynia (T >2.5, P<0.01 for all of the above). After sensitization, activations in RVM and SRD correlated with activations in the ipsilateral dorsal horn of the spinal cord (R=0.52-0.98, P<0.05). Conclusion Spinal fMRI successfully demonstrates increased spinal activity and secondary changes in activation of supraspinal centers involved in pain modulation caused by peripheral nociceptor sensitization. J. Magn. Reson. Imaging 2015;41:1046-1055. © 2014 Wiley Periodicals, Inc. |
Author | Jansen, Olav Wolff, Stephan Gierthmühlen, Janne Riedel, Christian Stroman, Patrick W. Rempe, Torge Baron, Ralf |
Author_xml | – sequence: 1 givenname: Torge surname: Rempe fullname: Rempe, Torge organization: Department of Neuroradiology, University Hospital of Kiel, Kiel, Germany – sequence: 2 givenname: Stephan surname: Wolff fullname: Wolff, Stephan organization: Department of Neuroradiology, University Hospital of Kiel, Kiel, Germany – sequence: 3 givenname: Christian surname: Riedel fullname: Riedel, Christian organization: Department of Neuroradiology, University Hospital of Kiel, Kiel, Germany – sequence: 4 givenname: Ralf surname: Baron fullname: Baron, Ralf organization: Department of Neurology, University Hospital of Kiel, Kiel, Germany – sequence: 5 givenname: Patrick W. surname: Stroman fullname: Stroman, Patrick W. organization: Centre for Neuroscience Studies, Department of Diagnostic Radiology, Department of Physics, Queen's University, Ontario, Kingston, Canada – sequence: 6 givenname: Olav surname: Jansen fullname: Jansen, Olav organization: Department of Neuroradiology, University Hospital of Kiel, Kiel, Germany – sequence: 7 givenname: Janne surname: Gierthmühlen fullname: Gierthmühlen, Janne email: j.gierthmuehlen@neurologie.uni-kiel.de organization: Department of Neuroradiology, University Hospital of Kiel, Kiel, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24737401$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kElLAzEYhoMo7hd_gAx4EWFq9pl4K8WtuIAreAnpTKKps9RkBu2_N-1oD0U8JXl53o8vzxZYrepKA7CHYA9BiI_HpbM9TDlOVsAmYhjHmKV8NdwhIzFKYbIBtrwfQwiFoGwdbGCakIRCtAkG9xNbqSJSVR75duKU794TV2fae1u9RrWJmjftypD6xpZtYU-ifhWZ67vLELT5dAesGVV4vftzboPHs9OHwUV8dXt-OehfxRkjKIlZLhAjxoxyLmguCGUJTTFTCI9YGhJDFDGKCIIIJ7mBKdOjVJtUcYwExTnZBofd3LDcR6t9I0vrM10UqtJ16yXinCEkEsEDerCEjuvWhY_NKUohYRgGav-HakelzuXE2VK5qfzVE4CjDshc7b3TZoEgKGfu5cy9nLsPMFyCM9uoxtZV45Qt_q6grvJpCz39Z7gcBtu_nbjrWN_or0VHuXfJw9pMPt-cy-HTHeU38EK-kG9yj6MQ |
CitedBy_id | crossref_primary_10_1016_j_brainresbull_2016_08_007 crossref_primary_10_1371_journal_pone_0112325 crossref_primary_10_3390_brainsci13050777 crossref_primary_10_1162_imag_a_00227 crossref_primary_10_3390_brainsci8090173 crossref_primary_10_1007_s40141_017_0161_x crossref_primary_10_1016_j_msksp_2022_102664 crossref_primary_10_1016_j_neuroimage_2020_117439 crossref_primary_10_1002_mrm_28844 crossref_primary_10_1016_j_medengphy_2024_104170 crossref_primary_10_3389_fnana_2017_00051 crossref_primary_10_1002_ar_23854 crossref_primary_10_3389_fphar_2023_1159753 crossref_primary_10_1097_j_pain_0000000000001279 crossref_primary_10_2337_db20_0029 crossref_primary_10_1002_hbm_22993 crossref_primary_10_1007_s00586_016_4646_6 crossref_primary_10_1002_hbm_26597 crossref_primary_10_1371_journal_pone_0154553 crossref_primary_10_1016_j_brainresbull_2018_09_004 crossref_primary_10_1111_jon_13158 crossref_primary_10_1097_j_pain_0000000000002078 crossref_primary_10_1162_imag_a_00273 crossref_primary_10_3389_fnhum_2024_1339881 crossref_primary_10_1016_j_neuroimage_2018_09_003 crossref_primary_10_4137_MRI_S23556 crossref_primary_10_1016_j_neuroscience_2016_05_057 crossref_primary_10_1080_23328940_2022_2088028 crossref_primary_10_1177_1073858417703911 crossref_primary_10_3389_fneur_2019_00222 crossref_primary_10_1002_ejp_2251 |
Cites_doi | 10.1016/j.neubiorev.2008.01.003 10.1016/j.mri.2009.05.038 10.1523/JNEUROSCI.2638-08.2008 10.1016/0304-3959(89)90160-7 10.1006/nimg.2000.0562 10.1089/neu.2009.1166 10.1038/35053509 10.1007/978-3-211-73971-6_4 10.1016/j.pain.2010.05.002 10.1523/JNEUROSCI.2305-06.2006 10.1016/j.pain.2005.01.005 10.1016/j.mri.2010.10.007 10.1152/jn.1998.79.1.174 10.1016/j.mri.2008.01.038 10.1152/jn.00449.2005 10.1016/S0014-2999(98)00910-8 10.1113/jphysiol.1992.sp019068 10.1016/S0301-0082(98)00048-3 10.1172/JCI43766 10.1097/00001756-199905140-00022 10.1016/S1474-4422(10)70143-5 10.1016/j.pain.2006.01.041 10.1016/j.ejpain.2006.12.010 10.1016/0006-8993(91)90972-X 10.1016/j.neubiorev.2003.11.008 10.1016/j.mri.2010.01.005 10.1016/j.brainres.2011.01.002 10.1002/ana.24017 10.1016/0006-8993(88)90146-1 10.1016/0006-8993(85)90421-4 10.1002/cne.901860203 10.1016/j.neulet.2008.04.072 10.1016/j.neuroimage.2004.07.020 10.1016/j.pain.2006.08.020 10.1016/0304-3959(96)03121-1 |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: 2015 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.24627 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 1055 |
ExternalDocumentID | 3628481651 24737401 10_1002_jmri_24627 JMRI24627 ark_67375_WNG_JVR46N0H_Z |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung funderid: BMBF, 01EM05/04 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c5317-5d9153ffbd694d934574825a12b5894df3a3fa3931363df085eb8ef8a621942d3 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 07:07:02 EDT 2025 Fri Jul 25 10:48:31 EDT 2025 Wed Feb 19 01:55:41 EST 2025 Thu Apr 24 23:12:35 EDT 2025 Tue Jul 01 03:56:31 EDT 2025 Wed Jan 22 16:55:10 EST 2025 Sun Sep 21 06:19:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | human pain model neuropathic pain spinal functional magnetic resonance imaging spinal cord heat allodynia |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5317-5d9153ffbd694d934574825a12b5894df3a3fa3931363df085eb8ef8a621942d3 |
Notes | Bundesministerium für Bildung und Forschung - No. BMBF, 01EM05/04 ArticleID:JMRI24627 ark:/67375/WNG-JVR46N0H-Z istex:4B056A1C73E339212ACF63F7C8542ED3ABBE8901 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24737401 |
PQID | 1664403520 |
PQPubID | 1006400 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1665119796 proquest_journals_1664403520 pubmed_primary_24737401 crossref_primary_10_1002_jmri_24627 crossref_citationtrail_10_1002_jmri_24627 wiley_primary_10_1002_jmri_24627_JMRI24627 istex_primary_ark_67375_WNG_JVR46N0H_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2015 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: April 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J. Magn. Reson. Imaging |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Becerra L, Morris S, Bazes S, et al. Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 2006;26:10646-10657. Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev 2004;27:729-737. McIntosh AR, Lobaugh NJ. Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage 2004;23:250-263. Figley CR, Leitch JK, Stroman PW. In contrast to BOLD: signal enhancement by extravascular water protons as an alternative mechanism of endogenous fMRI signal change. Magn Reson Imaging 2010;28:1234-1243. Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. J Clin Invest 2010;120:3779-3787. Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nat Rev Neurosci 2001;2:83-91. Stroman PW. Spinal fMRI investigation of human spinal cord function over a range of innocuous thermal sensory stimuli and study-related emotional influences. Magn Reson Imaging 2009;27:1333-1346. Zemlan FP, Behbehani MM. Nucleus cuneiformis and pain modulation: anatomy and behavioral pharmacology. Brain Res 1988;453:89-102. Zambreanu L, Wise RG, Brooks JC, Iannetti GD, Tracey I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 2005;114:397-407. Rolke R, Baron R, Maier C, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 2006;123:231-243. Xu M, Kontinen VK, Kalso E. Endogenous noradrenergic tone controls symptoms of allodynia in the spinal nerve ligation model of neuropathic pain. Eur J Pharmacol 1999;366:41-45. Morgan MM. Direct comparison of heat-evoked activity of nociceptive neurons in the dorsal horn with the hindpaw withdrawal reflex in the rat. J Neurophysiol 1998;79:174-180. LaMotte RH, Lundberg LE, Torebjork HE. Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin. J Physiol 1992;448:749-764. Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989;37:111-123. Lovick TA. Pro-nociceptive action of cholecystokinin in the periaqueductal grey: a role in neuropathic and anxiety-induced hyperalgesic states. Neurosci Biobehav Rev 2008;32:852-862. Petersen KL, Rowbotham MC. A new human experimental pain model: the heat/capsaicin sensitization model. Neuroreport 1999;10:1511-1516. Light AR, Perl ER. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 1979;186:133-150. Stroman PW, Figley CR, Cahill CM. Spatial normalization, bulk motion correction and coregistration for functional magnetic resonance imaging of the human cervical spinal cord and brainstem. Magn Reson Imaging 2008;26:809-814. Clark FM, Proudfit HK. The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry. Brain Res 1991;547:279-288. Villanueva L, Bouhassira D, Le Bars D. The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain signals. Pain 1996;67:231-240. Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma 2010;27:729-737. Maier C, Baron R, Tolle TR, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 2010;150:439-450. Xu M, Kim CJ, Neubert MJ, Heinricher MM. NMDA receptor-mediated activation of medullary pro-nociceptive neurons is required for secondary thermal hyperalgesia. Pain 2007;127:253-262. McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP. Variability in fMRI: an examination of intersession differences. Neuroimage 2000;11:708-734. Farham CJ, Douglas RJ. The response of neurons of the medial pontomedullary reticular formation of rats to peripheral thermal stimuli. Brain Res 1985;336:107-115. Millan MJ. The induction of pain: an integrative review. Prog Neurobiol 1999;57:1-164. Cahill CM, Stroman PW. Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study. Magn Reson Imaging 2011;29:342-352. Lee MC, Zambreanu L, Menon DK, Tracey I. Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans. J Neurosci 2008;28:11642-11649. Baron R, Hans G, Dickenson AH. Peripheral input and its importance for central sensitization. Ann Neurol 2013;74:630-636. Kincaid W, Neubert MJ, Xu M, Kim CJ, Heinricher MM. Role for medullary pain facilitating neurons in secondary thermal hyperalgesia. J Neurophysiol 2006;95:33-41. Haghparast A, Ordikhani-Seyedlar M, Ziaei M. Electrolytic lesion of the nucleus raphe magnus reduced the antinociceptive effects of bilateral morphine microinjected into the nucleus cuneiformis in rats. Neurosci Lett 2008;438:351-355. Haghparast A, Gheitasi IP, Lashgari R. Involvement of glutamatergic receptors in the nucleus cuneiformis in modulating morphine-induced antinociception in rats. Eur J Pain 2007;11:855-862. Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM. Duvernoy's atlas of the human brain stem and cerebellum. editors. Wien, New York: Springer; 2009. p 53-93. Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010;9:807-819. Jaggi AS, Singh N. Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res 2011;1381:187-201. 1979; 186 2007; 127 2006; 95 2004; 27 2005; 114 2004; 23 2009 1992; 448 2010; 120 2008; 32 1999; 366 1994 2007; 11 2009; 27 2006; 81 2011; 1381 2010; 27 2010; 28 2000; 11 2013; 74 2006; 26 2008; 28 1999; 57 2008; 26 2008; 438 1988; 453 1999; 10 2010; 150 1985; 336 2001; 2 1989; 37 1991; 547 2011; 29 2006; 123 2010; 9 1996; 67 1998; 79 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 Westlund KN (e_1_2_5_10_1) 2006 e_1_2_5_17_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_3_1 e_1_2_5_2_1 Fields HL (e_1_2_5_36_1) 1994 e_1_2_5_19_1 e_1_2_5_18_1 Johanek L (e_1_2_5_4_1) 2006 Ossipov MH (e_1_2_5_8_1) 2006 e_1_2_5_30_1 e_1_2_5_31_1 Pertovaara A (e_1_2_5_9_1) 2006 |
References_xml | – reference: Maier C, Baron R, Tolle TR, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 2010;150:439-450. – reference: Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989;37:111-123. – reference: McIntosh AR, Lobaugh NJ. Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage 2004;23:250-263. – reference: Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma 2010;27:729-737. – reference: Xu M, Kim CJ, Neubert MJ, Heinricher MM. NMDA receptor-mediated activation of medullary pro-nociceptive neurons is required for secondary thermal hyperalgesia. Pain 2007;127:253-262. – reference: Baron R, Hans G, Dickenson AH. Peripheral input and its importance for central sensitization. Ann Neurol 2013;74:630-636. – reference: Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nat Rev Neurosci 2001;2:83-91. – reference: Stroman PW, Figley CR, Cahill CM. Spatial normalization, bulk motion correction and coregistration for functional magnetic resonance imaging of the human cervical spinal cord and brainstem. Magn Reson Imaging 2008;26:809-814. – reference: Zambreanu L, Wise RG, Brooks JC, Iannetti GD, Tracey I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 2005;114:397-407. – reference: Lee MC, Zambreanu L, Menon DK, Tracey I. Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans. J Neurosci 2008;28:11642-11649. – reference: Morgan MM. Direct comparison of heat-evoked activity of nociceptive neurons in the dorsal horn with the hindpaw withdrawal reflex in the rat. J Neurophysiol 1998;79:174-180. – reference: Clark FM, Proudfit HK. The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry. Brain Res 1991;547:279-288. – reference: Millan MJ. The induction of pain: an integrative review. Prog Neurobiol 1999;57:1-164. – reference: Jaggi AS, Singh N. Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res 2011;1381:187-201. – reference: Haghparast A, Ordikhani-Seyedlar M, Ziaei M. Electrolytic lesion of the nucleus raphe magnus reduced the antinociceptive effects of bilateral morphine microinjected into the nucleus cuneiformis in rats. Neurosci Lett 2008;438:351-355. – reference: Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM. Duvernoy's atlas of the human brain stem and cerebellum. editors. Wien, New York: Springer; 2009. p 53-93. – reference: Xu M, Kontinen VK, Kalso E. Endogenous noradrenergic tone controls symptoms of allodynia in the spinal nerve ligation model of neuropathic pain. Eur J Pharmacol 1999;366:41-45. – reference: Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010;9:807-819. – reference: Lovick TA. Pro-nociceptive action of cholecystokinin in the periaqueductal grey: a role in neuropathic and anxiety-induced hyperalgesic states. Neurosci Biobehav Rev 2008;32:852-862. – reference: Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev 2004;27:729-737. – reference: Farham CJ, Douglas RJ. The response of neurons of the medial pontomedullary reticular formation of rats to peripheral thermal stimuli. Brain Res 1985;336:107-115. – reference: Cahill CM, Stroman PW. Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study. Magn Reson Imaging 2011;29:342-352. – reference: Haghparast A, Gheitasi IP, Lashgari R. Involvement of glutamatergic receptors in the nucleus cuneiformis in modulating morphine-induced antinociception in rats. Eur J Pain 2007;11:855-862. – reference: Zemlan FP, Behbehani MM. Nucleus cuneiformis and pain modulation: anatomy and behavioral pharmacology. Brain Res 1988;453:89-102. – reference: Kincaid W, Neubert MJ, Xu M, Kim CJ, Heinricher MM. Role for medullary pain facilitating neurons in secondary thermal hyperalgesia. J Neurophysiol 2006;95:33-41. – reference: Figley CR, Leitch JK, Stroman PW. In contrast to BOLD: signal enhancement by extravascular water protons as an alternative mechanism of endogenous fMRI signal change. Magn Reson Imaging 2010;28:1234-1243. – reference: Stroman PW. Spinal fMRI investigation of human spinal cord function over a range of innocuous thermal sensory stimuli and study-related emotional influences. Magn Reson Imaging 2009;27:1333-1346. – reference: Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. J Clin Invest 2010;120:3779-3787. – reference: Petersen KL, Rowbotham MC. A new human experimental pain model: the heat/capsaicin sensitization model. Neuroreport 1999;10:1511-1516. – reference: Villanueva L, Bouhassira D, Le Bars D. The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain signals. Pain 1996;67:231-240. – reference: Light AR, Perl ER. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 1979;186:133-150. – reference: Becerra L, Morris S, Bazes S, et al. Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 2006;26:10646-10657. – reference: LaMotte RH, Lundberg LE, Torebjork HE. Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin. J Physiol 1992;448:749-764. – reference: McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP. Variability in fMRI: an examination of intersession differences. Neuroimage 2000;11:708-734. – reference: Rolke R, Baron R, Maier C, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 2006;123:231-243. – volume: 11 start-page: 855 year: 2007 end-page: 862 article-title: Involvement of glutamatergic receptors in the nucleus cuneiformis in modulating morphine‐induced antinociception in rats publication-title: Eur J Pain – volume: 11 start-page: 708 year: 2000 end-page: 734 article-title: Variability in fMRI: an examination of intersession differences publication-title: Neuroimage – volume: 27 start-page: 729 year: 2010 end-page: 737 article-title: Loss of GABAergic interneurons in laminae I‐III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury publication-title: J Neurotrauma – volume: 28 start-page: 11642 year: 2008 end-page: 11649 article-title: Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans publication-title: J Neurosci – volume: 186 start-page: 133 year: 1979 end-page: 150 article-title: Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers publication-title: J Comp Neurol – volume: 37 start-page: 111 year: 1989 end-page: 123 article-title: Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists publication-title: Pain – volume: 2 start-page: 83 year: 2001 end-page: 91 article-title: The molecular dynamics of pain control publication-title: Nat Rev Neurosci – volume: 67 start-page: 231 year: 1996 end-page: 240 article-title: The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain signals publication-title: Pain – volume: 27 start-page: 729 year: 2004 end-page: 737 article-title: Descending modulation of pain publication-title: Neurosci Biobehav Rev – volume: 27 start-page: 1333 year: 2009 end-page: 1346 article-title: Spinal fMRI investigation of human spinal cord function over a range of innocuous thermal sensory stimuli and study‐related emotional influences publication-title: Magn Reson Imaging – volume: 547 start-page: 279 year: 1991 end-page: 288 article-title: The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry publication-title: Brain Res – volume: 453 start-page: 89 year: 1988 end-page: 102 article-title: Nucleus cuneiformis and pain modulation: anatomy and behavioral pharmacology publication-title: Brain Res – volume: 23 start-page: 250 year: 2004 end-page: 263 article-title: Partial least squares analysis of neuroimaging data: applications and advances publication-title: Neuroimage – volume: 79 start-page: 174 year: 1998 end-page: 180 article-title: Direct comparison of heat‐evoked activity of nociceptive neurons in the dorsal horn with the hindpaw withdrawal reflex in the rat publication-title: J Neurophysiol – volume: 81 start-page: 193 year: 2006 end-page: 210 – volume: 123 start-page: 231 year: 2006 end-page: 243 article-title: Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values publication-title: Pain – volume: 150 start-page: 439 year: 2010 end-page: 450 article-title: Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes publication-title: Pain – volume: 57 start-page: 1 year: 1999 end-page: 164 article-title: The induction of pain: an integrative review publication-title: Prog Neurobiol – volume: 26 start-page: 809 year: 2008 end-page: 814 article-title: Spatial normalization, bulk motion correction and coregistration for functional magnetic resonance imaging of the human cervical spinal cord and brainstem publication-title: Magn Reson Imaging – volume: 32 start-page: 852 year: 2008 end-page: 862 article-title: Pro‐nociceptive action of cholecystokinin in the periaqueductal grey: a role in neuropathic and anxiety‐induced hyperalgesic states publication-title: Neurosci Biobehav Rev – volume: 81 start-page: 35 year: 2006 end-page: 47 – volume: 448 start-page: 749 year: 1992 end-page: 764 article-title: Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin publication-title: J Physiol – volume: 336 start-page: 107 year: 1985 end-page: 115 article-title: The response of neurons of the medial pontomedullary reticular formation of rats to peripheral thermal stimuli publication-title: Brain Res – volume: 29 start-page: 342 year: 2011 end-page: 352 article-title: Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study publication-title: Magn Reson Imaging – volume: 95 start-page: 33 year: 2006 end-page: 41 article-title: Role for medullary pain facilitating neurons in secondary thermal hyperalgesia publication-title: J Neurophysiol – volume: 366 start-page: 41 year: 1999 end-page: 45 article-title: Endogenous noradrenergic tone controls symptoms of allodynia in the spinal nerve ligation model of neuropathic pain publication-title: Eur J Pharmacol – volume: 120 start-page: 3779 year: 2010 end-page: 3787 article-title: Central modulation of pain publication-title: J Clin Invest – volume: 74 start-page: 630 year: 2013 end-page: 636 article-title: Peripheral input and its importance for central sensitization publication-title: Ann Neurol – volume: 9 start-page: 807 year: 2010 end-page: 819 article-title: Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment publication-title: Lancet Neurol – start-page: 243 year: 1994 end-page: 257 – volume: 127 start-page: 253 year: 2007 end-page: 262 article-title: NMDA receptor‐mediated activation of medullary pro‐nociceptive neurons is required for secondary thermal hyperalgesia publication-title: Pain – volume: 1381 start-page: 187 year: 2011 end-page: 201 article-title: Role of different brain areas in peripheral nerve injury‐induced neuropathic pain publication-title: Brain Res – volume: 114 start-page: 397 year: 2005 end-page: 407 article-title: A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging publication-title: Pain – start-page: 53 year: 2009 end-page: 93 – volume: 28 start-page: 1234 year: 2010 end-page: 1243 article-title: In contrast to BOLD: signal enhancement by extravascular water protons as an alternative mechanism of endogenous fMRI signal change publication-title: Magn Reson Imaging – volume: 438 start-page: 351 year: 2008 end-page: 355 article-title: Electrolytic lesion of the nucleus raphe magnus reduced the antinociceptive effects of bilateral morphine microinjected into the nucleus cuneiformis in rats publication-title: Neurosci Lett – volume: 81 start-page: 179 year: 2006 end-page: 192 – volume: 81 start-page: 178 year: 2006 end-page: 186 – volume: 10 start-page: 1511 year: 1999 end-page: 1516 article-title: A new human experimental pain model: the heat/capsaicin sensitization model publication-title: Neuroreport – volume: 26 start-page: 10646 year: 2006 end-page: 10657 article-title: Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli publication-title: J Neurosci – ident: e_1_2_5_30_1 doi: 10.1016/j.neubiorev.2008.01.003 – ident: e_1_2_5_15_1 doi: 10.1016/j.mri.2009.05.038 – start-page: 35 volume-title: Handbook of clinical neurology year: 2006 ident: e_1_2_5_4_1 – ident: e_1_2_5_12_1 doi: 10.1523/JNEUROSCI.2638-08.2008 – ident: e_1_2_5_24_1 doi: 10.1016/0304-3959(89)90160-7 – ident: e_1_2_5_18_1 doi: 10.1006/nimg.2000.0562 – ident: e_1_2_5_23_1 doi: 10.1089/neu.2009.1166 – ident: e_1_2_5_32_1 doi: 10.1038/35053509 – start-page: 193 volume-title: Handbook of clinical neurology year: 2006 ident: e_1_2_5_8_1 – ident: e_1_2_5_20_1 doi: 10.1007/978-3-211-73971-6_4 – ident: e_1_2_5_2_1 doi: 10.1016/j.pain.2010.05.002 – ident: e_1_2_5_11_1 doi: 10.1523/JNEUROSCI.2305-06.2006 – ident: e_1_2_5_13_1 doi: 10.1016/j.pain.2005.01.005 – ident: e_1_2_5_14_1 doi: 10.1016/j.mri.2010.10.007 – ident: e_1_2_5_26_1 doi: 10.1152/jn.1998.79.1.174 – ident: e_1_2_5_17_1 doi: 10.1016/j.mri.2008.01.038 – ident: e_1_2_5_39_1 doi: 10.1152/jn.00449.2005 – ident: e_1_2_5_35_1 doi: 10.1016/S0014-2999(98)00910-8 – ident: e_1_2_5_22_1 doi: 10.1113/jphysiol.1992.sp019068 – ident: e_1_2_5_7_1 doi: 10.1016/S0301-0082(98)00048-3 – start-page: 243 volume-title: Textbook of pain year: 1994 ident: e_1_2_5_36_1 – ident: e_1_2_5_38_1 doi: 10.1172/JCI43766 – ident: e_1_2_5_6_1 doi: 10.1097/00001756-199905140-00022 – ident: e_1_2_5_3_1 doi: 10.1016/S1474-4422(10)70143-5 – ident: e_1_2_5_16_1 doi: 10.1016/j.pain.2006.01.041 – ident: e_1_2_5_27_1 doi: 10.1016/j.ejpain.2006.12.010 – ident: e_1_2_5_34_1 doi: 10.1016/0006-8993(91)90972-X – ident: e_1_2_5_37_1 doi: 10.1016/j.neubiorev.2003.11.008 – start-page: 179 volume-title: Handbook of clinical neurology year: 2006 ident: e_1_2_5_9_1 – ident: e_1_2_5_21_1 doi: 10.1016/j.mri.2010.01.005 – ident: e_1_2_5_31_1 doi: 10.1016/j.brainres.2011.01.002 – ident: e_1_2_5_5_1 doi: 10.1002/ana.24017 – ident: e_1_2_5_29_1 doi: 10.1016/0006-8993(88)90146-1 – ident: e_1_2_5_33_1 doi: 10.1016/0006-8993(85)90421-4 – ident: e_1_2_5_25_1 doi: 10.1002/cne.901860203 – ident: e_1_2_5_28_1 doi: 10.1016/j.neulet.2008.04.072 – ident: e_1_2_5_19_1 doi: 10.1016/j.neuroimage.2004.07.020 – start-page: 178 volume-title: Handbook of clinical neurology year: 2006 ident: e_1_2_5_10_1 – ident: e_1_2_5_40_1 doi: 10.1016/j.pain.2006.08.020 – ident: e_1_2_5_41_1 doi: 10.1016/0304-3959(96)03121-1 |
SSID | ssj0009945 |
Score | 2.3043191 |
Snippet | Purpose
To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal... To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal fMRI).... Purpose To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal... To assess and characterize responses to innocuous/noxious thermal stimuli and heat allodynia using functional spinal magnetic resonance imaging (spinal... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1046 |
SubjectTerms | Adult Afferent Pathways - physiopathology Female heat allodynia Hot Temperature human pain model Humans Hyperalgesia - physiopathology Magnetic resonance imaging Magnetic Resonance Imaging - methods Male neuropathic pain Nociception - physiology spinal cord Spinal Cord - physiopathology spinal functional magnetic resonance imaging Young Adult |
Title | Spinal and supraspinal processing of thermal stimuli: An fMRI study |
URI | https://api.istex.fr/ark:/67375/WNG-JVR46N0H-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.24627 https://www.ncbi.nlm.nih.gov/pubmed/24737401 https://www.proquest.com/docview/1664403520 https://www.proquest.com/docview/1665119796 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED9KB2VftrV7eWuLxsZgA6exXrZLv5Q-lgWSD9m6lUERsmXB1tUJecDoX9-T5Dh0lEH3zZbPSNbp7n6ypN8BvKOFyxbNZay5oDEXhsUZBupYlJYZyjhLPX3xYCh7Z7x_Ls7X4GB5FibwQ7Q_3JxleH_tDFwXs70Vaeivq-nPDuWSuqPkCZOOOP94tOKOynOfoRjxA4uTrJu23KR0b_XqrWj0wHXsn7ug5m3k6kPP6WO4WDY67Di57CzmRae8_ovP8X-_6gk8ajApOQyDaBPWqnoLNgbNqvtTOPoycbmziK4NmS0mUz0L95NwyACDHxlb4pDkFZaiz3BbrvbJYU3sYPSZeAbbZ3B2evL1qBc3yRfiEs0yjYXJ0RlaWxiZc5MzLlKOs0md0EJkWGKZZlaznGHXM2MRuVVFVtlMS_SBnBr2HNbrcV29BJLw0lBHhUZFxXHGqVMuElZpjXChyCWN4MNSCapsmMldgozfKnAqU-V6RfleieBtKzsJfBx3Sr33umxF9PTS7WBLhfo-_KT630ZcDrs99SOC7aWyVWO8M5VIBImOJ7YbwZv2MZqdW0vRdTVeeBm_ApvLCF6EQdJWRjnWhPPWCD56Vf-joaqPevBXr-4j_BoeInATYQfRNqzPp4tqB8HRvNj1RnADaRAF3Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuQMsrUKgrEBJI2W78SsKtqtput909LC1UXCwnjqW2NLvah4T49YztNKuiCgluiTORE4_H_uwZfwPwnhYuWzSXseaCxlwYFmc4UceitMxQxlnq6YsHQ9k74_1zcd7E5rizMIEfot1wc5bhx2tn4G5DemfJGnp5Pb3oUC5peg_WvIPOYaLRkj0qz32OYkQQLE6ybtqyk9Kd5bu35qM117Q_7wKbt7Grn3wOHocMqzPPWehiTq46i3nRKX_9wej43__1BB41sJTshn60DitVvQH3B43j_SnsfZm49FlE14bMFpOpnoX7SThngPMfGVviwOQ1luKw4aKuPpPdmtjB6Ih4EttncHawf7rXi5v8C3GJlpnGwuQ4HlpbGJlzkzMuUo4LSp3QQmRYYplmVrOcJUwyYxG8VUVW2UxLHAY5New5rNbjunoJJOGloY4NjYqK46JTp1wkrNIaEUORSxrBxxstqLIhJ3c5Mn6oQKtMlWsV5Vslgnet7CRQctwp9cErsxXR0ysXxJYK9W14qPpfR1wOuz31PYLNG22rxn5nKpGIEx1VbDeC7fYxWp5zp-i6Gi-8jHfC5jKCF6GXtJVRjjXh0jWCT17Xf_lQ1Uc9-KtX_yK8BQ96p4MTdXI0PH4NDxHHiRBQtAmr8-mieoNYaV689RbxG83_Cfs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qC8Uv9d1Ga40ogkKul31LIv1Squf19A45bS2CLJtsFrQ2F-4FpL--s7u5HJUi6LdkM2E3Ozs7z2ZnnwF4QXKbLZqJSDFOIsY1jVJ01BEvDNWEMpo4-uLhSPSP2eCUn67B_vIsjOeHaH-4Wctw87U18FqbvRVp6M_z6Y8OYYIkN2CDCfSTFhKNV-RRWeZSFCOAoFGcdpOWnJTsrd694o42bM_-vg5rXoWuzvf0bsH3Zat9yMlZZzHPO8XFH4SO__tZt2GrAaXhgR9Fd2CtrO7C5rDZdr8Hh59rmzwrVJUOZ4t6qmb-vvanDND7hRMTWih5jqU4adiYqzfhQRWa4fgodBS29-G49-7LYT9qsi9EBdplEnGd4WxoTK5FxnRGGU8YLidVTHKeYomhihpFMxpTQbVB6FbmaWlSJXASZETTB7BeTapyG8KYFZpYLjTCS4ZLTpUwHtNSKcQLeSZIAK-WSpBFQ01uM2T8kp5UmUjbK9L1SgDPW9naE3JcK_XS6bIVUdMzG8KWcPl19F4OTsZMjLp9-S2AnaWyZWO9MxkLRImWKLYbwLP2Mdqd3UxRVTlZOBm3BZuJAB76QdJWRhjWhAvXAF47Vf-loXKAenBXj_5F-Clsfnrbkx-PRh8ew00EcdxHE-3A-ny6KJ8gUJrnu84eLgGjxgiq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spinal+and+supraspinal+processing+of+thermal+stimuli%3A+An+fMRI+study&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Rempe%2C+Torge&rft.au=Wolff%2C+Stephan&rft.au=Riedel%2C+Christian&rft.au=Baron%2C+Ralf&rft.date=2015-04-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=41&rft.issue=4&rft.spage=1046&rft.epage=1055&rft_id=info:doi/10.1002%2Fjmri.24627&rft.externalDBID=10.1002%252Fjmri.24627&rft.externalDocID=JMRI24627 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |