Nerve optic segmentation in CT images using a deep learning model and a texture descriptor
The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time-consuming approach, but advanced computer-aided diagnosis (CAD)...
Saved in:
| Published in | Complex & intelligent systems Vol. 8; no. 4; pp. 3543 - 3557 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.08.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2199-4536 2198-6053 2198-6053 |
| DOI | 10.1007/s40747-022-00694-w |
Cover
| Abstract | The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time-consuming approach, but advanced computer-aided diagnosis (CAD) systems can assist the physician to decrease the time of ICP diagnosis. The accurate detection of the nerve optic regions, with drawing a precise slope line behind the eyeball and calculating the diameter of nerve optic, are the main aims of this research. First, the Fuzzy C-mean (FCM) clustering is employed for segmenting the input CT screening images into the different parts. Second, a histogram equalization approach is used for region-based image quality enhancement. Then, the Local Directional Number method (LDN) is used for representing some key information in a new image. Finally, a cascade Convolutional Neural Network (CNN) is employed for nerve optic segmentation by two distinct input images. Comprehensive experiments on the CT screening dataset [The Cancer Imaging Archive (TCIA)] consisting of 1600 images show the competitive results of inaccurate extraction of the brain features. Also, the indexes such as Dice, Specificity, and Precision for the proposed approach are reported 87.7%, 91.3%, and 90.1%, respectively. The final classification results show that the proposed approach effectively and accurately detects the nerve optic and its diameter in comparison with the other methods. Therefore, this method can be used for early diagnose of ICP and preventing the occurrence of serious health problems in patients. |
|---|---|
| AbstractList | The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time-consuming approach, but advanced computer-aided diagnosis (CAD) systems can assist the physician to decrease the time of ICP diagnosis. The accurate detection of the nerve optic regions, with drawing a precise slope line behind the eyeball and calculating the diameter of nerve optic, are the main aims of this research. First, the Fuzzy C-mean (FCM) clustering is employed for segmenting the input CT screening images into the different parts. Second, a histogram equalization approach is used for region-based image quality enhancement. Then, the Local Directional Number method (LDN) is used for representing some key information in a new image. Finally, a cascade Convolutional Neural Network (CNN) is employed for nerve optic segmentation by two distinct input images. Comprehensive experiments on the CT screening dataset [The Cancer Imaging Archive (TCIA)] consisting of 1600 images show the competitive results of inaccurate extraction of the brain features. Also, the indexes such as Dice, Specificity, and Precision for the proposed approach are reported 87.7%, 91.3%, and 90.1%, respectively. The final classification results show that the proposed approach effectively and accurately detects the nerve optic and its diameter in comparison with the other methods. Therefore, this method can be used for early diagnose of ICP and preventing the occurrence of serious health problems in patients. The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time-consuming approach, but advanced computer-aided diagnosis (CAD) systems can assist the physician to decrease the time of ICP diagnosis. The accurate detection of the nerve optic regions, with drawing a precise slope line behind the eyeball and calculating the diameter of nerve optic, are the main aims of this research. First, the Fuzzy C-mean (FCM) clustering is employed for segmenting the input CT screening images into the different parts. Second, a histogram equalization approach is used for region-based image quality enhancement. Then, the Local Directional Number method (LDN) is used for representing some key information in a new image. Finally, a cascade Convolutional Neural Network (CNN) is employed for nerve optic segmentation by two distinct input images. Comprehensive experiments on the CT screening dataset [The Cancer Imaging Archive (TCIA)] consisting of 1600 images show the competitive results of inaccurate extraction of the brain features. Also, the indexes such as Dice, Specificity, and Precision for the proposed approach are reported 87.7%, 91.3%, and 90.1%, respectively. The final classification results show that the proposed approach effectively and accurately detects the nerve optic and its diameter in comparison with the other methods. Therefore, this method can be used for early diagnose of ICP and preventing the occurrence of serious health problems in patients. |
| Author | Ranjbarzadeh, Ramin Tataei Sarshar, Nazanin Anari, Shokofeh Dorosti, Shadi Razmjooy, Navid Safavi, Sadaf Jafarzadeh Ghoushchi, Saeid Bendechache, Malika |
| Author_xml | – sequence: 1 givenname: Ramin orcidid: 0000-0001-7065-9060 surname: Ranjbarzadeh fullname: Ranjbarzadeh, Ramin email: ranjbar.ramin24@gmail.com organization: Department of Telecommunications Engineering, Faculty of Engineering, University of Guilan – sequence: 2 givenname: Shadi surname: Dorosti fullname: Dorosti, Shadi organization: Department of Industrial Engineering, Urmia University of Technology (UUT) – sequence: 3 givenname: Saeid surname: Jafarzadeh Ghoushchi fullname: Jafarzadeh Ghoushchi, Saeid organization: Faculty of Industrial Engineering, Urmia University of Technology – sequence: 4 givenname: Sadaf surname: Safavi fullname: Safavi, Sadaf organization: Department of Computer Engineering, Mashhad Branch, Islamic Azad University – sequence: 5 givenname: Navid surname: Razmjooy fullname: Razmjooy, Navid organization: Department of Electrical Engineering, Tafresh University – sequence: 6 givenname: Nazanin surname: Tataei Sarshar fullname: Tataei Sarshar, Nazanin organization: Department of Engineering, Islamic Azad University, Tehran North Branch – sequence: 7 givenname: Shokofeh surname: Anari fullname: Anari, Shokofeh organization: Department of Accounting, Economic and Financial Sciences, Islamic Azad University, South Tehran Branch – sequence: 8 givenname: Malika surname: Bendechache fullname: Bendechache, Malika organization: School of Computing, Faculty of Engineering and Computing, Dublin City University |
| BookMark | eNqNkM1KxDAURoMoOI6-gKuA6-ptkibtUgb_QHSjGzchbW5LpZPWJHX07a12QHAxuEpCvnPz5RyRfdc7JOQ0hfMUQF0EAUqoBBhLAGQhks0eWbC0yBMJGd__2ReJyLg8JCchvAJAqlTOgS3IywP6d6T9ENuKBmzW6KKJbe9o6-jqibZr02CgY2hdQw21iAPt0Hj3fV73FjtqnJ1uIn7E0eOUCJVvh9j7Y3JQmy7gyXZdkufrq6fVbXL_eHO3urxPqoxDTCqpKgZciNKalHNrRGrLzKIouSkNL22FEjjIWmS1kAywVFhblWNelsxiypeEz3NHN5jPjek6Pfipt__UKehvQ3o2pCdD-seQ3kzU2UwNvn8bMUT92o_eTUU1k4XKmAShphSbU5XvQ_BY_290_geq2llq9KbtdqPbv4TpHdeg_221g_oCC-abAg |
| CitedBy_id | crossref_primary_10_1155_2022_4894922 crossref_primary_10_1016_j_bspc_2023_105063 crossref_primary_10_1016_j_engappai_2022_105554 crossref_primary_10_3390_bioengineering10040495 crossref_primary_10_1016_j_bspc_2023_105065 crossref_primary_10_1016_j_bspc_2024_107220 crossref_primary_10_1007_s12530_023_09541_w crossref_primary_10_3390_electronics11131998 crossref_primary_10_1016_j_bspc_2023_105643 crossref_primary_10_1002_ima_22852 crossref_primary_10_1080_21681163_2023_2280558 crossref_primary_10_3390_electronics13183595 crossref_primary_10_1016_j_bspc_2023_105879 crossref_primary_10_1038_s41598_024_79067_x crossref_primary_10_1016_j_vrih_2024_04_001 crossref_primary_10_3390_app13158758 crossref_primary_10_3390_sym14101976 crossref_primary_10_24003_emitter_v11i2_832 crossref_primary_10_1155_2022_5052435 crossref_primary_10_1007_s12065_022_00800_4 crossref_primary_10_1142_S021821302350063X crossref_primary_10_1007_s42835_023_01560_6 crossref_primary_10_1016_j_engappai_2023_106639 crossref_primary_10_3934_mbe_2023457 crossref_primary_10_1016_j_apm_2024_04_055 crossref_primary_10_3389_fnins_2023_1191999 crossref_primary_10_1007_s10462_023_10426_2 crossref_primary_10_1016_j_autcon_2024_105806 crossref_primary_10_1038_s41598_023_49438_x crossref_primary_10_1115_1_4064705 crossref_primary_10_1016_j_asoc_2023_110768 crossref_primary_10_1038_s41598_024_77585_2 crossref_primary_10_3390_diagnostics13142454 |
| Cites_doi | 10.1016/j.ultrasmedbio.2020.01.034 10.1016/j.asoc.2019.105941 10.1001/jamaophthalmol.2017.6560 10.1016/j.measurement.2017.05.009 10.1097/PEC.0b013e318243fb72 10.1016/j.jksuci.2018.03.015 10.1063/1.5079681 10.1016/j.cviu.2017.05.007 10.1007/s10072-019-04076-y 10.1038/s41598-019-53889-6 10.1038/s41598-021-90428-8 10.1016/j.ijleo.2020.165877 10.3390/cancers11091235 10.1364/BOE.395934 10.3171/2019.2.JNS182260 10.1109/TIP.2012.2235848 10.1007/s00701-017-3385-8 10.3785/j.issn.1008-973X.2019.07.016 10.1177/2055217317730097 10.1109/ICPR.2016.7900010 10.1007/s00500-019-04507-0 10.3390/e23030341 10.1113/jphysiol.1968.sp008455 10.3390/MATH8081268 10.1155/2012/950393 10.1080/21681163.2020.1830437 10.1109/LSP.2018.2805809 10.1007/978-1-4757-0450-1_3 10.1016/j.ijleo.2011.12.057 10.1186/s12987-020-00201-8 10.3988/jcn.2018.14.3.345 10.1016/j.measurement.2019.107086 10.1155/2021/5544742 10.1016/j.patrec.2014.08.012 10.1016/B978-0-12-811318-9.00021-1 10.1007/s00381-016-3143-x 10.1016/j.cpem.2008.03.003 10.1016/j.compbiomed.2017.04.012 10.2139/ssrn.3446607 10.1016/0893-6080(95)00061-5 10.1016/j.neucom.2016.10.049 10.1007/978-0-85729-333-6_10 10.1109/TBME.2009.2037607 10.1007/s10278-013-9622-7 10.1016/j.patrec.2013.08.024 10.1007/s00134-018-5305-7 10.1093/milmed/usaa231 10.1080/01969727308546046 10.1109/tbme.2020.3011119 10.1016/j.bspc.2021.102761 10.1016/j.neucom.2018.09.013 10.1002/acn3.51054 10.1016/j.patcog.2012.03.019 10.1016/j.permed.2012.01.001 10.1016/j.measurement.2020.107989 10.1016/j.ijleo.2021.167551 10.1007/978-3-319-11740-9_34 10.1109/DSAA.2016.70 10.1007/978-3-030-56689-0_9 10.1109/ISFA.2016.7790137 10.1109/ICSIDP47821.2019.9173198 10.1109/IC3I.2014.7019808 10.1117/12.2513167 10.1109/BIBM.2010.5706619 10.1109/ICSDM.2015.7298026 10.1109/ICIAS.2014.6869542 10.1109/EMBC.2019.8856449 10.1007/978-3-642-53917-6_21 10.1109/ICRAMET.2017.8253139 10.1109/MedCom.2014.7006027 10.21203/RS.3.RS-186293/V1 10.1109/IntelliSys.2017.8324324 10.1007/978-3-030-38748-8_2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.1007/s40747-022-00694-w |
| DatabaseName | Springer Open Access Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest SciTech Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 2198-6053 |
| EndPage | 3557 |
| ExternalDocumentID | 10.1007/s40747-022-00694-w 10_1007_s40747_022_00694_w |
| GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML AAYXX CITATION PHGZM PHGZT PQGLB PUEGO ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c530t-c67c20344bda133da41db5de4b3aba3bdce60306f45f4620eb7efd78e8bb2de13 |
| IEDL.DBID | BENPR |
| ISSN | 2199-4536 2198-6053 |
| IngestDate | Tue Aug 19 09:18:06 EDT 2025 Wed Oct 08 14:20:32 EDT 2025 Wed Oct 01 04:22:17 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Fri Feb 21 02:45:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning Image segmentation Nerve optic Convolutional neural network Image enhancement |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c530t-c67c20344bda133da41db5de4b3aba3bdce60306f45f4620eb7efd78e8bb2de13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7065-9060 |
| OpenAccessLink | https://www.proquest.com/docview/2697526047?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2697526047 |
| PQPubID | 2044308 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1007_s40747_022_00694_w proquest_journals_2697526047 crossref_primary_10_1007_s40747_022_00694_w crossref_citationtrail_10_1007_s40747_022_00694_w springer_journals_10_1007_s40747_022_00694_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Complex & intelligent systems |
| PublicationTitleAbbrev | Complex Intell. Syst |
| PublicationYear | 2022 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Zuo, Chen, Sui (CR44) 2013; 124 Harrigan (CR13) 2017 Michael Revina, Sam Emmanuel (CR46) 2018 Clark (CR71) 2013; 26 Ain (CR54) 2017; 8 CR38 CR36 CR35 Naldi (CR15) 2020; 41 CR33 Tian, Wu, Ren, Razmjooy (CR68) 2021; 68 CR73 CR72 Wahab, Khan, Lee (CR55) 2017; 85 Rivera, Castillo, Chae (CR48) 2013; 22 Hamzenejad, Ghoushchi, Baradaran, Mardani (CR34) 2020; 8 Rajajee (CR74) 2020 CR2 Ranjbarzadeh, Saadi (CR19) 2020; 150 Hubel, Wiesel (CR51) 1968; 195 Raboel, Bartek, Andresen, Bellander, Romner (CR7) 2012; 2012 Deng (CR37) 2018; 25 Meiburger (CR75) 2020; 46 Little (CR6) 2008; 9 Hu, Xu, Asgari, Vespa, Bergsneider (CR26) 2010; 57 Ge (CR41) 2020 CR45 Wang (CR9) 2018; 136 Wang, Zhou, Gu, Lin (CR63) 2019; 53 Frid-Adar, Diamant, Klang, Amitai, Goldberger, Greenspan (CR67) 2018; 321 Munir, Elahi, Ayub, Frezza, Rizzi (CR70) 2019; 11 Sunitha, Rajalakshmi (CR40) 2020 Mishkin, Sergievskiy, Matas (CR50) 2017; 161 Karimi, RanjbarzadehKondrood, Alizadeh (CR69) 2017; 107 Zhou, Zhang, Zhong, Guo (CR39) 2019; 9 Celik (CR43) 2012; 45 Ranjbarzadeh, Saadi, Amirabadi (CR31) 2020 CR16 Wang, Chen, Chen, Yu, Xing (CR12) 2020; 7 Lee (CR5) 2020; 132 CR14 CR58 CR57 CR56 Robba (CR8) 2018; 44 Canac, Jalaleddini, Thorpe, Thibeault, Hamilton (CR1) 2020; 17 Lo, Chan, Lin, Li, Freedman, Mun (CR49) 1995; 8 CR52 Ranjbarzadeh (CR65) 2021; 2021 Xu, Gerety, Aleman, Swanson, Taylor (CR3) 2016; 32 Comaniciu, Meer (CR17) 2002 Ranjbarzadeh, BagherianKasgari, Jafarzadeh Ghoushchi, Anari, Naseri, Bendechache (CR53) 2021; 11 Pourasad, Ranjbarzadeh, Mardani (CR32) 2021; 23 Senders (CR21) 2018; 160 Pitfield, Carroll, Kissoon (CR4) 2012; 28 Quachtran, Hamilton, Scalzo (CR27) 2016 Mahmood (CR60) 2017 Brata Chanda, Sarkar (CR20) 2019 CR28 Sun, Song, Jiang, Pan, Pang (CR61) 2017; 224 CR25 CR24 CR22 Dunn (CR29) 1973; 3 Wang, Wang, Wang, Yin, Wang, Jin (CR64) 2020; 86 CR66 Singh, Kapoor (CR42) 2014; 36 Huang, Wang, Zhang, Li, Shi (CR59) 2021; 226 Dorosti, Jafarzadeh Ghoushchi, Sobhrakhshankhah, Ahmadi, Sharifi (CR18) 2020; 24 CR62 Bezdek (CR30) 1981 Ramírez Rivera, Rojas Castillo, Chae (CR47) 2015; 51 Thiéry (CR76) 2020; 11 Kim, Jun, Kim (CR10) 2018; 14 Raj (CR23) 2019; 9 Bäuerle, Nedelmann (CR11) 2012; 1–12 S Wang (694_CR64) 2020; 86 Z Huang (694_CR59) 2021; 226 694_CR45 A Mahmood (694_CR60) 2017 W Xu (694_CR3) 2016; 32 Y Pourasad (694_CR32) 2021; 23 KM Meiburger (694_CR75) 2020; 46 Q Tian (694_CR68) 2021; 68 DH Kim (694_CR10) 2018; 14 694_CR36 694_CR38 AR Rivera (694_CR48) 2013; 22 Y Ge (694_CR41) 2020 M Sun (694_CR61) 2017; 224 694_CR52 Y Zhou (694_CR39) 2019; 9 X Deng (694_CR37) 2018; 25 694_CR57 A Naldi (694_CR15) 2020; 41 694_CR56 AH Thiéry (694_CR76) 2020; 11 K Clark (694_CR71) 2013; 26 JT Senders (694_CR21) 2018; 160 RD Little (694_CR6) 2008; 9 B Quachtran (694_CR27) 2016 T Celik (694_CR43) 2012; 45 S Dorosti (694_CR18) 2020; 24 RL Harrigan (694_CR13) 2017 694_CR62 694_CR22 694_CR66 694_CR24 LJ Wang (694_CR12) 2020; 7 V Rajajee (694_CR74) 2020 HX Wang (694_CR63) 2019; 53 R Raj (694_CR23) 2019; 9 TO Sunitha (694_CR40) 2020 K Munir (694_CR70) 2019; 11 R Ranjbarzadeh (694_CR53) 2021; 11 C Robba (694_CR8) 2018; 44 K Singh (694_CR42) 2014; 36 J Bäuerle (694_CR11) 2012; 1–12 R Ranjbarzadeh (694_CR19) 2020; 150 R Ranjbarzadeh (694_CR31) 2020 N Canac (694_CR1) 2020; 17 QT Ain (694_CR54) 2017; 8 N Wahab (694_CR55) 2017; 85 R Ranjbarzadeh (694_CR65) 2021; 2021 694_CR14 694_CR58 694_CR16 694_CR73 LJ Wang (694_CR9) 2018; 136 694_CR72 P Brata Chanda (694_CR20) 2019 D Mishkin (694_CR50) 2017; 161 694_CR33 694_CR35 SCB Lo (694_CR49) 1995; 8 694_CR2 PH Raboel (694_CR7) 2012; 2012 A Hamzenejad (694_CR34) 2020; 8 SB Lee (694_CR5) 2020; 132 JC Dunn (694_CR29) 1973; 3 M Frid-Adar (694_CR67) 2018; 321 D Comaniciu (694_CR17) 2002 A Ramírez Rivera (694_CR47) 2015; 51 I Michael Revina (694_CR46) 2018 X Hu (694_CR26) 2010; 57 C Zuo (694_CR44) 2013; 124 DH Hubel (694_CR51) 1968; 195 AF Pitfield (694_CR4) 2012; 28 N Karimi (694_CR69) 2017; 107 694_CR25 694_CR28 JC Bezdek (694_CR30) 1981 |
| References_xml | – ident: CR45 – ident: CR22 – volume: 46 start-page: 1533 issue: 6 year: 2020 end-page: 1544 ident: CR75 article-title: Automatic optic nerve measurement: a new tool to standardize optic nerve assessment in ultrasound B-mode images publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2020.01.034 – volume: 86 year: 2020 ident: CR64 article-title: An improved random forest-based rule extraction method for breast cancer diagnosis publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2019.105941 – volume: 136 start-page: 250 issue: 3 year: 2018 end-page: 256 ident: CR9 article-title: Ultrasonography assessments of optic nerve sheath diameter as a noninvasive and dynamic method of detecting changes in intracranial pressure publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2017.6560 – ident: CR16 – volume: 107 start-page: 68 year: 2017 end-page: 76 ident: CR69 article-title: An intelligent system for quality measurement of Golden Bleached raisins using two comparative machine learning algorithms publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2017.05.009 – volume: 28 start-page: 200 issue: 2 year: 2012 end-page: 204 ident: CR4 article-title: Emergency management of increased intracranial pressure publication-title: Pediatr Emerg Care doi: 10.1097/PEC.0b013e318243fb72 – year: 2018 ident: CR46 article-title: Face expression recognition using LDN and dominant gradient local ternary pattern descriptors publication-title: J King Saud Univ Comput Inf Sci doi: 10.1016/j.jksuci.2018.03.015 – volume: 9 start-page: 75006 issue: 7 year: 2019 ident: CR39 article-title: Enhancing image quality of ghost imaging by fuzzy c-means clustering method publication-title: AIP Adv doi: 10.1063/1.5079681 – volume: 161 start-page: 11 year: 2017 end-page: 19 ident: CR50 article-title: Systematic evaluation of convolution neural network advances on the Imagenet publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2017.05.007 – volume: 41 start-page: 329 issue: 2 year: 2020 end-page: 333 ident: CR15 article-title: Optic nerve sheath diameter asymmetry in healthy subjects and patients with intracranial hypertension publication-title: Neurol Sci doi: 10.1007/s10072-019-04076-y – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 13 ident: CR23 article-title: Machine learning-based dynamic mortality prediction after traumatic brain injury publication-title: Sci Rep doi: 10.1038/s41598-019-53889-6 – ident: CR35 – volume: 11 start-page: 10930 issue: 1 year: 2021 ident: CR53 article-title: Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images publication-title: Sci Rep doi: 10.1038/s41598-021-90428-8 – volume: 226 start-page: 165877 year: 2021 ident: CR59 article-title: Image enhancement with the preservation of brightness and structures by employing contrast limited dynamic quadri-histogram equalization publication-title: Optik (Stuttg). doi: 10.1016/j.ijleo.2020.165877 – ident: CR58 – volume: 11 start-page: 1235 issue: 9 year: 2019 ident: CR70 article-title: Cancer diagnosis using deep learning: a bibliographic review publication-title: Cancers (Basel) doi: 10.3390/cancers11091235 – ident: CR25 – volume: 11 start-page: 6356 issue: 11 year: 2020 end-page: 6378 ident: CR76 article-title: Towards label-free 3D segmentation of optical coherence tomography images of the optic nerve head using deep learning publication-title: Biomed Opt Express doi: 10.1364/BOE.395934 – volume: 132 start-page: 1952 issue: 6 year: 2020 end-page: 1960 ident: CR5 article-title: Artifact removal from neurophysiological signals: impact on intracranial and arterial pressure monitoring in traumatic brain injury publication-title: J Neurosurg doi: 10.3171/2019.2.JNS182260 – volume: 22 start-page: 1740 issue: 5 year: 2013 end-page: 1752 ident: CR48 article-title: Local directional number pattern for face analysis: face and expression recognition publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2012.2235848 – volume: 160 start-page: 29 issue: 1 year: 2018 end-page: 38 ident: CR21 article-title: An introduction and overview of machine learning in neurosurgical care publication-title: Acta Neurochir doi: 10.1007/s00701-017-3385-8 – volume: 53 start-page: 1363 issue: 7 year: 2019 end-page: 1373 ident: CR63 article-title: Design of activation function in CNN for image classification publication-title: Zhejiang Daxue Xuebao (Gongxue Ban) J Zhejiang Univ Eng Sci doi: 10.3785/j.issn.1008-973X.2019.07.016 – year: 2017 ident: CR13 article-title: Quantitative characterization of optic nerve atrophy in patients with multiple sclerosis publication-title: Mult Scler J Exp Transl Clin doi: 10.1177/2055217317730097 – year: 2016 ident: CR27 article-title: Detection of intracranial hypertension using deep learning publication-title: Proc Int Conf Pattern Recogn doi: 10.1109/ICPR.2016.7900010 – volume: 24 start-page: 9943 issue: 13 year: 2020 end-page: 9964 ident: CR18 article-title: Application of gene expression programming and sensitivity analyses in analyzing effective parameters in gastric cancer tumor size and location publication-title: Soft Comput doi: 10.1007/s00500-019-04507-0 – volume: 23 start-page: 341 issue: 3 year: 2021 ident: CR32 article-title: A new algorithm for digital image encryption based on chaos theory publication-title: Entropy doi: 10.3390/e23030341 – volume: 195 start-page: 215 issue: 1 year: 1968 end-page: 243 ident: CR51 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: J Physiol doi: 10.1113/jphysiol.1968.sp008455 – volume: 8 start-page: 1268 issue: 8 year: 2020 ident: CR34 article-title: A robust algorithm for classification and diagnosis of brain disease using local linear approximation and generalized Autoregressive Conditional Heteroscedasticity model publication-title: Mathematics doi: 10.3390/MATH8081268 – volume: 2012 start-page: 14 year: 2012 ident: CR7 article-title: Intracranial pressure monitoring: invasive versus non-invasive methods-a review publication-title: Crit Care Res Pract doi: 10.1155/2012/950393 – year: 2020 ident: CR40 article-title: Multi-modal image fusion technique for enhancing image quality with multi-scale decomposition algorithm publication-title: Comput Methods Biomech Biomed Eng Imaging Vis doi: 10.1080/21681163.2020.1830437 – volume: 25 start-page: 571 issue: 4 year: 2018 end-page: 575 ident: CR37 article-title: Enhancing image quality via style transfer for single image super-resolution publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2018.2805809 – start-page: 43 year: 1981 end-page: 93 ident: CR30 article-title: Objective function clustering publication-title: Pattern recognition with fuzzy objective function algorithms doi: 10.1007/978-1-4757-0450-1_3 – ident: CR57 – volume: 124 start-page: 425 issue: 5 year: 2013 end-page: 431 ident: CR44 article-title: Range limited bi-histogram equalization for image contrast enhancement publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2011.12.057 – volume: 17 start-page: 40 issue: 1 year: 2020 ident: CR1 article-title: Review: pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring publication-title: Fluids Barriers CNS doi: 10.1186/s12987-020-00201-8 – ident: CR36 – volume: 8 start-page: 424 issue: 6 year: 2017 ident: CR54 article-title: Sentiment analysis using deep learning techniques: a review publication-title: IJACSA Int J Adv Comput Sci Appl – volume: 14 start-page: 345 issue: 3 year: 2018 end-page: 350 ident: CR10 article-title: Measurement of the optic nerve sheath diameter with magnetic resonance imaging and its association with eyeball diameter in healthy adults publication-title: J Clin Neurol doi: 10.3988/jcn.2018.14.3.345 – volume: 150 year: 2020 ident: CR19 article-title: Automated liver and tumor segmentation based on concave and convex points using fuzzy c-means and mean shift clustering publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2019.107086 – volume: 2021 start-page: 1 year: 2021 end-page: 16 ident: CR65 article-title: Lung infection segmentation for COVID-19 pneumonia based on a cascade convolutional network from CT images publication-title: Biomed Res Int doi: 10.1155/2021/5544742 – volume: 51 start-page: 94 year: 2015 end-page: 100 ident: CR47 article-title: Local directional texture pattern image descriptor publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2014.08.012 – start-page: 383 year: 2017 end-page: 401 ident: CR60 article-title: Deep learning for coral classification publication-title: Handbook of neural computation doi: 10.1016/B978-0-12-811318-9.00021-1 – volume: 32 start-page: 1371 issue: 8 year: 2016 end-page: 1386 ident: CR3 article-title: Noninvasive methods of detecting increased intracranial pressure publication-title: Child’s Nerv Syst doi: 10.1007/s00381-016-3143-x – ident: CR66 – volume: 9 start-page: 83 issue: 2 year: 2008 end-page: 87 ident: CR6 article-title: Increased intracranial pressure publication-title: Clin Pediatr Emerg Med doi: 10.1016/j.cpem.2008.03.003 – ident: CR72 – ident: CR14 – ident: CR2 – ident: CR33 – volume: 85 start-page: 86 year: 2017 end-page: 97 ident: CR55 article-title: Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.04.012 – year: 2019 ident: CR20 article-title: Automatic identification of blood vessels, exaudates and abnormalities in retinal images for diabetic retinopathy analysis publication-title: SSRN Electron J doi: 10.2139/ssrn.3446607 – volume: 8 start-page: 1201 issue: 7–8 year: 1995 end-page: 1214 ident: CR49 article-title: Artificial convolution neural network for medical image pattern recognition publication-title: Neural Netw doi: 10.1016/0893-6080(95)00061-5 – volume: 224 start-page: 96 year: 2017 end-page: 104 ident: CR61 article-title: Learning pooling for convolutional neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.049 – start-page: 541 year: 2002 end-page: 558 ident: CR17 article-title: Cell image segmentation for diagnostic pathology publication-title: Advanced algorithmic approaches to medical image segmentation doi: 10.1007/978-0-85729-333-6_10 – ident: CR56 – volume: 57 start-page: 1070 issue: 5 year: 2010 end-page: 1078 ident: CR26 article-title: Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2037607 – volume: 26 start-page: 1045 issue: 6 year: 2013 end-page: 1057 ident: CR71 article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository publication-title: J Digit Imaging doi: 10.1007/s10278-013-9622-7 – volume: 36 start-page: 10 issue: 1 year: 2014 end-page: 14 ident: CR42 article-title: Image enhancement using exposure based sub image histogram equalization publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2013.08.024 – volume: 44 start-page: 1284 issue: 8 year: 2018 end-page: 1294 ident: CR8 article-title: Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis publication-title: Intensive Care Med doi: 10.1007/s00134-018-5305-7 – year: 2020 ident: CR74 article-title: Novel algorithm for automated optic nerve sheath diameter measurement using a clustering approach publication-title: Mil Med doi: 10.1093/milmed/usaa231 – volume: 3 start-page: 32 issue: 3 year: 1973 end-page: 57 ident: CR29 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J Cybern doi: 10.1080/01969727308546046 – year: 2020 ident: CR41 article-title: Enhancing the X-ray differential phase contrast image quality with deep learning technique publication-title: IEEE Trans Biomed Eng doi: 10.1109/tbme.2020.3011119 – volume: 68 year: 2021 ident: CR68 article-title: A New optimized sequential method for lung tumor diagnosis based on deep learning and converged search and rescue algorithm publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102761 – ident: CR73 – volume: 321 start-page: 321 year: 2018 end-page: 331 ident: CR67 article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.013 – volume: 7 start-page: 865 issue: 5 year: 2020 end-page: 868 ident: CR12 article-title: Optic nerve sheath diameter ultrasonography for elevated intracranial pressure detection publication-title: Ann Clin Transl Neurol doi: 10.1002/acn3.51054 – ident: CR38 – ident: CR52 – volume: 45 start-page: 3810 issue: 10 year: 2012 end-page: 3824 ident: CR43 article-title: Two-dimensional histogram equalization and contrast enhancement publication-title: Pattern Recognit doi: 10.1016/j.patcog.2012.03.019 – ident: CR28 – ident: CR62 – ident: CR24 – volume: 1–12 start-page: 404 issue: 1–12 year: 2012 end-page: 407 ident: CR11 article-title: B-mode sonography of the optic nerve in neurological disorders with altered intracranial pressure publication-title: Perspect Med doi: 10.1016/j.permed.2012.01.001 – year: 2020 ident: CR31 article-title: LNPSS: SAR image despeckling based on local and non-local features using patch shape selection and edges linking publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2020.107989 – volume: 9 start-page: 83 issue: 2 year: 2008 ident: 694_CR6 publication-title: Clin Pediatr Emerg Med doi: 10.1016/j.cpem.2008.03.003 – volume: 321 start-page: 321 year: 2018 ident: 694_CR67 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.013 – year: 2018 ident: 694_CR46 publication-title: J King Saud Univ Comput Inf Sci doi: 10.1016/j.jksuci.2018.03.015 – ident: 694_CR72 doi: 10.1016/j.ijleo.2021.167551 – volume: 160 start-page: 29 issue: 1 year: 2018 ident: 694_CR21 publication-title: Acta Neurochir doi: 10.1007/s00701-017-3385-8 – start-page: 383 volume-title: Handbook of neural computation year: 2017 ident: 694_CR60 doi: 10.1016/B978-0-12-811318-9.00021-1 – volume: 53 start-page: 1363 issue: 7 year: 2019 ident: 694_CR63 publication-title: Zhejiang Daxue Xuebao (Gongxue Ban) J Zhejiang Univ Eng Sci doi: 10.3785/j.issn.1008-973X.2019.07.016 – volume: 28 start-page: 200 issue: 2 year: 2012 ident: 694_CR4 publication-title: Pediatr Emerg Care doi: 10.1097/PEC.0b013e318243fb72 – ident: 694_CR62 doi: 10.1007/978-3-319-11740-9_34 – ident: 694_CR33 doi: 10.1109/DSAA.2016.70 – volume: 11 start-page: 6356 issue: 11 year: 2020 ident: 694_CR76 publication-title: Biomed Opt Express doi: 10.1364/BOE.395934 – volume: 85 start-page: 86 year: 2017 ident: 694_CR55 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.04.012 – volume: 195 start-page: 215 issue: 1 year: 1968 ident: 694_CR51 publication-title: J Physiol doi: 10.1113/jphysiol.1968.sp008455 – volume: 22 start-page: 1740 issue: 5 year: 2013 ident: 694_CR48 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2012.2235848 – ident: 694_CR52 doi: 10.1007/978-3-030-56689-0_9 – volume: 8 start-page: 424 issue: 6 year: 2017 ident: 694_CR54 publication-title: IJACSA Int J Adv Comput Sci Appl – volume: 46 start-page: 1533 issue: 6 year: 2020 ident: 694_CR75 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2020.01.034 – volume: 132 start-page: 1952 issue: 6 year: 2020 ident: 694_CR5 publication-title: J Neurosurg doi: 10.3171/2019.2.JNS182260 – volume: 161 start-page: 11 year: 2017 ident: 694_CR50 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2017.05.007 – volume: 8 start-page: 1268 issue: 8 year: 2020 ident: 694_CR34 publication-title: Mathematics doi: 10.3390/MATH8081268 – year: 2020 ident: 694_CR40 publication-title: Comput Methods Biomech Biomed Eng Imaging Vis doi: 10.1080/21681163.2020.1830437 – year: 2020 ident: 694_CR41 publication-title: IEEE Trans Biomed Eng doi: 10.1109/tbme.2020.3011119 – ident: 694_CR57 doi: 10.1109/ISFA.2016.7790137 – volume: 45 start-page: 3810 issue: 10 year: 2012 ident: 694_CR43 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2012.03.019 – volume: 107 start-page: 68 year: 2017 ident: 694_CR69 publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2017.05.009 – ident: 694_CR14 doi: 10.1109/ICSIDP47821.2019.9173198 – volume: 1–12 start-page: 404 issue: 1–12 year: 2012 ident: 694_CR11 publication-title: Perspect Med doi: 10.1016/j.permed.2012.01.001 – year: 2019 ident: 694_CR20 publication-title: SSRN Electron J doi: 10.2139/ssrn.3446607 – volume: 7 start-page: 865 issue: 5 year: 2020 ident: 694_CR12 publication-title: Ann Clin Transl Neurol doi: 10.1002/acn3.51054 – ident: 694_CR45 doi: 10.1109/IC3I.2014.7019808 – volume: 226 start-page: 165877 year: 2021 ident: 694_CR59 publication-title: Optik (Stuttg). doi: 10.1016/j.ijleo.2020.165877 – year: 2017 ident: 694_CR13 publication-title: Mult Scler J Exp Transl Clin doi: 10.1177/2055217317730097 – volume: 9 start-page: 75006 issue: 7 year: 2019 ident: 694_CR39 publication-title: AIP Adv doi: 10.1063/1.5079681 – volume: 17 start-page: 40 issue: 1 year: 2020 ident: 694_CR1 publication-title: Fluids Barriers CNS doi: 10.1186/s12987-020-00201-8 – ident: 694_CR22 doi: 10.1117/12.2513167 – volume: 86 year: 2020 ident: 694_CR64 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2019.105941 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 694_CR23 publication-title: Sci Rep doi: 10.1038/s41598-019-53889-6 – ident: 694_CR25 doi: 10.1109/BIBM.2010.5706619 – start-page: 43 volume-title: Pattern recognition with fuzzy objective function algorithms year: 1981 ident: 694_CR30 doi: 10.1007/978-1-4757-0450-1_3 – ident: 694_CR36 doi: 10.1109/ICSDM.2015.7298026 – ident: 694_CR28 – ident: 694_CR73 doi: 10.1109/ICIAS.2014.6869542 – volume: 8 start-page: 1201 issue: 7–8 year: 1995 ident: 694_CR49 publication-title: Neural Netw doi: 10.1016/0893-6080(95)00061-5 – volume: 150 year: 2020 ident: 694_CR19 publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2019.107086 – year: 2020 ident: 694_CR74 publication-title: Mil Med doi: 10.1093/milmed/usaa231 – volume: 11 start-page: 10930 issue: 1 year: 2021 ident: 694_CR53 publication-title: Sci Rep doi: 10.1038/s41598-021-90428-8 – year: 2020 ident: 694_CR31 publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2020.107989 – year: 2016 ident: 694_CR27 publication-title: Proc Int Conf Pattern Recogn doi: 10.1109/ICPR.2016.7900010 – volume: 136 start-page: 250 issue: 3 year: 2018 ident: 694_CR9 publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2017.6560 – volume: 57 start-page: 1070 issue: 5 year: 2010 ident: 694_CR26 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2037607 – volume: 3 start-page: 32 issue: 3 year: 1973 ident: 694_CR29 publication-title: J Cybern doi: 10.1080/01969727308546046 – volume: 2012 start-page: 14 year: 2012 ident: 694_CR7 publication-title: Crit Care Res Pract doi: 10.1155/2012/950393 – start-page: 541 volume-title: Advanced algorithmic approaches to medical image segmentation year: 2002 ident: 694_CR17 doi: 10.1007/978-0-85729-333-6_10 – ident: 694_CR2 doi: 10.1109/EMBC.2019.8856449 – volume: 2021 start-page: 1 year: 2021 ident: 694_CR65 publication-title: Biomed Res Int doi: 10.1155/2021/5544742 – ident: 694_CR35 – volume: 25 start-page: 571 issue: 4 year: 2018 ident: 694_CR37 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2018.2805809 – volume: 14 start-page: 345 issue: 3 year: 2018 ident: 694_CR10 publication-title: J Clin Neurol doi: 10.3988/jcn.2018.14.3.345 – volume: 11 start-page: 1235 issue: 9 year: 2019 ident: 694_CR70 publication-title: Cancers (Basel) doi: 10.3390/cancers11091235 – volume: 24 start-page: 9943 issue: 13 year: 2020 ident: 694_CR18 publication-title: Soft Comput doi: 10.1007/s00500-019-04507-0 – volume: 26 start-page: 1045 issue: 6 year: 2013 ident: 694_CR71 publication-title: J Digit Imaging doi: 10.1007/s10278-013-9622-7 – volume: 68 year: 2021 ident: 694_CR68 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102761 – volume: 51 start-page: 94 year: 2015 ident: 694_CR47 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2014.08.012 – volume: 32 start-page: 1371 issue: 8 year: 2016 ident: 694_CR3 publication-title: Child’s Nerv Syst doi: 10.1007/s00381-016-3143-x – ident: 694_CR58 doi: 10.1007/978-3-642-53917-6_21 – ident: 694_CR56 doi: 10.1109/ICRAMET.2017.8253139 – volume: 44 start-page: 1284 issue: 8 year: 2018 ident: 694_CR8 publication-title: Intensive Care Med doi: 10.1007/s00134-018-5305-7 – ident: 694_CR38 doi: 10.1109/MedCom.2014.7006027 – volume: 41 start-page: 329 issue: 2 year: 2020 ident: 694_CR15 publication-title: Neurol Sci doi: 10.1007/s10072-019-04076-y – ident: 694_CR16 doi: 10.21203/RS.3.RS-186293/V1 – volume: 36 start-page: 10 issue: 1 year: 2014 ident: 694_CR42 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2013.08.024 – volume: 124 start-page: 425 issue: 5 year: 2013 ident: 694_CR44 publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2011.12.057 – volume: 224 start-page: 96 year: 2017 ident: 694_CR61 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.049 – ident: 694_CR24 doi: 10.1109/IntelliSys.2017.8324324 – volume: 23 start-page: 341 issue: 3 year: 2021 ident: 694_CR32 publication-title: Entropy doi: 10.3390/e23030341 – ident: 694_CR66 doi: 10.1007/978-3-030-38748-8_2 |
| SSID | ssj0001778302 ssib044733412 ssib045327741 |
| Score | 2.4460797 |
| Snippet | The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3543 |
| SubjectTerms | Artificial intelligence Artificial neural networks Brain Clustering Complexity Computational Intelligence Computed tomography Computer engineering Data Structures and Information Theory Datasets Deep learning Diagnosis Engineering Feature extraction Histograms Human error Hypertension Image enhancement Image quality Image segmentation Industrial engineering Intelligent systems Intracranial pressure Machine learning Medical imaging Methods Nerves Neural networks Original Article Traumatic brain injury Ultrasonic imaging |
| SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na8IwFA-bO2w7jH0yNzdy2G0GbJsm7XHIRAZ6UpBdSj5F0CpWkf33S2Ja3WGyHUvSV3gveR997_0eAC8J4YEIOUc6SWKEJRcoMVYEcY0ZFVwrTWw3cq9PukP8MYpHvimsKKvdy5Sk09RVsxu2WO_IVp9beF2MNsfgxPgfoR3Y0N5hjmNMowh7o-3-tFBqQa7slLkgTRF2-cqH38n-tFA7t7PKlJ6D03W-YF8bNp3uGaPOJbjwXiR824r9Chyp_Bqc72ELmqdeBcha3IDPvq1shHOjIAQs1HjmW45yOMlhewAnM6NXCmir4MeQQanUAvqBEmPopuVAlkuzYgtF1ktldmz1zXx5C4ad90G7i_xYBSTiqLVCglARWqQ_LpmJUCXDgeSxVJhHjLOIS6GIjSQ0jjUmYUtxqrSkiUo4D6UKojtQy-e5ugeQCsxSGzUSE3Vpc7epijVhuGVIp5rKOghKVmbCY47b0RfTrEJLduzPDPszx_5sUwev1TuLLeLGwd2NUkKZv31FFpKUxiZQw7QOmqXUdsuHqDUryf7h4w__o_4IzkJ3zmz5YAPUVsu1ejIuzYo_uxP8DcIk6vc priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qPagH32K1Sg7eNLXdzSbbo_hAhBYPFtTLkmcR67a0W4r-epN9VQVF8bYwSZYkk8kM-eYbgKOQipb0hMAmDANMlJA4tLcIFoZwJoXRhrps5E6XXvfIzX1wX4GLIhcmRbsXT5JZToNjaYqT05Eyp2XiG3G879gh0R3VLsGzhhUvwCINrEdehcVe9_bswdWVszE1th67n323MUlfK_e-H-jz_TR3Ost30hVYmsYj_jrjg8GHq-hqDXQxiQyB8tyYJqIh377wO_53luuwmvuq6CxTrg2o6HgTVjol0etkCx67DjGJhtbwSDTR_Zc8lSlGTzE6v0NPL9ZeTZBD1_cRR0rrEcoLVfRRWoUH8VhZiQOgTMfatsjs2HC8Db2ry7vza5yXa8Ay8JsJlpRJzzEICsVt5Ks4aSkRKE2EzwX3hZKaugjFkMAQ6jW1YNooFupQCE_plr8D1XgY611ATBLedtEotdGcsTaD6cBQTpp26LZhqgatYpMimXOZu5Iag6hkYU7XLrJrF6VrF81qcFz2GWVMHj-2rhd7H-WnehJ5tM0CGwASVoOTYvvm4p9GOyl15hc_3_tb831Y9lIlcbDEOlST8VQfWFcpEYf5SXgHIs4LSQ priority: 102 providerName: Unpaywall |
| Title | Nerve optic segmentation in CT images using a deep learning model and a texture descriptor |
| URI | https://link.springer.com/article/10.1007/s40747-022-00694-w https://www.proquest.com/docview/2697526047 https://link.springer.com/content/pdf/10.1007/s40747-022-00694-w.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: ADMLS dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044733412 issn: 2199-4536 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: 8FG dateStart: 20180601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: AAJSJ dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: C6C dateStart: 20151201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: C24 dateStart: 20151201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED4k9tBmKNIX4jwMDt0aopZEkdIQFK4RNzAQIWhjIO0i8GkEcGTXDxj99-XJkpwsRhcNIkUBx-Pdkbz7PoBPCVeBDpWiLkliyozSNPFehCrHpNDKWcexGvk24zdjNnqIHw4gq2thMK2ytomloTYzjWfkX0KeitgH30x8nf-hyBqFt6s1hYasqBXMVQkxdgjtEJGxWtD-dp3d_ag1jDERRWzn0FkchaLmnilPZYRAQCxkpAvSlLLybvO0qbdjCDdPMQEeEX4Z3bz0ZrsQtblVPYJX62Iu_27kdPrMcQ2P4U0VcZL-VkXewoEt3sHRbQPXunwPvzPMeyQzbz40WdrJU1WQVJDHggzuyeOTtzpLgjnyEyKJsXZOKrqJCSm5dIgsjG_BNJL1wvoeW2s0W3yA8fD6fnBDK9IFquOot6KaCx0iDqAy0u9fjWSBUbGxTEVSyUgZbTnuMxyLHeNhzyphnRGJTZQKjQ2ij9AqZoU9ASI0kynuKbnfkzm_8oWNHZes54dOnTAdCGrh5bpCJEdijGneYCmXAs-9wPNS4PmmA5-bb-ZbPI69vc_rOcmrtbnMd5rUgct6nnbN-0a7bObyP35-uv_nZ_A6LDUJkwnPobVarO2FD3BWqguHyfB7F9r9_ujnqFvpsH87CBk--aBbHh34lnF21__1D-1s-hk |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lB6QDzVlAI-wIlaZL2z9u6hQlBapbSJEEqlisviZ1Qp3YRsoqh_jt-GvdndwCXi0rO9tjQzO56xZ74P4G3KVaSZUtSlaULRKE1Tf4pQ5VAKrZx1PHQj9we8d4Vfr5PrLfjd9MKEssrGJ1aO2kx0uCP_wHgmEh98o_g4_UUDa1R4XW0oNGRNrWCOK4ixurHjwt4tfQpXHp9_8fp-x9jZ6fCkR2uWAaqTuDunmgvNAvCdMtInbEZiZFRiLKpYKhkroy0PgbXDxCFnXauEdUakNlWKGRvFft0HsIMxZj752_l8Ovj2vbFoRBHHuA4gMImZaLhuqlsgIQIAV2DAi7KMYvWWetD292GAt6eh4D4gCiNd_nt6rkPi9hV3D3YXxVTeLeV4_NdBefYYHtURLvm0MsknsGWLp7DXb-Fhy2fwYxDqLMnEuytNSju6rRugCnJTkJMhubn1Xq4koSZ_RCQx1k5JTW8xIhV3D5GF8SOhbGUxs37GyvtNZs_h6l7E_wK2i0lh94EIjTILOSz3OaDznkbYxHGJXb905oTpQNQIL9c1Anog4hjnLXZzJfDcCzyvBJ4vO_C-_Wa6wv_YOPuw0Ule-4IyX1tuB44aPa2HN6121OryPzY_2Lz5G9jtDfuX-eX54OIlPGSVVYVCxkPYns8W9pUPrubqdW3BBH7e90_zB3NCMnw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT-swDLd4IPHggPgU4-vlwA0i1tZN2iMaTMCDiQNIiEuVzwlpdNM-NPHfk3RtGQcQHKukrmQ7dlzbPwMcJ0wGKpSS2iSJKWqpaOK8CJUWBVfSGst8N_Jdh1094s1T_DTXxV9Uu1cpyVlPg0dpysdnA23P6sY39Ljv1Feie6hdpNM_sITOu_kZBi3WqjQKkUcRlg68-OvCuQe88hPngjSlWOQu974m-9lbfVxB66zpKvyd5APxNhW93pxjaq_DWnmjJOczFdiABZNvwuoczqB7uqvBWUdb8NzxVY6k74yFIiPTfS3bj3LykpPWA3l5dTZmRHxFfJcIoo0ZkHK4RJcUk3OIyLVb8UUjk6FxO2a2pz_chsf25UPripYjFqiKo-aYKsZV6FH_pBYuWtUCAy1jbVBGQopIamWYjyosxhZZ2DSSG6t5YhIpQ22CaAcW835udoFwhSL1ESRzEZh155yb2DKBTUc6tVw3IKhYmakSf9yPwehlNXJywf7MsT8r2J9NG3BSvzOYoW98u_ugklBWnsRRFrKUxy5oQ96A00pqH8vfUTutJfuDj-_9jvo_WL6_aGe3153_-7ASFirnqwoPYHE8nJhDd9MZy6NCmd8BCcfySA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qPagH32K1Sg7eNLXdzSbbo_hAhBYPFtTLkmcR67a0W4r-epN9VQVF8bYwSZYkk8kM-eYbgKOQipb0hMAmDANMlJA4tLcIFoZwJoXRhrps5E6XXvfIzX1wX4GLIhcmRbsXT5JZToNjaYqT05Eyp2XiG3G879gh0R3VLsGzhhUvwCINrEdehcVe9_bswdWVszE1th67n323MUlfK_e-H-jz_TR3Ost30hVYmsYj_jrjg8GHq-hqDXQxiQyB8tyYJqIh377wO_53luuwmvuq6CxTrg2o6HgTVjol0etkCx67DjGJhtbwSDTR_Zc8lSlGTzE6v0NPL9ZeTZBD1_cRR0rrEcoLVfRRWoUH8VhZiQOgTMfatsjs2HC8Db2ry7vza5yXa8Ay8JsJlpRJzzEICsVt5Ks4aSkRKE2EzwX3hZKaugjFkMAQ6jW1YNooFupQCE_plr8D1XgY611ATBLedtEotdGcsTaD6cBQTpp26LZhqgatYpMimXOZu5Iag6hkYU7XLrJrF6VrF81qcFz2GWVMHj-2rhd7H-WnehJ5tM0CGwASVoOTYvvm4p9GOyl15hc_3_tb831Y9lIlcbDEOlST8VQfWFcpEYf5SXgHIs4LSQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nerve+optic+segmentation+in+CT+images+using+a+deep+learning+model+and+a+texture+descriptor&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Ranjbarzadeh%2C+Ramin&rft.au=Dorosti%2C+Shadi&rft.au=Jafarzadeh+Ghoushchi%2C+Saeid&rft.au=Safavi%2C+Sadaf&rft.date=2022-08-01&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=8&rft.issue=4&rft.spage=3543&rft.epage=3557&rft_id=info:doi/10.1007%2Fs40747-022-00694-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40747_022_00694_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |