Nerve optic segmentation in CT images using a deep learning model and a texture descriptor

The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time-consuming approach, but advanced computer-aided diagnosis (CAD)...

Full description

Saved in:
Bibliographic Details
Published inComplex & intelligent systems Vol. 8; no. 4; pp. 3543 - 3557
Main Authors Ranjbarzadeh, Ramin, Dorosti, Shadi, Jafarzadeh Ghoushchi, Saeid, Safavi, Sadaf, Razmjooy, Navid, Tataei Sarshar, Nazanin, Anari, Shokofeh, Bendechache, Malika
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2199-4536
2198-6053
2198-6053
DOI10.1007/s40747-022-00694-w

Cover

Abstract The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time-consuming approach, but advanced computer-aided diagnosis (CAD) systems can assist the physician to decrease the time of ICP diagnosis. The accurate detection of the nerve optic regions, with drawing a precise slope line behind the eyeball and calculating the diameter of nerve optic, are the main aims of this research. First, the Fuzzy C-mean (FCM) clustering is employed for segmenting the input CT screening images into the different parts. Second, a histogram equalization approach is used for region-based image quality enhancement. Then, the Local Directional Number method (LDN) is used for representing some key information in a new image. Finally, a cascade Convolutional Neural Network (CNN) is employed for nerve optic segmentation by two distinct input images. Comprehensive experiments on the CT screening dataset [The Cancer Imaging Archive (TCIA)] consisting of 1600 images show the competitive results of inaccurate extraction of the brain features. Also, the indexes such as Dice, Specificity, and Precision for the proposed approach are reported 87.7%, 91.3%, and 90.1%, respectively. The final classification results show that the proposed approach effectively and accurately detects the nerve optic and its diameter in comparison with the other methods. Therefore, this method can be used for early diagnose of ICP and preventing the occurrence of serious health problems in patients.
AbstractList The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time-consuming approach, but advanced computer-aided diagnosis (CAD) systems can assist the physician to decrease the time of ICP diagnosis. The accurate detection of the nerve optic regions, with drawing a precise slope line behind the eyeball and calculating the diameter of nerve optic, are the main aims of this research. First, the Fuzzy C-mean (FCM) clustering is employed for segmenting the input CT screening images into the different parts. Second, a histogram equalization approach is used for region-based image quality enhancement. Then, the Local Directional Number method (LDN) is used for representing some key information in a new image. Finally, a cascade Convolutional Neural Network (CNN) is employed for nerve optic segmentation by two distinct input images. Comprehensive experiments on the CT screening dataset [The Cancer Imaging Archive (TCIA)] consisting of 1600 images show the competitive results of inaccurate extraction of the brain features. Also, the indexes such as Dice, Specificity, and Precision for the proposed approach are reported 87.7%, 91.3%, and 90.1%, respectively. The final classification results show that the proposed approach effectively and accurately detects the nerve optic and its diameter in comparison with the other methods. Therefore, this method can be used for early diagnose of ICP and preventing the occurrence of serious health problems in patients.
The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time-consuming approach, but advanced computer-aided diagnosis (CAD) systems can assist the physician to decrease the time of ICP diagnosis. The accurate detection of the nerve optic regions, with drawing a precise slope line behind the eyeball and calculating the diameter of nerve optic, are the main aims of this research. First, the Fuzzy C-mean (FCM) clustering is employed for segmenting the input CT screening images into the different parts. Second, a histogram equalization approach is used for region-based image quality enhancement. Then, the Local Directional Number method (LDN) is used for representing some key information in a new image. Finally, a cascade Convolutional Neural Network (CNN) is employed for nerve optic segmentation by two distinct input images. Comprehensive experiments on the CT screening dataset [The Cancer Imaging Archive (TCIA)] consisting of 1600 images show the competitive results of inaccurate extraction of the brain features. Also, the indexes such as Dice, Specificity, and Precision for the proposed approach are reported 87.7%, 91.3%, and 90.1%, respectively. The final classification results show that the proposed approach effectively and accurately detects the nerve optic and its diameter in comparison with the other methods. Therefore, this method can be used for early diagnose of ICP and preventing the occurrence of serious health problems in patients.
Author Ranjbarzadeh, Ramin
Tataei Sarshar, Nazanin
Anari, Shokofeh
Dorosti, Shadi
Razmjooy, Navid
Safavi, Sadaf
Jafarzadeh Ghoushchi, Saeid
Bendechache, Malika
Author_xml – sequence: 1
  givenname: Ramin
  orcidid: 0000-0001-7065-9060
  surname: Ranjbarzadeh
  fullname: Ranjbarzadeh, Ramin
  email: ranjbar.ramin24@gmail.com
  organization: Department of Telecommunications Engineering, Faculty of Engineering, University of Guilan
– sequence: 2
  givenname: Shadi
  surname: Dorosti
  fullname: Dorosti, Shadi
  organization: Department of Industrial Engineering, Urmia University of Technology (UUT)
– sequence: 3
  givenname: Saeid
  surname: Jafarzadeh Ghoushchi
  fullname: Jafarzadeh Ghoushchi, Saeid
  organization: Faculty of Industrial Engineering, Urmia University of Technology
– sequence: 4
  givenname: Sadaf
  surname: Safavi
  fullname: Safavi, Sadaf
  organization: Department of Computer Engineering, Mashhad Branch, Islamic Azad University
– sequence: 5
  givenname: Navid
  surname: Razmjooy
  fullname: Razmjooy, Navid
  organization: Department of Electrical Engineering, Tafresh University
– sequence: 6
  givenname: Nazanin
  surname: Tataei Sarshar
  fullname: Tataei Sarshar, Nazanin
  organization: Department of Engineering, Islamic Azad University, Tehran North Branch
– sequence: 7
  givenname: Shokofeh
  surname: Anari
  fullname: Anari, Shokofeh
  organization: Department of Accounting, Economic and Financial Sciences, Islamic Azad University, South Tehran Branch
– sequence: 8
  givenname: Malika
  surname: Bendechache
  fullname: Bendechache, Malika
  organization: School of Computing, Faculty of Engineering and Computing, Dublin City University
BookMark eNqNkM1KxDAURoMoOI6-gKuA6-ptkibtUgb_QHSjGzchbW5LpZPWJHX07a12QHAxuEpCvnPz5RyRfdc7JOQ0hfMUQF0EAUqoBBhLAGQhks0eWbC0yBMJGd__2ReJyLg8JCchvAJAqlTOgS3IywP6d6T9ENuKBmzW6KKJbe9o6-jqibZr02CgY2hdQw21iAPt0Hj3fV73FjtqnJ1uIn7E0eOUCJVvh9j7Y3JQmy7gyXZdkufrq6fVbXL_eHO3urxPqoxDTCqpKgZciNKalHNrRGrLzKIouSkNL22FEjjIWmS1kAywVFhblWNelsxiypeEz3NHN5jPjek6Pfipt__UKehvQ3o2pCdD-seQ3kzU2UwNvn8bMUT92o_eTUU1k4XKmAShphSbU5XvQ_BY_290_geq2llq9KbtdqPbv4TpHdeg_221g_oCC-abAg
CitedBy_id crossref_primary_10_1155_2022_4894922
crossref_primary_10_1016_j_bspc_2023_105063
crossref_primary_10_1016_j_engappai_2022_105554
crossref_primary_10_3390_bioengineering10040495
crossref_primary_10_1016_j_bspc_2023_105065
crossref_primary_10_1016_j_bspc_2024_107220
crossref_primary_10_1007_s12530_023_09541_w
crossref_primary_10_3390_electronics11131998
crossref_primary_10_1016_j_bspc_2023_105643
crossref_primary_10_1002_ima_22852
crossref_primary_10_1080_21681163_2023_2280558
crossref_primary_10_3390_electronics13183595
crossref_primary_10_1016_j_bspc_2023_105879
crossref_primary_10_1038_s41598_024_79067_x
crossref_primary_10_1016_j_vrih_2024_04_001
crossref_primary_10_3390_app13158758
crossref_primary_10_3390_sym14101976
crossref_primary_10_24003_emitter_v11i2_832
crossref_primary_10_1155_2022_5052435
crossref_primary_10_1007_s12065_022_00800_4
crossref_primary_10_1142_S021821302350063X
crossref_primary_10_1007_s42835_023_01560_6
crossref_primary_10_1016_j_engappai_2023_106639
crossref_primary_10_3934_mbe_2023457
crossref_primary_10_1016_j_apm_2024_04_055
crossref_primary_10_3389_fnins_2023_1191999
crossref_primary_10_1007_s10462_023_10426_2
crossref_primary_10_1016_j_autcon_2024_105806
crossref_primary_10_1038_s41598_023_49438_x
crossref_primary_10_1115_1_4064705
crossref_primary_10_1016_j_asoc_2023_110768
crossref_primary_10_1038_s41598_024_77585_2
crossref_primary_10_3390_diagnostics13142454
Cites_doi 10.1016/j.ultrasmedbio.2020.01.034
10.1016/j.asoc.2019.105941
10.1001/jamaophthalmol.2017.6560
10.1016/j.measurement.2017.05.009
10.1097/PEC.0b013e318243fb72
10.1016/j.jksuci.2018.03.015
10.1063/1.5079681
10.1016/j.cviu.2017.05.007
10.1007/s10072-019-04076-y
10.1038/s41598-019-53889-6
10.1038/s41598-021-90428-8
10.1016/j.ijleo.2020.165877
10.3390/cancers11091235
10.1364/BOE.395934
10.3171/2019.2.JNS182260
10.1109/TIP.2012.2235848
10.1007/s00701-017-3385-8
10.3785/j.issn.1008-973X.2019.07.016
10.1177/2055217317730097
10.1109/ICPR.2016.7900010
10.1007/s00500-019-04507-0
10.3390/e23030341
10.1113/jphysiol.1968.sp008455
10.3390/MATH8081268
10.1155/2012/950393
10.1080/21681163.2020.1830437
10.1109/LSP.2018.2805809
10.1007/978-1-4757-0450-1_3
10.1016/j.ijleo.2011.12.057
10.1186/s12987-020-00201-8
10.3988/jcn.2018.14.3.345
10.1016/j.measurement.2019.107086
10.1155/2021/5544742
10.1016/j.patrec.2014.08.012
10.1016/B978-0-12-811318-9.00021-1
10.1007/s00381-016-3143-x
10.1016/j.cpem.2008.03.003
10.1016/j.compbiomed.2017.04.012
10.2139/ssrn.3446607
10.1016/0893-6080(95)00061-5
10.1016/j.neucom.2016.10.049
10.1007/978-0-85729-333-6_10
10.1109/TBME.2009.2037607
10.1007/s10278-013-9622-7
10.1016/j.patrec.2013.08.024
10.1007/s00134-018-5305-7
10.1093/milmed/usaa231
10.1080/01969727308546046
10.1109/tbme.2020.3011119
10.1016/j.bspc.2021.102761
10.1016/j.neucom.2018.09.013
10.1002/acn3.51054
10.1016/j.patcog.2012.03.019
10.1016/j.permed.2012.01.001
10.1016/j.measurement.2020.107989
10.1016/j.ijleo.2021.167551
10.1007/978-3-319-11740-9_34
10.1109/DSAA.2016.70
10.1007/978-3-030-56689-0_9
10.1109/ISFA.2016.7790137
10.1109/ICSIDP47821.2019.9173198
10.1109/IC3I.2014.7019808
10.1117/12.2513167
10.1109/BIBM.2010.5706619
10.1109/ICSDM.2015.7298026
10.1109/ICIAS.2014.6869542
10.1109/EMBC.2019.8856449
10.1007/978-3-642-53917-6_21
10.1109/ICRAMET.2017.8253139
10.1109/MedCom.2014.7006027
10.21203/RS.3.RS-186293/V1
10.1109/IntelliSys.2017.8324324
10.1007/978-3-030-38748-8_2
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.1007/s40747-022-00694-w
DatabaseName Springer Open Access Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest SciTech Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 3557
ExternalDocumentID 10.1007/s40747-022-00694-w
10_1007_s40747_022_00694_w
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c530t-c67c20344bda133da41db5de4b3aba3bdce60306f45f4620eb7efd78e8bb2de13
IEDL.DBID BENPR
ISSN 2199-4536
2198-6053
IngestDate Tue Aug 19 09:18:06 EDT 2025
Wed Oct 08 14:20:32 EDT 2025
Wed Oct 01 04:22:17 EDT 2025
Thu Apr 24 22:56:24 EDT 2025
Fri Feb 21 02:45:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Image segmentation
Nerve optic
Convolutional neural network
Image enhancement
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-c67c20344bda133da41db5de4b3aba3bdce60306f45f4620eb7efd78e8bb2de13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7065-9060
OpenAccessLink https://www.proquest.com/docview/2697526047?pq-origsite=%requestingapplication%&accountid=15518
PQID 2697526047
PQPubID 2044308
PageCount 15
ParticipantIDs unpaywall_primary_10_1007_s40747_022_00694_w
proquest_journals_2697526047
crossref_primary_10_1007_s40747_022_00694_w
crossref_citationtrail_10_1007_s40747_022_00694_w
springer_journals_10_1007_s40747_022_00694_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Zuo, Chen, Sui (CR44) 2013; 124
Harrigan (CR13) 2017
Michael Revina, Sam Emmanuel (CR46) 2018
Clark (CR71) 2013; 26
Ain (CR54) 2017; 8
CR38
CR36
CR35
Naldi (CR15) 2020; 41
CR33
Tian, Wu, Ren, Razmjooy (CR68) 2021; 68
CR73
CR72
Wahab, Khan, Lee (CR55) 2017; 85
Rivera, Castillo, Chae (CR48) 2013; 22
Hamzenejad, Ghoushchi, Baradaran, Mardani (CR34) 2020; 8
Rajajee (CR74) 2020
CR2
Ranjbarzadeh, Saadi (CR19) 2020; 150
Hubel, Wiesel (CR51) 1968; 195
Raboel, Bartek, Andresen, Bellander, Romner (CR7) 2012; 2012
Deng (CR37) 2018; 25
Meiburger (CR75) 2020; 46
Little (CR6) 2008; 9
Hu, Xu, Asgari, Vespa, Bergsneider (CR26) 2010; 57
Ge (CR41) 2020
CR45
Wang (CR9) 2018; 136
Wang, Zhou, Gu, Lin (CR63) 2019; 53
Frid-Adar, Diamant, Klang, Amitai, Goldberger, Greenspan (CR67) 2018; 321
Munir, Elahi, Ayub, Frezza, Rizzi (CR70) 2019; 11
Sunitha, Rajalakshmi (CR40) 2020
Mishkin, Sergievskiy, Matas (CR50) 2017; 161
Karimi, RanjbarzadehKondrood, Alizadeh (CR69) 2017; 107
Zhou, Zhang, Zhong, Guo (CR39) 2019; 9
Celik (CR43) 2012; 45
Ranjbarzadeh, Saadi, Amirabadi (CR31) 2020
CR16
Wang, Chen, Chen, Yu, Xing (CR12) 2020; 7
Lee (CR5) 2020; 132
CR14
CR58
CR57
CR56
Robba (CR8) 2018; 44
Canac, Jalaleddini, Thorpe, Thibeault, Hamilton (CR1) 2020; 17
Lo, Chan, Lin, Li, Freedman, Mun (CR49) 1995; 8
CR52
Ranjbarzadeh (CR65) 2021; 2021
Xu, Gerety, Aleman, Swanson, Taylor (CR3) 2016; 32
Comaniciu, Meer (CR17) 2002
Ranjbarzadeh, BagherianKasgari, Jafarzadeh Ghoushchi, Anari, Naseri, Bendechache (CR53) 2021; 11
Pourasad, Ranjbarzadeh, Mardani (CR32) 2021; 23
Senders (CR21) 2018; 160
Pitfield, Carroll, Kissoon (CR4) 2012; 28
Quachtran, Hamilton, Scalzo (CR27) 2016
Mahmood (CR60) 2017
Brata Chanda, Sarkar (CR20) 2019
CR28
Sun, Song, Jiang, Pan, Pang (CR61) 2017; 224
CR25
CR24
CR22
Dunn (CR29) 1973; 3
Wang, Wang, Wang, Yin, Wang, Jin (CR64) 2020; 86
CR66
Singh, Kapoor (CR42) 2014; 36
Huang, Wang, Zhang, Li, Shi (CR59) 2021; 226
Dorosti, Jafarzadeh Ghoushchi, Sobhrakhshankhah, Ahmadi, Sharifi (CR18) 2020; 24
CR62
Bezdek (CR30) 1981
Ramírez Rivera, Rojas Castillo, Chae (CR47) 2015; 51
Thiéry (CR76) 2020; 11
Kim, Jun, Kim (CR10) 2018; 14
Raj (CR23) 2019; 9
Bäuerle, Nedelmann (CR11) 2012; 1–12
S Wang (694_CR64) 2020; 86
Z Huang (694_CR59) 2021; 226
694_CR45
A Mahmood (694_CR60) 2017
W Xu (694_CR3) 2016; 32
Y Pourasad (694_CR32) 2021; 23
KM Meiburger (694_CR75) 2020; 46
Q Tian (694_CR68) 2021; 68
DH Kim (694_CR10) 2018; 14
694_CR36
694_CR38
AR Rivera (694_CR48) 2013; 22
Y Ge (694_CR41) 2020
M Sun (694_CR61) 2017; 224
694_CR52
Y Zhou (694_CR39) 2019; 9
X Deng (694_CR37) 2018; 25
694_CR57
A Naldi (694_CR15) 2020; 41
694_CR56
AH Thiéry (694_CR76) 2020; 11
K Clark (694_CR71) 2013; 26
JT Senders (694_CR21) 2018; 160
RD Little (694_CR6) 2008; 9
B Quachtran (694_CR27) 2016
T Celik (694_CR43) 2012; 45
S Dorosti (694_CR18) 2020; 24
RL Harrigan (694_CR13) 2017
694_CR62
694_CR22
694_CR66
694_CR24
LJ Wang (694_CR12) 2020; 7
V Rajajee (694_CR74) 2020
HX Wang (694_CR63) 2019; 53
R Raj (694_CR23) 2019; 9
TO Sunitha (694_CR40) 2020
K Munir (694_CR70) 2019; 11
R Ranjbarzadeh (694_CR53) 2021; 11
C Robba (694_CR8) 2018; 44
K Singh (694_CR42) 2014; 36
J Bäuerle (694_CR11) 2012; 1–12
R Ranjbarzadeh (694_CR19) 2020; 150
R Ranjbarzadeh (694_CR31) 2020
N Canac (694_CR1) 2020; 17
QT Ain (694_CR54) 2017; 8
N Wahab (694_CR55) 2017; 85
R Ranjbarzadeh (694_CR65) 2021; 2021
694_CR14
694_CR58
694_CR16
694_CR73
LJ Wang (694_CR9) 2018; 136
694_CR72
P Brata Chanda (694_CR20) 2019
D Mishkin (694_CR50) 2017; 161
694_CR33
694_CR35
SCB Lo (694_CR49) 1995; 8
694_CR2
PH Raboel (694_CR7) 2012; 2012
A Hamzenejad (694_CR34) 2020; 8
SB Lee (694_CR5) 2020; 132
JC Dunn (694_CR29) 1973; 3
M Frid-Adar (694_CR67) 2018; 321
D Comaniciu (694_CR17) 2002
A Ramírez Rivera (694_CR47) 2015; 51
I Michael Revina (694_CR46) 2018
X Hu (694_CR26) 2010; 57
C Zuo (694_CR44) 2013; 124
DH Hubel (694_CR51) 1968; 195
AF Pitfield (694_CR4) 2012; 28
N Karimi (694_CR69) 2017; 107
694_CR25
694_CR28
JC Bezdek (694_CR30) 1981
References_xml – ident: CR45
– ident: CR22
– volume: 46
  start-page: 1533
  issue: 6
  year: 2020
  end-page: 1544
  ident: CR75
  article-title: Automatic optic nerve measurement: a new tool to standardize optic nerve assessment in ultrasound B-mode images
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2020.01.034
– volume: 86
  year: 2020
  ident: CR64
  article-title: An improved random forest-based rule extraction method for breast cancer diagnosis
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2019.105941
– volume: 136
  start-page: 250
  issue: 3
  year: 2018
  end-page: 256
  ident: CR9
  article-title: Ultrasonography assessments of optic nerve sheath diameter as a noninvasive and dynamic method of detecting changes in intracranial pressure
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2017.6560
– ident: CR16
– volume: 107
  start-page: 68
  year: 2017
  end-page: 76
  ident: CR69
  article-title: An intelligent system for quality measurement of Golden Bleached raisins using two comparative machine learning algorithms
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2017.05.009
– volume: 28
  start-page: 200
  issue: 2
  year: 2012
  end-page: 204
  ident: CR4
  article-title: Emergency management of increased intracranial pressure
  publication-title: Pediatr Emerg Care
  doi: 10.1097/PEC.0b013e318243fb72
– year: 2018
  ident: CR46
  article-title: Face expression recognition using LDN and dominant gradient local ternary pattern descriptors
  publication-title: J King Saud Univ Comput Inf Sci
  doi: 10.1016/j.jksuci.2018.03.015
– volume: 9
  start-page: 75006
  issue: 7
  year: 2019
  ident: CR39
  article-title: Enhancing image quality of ghost imaging by fuzzy c-means clustering method
  publication-title: AIP Adv
  doi: 10.1063/1.5079681
– volume: 161
  start-page: 11
  year: 2017
  end-page: 19
  ident: CR50
  article-title: Systematic evaluation of convolution neural network advances on the Imagenet
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2017.05.007
– volume: 41
  start-page: 329
  issue: 2
  year: 2020
  end-page: 333
  ident: CR15
  article-title: Optic nerve sheath diameter asymmetry in healthy subjects and patients with intracranial hypertension
  publication-title: Neurol Sci
  doi: 10.1007/s10072-019-04076-y
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 13
  ident: CR23
  article-title: Machine learning-based dynamic mortality prediction after traumatic brain injury
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-53889-6
– ident: CR35
– volume: 11
  start-page: 10930
  issue: 1
  year: 2021
  ident: CR53
  article-title: Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-90428-8
– volume: 226
  start-page: 165877
  year: 2021
  ident: CR59
  article-title: Image enhancement with the preservation of brightness and structures by employing contrast limited dynamic quadri-histogram equalization
  publication-title: Optik (Stuttg).
  doi: 10.1016/j.ijleo.2020.165877
– ident: CR58
– volume: 11
  start-page: 1235
  issue: 9
  year: 2019
  ident: CR70
  article-title: Cancer diagnosis using deep learning: a bibliographic review
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers11091235
– ident: CR25
– volume: 11
  start-page: 6356
  issue: 11
  year: 2020
  end-page: 6378
  ident: CR76
  article-title: Towards label-free 3D segmentation of optical coherence tomography images of the optic nerve head using deep learning
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.395934
– volume: 132
  start-page: 1952
  issue: 6
  year: 2020
  end-page: 1960
  ident: CR5
  article-title: Artifact removal from neurophysiological signals: impact on intracranial and arterial pressure monitoring in traumatic brain injury
  publication-title: J Neurosurg
  doi: 10.3171/2019.2.JNS182260
– volume: 22
  start-page: 1740
  issue: 5
  year: 2013
  end-page: 1752
  ident: CR48
  article-title: Local directional number pattern for face analysis: face and expression recognition
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2235848
– volume: 160
  start-page: 29
  issue: 1
  year: 2018
  end-page: 38
  ident: CR21
  article-title: An introduction and overview of machine learning in neurosurgical care
  publication-title: Acta Neurochir
  doi: 10.1007/s00701-017-3385-8
– volume: 53
  start-page: 1363
  issue: 7
  year: 2019
  end-page: 1373
  ident: CR63
  article-title: Design of activation function in CNN for image classification
  publication-title: Zhejiang Daxue Xuebao (Gongxue Ban) J Zhejiang Univ Eng Sci
  doi: 10.3785/j.issn.1008-973X.2019.07.016
– year: 2017
  ident: CR13
  article-title: Quantitative characterization of optic nerve atrophy in patients with multiple sclerosis
  publication-title: Mult Scler J Exp Transl Clin
  doi: 10.1177/2055217317730097
– year: 2016
  ident: CR27
  article-title: Detection of intracranial hypertension using deep learning
  publication-title: Proc Int Conf Pattern Recogn
  doi: 10.1109/ICPR.2016.7900010
– volume: 24
  start-page: 9943
  issue: 13
  year: 2020
  end-page: 9964
  ident: CR18
  article-title: Application of gene expression programming and sensitivity analyses in analyzing effective parameters in gastric cancer tumor size and location
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04507-0
– volume: 23
  start-page: 341
  issue: 3
  year: 2021
  ident: CR32
  article-title: A new algorithm for digital image encryption based on chaos theory
  publication-title: Entropy
  doi: 10.3390/e23030341
– volume: 195
  start-page: 215
  issue: 1
  year: 1968
  end-page: 243
  ident: CR51
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1968.sp008455
– volume: 8
  start-page: 1268
  issue: 8
  year: 2020
  ident: CR34
  article-title: A robust algorithm for classification and diagnosis of brain disease using local linear approximation and generalized Autoregressive Conditional Heteroscedasticity model
  publication-title: Mathematics
  doi: 10.3390/MATH8081268
– volume: 2012
  start-page: 14
  year: 2012
  ident: CR7
  article-title: Intracranial pressure monitoring: invasive versus non-invasive methods-a review
  publication-title: Crit Care Res Pract
  doi: 10.1155/2012/950393
– year: 2020
  ident: CR40
  article-title: Multi-modal image fusion technique for enhancing image quality with multi-scale decomposition algorithm
  publication-title: Comput Methods Biomech Biomed Eng Imaging Vis
  doi: 10.1080/21681163.2020.1830437
– volume: 25
  start-page: 571
  issue: 4
  year: 2018
  end-page: 575
  ident: CR37
  article-title: Enhancing image quality via style transfer for single image super-resolution
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2018.2805809
– start-page: 43
  year: 1981
  end-page: 93
  ident: CR30
  article-title: Objective function clustering
  publication-title: Pattern recognition with fuzzy objective function algorithms
  doi: 10.1007/978-1-4757-0450-1_3
– ident: CR57
– volume: 124
  start-page: 425
  issue: 5
  year: 2013
  end-page: 431
  ident: CR44
  article-title: Range limited bi-histogram equalization for image contrast enhancement
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2011.12.057
– volume: 17
  start-page: 40
  issue: 1
  year: 2020
  ident: CR1
  article-title: Review: pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring
  publication-title: Fluids Barriers CNS
  doi: 10.1186/s12987-020-00201-8
– ident: CR36
– volume: 8
  start-page: 424
  issue: 6
  year: 2017
  ident: CR54
  article-title: Sentiment analysis using deep learning techniques: a review
  publication-title: IJACSA Int J Adv Comput Sci Appl
– volume: 14
  start-page: 345
  issue: 3
  year: 2018
  end-page: 350
  ident: CR10
  article-title: Measurement of the optic nerve sheath diameter with magnetic resonance imaging and its association with eyeball diameter in healthy adults
  publication-title: J Clin Neurol
  doi: 10.3988/jcn.2018.14.3.345
– volume: 150
  year: 2020
  ident: CR19
  article-title: Automated liver and tumor segmentation based on concave and convex points using fuzzy c-means and mean shift clustering
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2019.107086
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 16
  ident: CR65
  article-title: Lung infection segmentation for COVID-19 pneumonia based on a cascade convolutional network from CT images
  publication-title: Biomed Res Int
  doi: 10.1155/2021/5544742
– volume: 51
  start-page: 94
  year: 2015
  end-page: 100
  ident: CR47
  article-title: Local directional texture pattern image descriptor
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2014.08.012
– start-page: 383
  year: 2017
  end-page: 401
  ident: CR60
  article-title: Deep learning for coral classification
  publication-title: Handbook of neural computation
  doi: 10.1016/B978-0-12-811318-9.00021-1
– volume: 32
  start-page: 1371
  issue: 8
  year: 2016
  end-page: 1386
  ident: CR3
  article-title: Noninvasive methods of detecting increased intracranial pressure
  publication-title: Child’s Nerv Syst
  doi: 10.1007/s00381-016-3143-x
– ident: CR66
– volume: 9
  start-page: 83
  issue: 2
  year: 2008
  end-page: 87
  ident: CR6
  article-title: Increased intracranial pressure
  publication-title: Clin Pediatr Emerg Med
  doi: 10.1016/j.cpem.2008.03.003
– ident: CR72
– ident: CR14
– ident: CR2
– ident: CR33
– volume: 85
  start-page: 86
  year: 2017
  end-page: 97
  ident: CR55
  article-title: Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.04.012
– year: 2019
  ident: CR20
  article-title: Automatic identification of blood vessels, exaudates and abnormalities in retinal images for diabetic retinopathy analysis
  publication-title: SSRN Electron J
  doi: 10.2139/ssrn.3446607
– volume: 8
  start-page: 1201
  issue: 7–8
  year: 1995
  end-page: 1214
  ident: CR49
  article-title: Artificial convolution neural network for medical image pattern recognition
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(95)00061-5
– volume: 224
  start-page: 96
  year: 2017
  end-page: 104
  ident: CR61
  article-title: Learning pooling for convolutional neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.049
– start-page: 541
  year: 2002
  end-page: 558
  ident: CR17
  article-title: Cell image segmentation for diagnostic pathology
  publication-title: Advanced algorithmic approaches to medical image segmentation
  doi: 10.1007/978-0-85729-333-6_10
– ident: CR56
– volume: 57
  start-page: 1070
  issue: 5
  year: 2010
  end-page: 1078
  ident: CR26
  article-title: Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2037607
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  end-page: 1057
  ident: CR71
  article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 36
  start-page: 10
  issue: 1
  year: 2014
  end-page: 14
  ident: CR42
  article-title: Image enhancement using exposure based sub image histogram equalization
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2013.08.024
– volume: 44
  start-page: 1284
  issue: 8
  year: 2018
  end-page: 1294
  ident: CR8
  article-title: Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-018-5305-7
– year: 2020
  ident: CR74
  article-title: Novel algorithm for automated optic nerve sheath diameter measurement using a clustering approach
  publication-title: Mil Med
  doi: 10.1093/milmed/usaa231
– volume: 3
  start-page: 32
  issue: 3
  year: 1973
  end-page: 57
  ident: CR29
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J Cybern
  doi: 10.1080/01969727308546046
– year: 2020
  ident: CR41
  article-title: Enhancing the X-ray differential phase contrast image quality with deep learning technique
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/tbme.2020.3011119
– volume: 68
  year: 2021
  ident: CR68
  article-title: A New optimized sequential method for lung tumor diagnosis based on deep learning and converged search and rescue algorithm
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102761
– ident: CR73
– volume: 321
  start-page: 321
  year: 2018
  end-page: 331
  ident: CR67
  article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– volume: 7
  start-page: 865
  issue: 5
  year: 2020
  end-page: 868
  ident: CR12
  article-title: Optic nerve sheath diameter ultrasonography for elevated intracranial pressure detection
  publication-title: Ann Clin Transl Neurol
  doi: 10.1002/acn3.51054
– ident: CR38
– ident: CR52
– volume: 45
  start-page: 3810
  issue: 10
  year: 2012
  end-page: 3824
  ident: CR43
  article-title: Two-dimensional histogram equalization and contrast enhancement
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.03.019
– ident: CR28
– ident: CR62
– ident: CR24
– volume: 1–12
  start-page: 404
  issue: 1–12
  year: 2012
  end-page: 407
  ident: CR11
  article-title: B-mode sonography of the optic nerve in neurological disorders with altered intracranial pressure
  publication-title: Perspect Med
  doi: 10.1016/j.permed.2012.01.001
– year: 2020
  ident: CR31
  article-title: LNPSS: SAR image despeckling based on local and non-local features using patch shape selection and edges linking
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2020.107989
– volume: 9
  start-page: 83
  issue: 2
  year: 2008
  ident: 694_CR6
  publication-title: Clin Pediatr Emerg Med
  doi: 10.1016/j.cpem.2008.03.003
– volume: 321
  start-page: 321
  year: 2018
  ident: 694_CR67
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– year: 2018
  ident: 694_CR46
  publication-title: J King Saud Univ Comput Inf Sci
  doi: 10.1016/j.jksuci.2018.03.015
– ident: 694_CR72
  doi: 10.1016/j.ijleo.2021.167551
– volume: 160
  start-page: 29
  issue: 1
  year: 2018
  ident: 694_CR21
  publication-title: Acta Neurochir
  doi: 10.1007/s00701-017-3385-8
– start-page: 383
  volume-title: Handbook of neural computation
  year: 2017
  ident: 694_CR60
  doi: 10.1016/B978-0-12-811318-9.00021-1
– volume: 53
  start-page: 1363
  issue: 7
  year: 2019
  ident: 694_CR63
  publication-title: Zhejiang Daxue Xuebao (Gongxue Ban) J Zhejiang Univ Eng Sci
  doi: 10.3785/j.issn.1008-973X.2019.07.016
– volume: 28
  start-page: 200
  issue: 2
  year: 2012
  ident: 694_CR4
  publication-title: Pediatr Emerg Care
  doi: 10.1097/PEC.0b013e318243fb72
– ident: 694_CR62
  doi: 10.1007/978-3-319-11740-9_34
– ident: 694_CR33
  doi: 10.1109/DSAA.2016.70
– volume: 11
  start-page: 6356
  issue: 11
  year: 2020
  ident: 694_CR76
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.395934
– volume: 85
  start-page: 86
  year: 2017
  ident: 694_CR55
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.04.012
– volume: 195
  start-page: 215
  issue: 1
  year: 1968
  ident: 694_CR51
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1968.sp008455
– volume: 22
  start-page: 1740
  issue: 5
  year: 2013
  ident: 694_CR48
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2235848
– ident: 694_CR52
  doi: 10.1007/978-3-030-56689-0_9
– volume: 8
  start-page: 424
  issue: 6
  year: 2017
  ident: 694_CR54
  publication-title: IJACSA Int J Adv Comput Sci Appl
– volume: 46
  start-page: 1533
  issue: 6
  year: 2020
  ident: 694_CR75
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2020.01.034
– volume: 132
  start-page: 1952
  issue: 6
  year: 2020
  ident: 694_CR5
  publication-title: J Neurosurg
  doi: 10.3171/2019.2.JNS182260
– volume: 161
  start-page: 11
  year: 2017
  ident: 694_CR50
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2017.05.007
– volume: 8
  start-page: 1268
  issue: 8
  year: 2020
  ident: 694_CR34
  publication-title: Mathematics
  doi: 10.3390/MATH8081268
– year: 2020
  ident: 694_CR40
  publication-title: Comput Methods Biomech Biomed Eng Imaging Vis
  doi: 10.1080/21681163.2020.1830437
– year: 2020
  ident: 694_CR41
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/tbme.2020.3011119
– ident: 694_CR57
  doi: 10.1109/ISFA.2016.7790137
– volume: 45
  start-page: 3810
  issue: 10
  year: 2012
  ident: 694_CR43
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.03.019
– volume: 107
  start-page: 68
  year: 2017
  ident: 694_CR69
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2017.05.009
– ident: 694_CR14
  doi: 10.1109/ICSIDP47821.2019.9173198
– volume: 1–12
  start-page: 404
  issue: 1–12
  year: 2012
  ident: 694_CR11
  publication-title: Perspect Med
  doi: 10.1016/j.permed.2012.01.001
– year: 2019
  ident: 694_CR20
  publication-title: SSRN Electron J
  doi: 10.2139/ssrn.3446607
– volume: 7
  start-page: 865
  issue: 5
  year: 2020
  ident: 694_CR12
  publication-title: Ann Clin Transl Neurol
  doi: 10.1002/acn3.51054
– ident: 694_CR45
  doi: 10.1109/IC3I.2014.7019808
– volume: 226
  start-page: 165877
  year: 2021
  ident: 694_CR59
  publication-title: Optik (Stuttg).
  doi: 10.1016/j.ijleo.2020.165877
– year: 2017
  ident: 694_CR13
  publication-title: Mult Scler J Exp Transl Clin
  doi: 10.1177/2055217317730097
– volume: 9
  start-page: 75006
  issue: 7
  year: 2019
  ident: 694_CR39
  publication-title: AIP Adv
  doi: 10.1063/1.5079681
– volume: 17
  start-page: 40
  issue: 1
  year: 2020
  ident: 694_CR1
  publication-title: Fluids Barriers CNS
  doi: 10.1186/s12987-020-00201-8
– ident: 694_CR22
  doi: 10.1117/12.2513167
– volume: 86
  year: 2020
  ident: 694_CR64
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2019.105941
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 694_CR23
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-53889-6
– ident: 694_CR25
  doi: 10.1109/BIBM.2010.5706619
– start-page: 43
  volume-title: Pattern recognition with fuzzy objective function algorithms
  year: 1981
  ident: 694_CR30
  doi: 10.1007/978-1-4757-0450-1_3
– ident: 694_CR36
  doi: 10.1109/ICSDM.2015.7298026
– ident: 694_CR28
– ident: 694_CR73
  doi: 10.1109/ICIAS.2014.6869542
– volume: 8
  start-page: 1201
  issue: 7–8
  year: 1995
  ident: 694_CR49
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(95)00061-5
– volume: 150
  year: 2020
  ident: 694_CR19
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2019.107086
– year: 2020
  ident: 694_CR74
  publication-title: Mil Med
  doi: 10.1093/milmed/usaa231
– volume: 11
  start-page: 10930
  issue: 1
  year: 2021
  ident: 694_CR53
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-90428-8
– year: 2020
  ident: 694_CR31
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2020.107989
– year: 2016
  ident: 694_CR27
  publication-title: Proc Int Conf Pattern Recogn
  doi: 10.1109/ICPR.2016.7900010
– volume: 136
  start-page: 250
  issue: 3
  year: 2018
  ident: 694_CR9
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2017.6560
– volume: 57
  start-page: 1070
  issue: 5
  year: 2010
  ident: 694_CR26
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2037607
– volume: 3
  start-page: 32
  issue: 3
  year: 1973
  ident: 694_CR29
  publication-title: J Cybern
  doi: 10.1080/01969727308546046
– volume: 2012
  start-page: 14
  year: 2012
  ident: 694_CR7
  publication-title: Crit Care Res Pract
  doi: 10.1155/2012/950393
– start-page: 541
  volume-title: Advanced algorithmic approaches to medical image segmentation
  year: 2002
  ident: 694_CR17
  doi: 10.1007/978-0-85729-333-6_10
– ident: 694_CR2
  doi: 10.1109/EMBC.2019.8856449
– volume: 2021
  start-page: 1
  year: 2021
  ident: 694_CR65
  publication-title: Biomed Res Int
  doi: 10.1155/2021/5544742
– ident: 694_CR35
– volume: 25
  start-page: 571
  issue: 4
  year: 2018
  ident: 694_CR37
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2018.2805809
– volume: 14
  start-page: 345
  issue: 3
  year: 2018
  ident: 694_CR10
  publication-title: J Clin Neurol
  doi: 10.3988/jcn.2018.14.3.345
– volume: 11
  start-page: 1235
  issue: 9
  year: 2019
  ident: 694_CR70
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers11091235
– volume: 24
  start-page: 9943
  issue: 13
  year: 2020
  ident: 694_CR18
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04507-0
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  ident: 694_CR71
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 68
  year: 2021
  ident: 694_CR68
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102761
– volume: 51
  start-page: 94
  year: 2015
  ident: 694_CR47
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2014.08.012
– volume: 32
  start-page: 1371
  issue: 8
  year: 2016
  ident: 694_CR3
  publication-title: Child’s Nerv Syst
  doi: 10.1007/s00381-016-3143-x
– ident: 694_CR58
  doi: 10.1007/978-3-642-53917-6_21
– ident: 694_CR56
  doi: 10.1109/ICRAMET.2017.8253139
– volume: 44
  start-page: 1284
  issue: 8
  year: 2018
  ident: 694_CR8
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-018-5305-7
– ident: 694_CR38
  doi: 10.1109/MedCom.2014.7006027
– volume: 41
  start-page: 329
  issue: 2
  year: 2020
  ident: 694_CR15
  publication-title: Neurol Sci
  doi: 10.1007/s10072-019-04076-y
– ident: 694_CR16
  doi: 10.21203/RS.3.RS-186293/V1
– volume: 36
  start-page: 10
  issue: 1
  year: 2014
  ident: 694_CR42
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2013.08.024
– volume: 124
  start-page: 425
  issue: 5
  year: 2013
  ident: 694_CR44
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2011.12.057
– volume: 224
  start-page: 96
  year: 2017
  ident: 694_CR61
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.049
– ident: 694_CR24
  doi: 10.1109/IntelliSys.2017.8324324
– volume: 23
  start-page: 341
  issue: 3
  year: 2021
  ident: 694_CR32
  publication-title: Entropy
  doi: 10.3390/e23030341
– ident: 694_CR66
  doi: 10.1007/978-3-030-38748-8_2
SSID ssj0001778302
ssib044733412
ssib045327741
Score 2.4460797
Snippet The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3543
SubjectTerms Artificial intelligence
Artificial neural networks
Brain
Clustering
Complexity
Computational Intelligence
Computed tomography
Computer engineering
Data Structures and Information Theory
Datasets
Deep learning
Diagnosis
Engineering
Feature extraction
Histograms
Human error
Hypertension
Image enhancement
Image quality
Image segmentation
Industrial engineering
Intelligent systems
Intracranial pressure
Machine learning
Medical imaging
Methods
Nerves
Neural networks
Original Article
Traumatic brain injury
Ultrasonic imaging
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na8IwFA-bO2w7jH0yNzdy2G0GbJsm7XHIRAZ6UpBdSj5F0CpWkf33S2Ja3WGyHUvSV3gveR997_0eAC8J4YEIOUc6SWKEJRcoMVYEcY0ZFVwrTWw3cq9PukP8MYpHvimsKKvdy5Sk09RVsxu2WO_IVp9beF2MNsfgxPgfoR3Y0N5hjmNMowh7o-3-tFBqQa7slLkgTRF2-cqH38n-tFA7t7PKlJ6D03W-YF8bNp3uGaPOJbjwXiR824r9Chyp_Bqc72ELmqdeBcha3IDPvq1shHOjIAQs1HjmW45yOMlhewAnM6NXCmir4MeQQanUAvqBEmPopuVAlkuzYgtF1ktldmz1zXx5C4ad90G7i_xYBSTiqLVCglARWqQ_LpmJUCXDgeSxVJhHjLOIS6GIjSQ0jjUmYUtxqrSkiUo4D6UKojtQy-e5ugeQCsxSGzUSE3Vpc7epijVhuGVIp5rKOghKVmbCY47b0RfTrEJLduzPDPszx_5sUwev1TuLLeLGwd2NUkKZv31FFpKUxiZQw7QOmqXUdsuHqDUryf7h4w__o_4IzkJ3zmz5YAPUVsu1ejIuzYo_uxP8DcIk6vc
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qPagH32K1Sg7eNLXdzSbbo_hAhBYPFtTLkmcR67a0W4r-epN9VQVF8bYwSZYkk8kM-eYbgKOQipb0hMAmDANMlJA4tLcIFoZwJoXRhrps5E6XXvfIzX1wX4GLIhcmRbsXT5JZToNjaYqT05Eyp2XiG3G879gh0R3VLsGzhhUvwCINrEdehcVe9_bswdWVszE1th67n323MUlfK_e-H-jz_TR3Ost30hVYmsYj_jrjg8GHq-hqDXQxiQyB8tyYJqIh377wO_53luuwmvuq6CxTrg2o6HgTVjol0etkCx67DjGJhtbwSDTR_Zc8lSlGTzE6v0NPL9ZeTZBD1_cRR0rrEcoLVfRRWoUH8VhZiQOgTMfatsjs2HC8Db2ry7vza5yXa8Ay8JsJlpRJzzEICsVt5Ks4aSkRKE2EzwX3hZKaugjFkMAQ6jW1YNooFupQCE_plr8D1XgY611ATBLedtEotdGcsTaD6cBQTpp26LZhqgatYpMimXOZu5Iag6hkYU7XLrJrF6VrF81qcFz2GWVMHj-2rhd7H-WnehJ5tM0CGwASVoOTYvvm4p9GOyl15hc_3_tb831Y9lIlcbDEOlST8VQfWFcpEYf5SXgHIs4LSQ
  priority: 102
  providerName: Unpaywall
Title Nerve optic segmentation in CT images using a deep learning model and a texture descriptor
URI https://link.springer.com/article/10.1007/s40747-022-00694-w
https://www.proquest.com/docview/2697526047
https://link.springer.com/content/pdf/10.1007/s40747-022-00694-w.pdf
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: ADMLS
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044733412
  issn: 2199-4536
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: 8FG
  dateStart: 20180601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: AAJSJ
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: C6C
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: C24
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED4k9tBmKNIX4jwMDt0aopZEkdIQFK4RNzAQIWhjIO0i8GkEcGTXDxj99-XJkpwsRhcNIkUBx-Pdkbz7PoBPCVeBDpWiLkliyozSNPFehCrHpNDKWcexGvk24zdjNnqIHw4gq2thMK2ytomloTYzjWfkX0KeitgH30x8nf-hyBqFt6s1hYasqBXMVQkxdgjtEJGxWtD-dp3d_ag1jDERRWzn0FkchaLmnilPZYRAQCxkpAvSlLLybvO0qbdjCDdPMQEeEX4Z3bz0ZrsQtblVPYJX62Iu_27kdPrMcQ2P4U0VcZL-VkXewoEt3sHRbQPXunwPvzPMeyQzbz40WdrJU1WQVJDHggzuyeOTtzpLgjnyEyKJsXZOKrqJCSm5dIgsjG_BNJL1wvoeW2s0W3yA8fD6fnBDK9IFquOot6KaCx0iDqAy0u9fjWSBUbGxTEVSyUgZbTnuMxyLHeNhzyphnRGJTZQKjQ2ij9AqZoU9ASI0kynuKbnfkzm_8oWNHZes54dOnTAdCGrh5bpCJEdijGneYCmXAs-9wPNS4PmmA5-bb-ZbPI69vc_rOcmrtbnMd5rUgct6nnbN-0a7bObyP35-uv_nZ_A6LDUJkwnPobVarO2FD3BWqguHyfB7F9r9_ujnqFvpsH87CBk--aBbHh34lnF21__1D-1s-hk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lB6QDzVlAI-wIlaZL2z9u6hQlBapbSJEEqlisviZ1Qp3YRsoqh_jt-GvdndwCXi0rO9tjQzO56xZ74P4G3KVaSZUtSlaULRKE1Tf4pQ5VAKrZx1PHQj9we8d4Vfr5PrLfjd9MKEssrGJ1aO2kx0uCP_wHgmEh98o_g4_UUDa1R4XW0oNGRNrWCOK4ixurHjwt4tfQpXHp9_8fp-x9jZ6fCkR2uWAaqTuDunmgvNAvCdMtInbEZiZFRiLKpYKhkroy0PgbXDxCFnXauEdUakNlWKGRvFft0HsIMxZj752_l8Ovj2vbFoRBHHuA4gMImZaLhuqlsgIQIAV2DAi7KMYvWWetD292GAt6eh4D4gCiNd_nt6rkPi9hV3D3YXxVTeLeV4_NdBefYYHtURLvm0MsknsGWLp7DXb-Fhy2fwYxDqLMnEuytNSju6rRugCnJTkJMhubn1Xq4koSZ_RCQx1k5JTW8xIhV3D5GF8SOhbGUxs37GyvtNZs_h6l7E_wK2i0lh94EIjTILOSz3OaDznkbYxHGJXb905oTpQNQIL9c1Anog4hjnLXZzJfDcCzyvBJ4vO_C-_Wa6wv_YOPuw0Ule-4IyX1tuB44aPa2HN6121OryPzY_2Lz5G9jtDfuX-eX54OIlPGSVVYVCxkPYns8W9pUPrubqdW3BBH7e90_zB3NCMnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT-swDLd4IPHggPgU4-vlwA0i1tZN2iMaTMCDiQNIiEuVzwlpdNM-NPHfk3RtGQcQHKukrmQ7dlzbPwMcJ0wGKpSS2iSJKWqpaOK8CJUWBVfSGst8N_Jdh1094s1T_DTXxV9Uu1cpyVlPg0dpysdnA23P6sY39Ljv1Feie6hdpNM_sITOu_kZBi3WqjQKkUcRlg68-OvCuQe88hPngjSlWOQu974m-9lbfVxB66zpKvyd5APxNhW93pxjaq_DWnmjJOczFdiABZNvwuoczqB7uqvBWUdb8NzxVY6k74yFIiPTfS3bj3LykpPWA3l5dTZmRHxFfJcIoo0ZkHK4RJcUk3OIyLVb8UUjk6FxO2a2pz_chsf25UPripYjFqiKo-aYKsZV6FH_pBYuWtUCAy1jbVBGQopIamWYjyosxhZZ2DSSG6t5YhIpQ22CaAcW835udoFwhSL1ESRzEZh155yb2DKBTUc6tVw3IKhYmakSf9yPwehlNXJywf7MsT8r2J9NG3BSvzOYoW98u_ugklBWnsRRFrKUxy5oQ96A00pqH8vfUTutJfuDj-_9jvo_WL6_aGe3153_-7ASFirnqwoPYHE8nJhDd9MZy6NCmd8BCcfySA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qPagH32K1Sg7eNLXdzSbbo_hAhBYPFtTLkmcR67a0W4r-epN9VQVF8bYwSZYkk8kM-eYbgKOQipb0hMAmDANMlJA4tLcIFoZwJoXRhrps5E6XXvfIzX1wX4GLIhcmRbsXT5JZToNjaYqT05Eyp2XiG3G879gh0R3VLsGzhhUvwCINrEdehcVe9_bswdWVszE1th67n323MUlfK_e-H-jz_TR3Ost30hVYmsYj_jrjg8GHq-hqDXQxiQyB8tyYJqIh377wO_53luuwmvuq6CxTrg2o6HgTVjol0etkCx67DjGJhtbwSDTR_Zc8lSlGTzE6v0NPL9ZeTZBD1_cRR0rrEcoLVfRRWoUH8VhZiQOgTMfatsjs2HC8Db2ry7vza5yXa8Ay8JsJlpRJzzEICsVt5Ks4aSkRKE2EzwX3hZKaugjFkMAQ6jW1YNooFupQCE_plr8D1XgY611ATBLedtEotdGcsTaD6cBQTpp26LZhqgatYpMimXOZu5Iag6hkYU7XLrJrF6VrF81qcFz2GWVMHj-2rhd7H-WnehJ5tM0CGwASVoOTYvvm4p9GOyl15hc_3_tb831Y9lIlcbDEOlST8VQfWFcpEYf5SXgHIs4LSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nerve+optic+segmentation+in+CT+images+using+a+deep+learning+model+and+a+texture+descriptor&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Ranjbarzadeh%2C+Ramin&rft.au=Dorosti%2C+Shadi&rft.au=Jafarzadeh+Ghoushchi%2C+Saeid&rft.au=Safavi%2C+Sadaf&rft.date=2022-08-01&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=8&rft.issue=4&rft.spage=3543&rft.epage=3557&rft_id=info:doi/10.1007%2Fs40747-022-00694-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40747_022_00694_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon