Cytopathology image analysis method based on high-resolution medical representation learning in medical decision-making system

Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are enormous, but conventional visual screening techniques are labor-intensive, time-consuming, and subject to some degree of subjectivity. Complex pathologica...

Full description

Saved in:
Bibliographic Details
Published inComplex & intelligent systems Vol. 10; no. 3; pp. 4253 - 4274
Main Authors Li, Baotian, Liu, Feng, Lv, Baolong, Zhang, Yongjun, Gou, Fangfang, Wu, Jia
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2024
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN2199-4536
2198-6053
DOI10.1007/s40747-024-01390-7

Cover

Abstract Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are enormous, but conventional visual screening techniques are labor-intensive, time-consuming, and subject to some degree of subjectivity. Complex pathological data can be converted into mineable image features using artificial intelligence image analysis technology, enabling medical professionals to quickly and quantitatively identify regions of interest and extract information about cellular tissue. In this study, we designed a medical information assistance system for segmenting pathology images and quantifying statistical results, including data enhancement, cell nucleus segmentation, model tumor, and quantitative analysis. In cell nucleus segmentation, to address the problem of uneven healthcare resources, we designed a high-precision teacher model (HRMED_T) and a lightweight student model (HRMED_S). The HRMED_T model is based on visual Transformer and high-resolution representation learning. It achieves accurate segmentation by parallel low-resolution convolution and high-scaled image iterative fusion, while also maintaining the high-resolution representation. The HRMED_S model is based on the Channel-wise Knowledge Distillation approach to simplify the structure, achieve faster convergence, and refine the segmentation results by using conditional random fields instead of fully connected structures. The experimental results show that our system has better performance than other methods. The Intersection over the Union (IoU) of HRMED_T model reaches 0.756. The IoU of HRMED_S model also reaches 0.710 and params is only 3.99 M.
AbstractList Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are enormous, but conventional visual screening techniques are labor-intensive, time-consuming, and subject to some degree of subjectivity. Complex pathological data can be converted into mineable image features using artificial intelligence image analysis technology, enabling medical professionals to quickly and quantitatively identify regions of interest and extract information about cellular tissue. In this study, we designed a medical information assistance system for segmenting pathology images and quantifying statistical results, including data enhancement, cell nucleus segmentation, model tumor, and quantitative analysis. In cell nucleus segmentation, to address the problem of uneven healthcare resources, we designed a high-precision teacher model (HRMED_T) and a lightweight student model (HRMED_S). The HRMED_T model is based on visual Transformer and high-resolution representation learning. It achieves accurate segmentation by parallel low-resolution convolution and high-scaled image iterative fusion, while also maintaining the high-resolution representation. The HRMED_S model is based on the Channel-wise Knowledge Distillation approach to simplify the structure, achieve faster convergence, and refine the segmentation results by using conditional random fields instead of fully connected structures. The experimental results show that our system has better performance than other methods. The Intersection over the Union (IoU) of HRMED_T model reaches 0.756. The IoU of HRMED_S model also reaches 0.710 and params is only 3.99 M.
Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are enormous, but conventional visual screening techniques are labor-intensive, time-consuming, and subject to some degree of subjectivity. Complex pathological data can be converted into mineable image features using artificial intelligence image analysis technology, enabling medical professionals to quickly and quantitatively identify regions of interest and extract information about cellular tissue. In this study, we designed a medical information assistance system for segmenting pathology images and quantifying statistical results, including data enhancement, cell nucleus segmentation, model tumor, and quantitative analysis. In cell nucleus segmentation, to address the problem of uneven healthcare resources, we designed a high-precision teacher model (HRMED_T) and a lightweight student model (HRMED_S). The HRMED_T model is based on visual Transformer and high-resolution representation learning. It achieves accurate segmentation by parallel low-resolution convolution and high-scaled image iterative fusion, while also maintaining the high-resolution representation. The HRMED_S model is based on the Channel-wise Knowledge Distillation approach to simplify the structure, achieve faster convergence, and refine the segmentation results by using conditional random fields instead of fully connected structures. The experimental results show that our system has better performance than other methods. The Intersection over the Union (IoU) of HRMED_T model reaches 0.756. The IoU of HRMED_S model also reaches 0.710 and params is only 3.99 M.
Abstract Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are enormous, but conventional visual screening techniques are labor-intensive, time-consuming, and subject to some degree of subjectivity. Complex pathological data can be converted into mineable image features using artificial intelligence image analysis technology, enabling medical professionals to quickly and quantitatively identify regions of interest and extract information about cellular tissue. In this study, we designed a medical information assistance system for segmenting pathology images and quantifying statistical results, including data enhancement, cell nucleus segmentation, model tumor, and quantitative analysis. In cell nucleus segmentation, to address the problem of uneven healthcare resources, we designed a high-precision teacher model (HRMED_T) and a lightweight student model (HRMED_S). The HRMED_T model is based on visual Transformer and high-resolution representation learning. It achieves accurate segmentation by parallel low-resolution convolution and high-scaled image iterative fusion, while also maintaining the high-resolution representation. The HRMED_S model is based on the Channel-wise Knowledge Distillation approach to simplify the structure, achieve faster convergence, and refine the segmentation results by using conditional random fields instead of fully connected structures. The experimental results show that our system has better performance than other methods. The Intersection over the Union (IoU) of HRMED_T model reaches 0.756. The IoU of HRMED_S model also reaches 0.710 and params is only 3.99 M.
Author Li, Baotian
Wu, Jia
Liu, Feng
Zhang, Yongjun
Lv, Baolong
Gou, Fangfang
Author_xml – sequence: 1
  givenname: Baotian
  surname: Li
  fullname: Li, Baotian
  organization: School of Information Engineering, Shandong Youth University of Political Science, New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Smart Healthcare Big Data Engineering and Ubiquitous Computing Characteristic Laboratory in Universities of Shandong
– sequence: 2
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
  email: liusdyu@sina.com
  organization: School of Information Engineering, Shandong Youth University of Political Science, New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Smart Healthcare Big Data Engineering and Ubiquitous Computing Characteristic Laboratory in Universities of Shandong
– sequence: 3
  givenname: Baolong
  surname: Lv
  fullname: Lv, Baolong
  email: lvbaolong2010@sina.com
  organization: School of Modern Service Management, Shandong Youth University of Political Science
– sequence: 4
  givenname: Yongjun
  surname: Zhang
  fullname: Zhang, Yongjun
  organization: School of Information Engineering, Shandong Youth University of Political Science, New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Smart Healthcare Big Data Engineering and Ubiquitous Computing Characteristic Laboratory in Universities of Shandong
– sequence: 5
  givenname: Fangfang
  orcidid: 0000-0003-0453-8222
  surname: Gou
  fullname: Gou, Fangfang
  email: gff8221@163.com
  organization: State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University
– sequence: 6
  givenname: Jia
  surname: Wu
  fullname: Wu, Jia
  email: jiawu5110@163.com
  organization: State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Research Center for Artificial Intelligence, Monash University
BookMark eNp9Uctq3DAUNSGFpml-oCtD12r0sh7LMvQRCHSTrMWVLXk0sa2ppFl402-vMm4IdJGVpPPi6p4PzeUSF9c0nwj-QjCWt5ljySXClCNMmMZIXjRXlGiFBO7Y5fmuEe-YeN_c5HzAGBMpFcP0qvmzW0s8QtnHKY5rG2YYXQsLTGsOuZ1dJYbWQnZDG5d2H8Y9Si7H6VRCfc9uCD1MbXLHirqlwBmeHKQlLGMbXiWD60OuJJrh6ZnKay5u_ti88zBld_PvvG4ev3972P1E979-3O2-3qO-Y7igninPlRKce-nFwAihXgjLNVGqCnSvaaekA6uJ7ajwzIO0A9YYvCZDD-y6udtyhwgHc0z1n2k1EYI5AzGNBlIJ_eQMEYJ1jlKJLXAQRHkNQCSVTFjbeVuzPm9ZxxR_n1wu5hBPqa4sG4a7TtSRtKgqtan6FHNOzps-bOspCcJkCDbP5ZmtPFPLM-fyjKxW-p_1ZeA3TWwz5SpeRpdep3rD9RcEc7AL
CitedBy_id crossref_primary_10_1007_s40747_025_01847_3
crossref_primary_10_1155_int_9987190
crossref_primary_10_3390_diagnostics14141472
crossref_primary_10_1038_s41598_024_76577_6
Cites_doi 10.1155/2022/7703583
10.1007/s00500-023-08602-1
10.1155/2022/9990092
10.1038/s41551-021-00789-8
10.1002/rnc.5350
10.1007/s10278-021-00556-w
10.1007/s11548-023-03043-5
10.1109/JBHI.2022.3184930
10.1109/TMI.2020.3046636
10.1109/TITS.2019.2962094
10.1007/s10916-023-01926-3
10.3390/math11092116
10.1186/s13640-020-00514-6
10.3390/healthcare10081468
10.1109/JBHI.2022.3198509
10.1080/21655979.2020.1747834
10.1109/TMI.2021.3098703
10.1049/ipr2.12854
10.1155/2022/7973404
10.1016/j.ins.2023.03.070
10.3390/math10101669
10.1109/TCBB.2023.3281638
10.1002/int.22949
10.1049/ipr2.12941
10.1007/s00414-021-02746-1
10.1109/TII.2020.2993842
10.1155/2022/3881833
10.1007/s40747-023-01119-y
10.1016/j.media.2022.102693
10.3390/diagnostics13020223
10.1016/j.cor.2022.106131
10.1007/s12559-022-10046-y
10.3390/math10101665
10.1007/s40747-023-01035-1
10.1049/cmu2.12628
10.3390/healthcare10112189
10.1007/s40815-023-01563-5
10.1038/s41598-022-18751-2
10.1007/978-3-030-00889-5_1
10.3390/diagnostics13061063
10.1016/j.survophthal.2023.03.003
10.3390/jpm12020136
10.3233/XST-230194
10.1007/s11277-022-09820-w
10.1109/CVPR46437.2021.00681
10.1109/TPAMI.2020.2983686
10.1109/ICASSP.2007.366913
10.1007/978-3-030-01234-2_49
10.1109/ICIP46576.2022.9897482
10.1109/LGRS.2022.3187135
10.1109/ICCV48922.2021.00526
10.1109/CVPR52688.2022.01181
10.1109/CVPR52688.2022.00829
10.1109/CVPR52688.2022.01178
10.1007/978-3-030-87199-4_16
10.1007/978-3-031-25066-8_9
10.1016/j.compmedimag.2021.102026
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2019.00271
10.1007/978-3-030-32239-7_78
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s40747-024-01390-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 4274
ExternalDocumentID oai_doaj_org_article_16635e2270ba4a618f9aa172736bb5fb
10_1007_s40747_024_01390_7
GrantInformation_xml – fundername: Shandong Youth University of Political Science Scientific Research Project: Research of Abnormal Behavior Recognition System for Tourist Scenic Spot
  grantid: SJQNXM202210
  funderid: http://dx.doi.org/10.13039/501100018627
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c530t-c38f488644f7f6d3112f66b491885309c92587eab91b526f3fa7bd090af91dca3
IEDL.DBID C6C
ISSN 2199-4536
IngestDate Wed Aug 27 01:19:29 EDT 2025
Sun Jul 13 03:35:48 EDT 2025
Tue Jul 01 03:42:41 EDT 2025
Thu Apr 24 23:14:04 EDT 2025
Fri Feb 21 02:40:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Assisted analysis
Image segmentation
Knowledge sublimation
Cytopathology images
Artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-c38f488644f7f6d3112f66b491885309c92587eab91b526f3fa7bd090af91dca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0453-8222
OpenAccessLink https://doi.org/10.1007/s40747-024-01390-7
PQID 3055688596
PQPubID 2044308
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_16635e2270ba4a618f9aa172736bb5fb
proquest_journals_3055688596
crossref_citationtrail_10_1007_s40747_024_01390_7
crossref_primary_10_1007_s40747_024_01390_7
springer_journals_10_1007_s40747_024_01390_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References Ouyang (CR4) 2022
Zhou, Tan, Wu (CR16) 2022
Zheng (CR40) 2021; 40
Rashid (CR22) 2022; 6
Xu, Fan, Yang (CR50) 2023; 27
Roszkowiak, Korzynska, Pijanowska, Bosch, Lejeune, Lopez (CR37) 2020
Reverberi (CR10) 2022; 12
Fang (CR20) 2021; 31
CR38
Liu (CR25) 2022; 2022
CR36
CR34
Shen (CR41) 2022; 10
CR33
Zhao, Huang (CR2) 2023; 9
CR32
Jeong, Tariq, Adejumo, Trivedi, Gichoya, Banerjee (CR17) 2022; 35
CR31
CR30
Han, Chen, Hsiao, Fu (CR28) 2021; 22
Liu (CR9) 2022; 10
Valero-Carreras, Alcaraz, Landete (CR60) 2023
Singh, Vaidya, Borrelli, Chhablani (CR5) 2023; 68
Qin (CR8) 2023; 11
Huang, Wang, Zheng, He (CR39) 2020; 11
Li (CR61) 2024
CR49
CR48
CR47
CR46
Wang, Wang, Cai, Lee, Miao, Wang (CR18) 2023
Li, Jiang, Li, Yin (CR29) 2021; 17
Huang (CR45) 2023; 17
Qin (CR35) 2021; 40
Wan, Luan, Stojanovic, Liu (CR21) 2023; 634
Zhu, Li (CR52) 2023
Li, Mao, Zhang, Wang, Zhong (CR64) 2023; 15
Zhan (CR3) 2023; 13
Zhan, Long (CR62) 2023
Wu (CR44) 2022; 126
Liu (CR11) 2022; 10
Xiao, Huang, Zhou, Dai (CR23) 2022; 26
CR59
CR58
CR57
Guo (CR14) 2022; 37
CR56
CR55
CR53
Guan, Yu, Wei, Tan (CR12) 2023
CR51
Peng (CR6) 2022; 136
Wang, Yu, Zhu, Tang (CR24) 2022; 10
He (CR42) 2023; 17
Song, Song, Stojanovic, Song (CR19) 2023; 25
CR27
CR26
Zhou, Rahman Siddiquee, Tajbakhsh, Liang, Stoyanov (CR54) 2018
DiGiorgio, Ehrenfeld (CR1) 2023; 47
Lv, Liu, Li, Nie (CR7) 2023; 13
Kim, Lee, Woo, Jeong, Kim, Kim (CR15) 2022; 12
Yang (CR43) 2022
Zhao, Wang, Zhang, Qiao, Zhang (CR63) 2023; 9
Liu (CR13) 2022
Y Zhao (1390_CR63) 2023; 9
P Xiao (1390_CR23) 2022; 26
1390_CR49
1390_CR48
1390_CR47
J Zhu (1390_CR52) 2023
H Fang (1390_CR20) 2021; 31
J Huang (1390_CR39) 2020; 11
Y Guo (1390_CR14) 2022; 37
1390_CR46
J Huang (1390_CR45) 2023; 17
Y Xu (1390_CR50) 2023; 27
Z Zhou (1390_CR54) 2018
L-Q Peng (1390_CR6) 2022; 136
P Guan (1390_CR12) 2023
H Wan (1390_CR21) 2023; 634
X Song (1390_CR19) 2023; 25
X Zhan (1390_CR62) 2023
D Qin (1390_CR35) 2021; 40
Y Shen (1390_CR41) 2022; 10
SR Singh (1390_CR5) 2023; 68
1390_CR38
Y Qin (1390_CR8) 2023; 11
1390_CR36
1390_CR31
D Kim (1390_CR15) 2022; 12
1390_CR30
K He (1390_CR42) 2023; 17
F Liu (1390_CR9) 2022; 10
1390_CR34
1390_CR33
1390_CR32
AM DiGiorgio (1390_CR1) 2023; 47
C Reverberi (1390_CR10) 2022; 12
D Valero-Carreras (1390_CR60) 2023
J Liu (1390_CR11) 2022; 10
1390_CR27
1390_CR26
F Liu (1390_CR13) 2022
Y Wang (1390_CR18) 2023
L Wang (1390_CR24) 2022; 10
Z Zhou (1390_CR16) 2022
W Li (1390_CR61) 2024
T Ouyang (1390_CR4) 2022
H-Y Han (1390_CR28) 2021; 22
J Wu (1390_CR44) 2022; 126
R Rashid (1390_CR22) 2022; 6
Y Zheng (1390_CR40) 2021; 40
S Li (1390_CR64) 2023; 15
L Roszkowiak (1390_CR37) 2020
S Yang (1390_CR43) 2022
1390_CR59
1390_CR58
Z Liu (1390_CR25) 2022; 2022
JJ Jeong (1390_CR17) 2022; 35
1390_CR53
1390_CR51
X Li (1390_CR29) 2021; 17
1390_CR57
1390_CR56
1390_CR55
B Lv (1390_CR7) 2023; 13
X Zhan (1390_CR3) 2023; 13
L Zhao (1390_CR2) 2023; 9
References_xml – year: 2022
  ident: CR43
  article-title: Intelligent segmentation medical assistance system for MRI images of osteosarcoma in developing countries
  publication-title: Computat Math Methods Med
  doi: 10.1155/2022/7703583
– ident: CR49
– volume: 27
  start-page: 14321
  issue: 19
  year: 2023
  end-page: 14335
  ident: CR50
  article-title: Numerical solution of ruin probability of continuous time model based on optimal adaptive particle swarm optimization-triangular neural network algorithm
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-08602-1
– year: 2022
  ident: CR13
  article-title: Auxiliary segmentation method of osteosarcoma MRI image based on transformer and U-Net
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/9990092
– volume: 6
  start-page: 515
  issue: 5
  year: 2022
  end-page: 526
  ident: CR22
  article-title: Narrative online guides for the interpretation of digital-pathology images and tissue-atlas data
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-021-00789-8
– ident: CR51
– volume: 31
  start-page: 2126
  issue: 6
  year: 2021
  end-page: 2140
  ident: CR20
  article-title: Adaptive optimization algorithm for nonlinear Markov jump systems with partial unknown dynamics
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.5350
– volume: 35
  start-page: 137
  issue: 2
  year: 2022
  end-page: 152
  ident: CR17
  article-title: Systematic review of generative adversarial networks (GANs) for medical image classification and segmentation
  publication-title: J Digital Imaging
  doi: 10.1007/s10278-021-00556-w
– year: 2023
  ident: CR62
  article-title: A semantic fidelity interpretable-assisted decision model for lung nodule classification
  publication-title: Int J Comput Assisted Radiol Surg
  doi: 10.1007/s11548-023-03043-5
– volume: 26
  start-page: 4656
  issue: 9
  year: 2022
  end-page: 4667
  ident: CR23
  article-title: An artificial intelligence multiprocessing scheme for the diagnosis of osteosarcoma MRI images
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3184930
– ident: CR58
– volume: 40
  start-page: 1090
  issue: 3
  year: 2021
  end-page: 1103
  ident: CR40
  article-title: Diagnostic regions attention network (DRA-Net) for histopathology wsi recommendation and retrieval
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3046636
– volume: 22
  start-page: 1041
  issue: 2
  year: 2021
  end-page: 1051
  ident: CR28
  article-title: Using channel-wise attention for deep CNN based real-time semantic segmentation with class-aware edge information
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2962094
– ident: CR46
– volume: 47
  start-page: 32
  issue: 1
  year: 2023
  ident: CR1
  article-title: Artificial intelligence in medicine & ChatGPT: de-tether the physician
  publication-title: J Med Syst
  doi: 10.1007/s10916-023-01926-3
– volume: 11
  start-page: 2116
  issue: 9
  year: 2023
  ident: CR8
  article-title: A novel medical decision-making system based on multi-scale feature enhancement for small samples
  publication-title: Mathematics
  doi: 10.3390/math11092116
– year: 2020
  ident: CR37
  article-title: Clustered nuclei splitting based on recurrent distance transform in digital pathology images
  publication-title: EURASIP J Image Video Process
  doi: 10.1186/s13640-020-00514-6
– volume: 10
  start-page: 1468
  issue: 8
  year: 2022
  ident: CR24
  article-title: Auxiliary segmentation method of osteosarcoma in MRI images based on denoising and local enhancement
  publication-title: Healthcare
  doi: 10.3390/healthcare10081468
– year: 2022
  ident: CR16
  article-title: A cascaded multi-stage framework for automatic detection and segmentation of pulmonary nodules in developing countries
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3198509
– volume: 11
  start-page: 484
  issue: 1
  year: 2020
  end-page: 501
  ident: CR39
  article-title: Nucleus segmentation of cervical cytology images based on multi-scale fuzzy clustering algorithm
  publication-title: Bioengineered
  doi: 10.1080/21655979.2020.1747834
– volume: 40
  start-page: 3820
  issue: 12
  year: 2021
  end-page: 3831
  ident: CR35
  article-title: Efficient medical image segmentation based on knowledge distillation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3098703
– volume: 17
  start-page: 3040
  issue: 10
  year: 2023
  end-page: 3054
  ident: CR42
  article-title: Image segmentation technology based on transformer in medical decision-making system
  publication-title: IET Image Process
  doi: 10.1049/ipr2.12854
– year: 2022
  ident: CR4
  article-title: Rethinking U-net from an attention perspective with transformers for osteosarcoma MRI image segmentation
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/7973404
– ident: CR57
– ident: CR32
– ident: CR36
– volume: 634
  start-page: 101
  year: 2023
  end-page: 121
  ident: CR21
  article-title: Self-triggered finite-time control for discrete-time Markov jump systems
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2023.03.070
– volume: 10
  start-page: 1669
  issue: 10
  year: 2022
  ident: CR41
  article-title: Node screening method based on federated learning with IoT in opportunistic social networks
  publication-title: Mathematics
  doi: 10.3390/math10101669
– year: 2023
  ident: CR12
  article-title: Big data analytics on lung cancer diagnosis framework with deep learning
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2023.3281638
– volume: 37
  start-page: 8436
  issue: 11
  year: 2022
  end-page: 8461
  ident: CR14
  article-title: A medical assistant segmentation method for MRI images of osteosarcoma based on DecoupleSegNet
  publication-title: Int J Intell Syst
  doi: 10.1002/int.22949
– ident: CR26
– year: 2023
  ident: CR52
  article-title: Two-stage coarse-to-fine method for pathological images in medical decision-making systems
  publication-title: IET Image Process
  doi: 10.1049/ipr2.12941
– volume: 136
  start-page: 797
  issue: 3
  year: 2022
  end-page: 810
  ident: CR6
  article-title: Forensic bone age estimation of adolescent pelvis X-rays based on two-stage convolutional neural network
  publication-title: Int J Legal Med
  doi: 10.1007/s00414-021-02746-1
– volume: 17
  start-page: 1958
  issue: 3
  year: 2021
  end-page: 1967
  ident: CR29
  article-title: Lightweight attention convolutional neural network for retinal vessel image segmentation
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2020.2993842
– ident: CR47
– volume: 2022
  start-page: 3881833
  year: 2022
  ident: CR25
  article-title: BA-GCA net: boundary-aware grid contextual attention net in osteosarcoma mri image segmentation (in eng)
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/3881833
– ident: CR53
– volume: 9
  start-page: 6971
  issue: 6
  year: 2023
  end-page: 6983
  ident: CR63
  article-title: WRANet: wavelet integrated residual attention U-Net network for medical image segmentation
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-023-01119-y
– ident: CR30
– year: 2023
  ident: CR18
  article-title: SSD-KD: a self-supervised diverse knowledge distillation method for lightweight skin lesion classification using dermoscopic images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102693
– ident: CR33
– volume: 13
  start-page: 223
  issue: 2
  year: 2023
  ident: CR3
  article-title: An intelligent auxiliary framework for bone malignant tumor lesion segmentation in medical image analysis
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13020223
– year: 2023
  ident: CR60
  article-title: Comparing two SVM models through different metrics based on the confusion matrix
  publication-title: Comput Operat Res
  doi: 10.1016/j.cor.2022.106131
– volume: 15
  start-page: 429
  issue: 2
  year: 2023
  end-page: 439
  ident: CR64
  article-title: DLW-NAS: differentiable light-weight neural architecture search
  publication-title: Cogn Comput
  doi: 10.1007/s12559-022-10046-y
– volume: 10
  start-page: 1665
  issue: 10
  year: 2022
  ident: CR9
  article-title: An attention-preserving network-based method for assisted segmentation of osteosarcoma MRI images
  publication-title: Mathematics
  doi: 10.3390/math10101665
– ident: CR56
– volume: 9
  start-page: 5625
  issue: 5
  year: 2023
  end-page: 5636
  ident: CR2
  article-title: A distribution information sharing federated learning approach for medical image data
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-023-01035-1
– ident: CR27
– volume: 17
  start-page: 1354
  issue: 12
  year: 2023
  end-page: 1367
  ident: CR45
  article-title: An effective data communication community establishment scheme in opportunistic networks
  publication-title: IET Commun
  doi: 10.1049/cmu2.12628
– volume: 10
  start-page: 2189
  issue: 11
  year: 2022
  ident: CR11
  article-title: A multimodal auxiliary classification system for osteosarcoma histopathological images based on deep active learning
  publication-title: Healthcare
  doi: 10.3390/healthcare10112189
– ident: CR48
– volume: 25
  start-page: 3177
  issue: 8
  year: 2023
  end-page: 3192
  ident: CR19
  article-title: Improved dynamic event-triggered security control for T-S fuzzy LPV-PDE systems via pointwise measurements and point control
  publication-title: Int J Fuzzy Syst
  doi: 10.1007/s40815-023-01563-5
– volume: 12
  start-page: 14952
  issue: 1
  year: 2022
  ident: CR10
  article-title: Experimental evidence of effective human–AI collaboration in medical decision-making
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-18751-2
– ident: CR38
– start-page: 3
  year: 2018
  end-page: 11
  ident: CR54
  article-title: UNet++: a nested U-Net architecture for medical image segmentation
  publication-title: Deep learning in medical image analysis and multimodal learning for clinical decision support
  doi: 10.1007/978-3-030-00889-5_1
– ident: CR31
– volume: 13
  start-page: 1063
  issue: 6
  year: 2023
  ident: CR7
  article-title: Artificial intelligence-aided diagnosis solution by enhancing the edge features of medical images
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13061063
– ident: CR34
– volume: 68
  start-page: 655
  issue: 4
  year: 2023
  end-page: 668
  ident: CR5
  article-title: Foveal photoreceptor disruption in ocular diseases: an optical coherence tomography-based differential diagnosis
  publication-title: Surv Ophthalmol
  doi: 10.1016/j.survophthal.2023.03.003
– ident: CR55
– volume: 12
  start-page: 136
  issue: 2
  year: 2022
  ident: CR15
  article-title: Deep learning application to clinical decision support system in sleep stage classification
  publication-title: J Pers Med
  doi: 10.3390/jpm12020136
– ident: CR59
– year: 2024
  ident: CR61
  article-title: Artificial intelligence auxiliary diagnosis and treatment system for breast cancer in developing countries
  publication-title: J X-Ray Sci Technol
  doi: 10.3233/XST-230194
– volume: 126
  start-page: 1751
  issue: 2
  year: 2022
  end-page: 1768
  ident: CR44
  article-title: Data transmission strategy based on node motion prediction iot system in opportunistic social networks
  publication-title: Wireless Personal Commun
  doi: 10.1007/s11277-022-09820-w
– ident: 1390_CR57
  doi: 10.1109/CVPR46437.2021.00681
– year: 2023
  ident: 1390_CR18
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102693
– volume: 40
  start-page: 3820
  issue: 12
  year: 2021
  ident: 1390_CR35
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3098703
– volume: 11
  start-page: 2116
  issue: 9
  year: 2023
  ident: 1390_CR8
  publication-title: Mathematics
  doi: 10.3390/math11092116
– volume: 6
  start-page: 515
  issue: 5
  year: 2022
  ident: 1390_CR22
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-021-00789-8
– ident: 1390_CR26
  doi: 10.1109/TPAMI.2020.2983686
– ident: 1390_CR49
  doi: 10.1109/ICASSP.2007.366913
– volume: 13
  start-page: 223
  issue: 2
  year: 2023
  ident: 1390_CR3
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13020223
– year: 2023
  ident: 1390_CR12
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2023.3281638
– volume: 10
  start-page: 2189
  issue: 11
  year: 2022
  ident: 1390_CR11
  publication-title: Healthcare
  doi: 10.3390/healthcare10112189
– year: 2023
  ident: 1390_CR60
  publication-title: Comput Operat Res
  doi: 10.1016/j.cor.2022.106131
– ident: 1390_CR55
  doi: 10.1007/978-3-030-01234-2_49
– volume: 15
  start-page: 429
  issue: 2
  year: 2023
  ident: 1390_CR64
  publication-title: Cogn Comput
  doi: 10.1007/s12559-022-10046-y
– volume: 12
  start-page: 136
  issue: 2
  year: 2022
  ident: 1390_CR15
  publication-title: J Pers Med
  doi: 10.3390/jpm12020136
– ident: 1390_CR56
– volume: 10
  start-page: 1665
  issue: 10
  year: 2022
  ident: 1390_CR9
  publication-title: Mathematics
  doi: 10.3390/math10101665
– ident: 1390_CR31
  doi: 10.1109/ICIP46576.2022.9897482
– volume: 2022
  start-page: 3881833
  year: 2022
  ident: 1390_CR25
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/3881833
– ident: 1390_CR30
  doi: 10.1109/LGRS.2022.3187135
– year: 2022
  ident: 1390_CR4
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/7973404
– volume: 13
  start-page: 1063
  issue: 6
  year: 2023
  ident: 1390_CR7
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13061063
– volume: 17
  start-page: 1354
  issue: 12
  year: 2023
  ident: 1390_CR45
  publication-title: IET Commun
  doi: 10.1049/cmu2.12628
– volume: 35
  start-page: 137
  issue: 2
  year: 2022
  ident: 1390_CR17
  publication-title: J Digital Imaging
  doi: 10.1007/s10278-021-00556-w
– volume: 17
  start-page: 1958
  issue: 3
  year: 2021
  ident: 1390_CR29
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2020.2993842
– ident: 1390_CR48
  doi: 10.1109/ICCV48922.2021.00526
– ident: 1390_CR59
  doi: 10.1109/CVPR52688.2022.01181
– volume: 10
  start-page: 1669
  issue: 10
  year: 2022
  ident: 1390_CR41
  publication-title: Mathematics
  doi: 10.3390/math10101669
– year: 2022
  ident: 1390_CR16
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3198509
– volume: 25
  start-page: 3177
  issue: 8
  year: 2023
  ident: 1390_CR19
  publication-title: Int J Fuzzy Syst
  doi: 10.1007/s40815-023-01563-5
– volume: 136
  start-page: 797
  issue: 3
  year: 2022
  ident: 1390_CR6
  publication-title: Int J Legal Med
  doi: 10.1007/s00414-021-02746-1
– volume: 12
  start-page: 14952
  issue: 1
  year: 2022
  ident: 1390_CR10
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-18751-2
– ident: 1390_CR36
  doi: 10.1109/CVPR52688.2022.00829
– volume: 47
  start-page: 32
  issue: 1
  year: 2023
  ident: 1390_CR1
  publication-title: J Med Syst
  doi: 10.1007/s10916-023-01926-3
– ident: 1390_CR33
  doi: 10.1109/CVPR52688.2022.01178
– ident: 1390_CR51
– volume: 37
  start-page: 8436
  issue: 11
  year: 2022
  ident: 1390_CR14
  publication-title: Int J Intell Syst
  doi: 10.1002/int.22949
– volume: 27
  start-page: 14321
  issue: 19
  year: 2023
  ident: 1390_CR50
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-08602-1
– ident: 1390_CR27
  doi: 10.1007/978-3-030-87199-4_16
– year: 2023
  ident: 1390_CR52
  publication-title: IET Image Process
  doi: 10.1049/ipr2.12941
– year: 2024
  ident: 1390_CR61
  publication-title: J X-Ray Sci Technol
  doi: 10.3233/XST-230194
– volume: 22
  start-page: 1041
  issue: 2
  year: 2021
  ident: 1390_CR28
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2962094
– ident: 1390_CR32
– year: 2022
  ident: 1390_CR13
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/9990092
– volume: 31
  start-page: 2126
  issue: 6
  year: 2021
  ident: 1390_CR20
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.5350
– start-page: 3
  volume-title: Deep learning in medical image analysis and multimodal learning for clinical decision support
  year: 2018
  ident: 1390_CR54
  doi: 10.1007/978-3-030-00889-5_1
– year: 2023
  ident: 1390_CR62
  publication-title: Int J Comput Assisted Radiol Surg
  doi: 10.1007/s11548-023-03043-5
– ident: 1390_CR58
  doi: 10.1007/978-3-031-25066-8_9
– ident: 1390_CR47
  doi: 10.1016/j.compmedimag.2021.102026
– volume: 634
  start-page: 101
  year: 2023
  ident: 1390_CR21
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2023.03.070
– volume: 126
  start-page: 1751
  issue: 2
  year: 2022
  ident: 1390_CR44
  publication-title: Wireless Personal Commun
  doi: 10.1007/s11277-022-09820-w
– ident: 1390_CR53
  doi: 10.1007/978-3-319-24574-4_28
– volume: 40
  start-page: 1090
  issue: 3
  year: 2021
  ident: 1390_CR40
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3046636
– volume: 26
  start-page: 4656
  issue: 9
  year: 2022
  ident: 1390_CR23
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3184930
– volume: 9
  start-page: 5625
  issue: 5
  year: 2023
  ident: 1390_CR2
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-023-01035-1
– volume: 10
  start-page: 1468
  issue: 8
  year: 2022
  ident: 1390_CR24
  publication-title: Healthcare
  doi: 10.3390/healthcare10081468
– volume: 11
  start-page: 484
  issue: 1
  year: 2020
  ident: 1390_CR39
  publication-title: Bioengineered
  doi: 10.1080/21655979.2020.1747834
– ident: 1390_CR34
  doi: 10.1109/CVPR.2019.00271
– ident: 1390_CR46
  doi: 10.1016/j.compmedimag.2021.102026
– volume: 17
  start-page: 3040
  issue: 10
  year: 2023
  ident: 1390_CR42
  publication-title: IET Image Process
  doi: 10.1049/ipr2.12854
– volume: 9
  start-page: 6971
  issue: 6
  year: 2023
  ident: 1390_CR63
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-023-01119-y
– year: 2022
  ident: 1390_CR43
  publication-title: Computat Math Methods Med
  doi: 10.1155/2022/7703583
– year: 2020
  ident: 1390_CR37
  publication-title: EURASIP J Image Video Process
  doi: 10.1186/s13640-020-00514-6
– volume: 68
  start-page: 655
  issue: 4
  year: 2023
  ident: 1390_CR5
  publication-title: Surv Ophthalmol
  doi: 10.1016/j.survophthal.2023.03.003
– ident: 1390_CR38
  doi: 10.1007/978-3-030-32239-7_78
SSID ssj0001778302
ssib044733412
Score 2.3139267
Snippet Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are enormous, but...
Abstract Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4253
SubjectTerms Artificial intelligence
Assisted analysis
Complexity
Computational Intelligence
Conditional random fields
Cytopathology images
Data Structures and Information Theory
Distillation
Engineering
High resolution
Image analysis
Image enhancement
Image resolution
Image segmentation
Knowledge sublimation
Machine learning
Medical imaging
Nuclei (cytology)
Original Article
Pathology
Representations
Technology assessment
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA3iShfiE0dHycKdBtM2zWOpooigKwfchTwaEZyO6Lhw47d7k2bqKKgbt20K4Z6T3JukOQehA-lLE53bCXWlJUx5SmRdcmJqS513lNokknR9wy9H7Oquvpuz-or_hHXywF3gjouYEpuyFNQaZnghgzImZV1ubR1snH2ponOLKWASY6KqWE7cabdFiCh0FZ3mCqUIS2eWO_09OhZl5AmkKxIrIkrElyyVxPy_VKDfDk1TLrpYRSu5iMQnXefX0ELTrqPl616B9WUDvZ-9TSfRbjhtm-OHMcwb2GQFEtz5RuOYwjyetDiKFhNYeGce4nF3fIOT5OXselKLs8XEPX74bOKzSQ8ZJ18r3ElDb6LRxfnt2SXJXgvE1RWdElfJAGMZqqMgAvcVlGGBc8tUISGhU-VUWUvRGKsKC1iGKhhhPQTeBFV4Z6ottNhO2mYbYVk0gL60sPB2LJhGGqOkqRgAyX3tmwEqZrHVLguRRz-MR91LKCc8NOChEx5aDNBh_81TJ8Pxa-vTCFnfMkpopwdALJ2Jpf8i1gANZ4DrPK5fdBJUg4goPkBHMxJ8vv65Szv_0aVdtFQmksZNoCFanD6_NntQE03tfqL_B6oNA0E
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7QUOiE-xpSAfuIGFEzuxfUCIVq0qpK4QolJvlj_iqhKb9GM5cOG343GcrIpEr4kTRZlnz8tM_B7AOxVqi87tlPnaUaEDo6qpW2obx3zwjLksknS6ak_OxNfz5nwHVtNeGPytcloT80IdBo818o9ZykqpRrefr64pukZhd3Wy0LDFWiF8yhJjD2C3RlflBeweHK2-fZ8QJoTkXJSEnqswUqIAFjrQVVpTkXuZe_P-OoHy8jSlMYpMiVF5J3tlkf87zPSfZmrOUcdP4HEhl-TLiIansNP1z-DR6azMevsc_hz-3gxoQ5zL6eRyndYTYosyCRn9pAmmtkCGnqCYMU0f5AWfZD22dUiWwpy2LfWkWE9ckMvtkFDMe-g6-12RUTL6BZwdH_04PKHFg4H6hrMN9VzFNMcTa4oytoEnehbb1gldpVhwpr2uGyU763TlUowjj1a6wDSzUVfBW_4SFv3Qd6-AqKpLqFAufZB7EW2nrNXKcpE4Txua0C2hmt6t8UWgHH0yfppZWjnHw6R4mBwPI5fwfr7mapTnuHf0AYZsHonS2vnAcHNhykw1FXKwrq4lc1bYtlJRW5tpXutcE90S9qeAmzLfb80WnUv4MIFge_r_j7R3_91ew8M6ww_LPvuw2Nz86t4kFrRxbwu0_wLsWAHM
  priority: 102
  providerName: ProQuest
Title Cytopathology image analysis method based on high-resolution medical representation learning in medical decision-making system
URI https://link.springer.com/article/10.1007/s40747-024-01390-7
https://www.proquest.com/docview/3055688596
https://doaj.org/article/16635e2270ba4a618f9aa172736bb5fb
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3R9gIHRAuILWXlQ29g4SSOP47bqEu1UisEVOrNsuMYVWKzFbscuPDbGTvOllYqUk9RkkkUeWY8z3b8HsCx8qWNyu2UtaWjXHtGVV0KamvHWt8y5hJJ0vmFOLvki6v6KtPkxL0w99bvP655ZHinWEloBCuMyh3Yq7Hjjb_vNaIZY4dzWVU8l-o0vyJlpLaK2nKF1pSnVcrDh197py4l-v47mPPeMmmqPvMX8DzDRjIb_LwPT7r-AJ79QyaIZ-dbBtb1S_jT_N6sotxwmjYn10vsN4jNDCRk0I0msYR5supJJC2mOPDOcUiWw_INSZSX4_aknmSJie_k-tbEZ5Eeuky6VmSghn4Fl_PTb80ZzVoLtK0rtqFtpQLmMqKjIIPwFcKwIITjulBY0JludVkr2VmnC4e-DFWw0nmmmQ268K2tXsNuv-q7N0BU0aH3lcOBd8uD7ZS1WtmKI7YRvvbdBIqxpU2bicijHsYPs6VQTt4x6B2TvGPkBN5vn7kZaDj-a30SHbi1jBTa6QJGlskZaYqItbqylMxZbkWhgrY2wTnhXB3cBI5G95uc12uTCNWwRbSYwIcxJG5vP_xJh48zfwtPyxSccbrnCHY3P3917xD9bNwUdtT80xT2ZrPF1wUeT04vPn_Bq03Jpyklpmle4S_riv4u
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKuwAWiKc6pYAXsAILJ3Yce1EhWlpNaWeEUCt1Z_ysKjFJmRmEuuHT-DZsx8moSHTXbeI87-vkOj4HgNfclioqtyNsSo2osBjxqmRIVRobazDWiSRpMmXjU_r5rDpbA3_6tTDxt8o-J6ZEbVsTe-TvE5UV55VgHy5_oKgaFWdXewkNlaUV7E6iGMsLO47c1a_wCbfYOfwU7P2mLA_2T_bGKKsMIFMRvESGcB-8OOACX3tmSQAgnjFNRRGuRrAwoqx47ZQWhQ5P4YlXtbZYYOVFYY0i4bx3wEaAHSRE1cbu_vTL196jKa0JoRlApK5PXUfCrah4VwiBaJo73RrW89FIZ49C2UQRmWFUX6uWSVTgGhL-Z_I21cSDh-BBBrPwY-d9j8Caax6D-5OBCXbxBPzeu1q2UfY4te_hxSzkL6gyEwrs9KthLKUWtg2M5Mlo7vp4gLNuGgkm6s1-mVQDs9TFObxYDbFZLAjNkr4W7Ciqn4LTW7HGM7DetI3bBJAXLngh15QJQ71yXCnBFaEBYzFbWTcCRf9upcmE6FGX47scqJyTPWSwh0z2kPUIvB2OuezoQG4cvRtNNoyMVN5pQzs_lzkzyCJiPleWNdaKKlZwL5RKsJJpXXk9Atu9wWXOLwu5ioYReNc7wWr3_29p6-azvQJ3xyeTY3l8OD16Du6VyRVjy2kbrC_nP92LgMCW-mV2cwi-3XZk_QXrBD3n
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT9wwFIWv6CBV7aIqfahDKXjRXWvhJI4fyyntCIaHKrVI7Cw_YoTEZBCki27622s7ToBKVGKZxImi3OvcEzv-DsBH4UodndsxsaXBVDqCRV0yrGtDrLOEmARJOj5h-6d0cVaf3VnFn_52H6Yk-zUNkdLUdrtXzu-OC99o5L7jUF9wlDAE8yewLiJpZALrs9nix2LIKUp5VdFcwtO4C-cReRU95wopMU2zl5sPX_hevUpY_3ta9J_p01SV5i_hRZaTaNbHfwPWmvYVPL8DGQxbxyOZ9eY1_Nn73a2iDXEaTkcXy_A-QTqTSVDvJ41iaXNo1aIIM8bhgzznJ1r20zoooTCHZUstytYT5-jitonL5j14mfyuUI-MfgOn828_9_Zx9mDAtq5Ih20lfOjjQTV57pmrgjzzjBkqCxEKPZFWlrXgjTayMCHGvvKaG0ck0V4WzurqLUzaVdu8AySKJmSFMOGD3FKvG6G1FLqiQfMwV7tmCsXwpJXNgPLok3GpRrRyio4K0VEpOopP4dN4zlWP5_hv6y8xgGPLiNZOO1bX5yr3VFVEDdaUJSdGU80K4aXWSeYxY2pvprA1hF_l_n6jEmgtPBHJpvB5SInbww_f0ubjmu_A0-9f5-ro4OTwPTwrU57GEaEtmHTXv5oPQSB1Zjv3gb9WTgUf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytopathology+image+analysis+method+based+on+high-resolution+medical+representation+learning+in+medical+decision-making+system&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Li%2C+Baotian&rft.au=Liu%2C+Feng&rft.au=Lv%2C+Baolong&rft.au=Zhang%2C+Yongjun&rft.date=2024-06-01&rft.pub=Springer+International+Publishing&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=10&rft.issue=3&rft.spage=4253&rft.epage=4274&rft_id=info:doi/10.1007%2Fs40747-024-01390-7&rft.externalDocID=10_1007_s40747_024_01390_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon