Cytopathology image analysis method based on high-resolution medical representation learning in medical decision-making system
Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are enormous, but conventional visual screening techniques are labor-intensive, time-consuming, and subject to some degree of subjectivity. Complex pathologica...
Saved in:
Published in | Complex & intelligent systems Vol. 10; no. 3; pp. 4253 - 4274 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2024
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 2199-4536 2198-6053 |
DOI | 10.1007/s40747-024-01390-7 |
Cover
Abstract | Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are enormous, but conventional visual screening techniques are labor-intensive, time-consuming, and subject to some degree of subjectivity. Complex pathological data can be converted into mineable image features using artificial intelligence image analysis technology, enabling medical professionals to quickly and quantitatively identify regions of interest and extract information about cellular tissue. In this study, we designed a medical information assistance system for segmenting pathology images and quantifying statistical results, including data enhancement, cell nucleus segmentation, model tumor, and quantitative analysis. In cell nucleus segmentation, to address the problem of uneven healthcare resources, we designed a high-precision teacher model (HRMED_T) and a lightweight student model (HRMED_S). The HRMED_T model is based on visual Transformer and high-resolution representation learning. It achieves accurate segmentation by parallel low-resolution convolution and high-scaled image iterative fusion, while also maintaining the high-resolution representation. The HRMED_S model is based on the Channel-wise Knowledge Distillation approach to simplify the structure, achieve faster convergence, and refine the segmentation results by using conditional random fields instead of fully connected structures. The experimental results show that our system has better performance than other methods. The Intersection over the Union (IoU) of HRMED_T model reaches 0.756. The IoU of HRMED_S model also reaches 0.710 and params is only 3.99 M. |
---|---|
AbstractList | Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are enormous, but conventional visual screening techniques are labor-intensive, time-consuming, and subject to some degree of subjectivity. Complex pathological data can be converted into mineable image features using artificial intelligence image analysis technology, enabling medical professionals to quickly and quantitatively identify regions of interest and extract information about cellular tissue. In this study, we designed a medical information assistance system for segmenting pathology images and quantifying statistical results, including data enhancement, cell nucleus segmentation, model tumor, and quantitative analysis. In cell nucleus segmentation, to address the problem of uneven healthcare resources, we designed a high-precision teacher model (HRMED_T) and a lightweight student model (HRMED_S). The HRMED_T model is based on visual Transformer and high-resolution representation learning. It achieves accurate segmentation by parallel low-resolution convolution and high-scaled image iterative fusion, while also maintaining the high-resolution representation. The HRMED_S model is based on the Channel-wise Knowledge Distillation approach to simplify the structure, achieve faster convergence, and refine the segmentation results by using conditional random fields instead of fully connected structures. The experimental results show that our system has better performance than other methods. The Intersection over the Union (IoU) of HRMED_T model reaches 0.756. The IoU of HRMED_S model also reaches 0.710 and params is only 3.99 M. Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are enormous, but conventional visual screening techniques are labor-intensive, time-consuming, and subject to some degree of subjectivity. Complex pathological data can be converted into mineable image features using artificial intelligence image analysis technology, enabling medical professionals to quickly and quantitatively identify regions of interest and extract information about cellular tissue. In this study, we designed a medical information assistance system for segmenting pathology images and quantifying statistical results, including data enhancement, cell nucleus segmentation, model tumor, and quantitative analysis. In cell nucleus segmentation, to address the problem of uneven healthcare resources, we designed a high-precision teacher model (HRMED_T) and a lightweight student model (HRMED_S). The HRMED_T model is based on visual Transformer and high-resolution representation learning. It achieves accurate segmentation by parallel low-resolution convolution and high-scaled image iterative fusion, while also maintaining the high-resolution representation. The HRMED_S model is based on the Channel-wise Knowledge Distillation approach to simplify the structure, achieve faster convergence, and refine the segmentation results by using conditional random fields instead of fully connected structures. The experimental results show that our system has better performance than other methods. The Intersection over the Union (IoU) of HRMED_T model reaches 0.756. The IoU of HRMED_S model also reaches 0.710 and params is only 3.99 M. Abstract Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are enormous, but conventional visual screening techniques are labor-intensive, time-consuming, and subject to some degree of subjectivity. Complex pathological data can be converted into mineable image features using artificial intelligence image analysis technology, enabling medical professionals to quickly and quantitatively identify regions of interest and extract information about cellular tissue. In this study, we designed a medical information assistance system for segmenting pathology images and quantifying statistical results, including data enhancement, cell nucleus segmentation, model tumor, and quantitative analysis. In cell nucleus segmentation, to address the problem of uneven healthcare resources, we designed a high-precision teacher model (HRMED_T) and a lightweight student model (HRMED_S). The HRMED_T model is based on visual Transformer and high-resolution representation learning. It achieves accurate segmentation by parallel low-resolution convolution and high-scaled image iterative fusion, while also maintaining the high-resolution representation. The HRMED_S model is based on the Channel-wise Knowledge Distillation approach to simplify the structure, achieve faster convergence, and refine the segmentation results by using conditional random fields instead of fully connected structures. The experimental results show that our system has better performance than other methods. The Intersection over the Union (IoU) of HRMED_T model reaches 0.756. The IoU of HRMED_S model also reaches 0.710 and params is only 3.99 M. |
Author | Li, Baotian Wu, Jia Liu, Feng Zhang, Yongjun Lv, Baolong Gou, Fangfang |
Author_xml | – sequence: 1 givenname: Baotian surname: Li fullname: Li, Baotian organization: School of Information Engineering, Shandong Youth University of Political Science, New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Smart Healthcare Big Data Engineering and Ubiquitous Computing Characteristic Laboratory in Universities of Shandong – sequence: 2 givenname: Feng surname: Liu fullname: Liu, Feng email: liusdyu@sina.com organization: School of Information Engineering, Shandong Youth University of Political Science, New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Smart Healthcare Big Data Engineering and Ubiquitous Computing Characteristic Laboratory in Universities of Shandong – sequence: 3 givenname: Baolong surname: Lv fullname: Lv, Baolong email: lvbaolong2010@sina.com organization: School of Modern Service Management, Shandong Youth University of Political Science – sequence: 4 givenname: Yongjun surname: Zhang fullname: Zhang, Yongjun organization: School of Information Engineering, Shandong Youth University of Political Science, New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Smart Healthcare Big Data Engineering and Ubiquitous Computing Characteristic Laboratory in Universities of Shandong – sequence: 5 givenname: Fangfang orcidid: 0000-0003-0453-8222 surname: Gou fullname: Gou, Fangfang email: gff8221@163.com organization: State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University – sequence: 6 givenname: Jia surname: Wu fullname: Wu, Jia email: jiawu5110@163.com organization: State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Research Center for Artificial Intelligence, Monash University |
BookMark | eNp9Uctq3DAUNSGFpml-oCtD12r0sh7LMvQRCHSTrMWVLXk0sa2ppFl402-vMm4IdJGVpPPi6p4PzeUSF9c0nwj-QjCWt5ljySXClCNMmMZIXjRXlGiFBO7Y5fmuEe-YeN_c5HzAGBMpFcP0qvmzW0s8QtnHKY5rG2YYXQsLTGsOuZ1dJYbWQnZDG5d2H8Y9Si7H6VRCfc9uCD1MbXLHirqlwBmeHKQlLGMbXiWD60OuJJrh6ZnKay5u_ti88zBld_PvvG4ev3972P1E979-3O2-3qO-Y7igninPlRKce-nFwAihXgjLNVGqCnSvaaekA6uJ7ajwzIO0A9YYvCZDD-y6udtyhwgHc0z1n2k1EYI5AzGNBlIJ_eQMEYJ1jlKJLXAQRHkNQCSVTFjbeVuzPm9ZxxR_n1wu5hBPqa4sG4a7TtSRtKgqtan6FHNOzps-bOspCcJkCDbP5ZmtPFPLM-fyjKxW-p_1ZeA3TWwz5SpeRpdep3rD9RcEc7AL |
CitedBy_id | crossref_primary_10_1007_s40747_025_01847_3 crossref_primary_10_1155_int_9987190 crossref_primary_10_3390_diagnostics14141472 crossref_primary_10_1038_s41598_024_76577_6 |
Cites_doi | 10.1155/2022/7703583 10.1007/s00500-023-08602-1 10.1155/2022/9990092 10.1038/s41551-021-00789-8 10.1002/rnc.5350 10.1007/s10278-021-00556-w 10.1007/s11548-023-03043-5 10.1109/JBHI.2022.3184930 10.1109/TMI.2020.3046636 10.1109/TITS.2019.2962094 10.1007/s10916-023-01926-3 10.3390/math11092116 10.1186/s13640-020-00514-6 10.3390/healthcare10081468 10.1109/JBHI.2022.3198509 10.1080/21655979.2020.1747834 10.1109/TMI.2021.3098703 10.1049/ipr2.12854 10.1155/2022/7973404 10.1016/j.ins.2023.03.070 10.3390/math10101669 10.1109/TCBB.2023.3281638 10.1002/int.22949 10.1049/ipr2.12941 10.1007/s00414-021-02746-1 10.1109/TII.2020.2993842 10.1155/2022/3881833 10.1007/s40747-023-01119-y 10.1016/j.media.2022.102693 10.3390/diagnostics13020223 10.1016/j.cor.2022.106131 10.1007/s12559-022-10046-y 10.3390/math10101665 10.1007/s40747-023-01035-1 10.1049/cmu2.12628 10.3390/healthcare10112189 10.1007/s40815-023-01563-5 10.1038/s41598-022-18751-2 10.1007/978-3-030-00889-5_1 10.3390/diagnostics13061063 10.1016/j.survophthal.2023.03.003 10.3390/jpm12020136 10.3233/XST-230194 10.1007/s11277-022-09820-w 10.1109/CVPR46437.2021.00681 10.1109/TPAMI.2020.2983686 10.1109/ICASSP.2007.366913 10.1007/978-3-030-01234-2_49 10.1109/ICIP46576.2022.9897482 10.1109/LGRS.2022.3187135 10.1109/ICCV48922.2021.00526 10.1109/CVPR52688.2022.01181 10.1109/CVPR52688.2022.00829 10.1109/CVPR52688.2022.01178 10.1007/978-3-030-87199-4_16 10.1007/978-3-031-25066-8_9 10.1016/j.compmedimag.2021.102026 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2019.00271 10.1007/978-3-030-32239-7_78 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/s40747-024-01390-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 2198-6053 |
EndPage | 4274 |
ExternalDocumentID | oai_doaj_org_article_16635e2270ba4a618f9aa172736bb5fb 10_1007_s40747_024_01390_7 |
GrantInformation_xml | – fundername: Shandong Youth University of Political Science Scientific Research Project: Research of Abnormal Behavior Recognition System for Tourist Scenic Spot grantid: SJQNXM202210 funderid: http://dx.doi.org/10.13039/501100018627 |
GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c530t-c38f488644f7f6d3112f66b491885309c92587eab91b526f3fa7bd090af91dca3 |
IEDL.DBID | C6C |
ISSN | 2199-4536 |
IngestDate | Wed Aug 27 01:19:29 EDT 2025 Sun Jul 13 03:35:48 EDT 2025 Tue Jul 01 03:42:41 EDT 2025 Thu Apr 24 23:14:04 EDT 2025 Fri Feb 21 02:40:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Assisted analysis Image segmentation Knowledge sublimation Cytopathology images Artificial intelligence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c530t-c38f488644f7f6d3112f66b491885309c92587eab91b526f3fa7bd090af91dca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0453-8222 |
OpenAccessLink | https://doi.org/10.1007/s40747-024-01390-7 |
PQID | 3055688596 |
PQPubID | 2044308 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_16635e2270ba4a618f9aa172736bb5fb proquest_journals_3055688596 crossref_citationtrail_10_1007_s40747_024_01390_7 crossref_primary_10_1007_s40747_024_01390_7 springer_journals_10_1007_s40747_024_01390_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Complex & intelligent systems |
PublicationTitleAbbrev | Complex Intell. Syst |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | Ouyang (CR4) 2022 Zhou, Tan, Wu (CR16) 2022 Zheng (CR40) 2021; 40 Rashid (CR22) 2022; 6 Xu, Fan, Yang (CR50) 2023; 27 Roszkowiak, Korzynska, Pijanowska, Bosch, Lejeune, Lopez (CR37) 2020 Reverberi (CR10) 2022; 12 Fang (CR20) 2021; 31 CR38 Liu (CR25) 2022; 2022 CR36 CR34 Shen (CR41) 2022; 10 CR33 Zhao, Huang (CR2) 2023; 9 CR32 Jeong, Tariq, Adejumo, Trivedi, Gichoya, Banerjee (CR17) 2022; 35 CR31 CR30 Han, Chen, Hsiao, Fu (CR28) 2021; 22 Liu (CR9) 2022; 10 Valero-Carreras, Alcaraz, Landete (CR60) 2023 Singh, Vaidya, Borrelli, Chhablani (CR5) 2023; 68 Qin (CR8) 2023; 11 Huang, Wang, Zheng, He (CR39) 2020; 11 Li (CR61) 2024 CR49 CR48 CR47 CR46 Wang, Wang, Cai, Lee, Miao, Wang (CR18) 2023 Li, Jiang, Li, Yin (CR29) 2021; 17 Huang (CR45) 2023; 17 Qin (CR35) 2021; 40 Wan, Luan, Stojanovic, Liu (CR21) 2023; 634 Zhu, Li (CR52) 2023 Li, Mao, Zhang, Wang, Zhong (CR64) 2023; 15 Zhan (CR3) 2023; 13 Zhan, Long (CR62) 2023 Wu (CR44) 2022; 126 Liu (CR11) 2022; 10 Xiao, Huang, Zhou, Dai (CR23) 2022; 26 CR59 CR58 CR57 Guo (CR14) 2022; 37 CR56 CR55 CR53 Guan, Yu, Wei, Tan (CR12) 2023 CR51 Peng (CR6) 2022; 136 Wang, Yu, Zhu, Tang (CR24) 2022; 10 He (CR42) 2023; 17 Song, Song, Stojanovic, Song (CR19) 2023; 25 CR27 CR26 Zhou, Rahman Siddiquee, Tajbakhsh, Liang, Stoyanov (CR54) 2018 DiGiorgio, Ehrenfeld (CR1) 2023; 47 Lv, Liu, Li, Nie (CR7) 2023; 13 Kim, Lee, Woo, Jeong, Kim, Kim (CR15) 2022; 12 Yang (CR43) 2022 Zhao, Wang, Zhang, Qiao, Zhang (CR63) 2023; 9 Liu (CR13) 2022 Y Zhao (1390_CR63) 2023; 9 P Xiao (1390_CR23) 2022; 26 1390_CR49 1390_CR48 1390_CR47 J Zhu (1390_CR52) 2023 H Fang (1390_CR20) 2021; 31 J Huang (1390_CR39) 2020; 11 Y Guo (1390_CR14) 2022; 37 1390_CR46 J Huang (1390_CR45) 2023; 17 Y Xu (1390_CR50) 2023; 27 Z Zhou (1390_CR54) 2018 L-Q Peng (1390_CR6) 2022; 136 P Guan (1390_CR12) 2023 H Wan (1390_CR21) 2023; 634 X Song (1390_CR19) 2023; 25 X Zhan (1390_CR62) 2023 D Qin (1390_CR35) 2021; 40 Y Shen (1390_CR41) 2022; 10 SR Singh (1390_CR5) 2023; 68 1390_CR38 Y Qin (1390_CR8) 2023; 11 1390_CR36 1390_CR31 D Kim (1390_CR15) 2022; 12 1390_CR30 K He (1390_CR42) 2023; 17 F Liu (1390_CR9) 2022; 10 1390_CR34 1390_CR33 1390_CR32 AM DiGiorgio (1390_CR1) 2023; 47 C Reverberi (1390_CR10) 2022; 12 D Valero-Carreras (1390_CR60) 2023 J Liu (1390_CR11) 2022; 10 1390_CR27 1390_CR26 F Liu (1390_CR13) 2022 Y Wang (1390_CR18) 2023 L Wang (1390_CR24) 2022; 10 Z Zhou (1390_CR16) 2022 W Li (1390_CR61) 2024 T Ouyang (1390_CR4) 2022 H-Y Han (1390_CR28) 2021; 22 J Wu (1390_CR44) 2022; 126 R Rashid (1390_CR22) 2022; 6 Y Zheng (1390_CR40) 2021; 40 S Li (1390_CR64) 2023; 15 L Roszkowiak (1390_CR37) 2020 S Yang (1390_CR43) 2022 1390_CR59 1390_CR58 Z Liu (1390_CR25) 2022; 2022 JJ Jeong (1390_CR17) 2022; 35 1390_CR53 1390_CR51 X Li (1390_CR29) 2021; 17 1390_CR57 1390_CR56 1390_CR55 B Lv (1390_CR7) 2023; 13 X Zhan (1390_CR3) 2023; 13 L Zhao (1390_CR2) 2023; 9 |
References_xml | – year: 2022 ident: CR43 article-title: Intelligent segmentation medical assistance system for MRI images of osteosarcoma in developing countries publication-title: Computat Math Methods Med doi: 10.1155/2022/7703583 – ident: CR49 – volume: 27 start-page: 14321 issue: 19 year: 2023 end-page: 14335 ident: CR50 article-title: Numerical solution of ruin probability of continuous time model based on optimal adaptive particle swarm optimization-triangular neural network algorithm publication-title: Soft Comput doi: 10.1007/s00500-023-08602-1 – year: 2022 ident: CR13 article-title: Auxiliary segmentation method of osteosarcoma MRI image based on transformer and U-Net publication-title: Comput Intell Neurosci doi: 10.1155/2022/9990092 – volume: 6 start-page: 515 issue: 5 year: 2022 end-page: 526 ident: CR22 article-title: Narrative online guides for the interpretation of digital-pathology images and tissue-atlas data publication-title: Nat Biomed Eng doi: 10.1038/s41551-021-00789-8 – ident: CR51 – volume: 31 start-page: 2126 issue: 6 year: 2021 end-page: 2140 ident: CR20 article-title: Adaptive optimization algorithm for nonlinear Markov jump systems with partial unknown dynamics publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.5350 – volume: 35 start-page: 137 issue: 2 year: 2022 end-page: 152 ident: CR17 article-title: Systematic review of generative adversarial networks (GANs) for medical image classification and segmentation publication-title: J Digital Imaging doi: 10.1007/s10278-021-00556-w – year: 2023 ident: CR62 article-title: A semantic fidelity interpretable-assisted decision model for lung nodule classification publication-title: Int J Comput Assisted Radiol Surg doi: 10.1007/s11548-023-03043-5 – volume: 26 start-page: 4656 issue: 9 year: 2022 end-page: 4667 ident: CR23 article-title: An artificial intelligence multiprocessing scheme for the diagnosis of osteosarcoma MRI images publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2022.3184930 – ident: CR58 – volume: 40 start-page: 1090 issue: 3 year: 2021 end-page: 1103 ident: CR40 article-title: Diagnostic regions attention network (DRA-Net) for histopathology wsi recommendation and retrieval publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3046636 – volume: 22 start-page: 1041 issue: 2 year: 2021 end-page: 1051 ident: CR28 article-title: Using channel-wise attention for deep CNN based real-time semantic segmentation with class-aware edge information publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2962094 – ident: CR46 – volume: 47 start-page: 32 issue: 1 year: 2023 ident: CR1 article-title: Artificial intelligence in medicine & ChatGPT: de-tether the physician publication-title: J Med Syst doi: 10.1007/s10916-023-01926-3 – volume: 11 start-page: 2116 issue: 9 year: 2023 ident: CR8 article-title: A novel medical decision-making system based on multi-scale feature enhancement for small samples publication-title: Mathematics doi: 10.3390/math11092116 – year: 2020 ident: CR37 article-title: Clustered nuclei splitting based on recurrent distance transform in digital pathology images publication-title: EURASIP J Image Video Process doi: 10.1186/s13640-020-00514-6 – volume: 10 start-page: 1468 issue: 8 year: 2022 ident: CR24 article-title: Auxiliary segmentation method of osteosarcoma in MRI images based on denoising and local enhancement publication-title: Healthcare doi: 10.3390/healthcare10081468 – year: 2022 ident: CR16 article-title: A cascaded multi-stage framework for automatic detection and segmentation of pulmonary nodules in developing countries publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2022.3198509 – volume: 11 start-page: 484 issue: 1 year: 2020 end-page: 501 ident: CR39 article-title: Nucleus segmentation of cervical cytology images based on multi-scale fuzzy clustering algorithm publication-title: Bioengineered doi: 10.1080/21655979.2020.1747834 – volume: 40 start-page: 3820 issue: 12 year: 2021 end-page: 3831 ident: CR35 article-title: Efficient medical image segmentation based on knowledge distillation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3098703 – volume: 17 start-page: 3040 issue: 10 year: 2023 end-page: 3054 ident: CR42 article-title: Image segmentation technology based on transformer in medical decision-making system publication-title: IET Image Process doi: 10.1049/ipr2.12854 – year: 2022 ident: CR4 article-title: Rethinking U-net from an attention perspective with transformers for osteosarcoma MRI image segmentation publication-title: Comput Intell Neurosci doi: 10.1155/2022/7973404 – ident: CR57 – ident: CR32 – ident: CR36 – volume: 634 start-page: 101 year: 2023 end-page: 121 ident: CR21 article-title: Self-triggered finite-time control for discrete-time Markov jump systems publication-title: Inform Sci doi: 10.1016/j.ins.2023.03.070 – volume: 10 start-page: 1669 issue: 10 year: 2022 ident: CR41 article-title: Node screening method based on federated learning with IoT in opportunistic social networks publication-title: Mathematics doi: 10.3390/math10101669 – year: 2023 ident: CR12 article-title: Big data analytics on lung cancer diagnosis framework with deep learning publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2023.3281638 – volume: 37 start-page: 8436 issue: 11 year: 2022 end-page: 8461 ident: CR14 article-title: A medical assistant segmentation method for MRI images of osteosarcoma based on DecoupleSegNet publication-title: Int J Intell Syst doi: 10.1002/int.22949 – ident: CR26 – year: 2023 ident: CR52 article-title: Two-stage coarse-to-fine method for pathological images in medical decision-making systems publication-title: IET Image Process doi: 10.1049/ipr2.12941 – volume: 136 start-page: 797 issue: 3 year: 2022 end-page: 810 ident: CR6 article-title: Forensic bone age estimation of adolescent pelvis X-rays based on two-stage convolutional neural network publication-title: Int J Legal Med doi: 10.1007/s00414-021-02746-1 – volume: 17 start-page: 1958 issue: 3 year: 2021 end-page: 1967 ident: CR29 article-title: Lightweight attention convolutional neural network for retinal vessel image segmentation publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2020.2993842 – ident: CR47 – volume: 2022 start-page: 3881833 year: 2022 ident: CR25 article-title: BA-GCA net: boundary-aware grid contextual attention net in osteosarcoma mri image segmentation (in eng) publication-title: Comput Intell Neurosci doi: 10.1155/2022/3881833 – ident: CR53 – volume: 9 start-page: 6971 issue: 6 year: 2023 end-page: 6983 ident: CR63 article-title: WRANet: wavelet integrated residual attention U-Net network for medical image segmentation publication-title: Complex Intell Syst doi: 10.1007/s40747-023-01119-y – ident: CR30 – year: 2023 ident: CR18 article-title: SSD-KD: a self-supervised diverse knowledge distillation method for lightweight skin lesion classification using dermoscopic images publication-title: Med Image Anal doi: 10.1016/j.media.2022.102693 – ident: CR33 – volume: 13 start-page: 223 issue: 2 year: 2023 ident: CR3 article-title: An intelligent auxiliary framework for bone malignant tumor lesion segmentation in medical image analysis publication-title: Diagnostics doi: 10.3390/diagnostics13020223 – year: 2023 ident: CR60 article-title: Comparing two SVM models through different metrics based on the confusion matrix publication-title: Comput Operat Res doi: 10.1016/j.cor.2022.106131 – volume: 15 start-page: 429 issue: 2 year: 2023 end-page: 439 ident: CR64 article-title: DLW-NAS: differentiable light-weight neural architecture search publication-title: Cogn Comput doi: 10.1007/s12559-022-10046-y – volume: 10 start-page: 1665 issue: 10 year: 2022 ident: CR9 article-title: An attention-preserving network-based method for assisted segmentation of osteosarcoma MRI images publication-title: Mathematics doi: 10.3390/math10101665 – ident: CR56 – volume: 9 start-page: 5625 issue: 5 year: 2023 end-page: 5636 ident: CR2 article-title: A distribution information sharing federated learning approach for medical image data publication-title: Complex Intell Syst doi: 10.1007/s40747-023-01035-1 – ident: CR27 – volume: 17 start-page: 1354 issue: 12 year: 2023 end-page: 1367 ident: CR45 article-title: An effective data communication community establishment scheme in opportunistic networks publication-title: IET Commun doi: 10.1049/cmu2.12628 – volume: 10 start-page: 2189 issue: 11 year: 2022 ident: CR11 article-title: A multimodal auxiliary classification system for osteosarcoma histopathological images based on deep active learning publication-title: Healthcare doi: 10.3390/healthcare10112189 – ident: CR48 – volume: 25 start-page: 3177 issue: 8 year: 2023 end-page: 3192 ident: CR19 article-title: Improved dynamic event-triggered security control for T-S fuzzy LPV-PDE systems via pointwise measurements and point control publication-title: Int J Fuzzy Syst doi: 10.1007/s40815-023-01563-5 – volume: 12 start-page: 14952 issue: 1 year: 2022 ident: CR10 article-title: Experimental evidence of effective human–AI collaboration in medical decision-making publication-title: Sci Rep doi: 10.1038/s41598-022-18751-2 – ident: CR38 – start-page: 3 year: 2018 end-page: 11 ident: CR54 article-title: UNet++: a nested U-Net architecture for medical image segmentation publication-title: Deep learning in medical image analysis and multimodal learning for clinical decision support doi: 10.1007/978-3-030-00889-5_1 – ident: CR31 – volume: 13 start-page: 1063 issue: 6 year: 2023 ident: CR7 article-title: Artificial intelligence-aided diagnosis solution by enhancing the edge features of medical images publication-title: Diagnostics doi: 10.3390/diagnostics13061063 – ident: CR34 – volume: 68 start-page: 655 issue: 4 year: 2023 end-page: 668 ident: CR5 article-title: Foveal photoreceptor disruption in ocular diseases: an optical coherence tomography-based differential diagnosis publication-title: Surv Ophthalmol doi: 10.1016/j.survophthal.2023.03.003 – ident: CR55 – volume: 12 start-page: 136 issue: 2 year: 2022 ident: CR15 article-title: Deep learning application to clinical decision support system in sleep stage classification publication-title: J Pers Med doi: 10.3390/jpm12020136 – ident: CR59 – year: 2024 ident: CR61 article-title: Artificial intelligence auxiliary diagnosis and treatment system for breast cancer in developing countries publication-title: J X-Ray Sci Technol doi: 10.3233/XST-230194 – volume: 126 start-page: 1751 issue: 2 year: 2022 end-page: 1768 ident: CR44 article-title: Data transmission strategy based on node motion prediction iot system in opportunistic social networks publication-title: Wireless Personal Commun doi: 10.1007/s11277-022-09820-w – ident: 1390_CR57 doi: 10.1109/CVPR46437.2021.00681 – year: 2023 ident: 1390_CR18 publication-title: Med Image Anal doi: 10.1016/j.media.2022.102693 – volume: 40 start-page: 3820 issue: 12 year: 2021 ident: 1390_CR35 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3098703 – volume: 11 start-page: 2116 issue: 9 year: 2023 ident: 1390_CR8 publication-title: Mathematics doi: 10.3390/math11092116 – volume: 6 start-page: 515 issue: 5 year: 2022 ident: 1390_CR22 publication-title: Nat Biomed Eng doi: 10.1038/s41551-021-00789-8 – ident: 1390_CR26 doi: 10.1109/TPAMI.2020.2983686 – ident: 1390_CR49 doi: 10.1109/ICASSP.2007.366913 – volume: 13 start-page: 223 issue: 2 year: 2023 ident: 1390_CR3 publication-title: Diagnostics doi: 10.3390/diagnostics13020223 – year: 2023 ident: 1390_CR12 publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2023.3281638 – volume: 10 start-page: 2189 issue: 11 year: 2022 ident: 1390_CR11 publication-title: Healthcare doi: 10.3390/healthcare10112189 – year: 2023 ident: 1390_CR60 publication-title: Comput Operat Res doi: 10.1016/j.cor.2022.106131 – ident: 1390_CR55 doi: 10.1007/978-3-030-01234-2_49 – volume: 15 start-page: 429 issue: 2 year: 2023 ident: 1390_CR64 publication-title: Cogn Comput doi: 10.1007/s12559-022-10046-y – volume: 12 start-page: 136 issue: 2 year: 2022 ident: 1390_CR15 publication-title: J Pers Med doi: 10.3390/jpm12020136 – ident: 1390_CR56 – volume: 10 start-page: 1665 issue: 10 year: 2022 ident: 1390_CR9 publication-title: Mathematics doi: 10.3390/math10101665 – ident: 1390_CR31 doi: 10.1109/ICIP46576.2022.9897482 – volume: 2022 start-page: 3881833 year: 2022 ident: 1390_CR25 publication-title: Comput Intell Neurosci doi: 10.1155/2022/3881833 – ident: 1390_CR30 doi: 10.1109/LGRS.2022.3187135 – year: 2022 ident: 1390_CR4 publication-title: Comput Intell Neurosci doi: 10.1155/2022/7973404 – volume: 13 start-page: 1063 issue: 6 year: 2023 ident: 1390_CR7 publication-title: Diagnostics doi: 10.3390/diagnostics13061063 – volume: 17 start-page: 1354 issue: 12 year: 2023 ident: 1390_CR45 publication-title: IET Commun doi: 10.1049/cmu2.12628 – volume: 35 start-page: 137 issue: 2 year: 2022 ident: 1390_CR17 publication-title: J Digital Imaging doi: 10.1007/s10278-021-00556-w – volume: 17 start-page: 1958 issue: 3 year: 2021 ident: 1390_CR29 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2020.2993842 – ident: 1390_CR48 doi: 10.1109/ICCV48922.2021.00526 – ident: 1390_CR59 doi: 10.1109/CVPR52688.2022.01181 – volume: 10 start-page: 1669 issue: 10 year: 2022 ident: 1390_CR41 publication-title: Mathematics doi: 10.3390/math10101669 – year: 2022 ident: 1390_CR16 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2022.3198509 – volume: 25 start-page: 3177 issue: 8 year: 2023 ident: 1390_CR19 publication-title: Int J Fuzzy Syst doi: 10.1007/s40815-023-01563-5 – volume: 136 start-page: 797 issue: 3 year: 2022 ident: 1390_CR6 publication-title: Int J Legal Med doi: 10.1007/s00414-021-02746-1 – volume: 12 start-page: 14952 issue: 1 year: 2022 ident: 1390_CR10 publication-title: Sci Rep doi: 10.1038/s41598-022-18751-2 – ident: 1390_CR36 doi: 10.1109/CVPR52688.2022.00829 – volume: 47 start-page: 32 issue: 1 year: 2023 ident: 1390_CR1 publication-title: J Med Syst doi: 10.1007/s10916-023-01926-3 – ident: 1390_CR33 doi: 10.1109/CVPR52688.2022.01178 – ident: 1390_CR51 – volume: 37 start-page: 8436 issue: 11 year: 2022 ident: 1390_CR14 publication-title: Int J Intell Syst doi: 10.1002/int.22949 – volume: 27 start-page: 14321 issue: 19 year: 2023 ident: 1390_CR50 publication-title: Soft Comput doi: 10.1007/s00500-023-08602-1 – ident: 1390_CR27 doi: 10.1007/978-3-030-87199-4_16 – year: 2023 ident: 1390_CR52 publication-title: IET Image Process doi: 10.1049/ipr2.12941 – year: 2024 ident: 1390_CR61 publication-title: J X-Ray Sci Technol doi: 10.3233/XST-230194 – volume: 22 start-page: 1041 issue: 2 year: 2021 ident: 1390_CR28 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2962094 – ident: 1390_CR32 – year: 2022 ident: 1390_CR13 publication-title: Comput Intell Neurosci doi: 10.1155/2022/9990092 – volume: 31 start-page: 2126 issue: 6 year: 2021 ident: 1390_CR20 publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.5350 – start-page: 3 volume-title: Deep learning in medical image analysis and multimodal learning for clinical decision support year: 2018 ident: 1390_CR54 doi: 10.1007/978-3-030-00889-5_1 – year: 2023 ident: 1390_CR62 publication-title: Int J Comput Assisted Radiol Surg doi: 10.1007/s11548-023-03043-5 – ident: 1390_CR58 doi: 10.1007/978-3-031-25066-8_9 – ident: 1390_CR47 doi: 10.1016/j.compmedimag.2021.102026 – volume: 634 start-page: 101 year: 2023 ident: 1390_CR21 publication-title: Inform Sci doi: 10.1016/j.ins.2023.03.070 – volume: 126 start-page: 1751 issue: 2 year: 2022 ident: 1390_CR44 publication-title: Wireless Personal Commun doi: 10.1007/s11277-022-09820-w – ident: 1390_CR53 doi: 10.1007/978-3-319-24574-4_28 – volume: 40 start-page: 1090 issue: 3 year: 2021 ident: 1390_CR40 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3046636 – volume: 26 start-page: 4656 issue: 9 year: 2022 ident: 1390_CR23 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2022.3184930 – volume: 9 start-page: 5625 issue: 5 year: 2023 ident: 1390_CR2 publication-title: Complex Intell Syst doi: 10.1007/s40747-023-01035-1 – volume: 10 start-page: 1468 issue: 8 year: 2022 ident: 1390_CR24 publication-title: Healthcare doi: 10.3390/healthcare10081468 – volume: 11 start-page: 484 issue: 1 year: 2020 ident: 1390_CR39 publication-title: Bioengineered doi: 10.1080/21655979.2020.1747834 – ident: 1390_CR34 doi: 10.1109/CVPR.2019.00271 – ident: 1390_CR46 doi: 10.1016/j.compmedimag.2021.102026 – volume: 17 start-page: 3040 issue: 10 year: 2023 ident: 1390_CR42 publication-title: IET Image Process doi: 10.1049/ipr2.12854 – volume: 9 start-page: 6971 issue: 6 year: 2023 ident: 1390_CR63 publication-title: Complex Intell Syst doi: 10.1007/s40747-023-01119-y – year: 2022 ident: 1390_CR43 publication-title: Computat Math Methods Med doi: 10.1155/2022/7703583 – year: 2020 ident: 1390_CR37 publication-title: EURASIP J Image Video Process doi: 10.1186/s13640-020-00514-6 – volume: 68 start-page: 655 issue: 4 year: 2023 ident: 1390_CR5 publication-title: Surv Ophthalmol doi: 10.1016/j.survophthal.2023.03.003 – ident: 1390_CR38 doi: 10.1007/978-3-030-32239-7_78 |
SSID | ssj0001778302 ssib044733412 |
Score | 2.3139267 |
Snippet | Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are enormous, but... Abstract Artificial intelligence has made substantial progress in many medical application scenarios. The quantity and complexity of pathology images are... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4253 |
SubjectTerms | Artificial intelligence Assisted analysis Complexity Computational Intelligence Conditional random fields Cytopathology images Data Structures and Information Theory Distillation Engineering High resolution Image analysis Image enhancement Image resolution Image segmentation Knowledge sublimation Machine learning Medical imaging Nuclei (cytology) Original Article Pathology Representations Technology assessment |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA3iShfiE0dHycKdBtM2zWOpooigKwfchTwaEZyO6Lhw47d7k2bqKKgbt20K4Z6T3JukOQehA-lLE53bCXWlJUx5SmRdcmJqS513lNokknR9wy9H7Oquvpuz-or_hHXywF3gjouYEpuyFNQaZnghgzImZV1ubR1snH2ponOLKWASY6KqWE7cabdFiCh0FZ3mCqUIS2eWO_09OhZl5AmkKxIrIkrElyyVxPy_VKDfDk1TLrpYRSu5iMQnXefX0ELTrqPl616B9WUDvZ-9TSfRbjhtm-OHMcwb2GQFEtz5RuOYwjyetDiKFhNYeGce4nF3fIOT5OXselKLs8XEPX74bOKzSQ8ZJ18r3ElDb6LRxfnt2SXJXgvE1RWdElfJAGMZqqMgAvcVlGGBc8tUISGhU-VUWUvRGKsKC1iGKhhhPQTeBFV4Z6ottNhO2mYbYVk0gL60sPB2LJhGGqOkqRgAyX3tmwEqZrHVLguRRz-MR91LKCc8NOChEx5aDNBh_81TJ8Pxa-vTCFnfMkpopwdALJ2Jpf8i1gANZ4DrPK5fdBJUg4goPkBHMxJ8vv65Szv_0aVdtFQmksZNoCFanD6_NntQE03tfqL_B6oNA0E priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7QUOiE-xpSAfuIGFEzuxfUCIVq0qpK4QolJvlj_iqhKb9GM5cOG343GcrIpEr4kTRZlnz8tM_B7AOxVqi87tlPnaUaEDo6qpW2obx3zwjLksknS6ak_OxNfz5nwHVtNeGPytcloT80IdBo818o9ZykqpRrefr64pukZhd3Wy0LDFWiF8yhJjD2C3RlflBeweHK2-fZ8QJoTkXJSEnqswUqIAFjrQVVpTkXuZe_P-OoHy8jSlMYpMiVF5J3tlkf87zPSfZmrOUcdP4HEhl-TLiIansNP1z-DR6azMevsc_hz-3gxoQ5zL6eRyndYTYosyCRn9pAmmtkCGnqCYMU0f5AWfZD22dUiWwpy2LfWkWE9ckMvtkFDMe-g6-12RUTL6BZwdH_04PKHFg4H6hrMN9VzFNMcTa4oytoEnehbb1gldpVhwpr2uGyU763TlUowjj1a6wDSzUVfBW_4SFv3Qd6-AqKpLqFAufZB7EW2nrNXKcpE4Txua0C2hmt6t8UWgHH0yfppZWjnHw6R4mBwPI5fwfr7mapTnuHf0AYZsHonS2vnAcHNhykw1FXKwrq4lc1bYtlJRW5tpXutcE90S9qeAmzLfb80WnUv4MIFge_r_j7R3_91ew8M6ww_LPvuw2Nz86t4kFrRxbwu0_wLsWAHM priority: 102 providerName: ProQuest |
Title | Cytopathology image analysis method based on high-resolution medical representation learning in medical decision-making system |
URI | https://link.springer.com/article/10.1007/s40747-024-01390-7 https://www.proquest.com/docview/3055688596 https://doaj.org/article/16635e2270ba4a618f9aa172736bb5fb |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3R9gIHRAuILWXlQ29g4SSOP47bqEu1UisEVOrNsuMYVWKzFbscuPDbGTvOllYqUk9RkkkUeWY8z3b8HsCx8qWNyu2UtaWjXHtGVV0KamvHWt8y5hJJ0vmFOLvki6v6KtPkxL0w99bvP655ZHinWEloBCuMyh3Yq7Hjjb_vNaIZY4dzWVU8l-o0vyJlpLaK2nKF1pSnVcrDh197py4l-v47mPPeMmmqPvMX8DzDRjIb_LwPT7r-AJ79QyaIZ-dbBtb1S_jT_N6sotxwmjYn10vsN4jNDCRk0I0msYR5supJJC2mOPDOcUiWw_INSZSX4_aknmSJie_k-tbEZ5Eeuky6VmSghn4Fl_PTb80ZzVoLtK0rtqFtpQLmMqKjIIPwFcKwIITjulBY0JludVkr2VmnC4e-DFWw0nmmmQ268K2tXsNuv-q7N0BU0aH3lcOBd8uD7ZS1WtmKI7YRvvbdBIqxpU2bicijHsYPs6VQTt4x6B2TvGPkBN5vn7kZaDj-a30SHbi1jBTa6QJGlskZaYqItbqylMxZbkWhgrY2wTnhXB3cBI5G95uc12uTCNWwRbSYwIcxJG5vP_xJh48zfwtPyxSccbrnCHY3P3917xD9bNwUdtT80xT2ZrPF1wUeT04vPn_Bq03Jpyklpmle4S_riv4u |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKuwAWiKc6pYAXsAILJ3Yce1EhWlpNaWeEUCt1Z_ysKjFJmRmEuuHT-DZsx8moSHTXbeI87-vkOj4HgNfclioqtyNsSo2osBjxqmRIVRobazDWiSRpMmXjU_r5rDpbA3_6tTDxt8o-J6ZEbVsTe-TvE5UV55VgHy5_oKgaFWdXewkNlaUV7E6iGMsLO47c1a_wCbfYOfwU7P2mLA_2T_bGKKsMIFMRvESGcB-8OOACX3tmSQAgnjFNRRGuRrAwoqx47ZQWhQ5P4YlXtbZYYOVFYY0i4bx3wEaAHSRE1cbu_vTL196jKa0JoRlApK5PXUfCrah4VwiBaJo73RrW89FIZ49C2UQRmWFUX6uWSVTgGhL-Z_I21cSDh-BBBrPwY-d9j8Caax6D-5OBCXbxBPzeu1q2UfY4te_hxSzkL6gyEwrs9KthLKUWtg2M5Mlo7vp4gLNuGgkm6s1-mVQDs9TFObxYDbFZLAjNkr4W7Ciqn4LTW7HGM7DetI3bBJAXLngh15QJQ71yXCnBFaEBYzFbWTcCRf9upcmE6FGX47scqJyTPWSwh0z2kPUIvB2OuezoQG4cvRtNNoyMVN5pQzs_lzkzyCJiPleWNdaKKlZwL5RKsJJpXXk9Atu9wWXOLwu5ioYReNc7wWr3_29p6-azvQJ3xyeTY3l8OD16Du6VyRVjy2kbrC_nP92LgMCW-mV2cwi-3XZk_QXrBD3n |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT9wwFIWv6CBV7aIqfahDKXjRXWvhJI4fyyntCIaHKrVI7Cw_YoTEZBCki27622s7ToBKVGKZxImi3OvcEzv-DsBH4UodndsxsaXBVDqCRV0yrGtDrLOEmARJOj5h-6d0cVaf3VnFn_52H6Yk-zUNkdLUdrtXzu-OC99o5L7jUF9wlDAE8yewLiJpZALrs9nix2LIKUp5VdFcwtO4C-cReRU95wopMU2zl5sPX_hevUpY_3ta9J_p01SV5i_hRZaTaNbHfwPWmvYVPL8DGQxbxyOZ9eY1_Nn73a2iDXEaTkcXy_A-QTqTSVDvJ41iaXNo1aIIM8bhgzznJ1r20zoooTCHZUstytYT5-jitonL5j14mfyuUI-MfgOn828_9_Zx9mDAtq5Ih20lfOjjQTV57pmrgjzzjBkqCxEKPZFWlrXgjTayMCHGvvKaG0ck0V4WzurqLUzaVdu8AySKJmSFMOGD3FKvG6G1FLqiQfMwV7tmCsXwpJXNgPLok3GpRrRyio4K0VEpOopP4dN4zlWP5_hv6y8xgGPLiNZOO1bX5yr3VFVEDdaUJSdGU80K4aXWSeYxY2pvprA1hF_l_n6jEmgtPBHJpvB5SInbww_f0ubjmu_A0-9f5-ro4OTwPTwrU57GEaEtmHTXv5oPQSB1Zjv3gb9WTgUf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytopathology+image+analysis+method+based+on+high-resolution+medical+representation+learning+in+medical+decision-making+system&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Li%2C+Baotian&rft.au=Liu%2C+Feng&rft.au=Lv%2C+Baolong&rft.au=Zhang%2C+Yongjun&rft.date=2024-06-01&rft.pub=Springer+International+Publishing&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=10&rft.issue=3&rft.spage=4253&rft.epage=4274&rft_id=info:doi/10.1007%2Fs40747-024-01390-7&rft.externalDocID=10_1007_s40747_024_01390_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |