Top-down influences on visual processing
Key Points In contrast to the traditional idea that the processing of visual information consists of a sequence of feedforward operations, with neuronal functional properties taking on increasing complexity as the information progresses through a hierarchy of cortical areas, increasing evidence poin...
Saved in:
Published in | Nature reviews. Neuroscience Vol. 14; no. 5; pp. 350 - 363 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1471-003X 1471-0048 1471-0048 1469-3178 |
DOI | 10.1038/nrn3476 |
Cover
Abstract | Key Points
In contrast to the traditional idea that the processing of visual information consists of a sequence of feedforward operations, with neuronal functional properties taking on increasing complexity as the information progresses through a hierarchy of cortical areas, increasing evidence points towards a reverse process, with higher-order cognitive influences interacting with information coming from the retina.
Thus, rather than having a fixed functional role, neurons should be thought of as adaptive processors, changing their function according to the behavioural context.
Vision is an active process in which higher-order cognitive influences affect the operations performed by cortical neurons.
Visual pathways operate bidirectionally, with each feedforward connection being matched by feedback or re-entrant connections going from higher- to lower-order cortical areas.
Top-down influences include various forms of attention, such as spatial, object oriented and feature oriented attention.
Top-down influences are not limited to attention but mediate a much broader range of functional roles, including perceptual task, object expectation, scene segmentation, efference copy, working memory and the encoding and recall of learned information.
The effect of top-down influences is to change the information conveyed by neurons, both by altering the tuning of their responses to stimulus attributes and by changing the structure of correlations over neuronal ensembles.
All areas of the visual pathway, except for the retina, are subject to top-down influences, including early cortical stages of visual processing such as the primary visual cortex and the lateral geniculate nucleus, and all areas along the dorsal and ventral visual cortical pathways. Each area contains an association field of potential interactions, and expresses a subset of these interactions to execute different functions.
The sources of top-down influences are widespread, with each area providing information reflecting the functional properties of that area. As a consequence, even a single neuron can be viewed as a microcosm of activity occurring throughout the visual pathway.
We propose that the circuit mechanism of top-down control and adaptive processing involves a gating of intrinsic cortical circuits within an area mediated by long-range feedback connections to that area. By selecting a subset of inputs, a neuron can express different components of its association field, and as a result take on different functional roles.
Vision is an active process. Higher-order cognitive influences, including attention, expectation and perceptual task, as well as motor signals, are fed into the sensory apparatus. This enables neurons to dynamically tune their receptive field properties to carry information that is relevant for executing the current behavioural tasks.
Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation, perceptual tasks, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this Review, we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands. |
---|---|
AbstractList | Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation, perceptual tasks, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this Review, we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands. Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation, perceptual tasks, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this Review, we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands.Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation, perceptual tasks, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this Review, we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands. Key Points In contrast to the traditional idea that the processing of visual information consists of a sequence of feedforward operations, with neuronal functional properties taking on increasing complexity as the information progresses through a hierarchy of cortical areas, increasing evidence points towards a reverse process, with higher-order cognitive influences interacting with information coming from the retina. Thus, rather than having a fixed functional role, neurons should be thought of as adaptive processors, changing their function according to the behavioural context. Vision is an active process in which higher-order cognitive influences affect the operations performed by cortical neurons. Visual pathways operate bidirectionally, with each feedforward connection being matched by feedback or re-entrant connections going from higher- to lower-order cortical areas. Top-down influences include various forms of attention, such as spatial, object oriented and feature oriented attention. Top-down influences are not limited to attention but mediate a much broader range of functional roles, including perceptual task, object expectation, scene segmentation, efference copy, working memory and the encoding and recall of learned information. The effect of top-down influences is to change the information conveyed by neurons, both by altering the tuning of their responses to stimulus attributes and by changing the structure of correlations over neuronal ensembles. All areas of the visual pathway, except for the retina, are subject to top-down influences, including early cortical stages of visual processing such as the primary visual cortex and the lateral geniculate nucleus, and all areas along the dorsal and ventral visual cortical pathways. Each area contains an association field of potential interactions, and expresses a subset of these interactions to execute different functions. The sources of top-down influences are widespread, with each area providing information reflecting the functional properties of that area. As a consequence, even a single neuron can be viewed as a microcosm of activity occurring throughout the visual pathway. We propose that the circuit mechanism of top-down control and adaptive processing involves a gating of intrinsic cortical circuits within an area mediated by long-range feedback connections to that area. By selecting a subset of inputs, a neuron can express different components of its association field, and as a result take on different functional roles. Vision is an active process. Higher-order cognitive influences, including attention, expectation and perceptual task, as well as motor signals, are fed into the sensory apparatus. This enables neurons to dynamically tune their receptive field properties to carry information that is relevant for executing the current behavioural tasks. Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation, perceptual tasks, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this Review, we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands. Reentrant or feedback pathways between cortical areas carry rich and varied information about behavioral context, including attention, expectation, perceptual task, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this review we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands. |
Audience | Academic |
Author | Gilbert, Charles D. Li, Wu |
AuthorAffiliation | 2 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China 1 The Rockefeller University, 1230 York Avenue, New York, NY 10065 |
AuthorAffiliation_xml | – name: 1 The Rockefeller University, 1230 York Avenue, New York, NY 10065 – name: 2 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China |
Author_xml | – sequence: 1 givenname: Charles D. surname: Gilbert fullname: Gilbert, Charles D. email: gilbert@rockefeller.edu organization: The Rockefeller University – sequence: 2 givenname: Wu surname: Li fullname: Li, Wu organization: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23595013$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1rHDEMhk1JaT5a-g_KQg_NZRLZsufjUgghSQuBXhLozXg8mq3DrL21ZxL67-Mh222y5FB8kJEfvcivdMj2fPDE2EcOJxywPvXRo6zKN-yAy4oXALLe297x5z47TOkOgJe8Kt-xfYGqUcDxgB3fhHXRhQe_cL4fJvKW0iL4xb1LkxkW6xhyIjm_fM_e9mZI9GETj9jt5cXN-bfi-sfV9_Oz68IqhLEwPUkqLVijjOKqbiWqStoOFcrGoOyFhbahyohe8LbNLQkFEksCaWvqEI_Y1yfd9dSuqLPkx2gGvY5uZeIfHYzTL1-8-6WX4V5jXcqqKbPA8UYght8TpVGvXLI0DMZTmJLmqISoFajqP1Dk0ADArPp5B70LU_TZiZmCWgnJq3_U0gyks6Mht2hnUX2GokEQQvBMnbxC5dPRytk82N7l_IuCT8892Zrxd4wZ-PIE2BhSitRvEQ56XhC9WZBMFjukdaMZXZjNdMMr_MailBX9kuKzf--gj-v9xqg |
CitedBy_id | crossref_primary_10_1109_TNNLS_2018_2861680 crossref_primary_10_1523_JNEUROSCI_1998_19_2019 crossref_primary_10_1002_acn3_51503 crossref_primary_10_1016_j_neunet_2022_03_042 crossref_primary_10_3389_fnbot_2020_00007 crossref_primary_10_1371_journal_pbio_3001534 crossref_primary_10_1016_j_neuroscience_2024_10_028 crossref_primary_10_1093_nc_niw021 crossref_primary_10_1093_cercor_bhab409 crossref_primary_10_1016_j_neuron_2017_05_016 crossref_primary_10_1371_journal_pcbi_1012159 crossref_primary_10_1016_j_neuron_2023_03_022 crossref_primary_10_1016_j_pneurobio_2023_102521 crossref_primary_10_3389_fnbeh_2023_1061980 crossref_primary_10_2139_ssrn_4821349 crossref_primary_10_1016_j_tics_2017_06_003 crossref_primary_10_3389_fneur_2019_01325 crossref_primary_10_1016_j_actpsy_2020_103118 crossref_primary_10_1167_19_4_3 crossref_primary_10_1002_advs_202001077 crossref_primary_10_7717_peerj_3988 crossref_primary_10_1098_rsos_171440 crossref_primary_10_3390_brainsci11050580 crossref_primary_10_1016_j_cognition_2024_105907 crossref_primary_10_1007_s10339_017_0819_4 crossref_primary_10_1371_journal_pbio_3001889 crossref_primary_10_1016_j_copsyc_2017_06_009 crossref_primary_10_1016_j_visres_2014_06_004 crossref_primary_10_1038_s41467_020_16609_7 crossref_primary_10_1016_j_biosystems_2016_09_009 crossref_primary_10_1016_j_neunet_2020_06_008 crossref_primary_10_1109_TCSS_2024_3420445 crossref_primary_10_3389_fncir_2017_00027 crossref_primary_10_1016_j_parkreldis_2021_10_005 crossref_primary_10_3758_s13423_024_02608_y crossref_primary_10_1007_s11920_022_01395_4 crossref_primary_10_1038_s41598_019_45707_w crossref_primary_10_1016_j_cognition_2019_104019 crossref_primary_10_1038_s41598_020_61447_8 crossref_primary_10_1016_j_heliyon_2023_e13354 crossref_primary_10_1016_j_cognition_2019_104132 crossref_primary_10_3389_fpsyg_2022_809455 crossref_primary_10_1016_j_neuron_2022_09_034 crossref_primary_10_3389_fnins_2020_00539 crossref_primary_10_1007_s00422_023_00966_9 crossref_primary_10_1016_j_cortex_2014_12_020 crossref_primary_10_1016_j_neuropsychologia_2018_03_028 crossref_primary_10_3389_fnhum_2016_00118 crossref_primary_10_1523_JNEUROSCI_1833_15_2015 crossref_primary_10_53765_20512201_30_3_212 crossref_primary_10_1113_JP282747 crossref_primary_10_1016_j_visres_2020_04_005 crossref_primary_10_1109_TMM_2022_3148595 crossref_primary_10_1093_schbul_sbz025 crossref_primary_10_1016_j_neuroimage_2019_06_057 crossref_primary_10_1073_pnas_2320378121 crossref_primary_10_1073_pnas_1417259112 crossref_primary_10_1016_j_coisb_2017_04_006 crossref_primary_10_3389_fpsyg_2014_01273 crossref_primary_10_1523_JNEUROSCI_0664_18_2018 crossref_primary_10_1007_s13164_021_00558_1 crossref_primary_10_3389_fnins_2019_00692 crossref_primary_10_1002_brb3_3462 crossref_primary_10_1038_s41467_023_42553_3 crossref_primary_10_1073_pnas_1803854115 crossref_primary_10_1146_annurev_vision_102016_061324 crossref_primary_10_3389_fnbeh_2017_00144 crossref_primary_10_1126_science_add9330 crossref_primary_10_1140_epjs_s11734_024_01348_3 crossref_primary_10_1038_nn_3805 crossref_primary_10_1016_j_heares_2014_05_004 crossref_primary_10_1093_pnasnexus_pgae404 crossref_primary_10_1016_j_concog_2015_02_002 crossref_primary_10_1016_j_conb_2018_05_003 crossref_primary_10_1016_j_cognition_2023_105661 crossref_primary_10_1016_j_neuroimage_2023_120139 crossref_primary_10_1146_annurev_devpsych_120621_042108 crossref_primary_10_1167_18_12_14 crossref_primary_10_1016_j_neures_2018_11_001 crossref_primary_10_1016_j_jik_2023_100381 crossref_primary_10_1109_TPAMI_2018_2843329 crossref_primary_10_1038_s41467_022_28897_2 crossref_primary_10_1016_j_plrev_2018_05_006 crossref_primary_10_1016_j_neuron_2017_04_017 crossref_primary_10_1038_s41467_022_28035_y crossref_primary_10_1016_j_biopsych_2022_02_961 crossref_primary_10_1167_jov_24_3_3 crossref_primary_10_1177_09637214221129795 crossref_primary_10_1016_j_cub_2022_10_070 crossref_primary_10_1080_23262133_2017_1287553 crossref_primary_10_1371_journal_pcbi_1003770 crossref_primary_10_3390_e23091218 crossref_primary_10_1523_JNEUROSCI_2376_19_2020 crossref_primary_10_1016_j_tics_2013_07_004 crossref_primary_10_3389_fncir_2015_00030 crossref_primary_10_1523_ENEURO_0154_24_2024 crossref_primary_10_1523_JNEUROSCI_0156_23_2023 crossref_primary_10_1371_journal_pcbi_1009196 crossref_primary_10_1002_hbm_23687 crossref_primary_10_1080_13825585_2019_1632256 crossref_primary_10_3758_s13428_021_01540_6 crossref_primary_10_1080_13506285_2019_1617376 crossref_primary_10_3389_fncom_2017_00112 crossref_primary_10_12677_AP_2016_68114 crossref_primary_10_3390_s23115162 crossref_primary_10_1016_j_jalz_2014_04_514 crossref_primary_10_3390_sym12050815 crossref_primary_10_1175_WCAS_D_18_0094_1 crossref_primary_10_1098_rstb_2019_0029 crossref_primary_10_1016_j_cogsys_2021_10_007 crossref_primary_10_1017_S0140525X19001997 crossref_primary_10_3389_fnhum_2020_00066 crossref_primary_10_1007_s00401_016_1609_2 crossref_primary_10_1080_02698595_2021_2002675 crossref_primary_10_1523_JNEUROSCI_0852_19_2019 crossref_primary_10_1016_j_neuroimage_2024_120659 crossref_primary_10_7554_eLife_14679 crossref_primary_10_1016_j_neubiorev_2020_09_018 crossref_primary_10_1016_j_neuroimage_2024_120897 crossref_primary_10_1177_0271678X17740794 crossref_primary_10_1523_JNEUROSCI_4492_15_2016 crossref_primary_10_1016_j_cognition_2017_05_011 crossref_primary_10_1038_s41583_020_00390_z crossref_primary_10_1073_pnas_1518931113 crossref_primary_10_1017_S0140525X15002770 crossref_primary_10_3389_fncom_2021_666131 crossref_primary_10_3389_fpsyg_2014_01223 crossref_primary_10_1007_s11097_018_9557_z crossref_primary_10_32388_1KC9TH_2 crossref_primary_10_1371_journal_pone_0268351 crossref_primary_10_32388_1KC9TH_3 crossref_primary_10_1002_brb3_1019 crossref_primary_10_3389_fncom_2017_00100 crossref_primary_10_1038_s41583_020_0277_3 crossref_primary_10_1038_s42003_024_07434_5 crossref_primary_10_1177_0963721417709807 crossref_primary_10_1093_nc_niw008 crossref_primary_10_1007_s10943_015_0080_z crossref_primary_10_33881_2027_1786_rip_13301 crossref_primary_10_7554_eLife_15798 crossref_primary_10_1016_j_tics_2015_11_005 crossref_primary_10_1038_srep36329 crossref_primary_10_3389_fpsyg_2023_1243405 crossref_primary_10_1080_1047840X_2016_1215212 crossref_primary_10_1162_jocn_a_01230 crossref_primary_10_1177_1545968319827569 crossref_primary_10_1016_j_ijpsycho_2018_06_001 crossref_primary_10_1038_s41467_021_24456_3 crossref_primary_10_3390_vision7040077 crossref_primary_10_1016_j_cub_2020_03_018 crossref_primary_10_1016_j_concog_2018_06_005 crossref_primary_10_1016_j_destud_2016_11_002 crossref_primary_10_1177_0963721420984403 crossref_primary_10_1016_j_celrep_2016_12_080 crossref_primary_10_1098_rstb_2022_0336 crossref_primary_10_3389_fpsyg_2019_00490 crossref_primary_10_1080_23273798_2024_2409136 crossref_primary_10_3758_s13414_017_1464_9 crossref_primary_10_7554_eLife_25784 crossref_primary_10_3389_fncir_2019_00035 crossref_primary_10_1007_s11704_020_9001_8 crossref_primary_10_1016_j_jecp_2024_105889 crossref_primary_10_1007_s00221_016_4583_y crossref_primary_10_3389_fpsyg_2017_01156 crossref_primary_10_1016_j_pneurobio_2019_101659 crossref_primary_10_1016_j_neuroimage_2017_07_004 crossref_primary_10_1016_j_cub_2020_07_094 crossref_primary_10_1146_annurev_vision_091517_034407 crossref_primary_10_1016_j_concog_2016_09_005 crossref_primary_10_1038_ncomms13276 crossref_primary_10_46798_ijam_2018_v21i01_004 crossref_primary_10_1016_j_neucom_2024_129075 crossref_primary_10_1098_rstb_2022_0342 crossref_primary_10_1162_neco_a_01182 crossref_primary_10_1093_cercor_bhad545 crossref_primary_10_1162_opmi_a_00083 crossref_primary_10_3389_fncom_2020_571982 crossref_primary_10_1038_s41593_018_0317_8 crossref_primary_10_1073_pnas_1720995115 crossref_primary_10_1523_JNEUROSCI_1613_18_2018 crossref_primary_10_1073_pnas_2221623121 crossref_primary_10_1080_25741136_2023_2243376 crossref_primary_10_1016_j_neuron_2016_09_024 crossref_primary_10_1016_j_cub_2016_07_007 crossref_primary_10_1016_j_neuron_2018_05_011 crossref_primary_10_1007_s11682_023_00796_0 crossref_primary_10_3389_fnsys_2016_00106 crossref_primary_10_1016_j_actpsy_2015_08_006 crossref_primary_10_1109_TCDS_2020_2987352 crossref_primary_10_1523_ENEURO_0285_17_2017 crossref_primary_10_1038_s41598_021_96649_1 crossref_primary_10_1515_nf_2016_1107 crossref_primary_10_1093_cercor_bhaa165 crossref_primary_10_1016_j_neuroimage_2017_12_019 crossref_primary_10_1093_cercor_bhab378 crossref_primary_10_1093_cercor_bhz013 crossref_primary_10_1093_cercor_bhac111 crossref_primary_10_1016_j_cognition_2019_03_008 crossref_primary_10_1523_JNEUROSCI_2909_15_2016 crossref_primary_10_1038_nn_4197 crossref_primary_10_1016_j_bandc_2024_106221 crossref_primary_10_3389_fpsyg_2019_02896 crossref_primary_10_1038_srep32672 crossref_primary_10_1192_bjp_bp_115_178368 crossref_primary_10_1371_journal_pcbi_1012460 crossref_primary_10_1073_pnas_2300558120 crossref_primary_10_3724_SP_J_1041_2022_00221 crossref_primary_10_1038_s41583_020_0275_5 crossref_primary_10_1073_pnas_2103040118 crossref_primary_10_3389_fnsys_2015_00001 crossref_primary_10_1073_pnas_1510343112 crossref_primary_10_1073_pnas_2209960119 crossref_primary_10_3389_fpsyg_2017_00040 crossref_primary_10_7554_eLife_87126 crossref_primary_10_1016_j_conb_2014_08_010 crossref_primary_10_1016_j_eswa_2021_116425 crossref_primary_10_3389_fnint_2019_00032 crossref_primary_10_1063_5_0188601 crossref_primary_10_1371_journal_pone_0313331 crossref_primary_10_1038_nn_4061 crossref_primary_10_1007_s11571_016_9404_2 crossref_primary_10_1073_pnas_1312567111 crossref_primary_10_1371_journal_pone_0219472 crossref_primary_10_1080_19338341_2023_2292124 crossref_primary_10_1016_j_neuroimage_2018_09_040 crossref_primary_10_1038_s43588_022_00282_5 crossref_primary_10_1111_tops_12672 crossref_primary_10_3389_fnbeh_2022_902175 crossref_primary_10_1016_j_cub_2017_02_024 crossref_primary_10_1177_0891988719892318 crossref_primary_10_1016_j_neuropsychologia_2015_07_026 crossref_primary_10_1080_10400419_2023_2254573 crossref_primary_10_1016_j_conb_2019_09_002 crossref_primary_10_1016_j_neuroimage_2019_02_068 crossref_primary_10_1016_j_neuroimage_2020_117158 crossref_primary_10_1038_s41467_025_56023_5 crossref_primary_10_1016_j_dcn_2020_100761 crossref_primary_10_1016_j_neuroimage_2017_08_074 crossref_primary_10_3389_fnbeh_2015_00281 crossref_primary_10_1073_pnas_2115699119 crossref_primary_10_1007_s12144_023_05470_8 crossref_primary_10_3389_fncom_2014_00093 crossref_primary_10_1016_j_neuron_2019_06_028 crossref_primary_10_32388_1KC9TH crossref_primary_10_1007_s43441_021_00316_6 crossref_primary_10_1073_pnas_1513198113 crossref_primary_10_1111_ncn3_12508 crossref_primary_10_1016_j_neuroimage_2015_11_021 crossref_primary_10_1049_ipr2_13100 crossref_primary_10_1007_s11682_015_9460_y crossref_primary_10_1080_1047840X_2016_1216034 crossref_primary_10_1038_s44159_024_00382_1 crossref_primary_10_1162_jocn_a_00797 crossref_primary_10_1016_j_neures_2018_08_004 crossref_primary_10_1073_pnas_1512144113 crossref_primary_10_1016_j_psychres_2018_04_061 crossref_primary_10_1038_s41583_018_0094_0 crossref_primary_10_1162_jocn_a_01404 crossref_primary_10_1016_j_visres_2022_108131 crossref_primary_10_1038_s41593_019_0406_3 crossref_primary_10_1073_pnas_1719397115 crossref_primary_10_7554_eLife_68344 crossref_primary_10_1093_cercor_bhab325 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_1016_j_celrep_2019_02_045 crossref_primary_10_1016_j_neuroimage_2020_117143 crossref_primary_10_3389_fncir_2020_615259 crossref_primary_10_1016_j_cognition_2018_01_008 crossref_primary_10_1016_j_eswa_2023_120392 crossref_primary_10_1109_LRA_2023_3322086 crossref_primary_10_3758_s13423_022_02212_y crossref_primary_10_1073_pnas_1417347111 crossref_primary_10_1109_TNNLS_2014_2360060 crossref_primary_10_3389_fnsys_2020_00033 crossref_primary_10_1038_s41562_018_0305_8 crossref_primary_10_1111_ejn_15964 crossref_primary_10_3389_fpsyg_2015_01166 crossref_primary_10_1162_jocn_a_00682 crossref_primary_10_1162_jocn_a_01770 crossref_primary_10_3389_fnsys_2019_00031 crossref_primary_10_1007_s11571_022_09862_7 crossref_primary_10_1016_j_cub_2020_07_069 crossref_primary_10_1016_j_neuroimage_2015_11_016 crossref_primary_10_7554_eLife_76384 crossref_primary_10_1038_nn_4128 crossref_primary_10_1016_j_neuropsychologia_2013_11_009 crossref_primary_10_1177_0284185119864843 crossref_primary_10_1146_annurev_neuro_081623_091311 crossref_primary_10_1523_ENEURO_0390_18_2019 crossref_primary_10_1002_hbm_22626 crossref_primary_10_1007_s00426_024_01944_x crossref_primary_10_1038_s42256_023_00753_y crossref_primary_10_1103_PhysRevE_90_022715 crossref_primary_10_1146_annurev_neuro_110920_035434 crossref_primary_10_3389_fpsyg_2023_1175740 crossref_primary_10_1111_ejn_15739 crossref_primary_10_1016_j_neuron_2023_02_002 crossref_primary_10_1016_j_bandl_2018_04_004 crossref_primary_10_1111_infa_12188 crossref_primary_10_3389_fnagi_2016_00145 crossref_primary_10_1093_cercor_bhz053 crossref_primary_10_1016_j_neuron_2015_07_004 crossref_primary_10_1016_j_neucom_2022_03_006 crossref_primary_10_1016_j_neuroimage_2021_118615 crossref_primary_10_1016_j_dcn_2024_101360 crossref_primary_10_1016_j_tins_2015_08_009 crossref_primary_10_1126_science_ade1855 crossref_primary_10_1038_s41467_024_53668_6 crossref_primary_10_1016_j_jmp_2016_06_009 crossref_primary_10_1177_026119291604400302 crossref_primary_10_1016_j_tins_2020_07_001 crossref_primary_10_1007_s10489_022_04316_3 crossref_primary_10_1016_j_physrep_2023_03_005 crossref_primary_10_3390_neurolint14020038 crossref_primary_10_3389_fnsys_2018_00029 crossref_primary_10_1177_00222437231194319 crossref_primary_10_1007_s12671_020_01562_9 crossref_primary_10_1109_TCSII_2020_3004616 crossref_primary_10_1038_s41598_019_41376_x crossref_primary_10_1080_02643294_2019_1607272 crossref_primary_10_1016_j_neuroimage_2020_117479 crossref_primary_10_1016_j_neuroimage_2021_117896 crossref_primary_10_1016_j_ynirp_2022_100154 crossref_primary_10_1371_journal_pbio_2003143 crossref_primary_10_1016_j_compbiomed_2023_106620 crossref_primary_10_1016_j_dcn_2025_101550 crossref_primary_10_1016_j_isci_2021_103683 crossref_primary_10_7717_peerj_7550 crossref_primary_10_1111_mila_12525 crossref_primary_10_1111_cogs_12962 crossref_primary_10_3389_fnhum_2018_00089 crossref_primary_10_1007_s10827_019_00716_6 crossref_primary_10_1016_j_neuron_2022_01_027 crossref_primary_10_1016_j_neuroimage_2017_08_033 crossref_primary_10_1016_j_psychres_2022_114909 crossref_primary_10_1109_TIP_2022_3193288 crossref_primary_10_1080_19411243_2015_1034304 crossref_primary_10_1093_cercor_bhab082 crossref_primary_10_3390_ijms24054579 crossref_primary_10_1097_WNR_0000000000001620 crossref_primary_10_1016_j_heares_2016_05_018 crossref_primary_10_1016_j_neures_2020_05_004 crossref_primary_10_1016_j_neuroimage_2019_03_065 crossref_primary_10_1111_ejn_14424 crossref_primary_10_7554_eLife_83708 crossref_primary_10_2139_ssrn_2654061 crossref_primary_10_1109_TMM_2022_3164261 crossref_primary_10_3389_frym_2023_732405 crossref_primary_10_3389_fnagi_2021_750767 crossref_primary_10_1162_NECO_a_00675 crossref_primary_10_1038_s41598_017_18999_z crossref_primary_10_1371_journal_pone_0297148 crossref_primary_10_1126_sciadv_aay2739 crossref_primary_10_1523_ENEURO_0512_19_2019 crossref_primary_10_1523_JNEUROSCI_1092_16_2016 crossref_primary_10_1016_j_cub_2020_07_026 crossref_primary_10_1152_jn_00278_2024 crossref_primary_10_1016_j_neuron_2015_05_023 crossref_primary_10_1038_s41467_022_28552_w crossref_primary_10_1038_s41583_020_0262_x crossref_primary_10_1038_srep18733 crossref_primary_10_1371_journal_pcbi_1007001 crossref_primary_10_1038_nrn4025 crossref_primary_10_1038_s41467_020_17786_1 crossref_primary_10_1016_j_neuron_2019_05_026 crossref_primary_10_1016_j_celrep_2022_110932 crossref_primary_10_2183_pjab_93_015 crossref_primary_10_1371_journal_pone_0095861 crossref_primary_10_1038_s41598_020_73113_0 crossref_primary_10_5194_hess_22_4425_2018 crossref_primary_10_1080_20445911_2020_1749642 crossref_primary_10_1038_s41598_019_41516_3 crossref_primary_10_1016_j_cognition_2019_06_018 crossref_primary_10_1038_srep30413 crossref_primary_10_1038_s41593_018_0135_z crossref_primary_10_1146_annurev_devpsych_120321_011300 crossref_primary_10_1038_s41598_025_87517_3 crossref_primary_10_1038_nn_4356 crossref_primary_10_1038_s41586_023_06007_6 crossref_primary_10_1371_journal_pone_0287474 crossref_primary_10_3389_fnins_2023_1197618 crossref_primary_10_1016_j_cognition_2021_104889 crossref_primary_10_1111_nyas_12680 crossref_primary_10_1162_jocn_a_00973 crossref_primary_10_1016_j_neuroscience_2014_01_027 crossref_primary_10_1002_wcs_1575 crossref_primary_10_1016_j_neuron_2014_03_023 crossref_primary_10_1162_jocn_a_01702 crossref_primary_10_1016_j_dcn_2019_100699 crossref_primary_10_1016_j_neuroimage_2021_118136 crossref_primary_10_1017_S0140525X15000965 crossref_primary_10_1126_science_aag2612 crossref_primary_10_1007_s11023_018_9459_4 crossref_primary_10_1093_brain_awad305 crossref_primary_10_1038_s41598_024_56713_y crossref_primary_10_3758_s13414_018_01642_y crossref_primary_10_1039_D0NR02184A crossref_primary_10_1093_cercor_bhae015 crossref_primary_10_1073_pnas_1904502116 crossref_primary_10_3389_fnmol_2021_806376 crossref_primary_10_1093_cercor_bhv041 crossref_primary_10_3389_fnhum_2014_00640 crossref_primary_10_1007_s00702_020_02248_1 crossref_primary_10_1162_neco_a_01301 crossref_primary_10_1038_s41598_018_28845_5 crossref_primary_10_1371_journal_pone_0106753 crossref_primary_10_1038_s41598_023_34644_4 crossref_primary_10_1016_j_neuroscience_2015_11_015 crossref_primary_10_52547_shefa_10_1_21 crossref_primary_10_1016_j_neuron_2021_11_016 crossref_primary_10_1073_pnas_1619788114 crossref_primary_10_1109_TMM_2023_3272474 crossref_primary_10_1097_WCO_0000000000001125 crossref_primary_10_1016_j_biopsycho_2016_08_006 crossref_primary_10_1002_acn3_415 crossref_primary_10_1016_j_crbeha_2023_100139 crossref_primary_10_1093_cercor_bhab163 crossref_primary_10_1146_annurev_vision_100720_103343 crossref_primary_10_1016_j_neuron_2024_07_009 crossref_primary_10_1002_adhm_201700143 crossref_primary_10_1016_j_cognition_2021_104864 crossref_primary_10_1073_pnas_1718154115 crossref_primary_10_1093_cercor_bhy345 crossref_primary_10_1523_JNEUROSCI_1296_23_2024 crossref_primary_10_1007_s13218_014_0341_0 crossref_primary_10_1111_psyp_14123 crossref_primary_10_1002_hbm_26162 crossref_primary_10_1016_j_biosystems_2021_104452 crossref_primary_10_7554_eLife_76096 crossref_primary_10_1098_rstb_2016_0115 crossref_primary_10_3389_fnins_2023_1276706 crossref_primary_10_1523_JNEUROSCI_2948_19_2020 crossref_primary_10_1007_s00429_018_1679_0 crossref_primary_10_1016_j_cortex_2016_03_007 crossref_primary_10_1016_j_nlm_2023_107826 crossref_primary_10_1038_s41598_020_77298_2 crossref_primary_10_1007_s11633_022_1370_z crossref_primary_10_1016_j_celrep_2024_114521 crossref_primary_10_1016_j_neuron_2018_12_009 crossref_primary_10_1007_s00429_022_02455_4 crossref_primary_10_1523_JNEUROSCI_0527_15_2015 crossref_primary_10_1016_j_cub_2016_06_009 crossref_primary_10_1007_s10670_017_9951_x crossref_primary_10_1080_1047840X_2016_1199221 crossref_primary_10_1371_journal_pcbi_1010609 crossref_primary_10_3130_aije_90_19 crossref_primary_10_1111_ejn_15206 crossref_primary_10_1163_22134808_bja10035 crossref_primary_10_1101_lm_052159_120 crossref_primary_10_1111_ejn_15440 crossref_primary_10_1038_s41467_018_07007_1 crossref_primary_10_1016_j_neuroimage_2021_118246 crossref_primary_10_1098_rstb_2016_0104 crossref_primary_10_1098_rstb_2019_0703 crossref_primary_10_1016_j_neubiorev_2023_105508 crossref_primary_10_1038_ncomms13804 crossref_primary_10_1038_s41467_024_51817_5 crossref_primary_10_1109_TCDS_2021_3086267 crossref_primary_10_3389_fncom_2020_554097 crossref_primary_10_1016_j_cortex_2021_01_001 crossref_primary_10_1038_mp_2016_183 crossref_primary_10_1088_1674_4926_23120037 crossref_primary_10_3758_s13415_020_00818_0 crossref_primary_10_1177_0333102415583144 crossref_primary_10_3389_fpsyg_2018_02083 crossref_primary_10_1016_j_ijpsycho_2015_12_006 crossref_primary_10_1016_j_neuroimage_2017_07_063 crossref_primary_10_3389_fpsyg_2014_00932 crossref_primary_10_1016_j_tics_2013_12_002 crossref_primary_10_7554_eLife_87126_5 crossref_primary_10_1111_nyas_13333 crossref_primary_10_1167_jov_21_7_5 crossref_primary_10_3389_fncir_2024_1280604 crossref_primary_10_1016_j_neunet_2024_106437 crossref_primary_10_1111_ejn_14121 crossref_primary_10_1007_s41470_020_00075_z crossref_primary_10_1016_j_procs_2020_09_172 crossref_primary_10_1016_j_neunet_2023_07_048 crossref_primary_10_1117_1_NPh_11_3_033403 crossref_primary_10_1093_scan_nsx048 crossref_primary_10_1016_j_neuroimage_2020_117084 crossref_primary_10_3389_fnana_2024_1364675 crossref_primary_10_1016_j_celrep_2021_108774 crossref_primary_10_1016_j_cub_2025_02_009 crossref_primary_10_1016_j_neuron_2020_09_024 crossref_primary_10_1146_annurev_vision_091517_034110 crossref_primary_10_1038_s41586_022_05014_3 crossref_primary_10_1523_JNEUROSCI_1895_20_2021 crossref_primary_10_1093_cercor_bhw176 crossref_primary_10_1111_ejn_13286 crossref_primary_10_1371_journal_pcbi_1009517 crossref_primary_10_1109_ACCESS_2021_3106698 crossref_primary_10_3389_fncir_2014_00082 crossref_primary_10_1038_s41928_020_0422_z crossref_primary_10_1002_brb3_1917 crossref_primary_10_1523_JNEUROSCI_1575_16_2016 crossref_primary_10_1177_0956797615577619 crossref_primary_10_12688_f1000research_9386_1 crossref_primary_10_1007_s11682_019_00062_2 crossref_primary_10_7554_eLife_70469 crossref_primary_10_1016_j_neubiorev_2023_105402 crossref_primary_10_1155_ijbi_4464776 crossref_primary_10_1016_j_cobeha_2021_03_009 crossref_primary_10_1016_j_neuroimage_2022_119483 crossref_primary_10_3389_feduc_2023_1266800 crossref_primary_10_3389_fnhum_2016_00658 crossref_primary_10_1111_nyas_14320 crossref_primary_10_1080_0964704X_2024_2405116 crossref_primary_10_1111_nyas_14321 crossref_primary_10_1016_j_prdoa_2020_100036 crossref_primary_10_1038_nrneurol_2014_108 crossref_primary_10_1073_pnas_1513752113 crossref_primary_10_1007_s11229_016_1178_x crossref_primary_10_18510_hssr_2020_84105 crossref_primary_10_1162_neco_a_01739 crossref_primary_10_1162_imag_a_00360 crossref_primary_10_1016_j_conb_2022_102628 crossref_primary_10_1016_j_brainres_2022_148191 crossref_primary_10_1086_714914 crossref_primary_10_1016_j_tics_2023_02_001 crossref_primary_10_1017_S0952523813000394 crossref_primary_10_1016_j_cub_2017_11_056 crossref_primary_10_3389_fnhum_2024_1280585 crossref_primary_10_1515_nf_2016_A107 crossref_primary_10_1016_j_cub_2013_09_010 crossref_primary_10_1016_j_ridd_2023_104619 crossref_primary_10_1146_annurev_neuro_102119_103452 crossref_primary_10_1016_j_neuron_2018_09_024 crossref_primary_10_1016_j_neuropsychologia_2024_109035 crossref_primary_10_1017_S0140525X15002617 crossref_primary_10_1038_nature23019 crossref_primary_10_1515_revneuro_2015_0018 crossref_primary_10_1038_s41467_022_31440_y crossref_primary_10_1109_TITS_2022_3177640 crossref_primary_10_1016_j_conb_2014_12_007 crossref_primary_10_1073_pnas_2119614119 crossref_primary_10_1007_s40820_020_00419_z crossref_primary_10_1016_j_conb_2018_04_020 crossref_primary_10_1016_j_concog_2015_04_015 crossref_primary_10_3389_fpsyg_2017_00852 crossref_primary_10_1016_j_neuron_2022_10_001 crossref_primary_10_1080_09515089_2022_2062314 crossref_primary_10_1146_annurev_neuro_100520_012117 crossref_primary_10_1038_s41537_025_00553_w crossref_primary_10_1016_j_cogdev_2020_100951 crossref_primary_10_3389_fncom_2023_1136010 crossref_primary_10_7554_eLife_53552 crossref_primary_10_3389_fnhum_2022_862703 crossref_primary_10_1017_S0140525X15002629 crossref_primary_10_1111_ejn_16105 crossref_primary_10_3389_fnhum_2015_00109 crossref_primary_10_1016_j_concog_2017_12_003 crossref_primary_10_3389_fpsyg_2015_01676 crossref_primary_10_1016_j_neunet_2019_12_004 crossref_primary_10_1523_ENEURO_0006_20_2020 crossref_primary_10_1002_hbm_70177 crossref_primary_10_1152_jn_00058_2015 crossref_primary_10_1007_s13164_015_0294_8 crossref_primary_10_1007_s10462_020_09901_x crossref_primary_10_1017_S0140525X15002630 crossref_primary_10_3758_s13414_018_1625_5 crossref_primary_10_1016_j_neuroimage_2022_119497 crossref_primary_10_1038_s41562_018_0455_8 crossref_primary_10_1038_s41467_024_52778_5 crossref_primary_10_1073_pnas_2216942120 crossref_primary_10_1371_journal_pcbi_1008629 crossref_primary_10_1007_s00221_024_06989_3 crossref_primary_10_1073_pnas_2213080119 crossref_primary_10_2217_fnl_2019_0012 crossref_primary_10_1016_j_cognition_2020_104516 crossref_primary_10_1016_j_concog_2022_103301 crossref_primary_10_1016_j_bandc_2014_07_008 crossref_primary_10_1038_s42003_023_04912_0 crossref_primary_10_1016_j_nicl_2017_01_004 crossref_primary_10_1038_nn_3532 crossref_primary_10_1109_ACCESS_2018_2851841 crossref_primary_10_1038_s41531_023_00532_x crossref_primary_10_1016_j_neuron_2017_08_036 crossref_primary_10_1007_s00422_024_00998_9 crossref_primary_10_1109_TCSVT_2023_3266222 crossref_primary_10_1136_bmjment_2022_300639 crossref_primary_10_1016_j_neuron_2016_10_029 crossref_primary_10_1002_hbm_25353 crossref_primary_10_1007_s40708_017_0072_8 crossref_primary_10_1093_brain_awae187 crossref_primary_10_1016_j_pneurobio_2021_101998 crossref_primary_10_1038_s41593_020_0677_8 crossref_primary_10_1038_s41598_019_50835_4 crossref_primary_10_1038_s41598_020_62882_3 crossref_primary_10_1007_s12264_021_00789_3 crossref_primary_10_1017_S0140525X15002800 crossref_primary_10_1016_j_bbr_2023_114813 crossref_primary_10_1371_journal_pone_0219725 crossref_primary_10_1007_s11042_024_18974_7 crossref_primary_10_3389_fncom_2024_1273053 crossref_primary_10_1016_j_cogsys_2020_10_013 crossref_primary_10_1093_cercor_bhv226 crossref_primary_10_3389_fnint_2022_900715 crossref_primary_10_1016_j_procs_2024_09_271 crossref_primary_10_1155_2021_8895579 crossref_primary_10_1177_1754073917709939 crossref_primary_10_7554_eLife_15252 crossref_primary_10_1007_s11431_024_2755_x crossref_primary_10_1016_j_neubiorev_2021_09_009 crossref_primary_10_1093_nc_niaa024 crossref_primary_10_3389_fnhum_2023_1220178 crossref_primary_10_1088_1741_2552_aad7b1 crossref_primary_10_3389_fnins_2024_1308370 crossref_primary_10_3389_fnhum_2015_00651 crossref_primary_10_7759_cureus_13718 crossref_primary_10_1016_j_nantod_2024_102332 crossref_primary_10_1016_j_concog_2019_102838 crossref_primary_10_3389_fpsyg_2014_00206 crossref_primary_10_1016_j_tics_2014_05_005 crossref_primary_10_22201_fesa_figuras_2020_1_3_117 crossref_primary_10_1016_j_cortex_2018_05_021 crossref_primary_10_1002_nbm_3672 crossref_primary_10_1162_jocn_a_01093 crossref_primary_10_3390_jmse8100799 crossref_primary_10_1016_j_neuroimage_2018_11_039 crossref_primary_10_1523_JNEUROSCI_1857_16_2016 crossref_primary_10_1002_hipo_22728 crossref_primary_10_1016_j_neuron_2014_01_025 crossref_primary_10_3389_fncir_2023_1253609 crossref_primary_10_1016_j_schres_2020_11_012 crossref_primary_10_1016_j_ridd_2021_104092 crossref_primary_10_3389_fpsyg_2017_01501 crossref_primary_10_1002_hbm_23196 crossref_primary_10_1016_j_conb_2020_11_009 crossref_primary_10_1016_j_cviu_2016_04_009 crossref_primary_10_1093_cercor_bhv250 crossref_primary_10_1002_hbm_25252 crossref_primary_10_1016_j_neuron_2017_06_006 crossref_primary_10_1177_17456916221148147 crossref_primary_10_1038_s42003_024_06673_w crossref_primary_10_1016_j_tics_2019_12_015 crossref_primary_10_1371_journal_pbio_3001750 crossref_primary_10_1016_j_neuron_2015_03_032 crossref_primary_10_1088_1741_2552_ac72c2 crossref_primary_10_1177_0284185119867644 crossref_primary_10_1016_j_brainres_2022_148130 crossref_primary_10_3390_brainsci12101368 crossref_primary_10_1007_s11229_016_1030_3 crossref_primary_10_1016_j_neuron_2022_05_011 crossref_primary_10_1080_15248372_2019_1605996 crossref_primary_10_3389_fnins_2018_01003 crossref_primary_10_1016_j_cortex_2019_12_023 crossref_primary_10_1371_journal_pone_0226000 crossref_primary_10_1080_23273798_2015_1120878 crossref_primary_10_1016_j_bpsc_2023_08_004 crossref_primary_10_3233_VES_201527 crossref_primary_10_1152_jn_00113_2017 crossref_primary_10_1371_journal_pbio_1002611 crossref_primary_10_1016_j_neubiorev_2024_105538 crossref_primary_10_1016_j_concog_2016_05_003 crossref_primary_10_2183_pjab_98_007 crossref_primary_10_1016_j_conb_2015_12_001 crossref_primary_10_1016_j_neuron_2024_09_021 crossref_primary_10_3389_fcomm_2017_00018 crossref_primary_10_1109_TCSVT_2021_3104305 crossref_primary_10_1167_jov_24_6_1 crossref_primary_10_7554_eLife_22901 crossref_primary_10_1016_j_cortex_2015_08_019 crossref_primary_10_1109_JSEN_2024_3444274 crossref_primary_10_3389_fnins_2021_758388 crossref_primary_10_1038_s41598_021_96971_8 crossref_primary_10_1016_j_neuroimage_2019_06_003 crossref_primary_10_1177_09567976231177968 crossref_primary_10_1093_nc_niab026 crossref_primary_10_1049_cit2_12265 |
Cites_doi | 10.1016/j.tics.2006.11.009 10.1162/089976699300016827 10.1038/35015079 10.1523/JNEUROSCI.09-07-02432.1989 10.1371/journal.pone.0004651 10.1038/nn1161 10.1016/S0166-2236(97)01216-2 10.1152/jn.00429.2011 10.1523/JNEUROSCI.15-02-01605.1995 10.1016/j.neuron.2011.06.015 10.1002/cne.902160307 10.1038/14819 10.1016/j.neuron.2006.06.003 10.1016/S0896-6273(03)00097-7 10.1038/370140a0 10.1523/JNEUROSCI.16-07-02381.1996 10.1016/j.neuron.2005.03.002 10.1038/nature07382 10.1038/338334a0 10.1098/rstb.2002.1107 10.1016/j.neuron.2007.06.015 10.1523/JNEUROSCI.4030-07.2008 10.1523/JNEUROSCI.18-03-01161.1998 10.1038/382539a0 10.1016/0042-6989(93)90156-Q 10.1038/4580 10.1523/JNEUROSCI.07-07-02239.1987 10.1002/1096-9861(20000925)425:3<345::AID-CNE2>3.0.CO;2-O 10.1093/cercor/4.3.300 10.1152/jn.2001.85.1.134 10.1016/S0042-6989(02)00403-0 10.1016/j.neuron.2010.03.013 10.1162/0899766053429435 10.1098/rspb.1999.0736 10.1038/nn876 10.1073/pnas.96.6.3314 10.1126/science.3353728 10.1523/JNEUROSCI.3825-12.2013 10.1126/science.4023713 10.1038/699 10.1007/BF00337113 10.1523/JNEUROSCI.16-22-07376.1996 10.1093/cercor/11.8.761 10.1016/S1053-8119(03)00162-9 10.1038/44134 10.1126/science.285.5425.257 10.1007/BF00202899 10.1152/jn.1997.77.1.24 10.1038/35004588 10.1016/S0896-6273(00)80499-7 10.1073/pnas.95.19.11489 10.1037/0096-3445.113.4.501 10.1016/j.neuron.2011.04.032 10.1126/science.1057099 10.1038/nn.2439 10.1017/S0952523800002480 10.1152/jn.2001.86.5.2344 10.1152/jn.00289.2002 10.1146/annurev.ne.18.030195.003011 10.1523/JNEUROSCI.4911-09.2010 10.1126/science.7063863 10.1126/science.1171402 10.1126/science.1223082 10.1016/S0896-6273(00)81206-4 10.1038/385157a0 10.1523/JNEUROSCI.5168-09.2010 10.1038/nrn1888 10.1073/pnas.052379899 10.1523/JNEUROSCI.06-04-01160.1986 10.1073/pnas.1202095109 10.1167/8.7.30 10.1038/78856 10.1152/jn.1993.70.3.909 10.1523/JNEUROSCI.03-05-01116.1983 10.1152/jn.2000.84.4.2048 10.1016/S0896-6273(03)00287-3 10.1523/JNEUROSCI.19-05-01736.1999 10.1016/j.neuron.2008.08.007 10.1038/nn.2147 10.1152/jn.1996.76.5.2841 10.1016/S0896-6273(00)80734-5 10.1016/j.neuron.2009.09.013 10.1523/JNEUROSCI.4465-09.2009 10.1016/j.neuron.2008.04.013 10.1007/BF00410640 10.1038/nature04258 10.1016/S0896-6273(00)80713-8 10.1523/JNEUROSCI.19-01-00431.1999 10.1523/JNEUROSCI.23-20-07690.2003 10.1016/S0079-6123(03)14403-2 10.1038/nn957 10.1016/j.neuron.2006.04.035 10.1038/26475 10.1093/cercor/6.3.482 10.1016/j.heares.2005.01.015 10.1038/nn1255 10.1038/87470 10.1109/TPAMI.2007.70840 10.1038/nn.2669 10.1038/nn.2711 10.1038/nn1304 10.1016/j.neuron.2012.04.032 10.1038/24608 10.1093/cercor/bhn103 10.1016/j.neuron.2007.02.028 10.1146/annurev.ne.18.030195.001205 10.1152/jn.00740.2003 10.1038/280120a0 10.1037/0096-3445.109.2.160 10.1016/S0079-6123(06)54005-1 10.1016/j.neuron.2007.12.011 10.1093/cercor/10.9.840 10.1152/jn.1998.80.6.2918 10.1152/jn.1997.78.3.1373 10.1523/JNEUROSCI.2612-09.2009 10.1016/S0896-6273(02)01029-2 10.1038/21176 10.1523/JNEUROSCI.21-05-01676.2001 10.1073/pnas.96.4.1663 10.1037/0096-3445.123.2.161 10.1016/S0959-4388(03)00033-3 10.1126/science.1055465 10.1126/science.1553535 10.1016/S0166-2236(00)01814-2 10.1038/35041567 10.1523/JNEUROSCI.17-06-02112.1997 10.1523/JNEUROSCI.6295-11.2012 10.1126/science.282.5386.108 10.1038/nature05279 10.1523/JNEUROSCI.4499-07.2008 10.1126/science.278.5345.1950 10.1152/jn.00519.2002 10.1073/pnas.0501684102 10.1016/j.neuron.2012.06.030 10.1523/JNEUROSCI.20-17-06594.2000 10.1016/j.neuron.2009.01.002 10.1523/JNEUROSCI.14-04-02178.1994 10.1152/jn.01207.2005 10.1038/363345a0 10.1016/j.neuron.2007.12.030 10.1038/nn.2237 10.1073/pnas.1105855108 10.1016/j.neuron.2010.05.005 10.1016/j.neuron.2007.05.019 10.1016/S0166-4328(01)00358-8 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2013 COPYRIGHT 2013 Nature Publishing Group Copyright Nature Publishing Group May 2013 |
Copyright_xml | – notice: Springer Nature Limited 2013 – notice: COPYRIGHT 2013 Nature Publishing Group – notice: Copyright Nature Publishing Group May 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M2M M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1038/nrn3476 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection ProQuest Medical Database Psychology Collection (Proquest) Biological Science Database (Proquest) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-0048 1469-3178 |
EndPage | 363 |
ExternalDocumentID | PMC3864796 2949563281 A329302221 23595013 10_1038_nrn3476 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY007968 – fundername: NEI NIH HHS grantid: EY007968 – fundername: National Eye Institute : NEI grantid: R01 EY007968 || EY |
GroupedDBID | --- .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABIVO ABJNI ABLJU ABNNU ABUWG ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AFBBN AFKRA AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBS EE. EJD EMB EMK EMOBN EPL EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR IPY ITC L-9 M1P M2M M7P N9A NAPCQ NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO PSYQQ Q2X RIG RNR RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ACSTC AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AGQPQ AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB PMFND 7QG 7QP 7QR 7TK 7TM 7XB 8FD 8FE 8FH 8FK FR3 K9. LK8 P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c530t-afe4e6c0ca5a5158b43574cd35349a34f2c0b9e7a2f21bb001250436e04c8ed33 |
IEDL.DBID | 7X7 |
ISSN | 1471-003X 1471-0048 |
IngestDate | Thu Aug 21 17:58:06 EDT 2025 Thu Sep 04 17:41:14 EDT 2025 Thu Sep 04 15:45:24 EDT 2025 Fri Jul 25 09:04:46 EDT 2025 Tue Jun 17 21:18:19 EDT 2025 Tue Jun 10 20:31:14 EDT 2025 Mon Jul 21 05:57:22 EDT 2025 Tue Jul 01 00:42:00 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Fri Feb 21 02:38:40 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c530t-afe4e6c0ca5a5158b43574cd35349a34f2c0b9e7a2f21bb001250436e04c8ed33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3864796 |
PMID | 23595013 |
PQID | 1330852417 |
PQPubID | 44265 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3864796 proquest_miscellaneous_1352285057 proquest_miscellaneous_1331090006 proquest_journals_1330852417 gale_infotracmisc_A329302221 gale_infotracacademiconefile_A329302221 pubmed_primary_23595013 crossref_primary_10_1038_nrn3476 crossref_citationtrail_10_1038_nrn3476 springer_journals_10_1038_nrn3476 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature reviews. Neuroscience |
PublicationTitleAbbrev | Nat Rev Neurosci |
PublicationTitleAlternate | Nat Rev Neurosci |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | McManus, Li, Gilbert (CR8) 2011; 108 Rao, Ballard (CR23) 1999; 2 Reynolds, Alborzian, Stoner (CR58) 2003; 43 Riesenhuber, Poggio (CR65) 1999; 2 Kastner, Pinsk, De Weerd, Desimone, Ungerleider (CR140) 1999; 22 Bulthoff, Bulthoff, Sinha (CR51) 1998; 1 Castelo-Branco, Goebel, Neuenschwander, Singer (CR119) 2000; 405 Averbeck, Latham, Pouget (CR93) 2006; 7 Chalk (CR117) 2010; 66 von der Malsburg, Schneider (CR123) 1986; 54 Lamme, Spekreijse (CR129) 1998; 396 Zhou, Desimone (CR67) 2011; 70 Steinmetz (CR131) 2000; 404 Borenstein, Ullman (CR66) 2008; 30 Poort, Roelfsema (CR100) 2009; 19 Thomson, Kristan (CR10) 2005; 17 Spratling (CR24) 2010; 30 Duncan (CR55) 1984; 113 Sherman, Guillery (CR146) 2011; 106 Cromer, Roy, Miller (CR72) 2010; 66 Hupe (CR15) 2001; 85 McAlonan, Cavanaugh, Wurtz (CR22) 2008; 456 Chelazzi, Miller, Duncan, Desimone (CR32) 2001; 11 Spitzer, Desimone, Moran (CR30) 1988; 240 Somers, Dale, Seiffert, Tootell (CR61) 1999; 96 McAdams, Maunsell (CR36) 1999; 19 Palanca, DeAngelis (CR127) 2005; 46 Poghosyan, Ioannides (CR44) 2008; 58 Kapadia, Westheimer, Gilbert (CR1) 2000; 84 Panzeri, Schultz, Treves, Rolls (CR95) 1999; 266 Rockland, Knutson (CR142) 2000; 425 Rockland, Lund (CR114) 1983; 216 O'Connor, Fukui, Pinsk, Kastner (CR21) 2002; 5 Chen (CR25) 2008; 11 Gilbert, Wiesel (CR112) 1983; 3 Gail, Brinksmeyer, Eckhorn (CR120) 2000; 10 Ito, Gilbert (CR35) 1999; 22 Ullman (CR73) 2007; 11 Reynolds, Pasternak, Desimone (CR52) 2000; 26 Gilbert, Sigman (CR109) 2007; 54 Riehle, Grun, Diesmann, Aertsen (CR133) 1997; 278 Umeno, Goldberg (CR86) 2001; 86 Reynolds, Heeger (CR107) 2009; 61 Ts'o, Gilbert, Wiesel (CR115) 1986; 6 Bair, Cavanaugh, Movshon (CR16) 2003; 23 Oram, Foldiak, Perrett, Sengpiel (CR94) 1998; 21 Li, Piech, Gilbert (CR20) 2004; 7 Pascual-Leone, Walsh (CR144) 2001; 292 Gu (CR97) 2011; 71 Golcu, Gilbert (CR74) 2009; 29 Zhang, von der Heydt (CR7) 2010; 30 Maunsell, Cook (CR42) 2002; 357 Angelucci, Bressloff (CR17) 2006; 154 Murray, Wojciulik (CR108) 2004; 7 Colby, Duhamel, Goldberg (CR83) 1996; 76 Rockland, Lund (CR113) 1982; 215 Watanabe (CR46) 1998; 95 Saalmann, Pinsk, Wang, Li, Kastner (CR145) 2012; 337 Li, Gilbert (CR12) 2002; 88 Zhou, Friedman, von der Heydt (CR4) 2000; 20 Gandhi, Heeger, Boynton (CR43) 1999; 96 Gray, Konig, Engel, Singer (CR125) 1989; 338 Womelsdorf, Fries, Mitra, Desimone (CR135) 2006; 439 Blaser, Pylyshyn, Holcombe (CR57) 2000; 408 Kreiter, Singer (CR121) 1996; 16 Al-Aidroos, Said, Turk-Browne (CR138) 2012; 109 Yantis, Serences (CR59) 2003; 13 Armstrong, Chang, Moore (CR87) 2009; 29 Roelfsema, Engel, Konig, Singer (CR134) 1997; 385 Lamme (CR19) 1995; 15 Ninomiya, Sawamura, Inoue, Takada (CR70) 2012; 32 Sommer, Wurtz (CR79) 2006; 444 Womelsdorf, Anton-Erxleben, Treue (CR9) 2008; 28 Crist, Li, Gilbert (CR38) 2001; 4 Poort (CR60) 2012; 75 Gilbert, Wiesel (CR111) 1979; 280 Reynolds, Chelazzi, Desimone (CR37) 1999; 19 Eckhorn (CR124) 1988; 60 Saenz, Buracas, Boynton (CR62) 2002; 5 Morishima (CR69) 2009; 12 Lee, Port, Kruse, Georgopoulos (CR91) 1998; 18 Mitchell, Sundberg, Reynolds (CR99) 2009; 63 Kusunoki, Goldberg (CR80) 2003; 89 Romo, Hernandez, Zainos, Salinas (CR96) 2003; 38 Rockland, Saleem, Tanaka (CR141) 1994; 11 Ito, Westheimer, Gilbert (CR47) 1998; 20 O'Craven, Downing, Kanwisher (CR54) 1999; 401 Dong, Mihalas, Qiu, von der Heydt, Niebur (CR128) 2008; 8 Kastner, De Weerd, Desimone, Ungerleider (CR45) 1998; 282 Fries, Reynolds, Rorie, Desimone (CR130) 2001; 291 Monosov, Trageser, Thompson (CR68) 2008; 57 Williford, Maunsell (CR105) 2006; 96 Gilbert, Wiesel (CR11) 1989; 9 Giesbrecht, Woldorff, Song, Mangun (CR53) 2003; 19 Fries, Womelsdorf, Oostenveld, Desimone (CR137) 2008; 28 Rockland, Van Hoesen (CR143) 1994; 4 Batista, Buneo, Snyder, Andersen (CR84) 1999; 285 Desimone, Duncan (CR41) 1995; 18 Motter (CR49) 1994; 14 Wertheimer (CR64) 1923; 4 Serences, Boynton (CR63) 2007; 55 Roelfsema, Lamme, Spekreijse (CR3) 1998; 395 Egly, Driver, Rafal (CR56) 1994; 123 Posner, Snyder, Davidson (CR27) 1980; 109 Li, Piech, Gilbert (CR5) 2006; 50 Jack, Shulman, Snyder, McAvoy, Corbetta (CR103) 2006; 51 Zohary, Shadlen, Newsome (CR88) 1994; 370 Treue, Martinez Trujillo (CR50) 1999; 399 Moran, Desimone (CR28) 1985; 229 Herrmann, Montaser-Kouhsari, Carrasco, Heeger (CR104) 2010; 13 Reynolds, Desimone (CR40) 2003; 37 Luck, Chelazzi, Hillyard, Desimone (CR34) 1997; 77 Gawne, Kjaer, Hertz, Richmond (CR90) 1996; 6 Lee, Maunsell (CR106) 2009; 4 Cohen, Newsome (CR102) 2008; 60 Stettler, Das, Bennett, Gilbert (CR14) 2002; 36 Umeno, Goldberg (CR81) 1997; 78 Ress, Backus, Heeger (CR139) 2000; 3 CR18 Mountcastle, Motter, Steinmetz, Sestokas (CR29) 1987; 7 Bland, Oddie (CR132) 2001; 127 Field, Hayes, Hess (CR110) 1993; 33 Nakamura, Colby (CR82) 2002; 99 Gilbert, Li (CR13) 2012; 75 Cohen, Maunsell (CR98) 2009; 12 Gregoriou, Gotts, Zhou, Desimone (CR136) 2009; 324 Li, Piech, Gilbert (CR6) 2008; 57 Bair, Zohary, Newsome (CR89) 2001; 21 Singer, Gray (CR122) 1995; 18 Treue (CR39) 2001; 24 Treue, Maunsell (CR33) 1996; 382 Chelazzi, Duncan, Miller, Desimone (CR48) 1998; 80 Abbott, Dayan (CR92) 1999; 11 Zipser, Lamme, Schiller (CR2) 1996; 16 Rolfs, Jonikaitis, Deubel, Cavanagh (CR78) 2011; 14 Schlack, Albright (CR85) 2007; 53 Bosking, Zhang, Schofield, Fitzpatrick (CR116) 1997; 17 Ramalingam, McManus, Li, Gilbert (CR101) 2013; 33 Wurtz, Sommer (CR76) 2004; 144 Fritz, Elhilali, Shamma (CR71) 2005; 206 Roelfsema, Lamme, Spekreijse (CR126) 2004; 7 Motter (CR26) 1993; 70 Chelazzi, Miller, Duncan, Desimone (CR31) 1993; 363 Gilbert (CR147) 2012 Sommer, Wurtz (CR75) 2004; 91 Duhamel, Colby, Goldberg (CR77) 1992; 255 Haynes, Tregellas, Rees (CR118) 2005; 102 I Bulthoff (BFnrn3476_CR51) 1998; 1 S Yantis (BFnrn3476_CR59) 2003; 13 A Pascual-Leone (BFnrn3476_CR144) 2001; 292 AI Jack (BFnrn3476_CR103) 2006; 51 VB Mountcastle (BFnrn3476_CR29) 1987; 7 DY Ts'o (BFnrn3476_CR115) 1986; 6 PR Roelfsema (BFnrn3476_CR3) 1998; 395 LF Abbott (BFnrn3476_CR92) 1999; 11 L Chelazzi (BFnrn3476_CR48) 1998; 80 K Nakamura (BFnrn3476_CR82) 2002; 99 MA Sommer (BFnrn3476_CR75) 2004; 91 CJ McAdams (BFnrn3476_CR36) 1999; 19 L Chelazzi (BFnrn3476_CR31) 1993; 363 W Li (BFnrn3476_CR20) 2004; 7 MI Posner (BFnrn3476_CR27) 1980; 109 KS Rockland (BFnrn3476_CR142) 2000; 425 D Golcu (BFnrn3476_CR74) 2009; 29 JD Haynes (BFnrn3476_CR118) 2005; 102 BFnrn3476_CR18 BB Averbeck (BFnrn3476_CR93) 2006; 7 M Riesenhuber (BFnrn3476_CR65) 1999; 2 M Saenz (BFnrn3476_CR62) 2002; 5 CD Gilbert (BFnrn3476_CR109) 2007; 54 JN McManus (BFnrn3476_CR8) 2011; 108 M Kusunoki (BFnrn3476_CR80) 2003; 89 JH Reynolds (BFnrn3476_CR107) 2009; 61 TJ Gawne (BFnrn3476_CR90) 1996; 6 CD Gilbert (BFnrn3476_CR11) 1989; 9 BH Bland (BFnrn3476_CR132) 2001; 127 A Schlack (BFnrn3476_CR85) 2007; 53 CD Gilbert (BFnrn3476_CR147) 2012 JH Reynolds (BFnrn3476_CR37) 1999; 19 D Lee (BFnrn3476_CR91) 1998; 18 H Zhou (BFnrn3476_CR4) 2000; 20 KS Rockland (BFnrn3476_CR143) 1994; 4 KM Armstrong (BFnrn3476_CR87) 2009; 29 C von der Malsburg (BFnrn3476_CR123) 1986; 54 PN Steinmetz (BFnrn3476_CR131) 2000; 404 DD Stettler (BFnrn3476_CR14) 2002; 36 CD Gilbert (BFnrn3476_CR112) 1983; 3 J Poort (BFnrn3476_CR60) 2012; 75 RE Crist (BFnrn3476_CR38) 2001; 4 JH Reynolds (BFnrn3476_CR40) 2003; 37 VA Lamme (BFnrn3476_CR129) 1998; 396 M Chalk (BFnrn3476_CR117) 2010; 66 CM Gray (BFnrn3476_CR125) 1989; 338 M Ito (BFnrn3476_CR35) 1999; 22 N Al-Aidroos (BFnrn3476_CR138) 2012; 109 JM Hupe (BFnrn3476_CR15) 2001; 85 J Duncan (BFnrn3476_CR55) 1984; 113 J Moran (BFnrn3476_CR28) 1985; 229 JT Serences (BFnrn3476_CR63) 2007; 55 AP Batista (BFnrn3476_CR84) 1999; 285 RP Rao (BFnrn3476_CR23) 1999; 2 N Ramalingam (BFnrn3476_CR101) 2013; 33 J Fritz (BFnrn3476_CR71) 2005; 206 S Kastner (BFnrn3476_CR140) 1999; 22 M Ito (BFnrn3476_CR47) 1998; 20 S Ullman (BFnrn3476_CR73) 2007; 11 M Wertheimer (BFnrn3476_CR64) 1923; 4 A Gail (BFnrn3476_CR120) 2000; 10 M Rolfs (BFnrn3476_CR78) 2011; 14 CD Gilbert (BFnrn3476_CR13) 2012; 75 SM Sherman (BFnrn3476_CR146) 2011; 106 DC Somers (BFnrn3476_CR61) 1999; 96 JF Mitchell (BFnrn3476_CR99) 2009; 63 B Giesbrecht (BFnrn3476_CR53) 2003; 19 MW Oram (BFnrn3476_CR94) 1998; 21 T Williford (BFnrn3476_CR105) 2006; 96 KS Rockland (BFnrn3476_CR114) 1983; 216 PR Roelfsema (BFnrn3476_CR134) 1997; 385 T Womelsdorf (BFnrn3476_CR135) 2006; 439 Y Morishima (BFnrn3476_CR69) 2009; 12 P Fries (BFnrn3476_CR137) 2008; 28 K McAlonan (BFnrn3476_CR22) 2008; 456 IE Monosov (BFnrn3476_CR68) 2008; 57 CD Gilbert (BFnrn3476_CR111) 1979; 280 JA Cromer (BFnrn3476_CR72) 2010; 66 MK Kapadia (BFnrn3476_CR1) 2000; 84 K Zipser (BFnrn3476_CR2) 1996; 16 W Bair (BFnrn3476_CR16) 2003; 23 MM Umeno (BFnrn3476_CR81) 1997; 78 CL Colby (BFnrn3476_CR83) 1996; 76 W Li (BFnrn3476_CR6) 2008; 57 SO Murray (BFnrn3476_CR108) 2004; 7 S Treue (BFnrn3476_CR33) 1996; 382 MR Cohen (BFnrn3476_CR98) 2009; 12 DH O'Connor (BFnrn3476_CR21) 2002; 5 W Li (BFnrn3476_CR5) 2006; 50 KS Rockland (BFnrn3476_CR141) 1994; 11 H Spitzer (BFnrn3476_CR30) 1988; 240 Y Dong (BFnrn3476_CR128) 2008; 8 M Castelo-Branco (BFnrn3476_CR119) 2000; 405 JH Reynolds (BFnrn3476_CR52) 2000; 26 T Ninomiya (BFnrn3476_CR70) 2012; 32 S Panzeri (BFnrn3476_CR95) 1999; 266 E Blaser (BFnrn3476_CR57) 2000; 408 P Fries (BFnrn3476_CR130) 2001; 291 R Eckhorn (BFnrn3476_CR124) 1988; 60 SJ Luck (BFnrn3476_CR34) 1997; 77 KM O'Craven (BFnrn3476_CR54) 1999; 401 R Desimone (BFnrn3476_CR41) 1995; 18 SP Gandhi (BFnrn3476_CR43) 1999; 96 DJ Field (BFnrn3476_CR110) 1993; 33 W Li (BFnrn3476_CR12) 2002; 88 H Zhou (BFnrn3476_CR67) 2011; 70 V Poghosyan (BFnrn3476_CR44) 2008; 58 A Riehle (BFnrn3476_CR133) 1997; 278 L Chelazzi (BFnrn3476_CR32) 2001; 11 MA Sommer (BFnrn3476_CR79) 2006; 444 EE Thomson (BFnrn3476_CR10) 2005; 17 VA Lamme (BFnrn3476_CR19) 1995; 15 AK Kreiter (BFnrn3476_CR121) 1996; 16 R Romo (BFnrn3476_CR96) 2003; 38 J Poort (BFnrn3476_CR100) 2009; 19 J Lee (BFnrn3476_CR106) 2009; 4 NR Zhang (BFnrn3476_CR7) 2010; 30 W Bair (BFnrn3476_CR89) 2001; 21 BJ Palanca (BFnrn3476_CR127) 2005; 46 K Herrmann (BFnrn3476_CR104) 2010; 13 E Zohary (BFnrn3476_CR88) 1994; 370 S Treue (BFnrn3476_CR50) 1999; 399 KS Rockland (BFnrn3476_CR113) 1982; 215 BC Motter (BFnrn3476_CR26) 1993; 70 D Ress (BFnrn3476_CR139) 2000; 3 JH Maunsell (BFnrn3476_CR42) 2002; 357 S Treue (BFnrn3476_CR39) 2001; 24 GG Gregoriou (BFnrn3476_CR136) 2009; 324 T Womelsdorf (BFnrn3476_CR9) 2008; 28 E Borenstein (BFnrn3476_CR66) 2008; 30 JH Reynolds (BFnrn3476_CR58) 2003; 43 JR Duhamel (BFnrn3476_CR77) 1992; 255 MM Umeno (BFnrn3476_CR86) 2001; 86 YB Saalmann (BFnrn3476_CR145) 2012; 337 RH Wurtz (BFnrn3476_CR76) 2004; 144 W Singer (BFnrn3476_CR122) 1995; 18 WH Bosking (BFnrn3476_CR116) 1997; 17 MW Spratling (BFnrn3476_CR24) 2010; 30 S Kastner (BFnrn3476_CR45) 1998; 282 Y Chen (BFnrn3476_CR25) 2008; 11 PR Roelfsema (BFnrn3476_CR126) 2004; 7 Y Gu (BFnrn3476_CR97) 2011; 71 MR Cohen (BFnrn3476_CR102) 2008; 60 T Watanabe (BFnrn3476_CR46) 1998; 95 A Angelucci (BFnrn3476_CR17) 2006; 154 R Egly (BFnrn3476_CR56) 1994; 123 BC Motter (BFnrn3476_CR49) 1994; 14 |
References_xml | – volume: 11 start-page: 58 year: 2007 end-page: 64 ident: CR73 article-title: Object recognition and segmentation by a fragment-based hierarchy publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.11.009 – volume: 11 start-page: 91 year: 1999 end-page: 101 ident: CR92 article-title: The effect of correlated variability on the accuracy of a population code publication-title: Neural Comput. doi: 10.1162/089976699300016827 – volume: 405 start-page: 685 year: 2000 end-page: 689 ident: CR119 article-title: Neural synchrony correlates with surface segregation rules publication-title: Nature doi: 10.1038/35015079 – volume: 9 start-page: 2432 year: 1989 end-page: 2442 ident: CR11 article-title: Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.09-07-02432.1989 – volume: 4 start-page: e4651 year: 2009 ident: CR106 article-title: A normalization model of attentional modulation of single unit responses publication-title: PLoS ONE doi: 10.1371/journal.pone.0004651 – volume: 7 start-page: 70 year: 2004 end-page: 74 ident: CR108 article-title: Attention increases neural selectivity in the human lateral occipital complex publication-title: Nature Neurosci. doi: 10.1038/nn1161 – volume: 21 start-page: 259 year: 1998 end-page: 265 ident: CR94 article-title: The 'Ideal Homunculus': decoding neural population signals publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(97)01216-2 – volume: 106 start-page: 1068 year: 2011 end-page: 1077 ident: CR146 article-title: Distinct functions for direct and transthalamic corticocortical connections publication-title: J. Neurophysiol. doi: 10.1152/jn.00429.2011 – volume: 15 start-page: 1605 year: 1995 end-page: 1615 ident: CR19 article-title: The neurophysiology of figure–ground segregation in primary visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.15-02-01605.1995 – volume: 71 start-page: 750 year: 2011 end-page: 761 ident: CR97 article-title: Perceptual learning reduces interneuronal correlations in macaque visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2011.06.015 – volume: 216 start-page: 303 year: 1983 end-page: 318 ident: CR114 article-title: Intrinsic laminar lattice connections in primate visual cortex publication-title: J. Comp. Neurol. doi: 10.1002/cne.902160307 – volume: 2 start-page: 1019 year: 1999 end-page: 1025 ident: CR65 article-title: Hierarchical models of object recognition in cortex publication-title: Nature Neurosci. doi: 10.1038/14819 – volume: 51 start-page: 135 year: 2006 end-page: 147 ident: CR103 article-title: Separate modulations of human v1 associated with spatial attention and task structure publication-title: Neuron doi: 10.1016/j.neuron.2006.06.003 – volume: 37 start-page: 853 year: 2003 end-page: 863 ident: CR40 article-title: Interacting roles of attention and visual salience in V4 publication-title: Neuron doi: 10.1016/S0896-6273(03)00097-7 – volume: 370 start-page: 140 year: 1994 end-page: 143 ident: CR88 article-title: Correlated neuronal discharge rate and its implications for psychophysical performance publication-title: Nature doi: 10.1038/370140a0 – volume: 16 start-page: 2381 year: 1996 end-page: 2396 ident: CR121 article-title: Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-07-02381.1996 – volume: 46 start-page: 333 year: 2005 end-page: 346 ident: CR127 article-title: Does neuronal synchrony underlie visual feature grouping? publication-title: Neuron doi: 10.1016/j.neuron.2005.03.002 – volume: 456 start-page: 391 year: 2008 end-page: 394 ident: CR22 article-title: Guarding the gateway to cortex with attention in visual thalamus publication-title: Nature doi: 10.1038/nature07382 – volume: 338 start-page: 334 year: 1989 end-page: 337 ident: CR125 article-title: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties publication-title: Nature doi: 10.1038/338334a0 – volume: 357 start-page: 1063 year: 2002 end-page: 1072 ident: CR42 article-title: The role of attention in visual processing publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2002.1107 – volume: 55 start-page: 301 year: 2007 end-page: 312 ident: CR63 article-title: Feature-based attentional modulations in the absence of direct visual stimulation publication-title: Neuron doi: 10.1016/j.neuron.2007.06.015 – volume: 28 start-page: 8934 year: 2008 end-page: 8944 ident: CR9 article-title: Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4030-07.2008 – volume: 18 start-page: 1161 year: 1998 end-page: 1170 ident: CR91 article-title: Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-03-01161.1998 – volume: 382 start-page: 539 year: 1996 end-page: 541 ident: CR33 article-title: Attentional modulation of visual motion processing in cortical areas MT and MST publication-title: Nature doi: 10.1038/382539a0 – volume: 33 start-page: 173 year: 1993 end-page: 193 ident: CR110 article-title: Contour integration by the human visual system: evidence for a local “association field” publication-title: Vision Res. doi: 10.1016/0042-6989(93)90156-Q – volume: 2 start-page: 79 year: 1999 end-page: 87 ident: CR23 article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects publication-title: Nature Neurosci. doi: 10.1038/4580 – volume: 7 start-page: 2239 year: 1987 end-page: 2255 ident: CR29 article-title: Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the macaque monkey publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.07-07-02239.1987 – volume: 425 start-page: 345 year: 2000 end-page: 368 ident: CR142 article-title: Feedback connections from area MT of the squirrel monkey to areas V1 and V2 publication-title: J. Comp. Neurol. doi: 10.1002/1096-9861(20000925)425:3<345::AID-CNE2>3.0.CO;2-O – volume: 4 start-page: 300 year: 1994 end-page: 313 ident: CR143 article-title: Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey publication-title: Cereb. Cortex doi: 10.1093/cercor/4.3.300 – volume: 85 start-page: 134 year: 2001 end-page: 145 ident: CR15 article-title: Feedback connections act on the early part of the responses in monkey visual cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.85.1.134 – volume: 43 start-page: 59 year: 2003 end-page: 66 ident: CR58 article-title: Exogenously cued attention triggers competitive selection of surfaces publication-title: Vision Res. doi: 10.1016/S0042-6989(02)00403-0 – volume: 66 start-page: 114 year: 2010 end-page: 125 ident: CR117 article-title: Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1 publication-title: Neuron doi: 10.1016/j.neuron.2010.03.013 – volume: 17 start-page: 741 year: 2005 end-page: 778 ident: CR10 article-title: Quantifying stimulus discriminability: a comparison of information theory and ideal observer analysis publication-title: Neural Comput. doi: 10.1162/0899766053429435 – volume: 266 start-page: 1001 year: 1999 end-page: 1012 ident: CR95 article-title: Correlations and the encoding of information in the nervous system publication-title: Proc. Biol. Sci. doi: 10.1098/rspb.1999.0736 – volume: 5 start-page: 631 year: 2002 end-page: 632 ident: CR62 article-title: Global effects of feature-based attention in human visual cortex publication-title: Nature Neurosci. doi: 10.1038/nn876 – volume: 96 start-page: 3314 year: 1999 end-page: 3319 ident: CR43 article-title: Spatial attention affects brain activity in human primary visual cortex publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.6.3314 – volume: 240 start-page: 338 year: 1988 end-page: 340 ident: CR30 article-title: Increased attention enhances both behavioral and neuronal performance publication-title: Science doi: 10.1126/science.3353728 – volume: 33 start-page: 1773 year: 2013 end-page: 1789 ident: CR101 article-title: Top-down modulation of lateral interactions in visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3825-12.2013 – volume: 229 start-page: 782 year: 1985 end-page: 784 ident: CR28 article-title: Selective attention gates visual processing in the extrastriate cortex publication-title: Science doi: 10.1126/science.4023713 – volume: 1 start-page: 254 year: 1998 end-page: 257 ident: CR51 article-title: Top-down influences on stereoscopic depth-perception publication-title: Nature Neurosci. doi: 10.1038/699 – volume: 54 start-page: 29 year: 1986 end-page: 40 ident: CR123 article-title: A neural cocktail-party processor publication-title: Biol. Cybern. doi: 10.1007/BF00337113 – volume: 16 start-page: 7376 year: 1996 end-page: 7389 ident: CR2 article-title: Contextual modulation in primary visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-22-07376.1996 – volume: 11 start-page: 761 year: 2001 end-page: 772 ident: CR32 article-title: Responses of neurons in macaque area V4 during memory-guided visual search publication-title: Cereb. Cortex doi: 10.1093/cercor/11.8.761 – volume: 19 start-page: 496 year: 2003 end-page: 512 ident: CR53 article-title: Neural mechanisms of top-down control during spatial and feature attention publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00162-9 – volume: 401 start-page: 584 year: 1999 end-page: 587 ident: CR54 article-title: fMRI evidence for objects as the units of attentional selection publication-title: Nature doi: 10.1038/44134 – volume: 285 start-page: 257 year: 1999 end-page: 260 ident: CR84 article-title: Reach plans in eye-centered coordinates publication-title: Science doi: 10.1126/science.285.5425.257 – volume: 60 start-page: 121 year: 1988 end-page: 130 ident: CR124 article-title: Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat publication-title: Biol. Cybern. doi: 10.1007/BF00202899 – volume: 77 start-page: 24 year: 1997 end-page: 42 ident: CR34 article-title: Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.1997.77.1.24 – volume: 404 start-page: 187 year: 2000 end-page: 190 ident: CR131 article-title: Attention modulates synchronized neuronal firing in primate somatosensory cortex publication-title: Nature doi: 10.1038/35004588 – ident: CR18 – volume: 20 start-page: 1191 year: 1998 end-page: 1197 ident: CR47 article-title: Attention and perceptual learning modulate contextual influences on visual perception publication-title: Neuron doi: 10.1016/S0896-6273(00)80499-7 – volume: 95 start-page: 11489 year: 1998 end-page: 11492 ident: CR46 article-title: Task-dependent influences of attention on the activation of human primary visual cortex publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.95.19.11489 – volume: 113 start-page: 501 year: 1984 end-page: 517 ident: CR55 article-title: Selective attention and the organization of visual information publication-title: J. Exp. Psychol. Gen. doi: 10.1037/0096-3445.113.4.501 – volume: 70 start-page: 1205 year: 2011 end-page: 1217 ident: CR67 article-title: Feature-based attention in the frontal eye field and area V4 during visual search publication-title: Neuron doi: 10.1016/j.neuron.2011.04.032 – volume: 292 start-page: 510 year: 2001 end-page: 512 ident: CR144 article-title: Fast backprojections from the motion to the primary visual area necessary for visual awareness publication-title: Science doi: 10.1126/science.1057099 – volume: 12 start-page: 1594 year: 2009 end-page: 1600 ident: CR98 article-title: Attention improves performance primarily by reducing interneuronal correlations publication-title: Nature Neurosci. doi: 10.1038/nn.2439 – volume: 11 start-page: 579 year: 1994 end-page: 600 ident: CR141 article-title: Divergent feedback connections from areas V4 and TEO in the macaque publication-title: Vis. Neurosci. doi: 10.1017/S0952523800002480 – volume: 86 start-page: 2344 year: 2001 end-page: 2352 ident: CR86 article-title: Spatial processing in the monkey frontal eye field. II. Memory responses publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.86.5.2344 – volume: 88 start-page: 2846 year: 2002 end-page: 2856 ident: CR12 article-title: Global contour saliency and local colinear interactions publication-title: J. Neurophysiol. doi: 10.1152/jn.00289.2002 – volume: 18 start-page: 555 year: 1995 end-page: 586 ident: CR122 article-title: Visual feature integration and the temporal correlation hypothesis publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.18.030195.003011 – volume: 30 start-page: 3531 year: 2010 end-page: 3543 ident: CR24 article-title: Predictive coding as a model of response properties in cortical area V1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4911-09.2010 – volume: 215 start-page: 1532 year: 1982 end-page: 1534 ident: CR113 article-title: Widespread periodic intrinsic connections in the tree shrew visual cortex publication-title: Science doi: 10.1126/science.7063863 – volume: 324 start-page: 1207 year: 2009 end-page: 1210 ident: CR136 article-title: High-frequency, long-range coupling between prefrontal and visual cortex during attention publication-title: Science doi: 10.1126/science.1171402 – volume: 337 start-page: 753 year: 2012 end-page: 756 ident: CR145 article-title: The pulvinar regulates information transmission between cortical areas based on attention demands publication-title: Science doi: 10.1126/science.1223082 – volume: 26 start-page: 703 year: 2000 end-page: 714 ident: CR52 article-title: Attention increases sensitivity of V4 neurons publication-title: Neuron doi: 10.1016/S0896-6273(00)81206-4 – volume: 385 start-page: 157 year: 1997 end-page: 161 ident: CR134 article-title: Visuomotor integration is associated with zero time-lag synchronization among cortical areas publication-title: Nature doi: 10.1038/385157a0 – volume: 30 start-page: 6482 year: 2010 end-page: 6496 ident: CR7 article-title: Analysis of the context integration mechanisms underlying figure–ground organization in the visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5168-09.2010 – volume: 7 start-page: 358 year: 2006 end-page: 366 ident: CR93 article-title: Neural correlations, population coding and computation publication-title: Nature Rev. Neurosci. doi: 10.1038/nrn1888 – volume: 99 start-page: 4026 year: 2002 end-page: 4031 ident: CR82 article-title: Updating of the visual representation in monkey striate and extrastriate cortex during saccades publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.052379899 – volume: 6 start-page: 1160 year: 1986 end-page: 1170 ident: CR115 article-title: Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.06-04-01160.1986 – volume: 109 start-page: 14675 year: 2012 end-page: 14680 ident: CR138 article-title: Top-down attention switches coupling between low-level and high-level areas of human visual cortex publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1202095109 – volume: 8 start-page: 30 year: 2008 ident: CR128 article-title: Synchrony and the binding problem in macaque visual cortex publication-title: J. Vis. doi: 10.1167/8.7.30 – volume: 3 start-page: 940 year: 2000 end-page: 945 ident: CR139 article-title: Activity in primary visual cortex predicts performance in a visual detection task publication-title: Nature Neurosci. doi: 10.1038/78856 – volume: 70 start-page: 909 year: 1993 end-page: 919 ident: CR26 article-title: Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli publication-title: J. Neurophysiol. doi: 10.1152/jn.1993.70.3.909 – volume: 3 start-page: 1116 year: 1983 end-page: 1133 ident: CR112 article-title: Clustered intrinsic connections in cat visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.03-05-01116.1983 – volume: 84 start-page: 2048 year: 2000 end-page: 2062 ident: CR1 article-title: Spatial distribution of contextual interactions in primary visual cortex and in visual perception publication-title: J. Neurophysiol. doi: 10.1152/jn.2000.84.4.2048 – volume: 38 start-page: 649 year: 2003 end-page: 657 ident: CR96 article-title: Correlated neuronal discharges that increase coding efficiency during perceptual discrimination publication-title: Neuron doi: 10.1016/S0896-6273(03)00287-3 – volume: 19 start-page: 1736 year: 1999 end-page: 1753 ident: CR37 article-title: Competitive mechanisms subserve attention in macaque areas V2 and V4 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-05-01736.1999 – volume: 60 start-page: 162 year: 2008 end-page: 173 ident: CR102 article-title: Context-dependent changes in functional circuitry in visual area MT publication-title: Neuron doi: 10.1016/j.neuron.2008.08.007 – volume: 11 start-page: 974 year: 2008 end-page: 982 ident: CR25 article-title: Task difficulty modulates the activity of specific neuronal populations in primary visual cortex publication-title: Nature Neurosci. doi: 10.1038/nn.2147 – volume: 76 start-page: 2841 year: 1996 end-page: 2852 ident: CR83 article-title: Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area publication-title: J. Neurophysiol. doi: 10.1152/jn.1996.76.5.2841 – volume: 22 start-page: 751 year: 1999 end-page: 761 ident: CR140 article-title: Increased activity in human visual cortex during directed attention in the absence of visual stimulation publication-title: Neuron doi: 10.1016/S0896-6273(00)80734-5 – volume: 63 start-page: 879 year: 2009 end-page: 888 ident: CR99 article-title: Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4 publication-title: Neuron doi: 10.1016/j.neuron.2009.09.013 – volume: 29 start-page: 15621 year: 2009 end-page: 15629 ident: CR87 article-title: Selection and maintenance of spatial information by frontal eye field neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4465-09.2009 – volume: 58 start-page: 802 year: 2008 end-page: 813 ident: CR44 article-title: Attention modulates earliest responses in the primary auditory and visual cortices publication-title: Neuron doi: 10.1016/j.neuron.2008.04.013 – volume: 4 start-page: 301 year: 1923 end-page: 350 ident: CR64 article-title: Untersuchungen zur Lehre von der Gestalt publication-title: Psychol. Forsch. doi: 10.1007/BF00410640 – volume: 439 start-page: 733 year: 2006 end-page: 736 ident: CR135 article-title: Gamma-band synchronization in visual cortex predicts speed of change detection publication-title: Nature doi: 10.1038/nature04258 – volume: 22 start-page: 593 year: 1999 end-page: 604 ident: CR35 article-title: Attention modulates contextual influences in the primary visual cortex of alert monkeys publication-title: Neuron doi: 10.1016/S0896-6273(00)80713-8 – volume: 19 start-page: 431 year: 1999 end-page: 441 ident: CR36 article-title: Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-01-00431.1999 – volume: 23 start-page: 7690 year: 2003 end-page: 7701 ident: CR16 article-title: Time course and time-distance relationships for surround suppression in macaque V1 neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-20-07690.2003 – volume: 144 start-page: 47 year: 2004 end-page: 60 ident: CR76 article-title: Identifying corollary discharges for movement in the primate brain publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(03)14403-2 – volume: 5 start-page: 1203 year: 2002 end-page: 1209 ident: CR21 article-title: Attention modulates responses in the human lateral geniculate nucleus publication-title: Nature Neurosci. doi: 10.1038/nn957 – volume: 50 start-page: 951 year: 2006 end-page: 962 ident: CR5 article-title: Contour saliency in primary visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2006.04.035 – volume: 395 start-page: 376 year: 1998 end-page: 381 ident: CR3 article-title: Object-based attention in the primary visual cortex of the macaque monkey publication-title: Nature doi: 10.1038/26475 – volume: 6 start-page: 482 year: 1996 end-page: 489 ident: CR90 article-title: Adjacent visual cortical complex cells share about 20% of their stimulus-related information publication-title: Cereb. Cortex doi: 10.1093/cercor/6.3.482 – volume: 206 start-page: 159 year: 2005 end-page: 176 ident: CR71 article-title: Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex publication-title: Hear. Res. doi: 10.1016/j.heares.2005.01.015 – volume: 7 start-page: 651 year: 2004 end-page: 657 ident: CR20 article-title: Perceptual learning and top-down influences in primary visual cortex publication-title: Nature Neurosci. doi: 10.1038/nn1255 – volume: 4 start-page: 519 year: 2001 end-page: 525 ident: CR38 article-title: Learning to see: experience and attention in primary visual cortex publication-title: Nature Neurosci. doi: 10.1038/87470 – volume: 30 start-page: 2109 year: 2008 end-page: 2125 ident: CR66 article-title: Combined top-down/bottom-up segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.70840 – volume: 13 start-page: 1554 year: 2010 end-page: 1559 ident: CR104 article-title: When size matters: attention affects performance by contrast or response gain publication-title: Nature Neurosci. doi: 10.1038/nn.2669 – volume: 14 start-page: 252 year: 2011 end-page: 256 ident: CR78 article-title: Predictive remapping of attention across eye movements publication-title: Nature Neurosci. doi: 10.1038/nn.2711 – volume: 7 start-page: 982 year: 2004 end-page: 991 ident: CR126 article-title: Synchrony and covariation of firing rates in the primary visual cortex during contour grouping publication-title: Nature Neurosci. doi: 10.1038/nn1304 – volume: 75 start-page: 143 year: 2012 end-page: 156 ident: CR60 article-title: The role of attention in figure-ground segregation in areas V1 and V4 of the visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2012.04.032 – volume: 396 start-page: 362 year: 1998 end-page: 366 ident: CR129 article-title: Neuronal synchrony does not represent texture segregation publication-title: Nature doi: 10.1038/24608 – volume: 19 start-page: 543 year: 2009 end-page: 553 ident: CR100 article-title: Noise correlations have little influence on the coding of selective attention in area V1 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn103 – volume: 53 start-page: 881 year: 2007 end-page: 890 ident: CR85 article-title: Remembering visual motion: neural correlates of associative plasticity and motion recall in cortical area MT publication-title: Neuron doi: 10.1016/j.neuron.2007.02.028 – volume: 18 start-page: 193 year: 1995 end-page: 222 ident: CR41 article-title: Neural mechanisms of selective visual attention publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.18.030195.001205 – volume: 91 start-page: 1403 year: 2004 end-page: 1423 ident: CR75 article-title: What the brain stem tells the frontal cortex. II. Role of the SC–MD–FEF pathway in corollary discharge publication-title: J. Neurophysiol. doi: 10.1152/jn.00740.2003 – volume: 280 start-page: 120 year: 1979 end-page: 125 ident: CR111 article-title: Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex publication-title: Nature doi: 10.1038/280120a0 – volume: 109 start-page: 160 year: 1980 end-page: 174 ident: CR27 article-title: Attention and the detection of signals publication-title: J. Exp. Psychol. doi: 10.1037/0096-3445.109.2.160 – volume: 154 start-page: 93 year: 2006 end-page: 120 ident: CR17 article-title: Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(06)54005-1 – volume: 57 start-page: 442 year: 2008 end-page: 451 ident: CR6 article-title: Learning to link visual contours publication-title: Neuron doi: 10.1016/j.neuron.2007.12.011 – volume: 10 start-page: 840 year: 2000 end-page: 850 ident: CR120 article-title: Contour decouples gamma activity across texture representation in monkey striate cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/10.9.840 – volume: 80 start-page: 2918 year: 1998 end-page: 2940 ident: CR48 article-title: Responses of neurons in inferior temporal cortex during memory-guided visual search publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.80.6.2918 – volume: 78 start-page: 1373 year: 1997 end-page: 1383 ident: CR81 article-title: Spatial processing in the monkey frontal eye field. I. Predictive visual responses publication-title: J. Neurophysiol. doi: 10.1152/jn.1997.78.3.1373 – volume: 29 start-page: 13621 year: 2009 end-page: 13629 ident: CR74 article-title: Perceptual learning of object shape publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2612-09.2009 – volume: 36 start-page: 739 year: 2002 end-page: 750 ident: CR14 article-title: Lateral connectivity and contextual interactions in macaque primary visual cortex publication-title: Neuron doi: 10.1016/S0896-6273(02)01029-2 – volume: 399 start-page: 575 year: 1999 end-page: 579 ident: CR50 article-title: Feature-based attention influences motion processing gain in macaque visual cortex publication-title: Nature doi: 10.1038/21176 – volume: 21 start-page: 1676 year: 2001 end-page: 1697 ident: CR89 article-title: Correlated firing in macaque visual area MT: time scales and relationship to behavior publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-05-01676.2001 – volume: 96 start-page: 1663 year: 1999 end-page: 1668 ident: CR61 article-title: Functional MRI reveals spatially specific attentional modulation in human primary visual cortex publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.4.1663 – volume: 123 start-page: 161 year: 1994 end-page: 177 ident: CR56 article-title: Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects publication-title: J. Exp. Psychol. Gen. doi: 10.1037/0096-3445.123.2.161 – volume: 13 start-page: 187 year: 2003 end-page: 193 ident: CR59 article-title: Cortical mechanisms of space-based and object-based attentional control publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(03)00033-3 – year: 2012 ident: CR147 publication-title: Principles of Neural Science – volume: 291 start-page: 1560 year: 2001 end-page: 1563 ident: CR130 article-title: Modulation of oscillatory neuronal synchronization by selective visual attention publication-title: Science doi: 10.1126/science.1055465 – volume: 255 start-page: 90 year: 1992 end-page: 92 ident: CR77 article-title: The updating of the representation of visual space in parietal cortex by intended eye movements publication-title: Science doi: 10.1126/science.1553535 – volume: 24 start-page: 295 year: 2001 end-page: 300 ident: CR39 article-title: Neural correlates of attention in primate visual cortex publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(00)01814-2 – volume: 408 start-page: 196 year: 2000 end-page: 199 ident: CR57 article-title: Tracking an object through feature space publication-title: Nature doi: 10.1038/35041567 – volume: 17 start-page: 2112 year: 1997 end-page: 2127 ident: CR116 article-title: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-06-02112.1997 – volume: 32 start-page: 6851 year: 2012 end-page: 6858 ident: CR70 article-title: Segregated pathways carrying frontally derived top-down signals to visual areas MT and V4 in macaques publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6295-11.2012 – volume: 282 start-page: 108 year: 1998 end-page: 111 ident: CR45 article-title: Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI publication-title: Science doi: 10.1126/science.282.5386.108 – volume: 444 start-page: 374 year: 2006 end-page: 377 ident: CR79 article-title: Influence of the thalamus on spatial visual processing in frontal cortex publication-title: Nature doi: 10.1038/nature05279 – volume: 28 start-page: 4823 year: 2008 end-page: 4835 ident: CR137 article-title: The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4499-07.2008 – volume: 278 start-page: 1950 year: 1997 end-page: 1953 ident: CR133 article-title: Spike synchronization and rate modulation differentially involved in motor cortical function publication-title: Science doi: 10.1126/science.278.5345.1950 – volume: 89 start-page: 1519 year: 2003 end-page: 1527 ident: CR80 article-title: The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey publication-title: J. Neurophysiol. doi: 10.1152/jn.00519.2002 – volume: 102 start-page: 14925 year: 2005 end-page: 14930 ident: CR118 article-title: Attentional integration between anatomically distinct stimulus representations in early visual cortex publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0501684102 – volume: 75 start-page: 250 year: 2012 end-page: 264 ident: CR13 article-title: Adult visual cortical plasticity publication-title: Neuron doi: 10.1016/j.neuron.2012.06.030 – volume: 20 start-page: 6594 year: 2000 end-page: 6611 ident: CR4 article-title: Coding of border ownership in monkey visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-17-06594.2000 – volume: 61 start-page: 168 year: 2009 end-page: 185 ident: CR107 article-title: The normalization model of attention publication-title: Neuron doi: 10.1016/j.neuron.2009.01.002 – volume: 14 start-page: 2178 year: 1994 end-page: 2189 ident: CR49 article-title: Neural correlates of attentive selection for color or luminance in extrastriate area V4 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.14-04-02178.1994 – volume: 96 start-page: 40 year: 2006 end-page: 54 ident: CR105 article-title: Effects of spatial attention on contrast response functions in macaque area V4 publication-title: J. Neurophysiol. doi: 10.1152/jn.01207.2005 – volume: 363 start-page: 345 year: 1993 end-page: 347 ident: CR31 article-title: A neural basis for visual search in inferior temporal cortex publication-title: Nature doi: 10.1038/363345a0 – volume: 57 start-page: 614 year: 2008 end-page: 625 ident: CR68 article-title: Measurements of simultaneously recorded spiking activity and local field potentials suggest that spatial selection emerges in the frontal eye field publication-title: Neuron doi: 10.1016/j.neuron.2007.12.030 – volume: 12 start-page: 85 year: 2009 end-page: 91 ident: CR69 article-title: Task-specific signal transmission from prefrontal cortex in visual selective attention publication-title: Nature Neurosci. doi: 10.1038/nn.2237 – volume: 108 start-page: 9739 year: 2011 end-page: 9746 ident: CR8 article-title: Adaptive shape processing in primary visual cortex publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1105855108 – volume: 66 start-page: 796 year: 2010 end-page: 807 ident: CR72 article-title: Representation of multiple, independent categories in the primate prefrontal cortex publication-title: Neuron doi: 10.1016/j.neuron.2010.05.005 – volume: 54 start-page: 677 year: 2007 end-page: 696 ident: CR109 article-title: Brain states: top-down influences in sensory processing publication-title: Neuron doi: 10.1016/j.neuron.2007.05.019 – volume: 127 start-page: 119 year: 2001 end-page: 136 ident: CR132 article-title: Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration publication-title: Behav. Brain Res. doi: 10.1016/S0166-4328(01)00358-8 – volume: 66 start-page: 114 year: 2010 ident: BFnrn3476_CR117 publication-title: Neuron doi: 10.1016/j.neuron.2010.03.013 – volume: 13 start-page: 1554 year: 2010 ident: BFnrn3476_CR104 publication-title: Nature Neurosci. doi: 10.1038/nn.2669 – volume: 5 start-page: 1203 year: 2002 ident: BFnrn3476_CR21 publication-title: Nature Neurosci. doi: 10.1038/nn957 – volume: 10 start-page: 840 year: 2000 ident: BFnrn3476_CR120 publication-title: Cereb. Cortex doi: 10.1093/cercor/10.9.840 – volume: 19 start-page: 431 year: 1999 ident: BFnrn3476_CR36 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-01-00431.1999 – volume: 80 start-page: 2918 year: 1998 ident: BFnrn3476_CR48 publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.80.6.2918 – volume: 11 start-page: 91 year: 1999 ident: BFnrn3476_CR92 publication-title: Neural Comput. doi: 10.1162/089976699300016827 – volume: 408 start-page: 196 year: 2000 ident: BFnrn3476_CR57 publication-title: Nature doi: 10.1038/35041567 – volume: 43 start-page: 59 year: 2003 ident: BFnrn3476_CR58 publication-title: Vision Res. doi: 10.1016/S0042-6989(02)00403-0 – volume: 154 start-page: 93 year: 2006 ident: BFnrn3476_CR17 publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(06)54005-1 – volume: 86 start-page: 2344 year: 2001 ident: BFnrn3476_CR86 publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.86.5.2344 – volume: 2 start-page: 79 year: 1999 ident: BFnrn3476_CR23 publication-title: Nature Neurosci. doi: 10.1038/4580 – volume: 19 start-page: 543 year: 2009 ident: BFnrn3476_CR100 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn103 – volume: 404 start-page: 187 year: 2000 ident: BFnrn3476_CR131 publication-title: Nature doi: 10.1038/35004588 – volume: 22 start-page: 593 year: 1999 ident: BFnrn3476_CR35 publication-title: Neuron doi: 10.1016/S0896-6273(00)80713-8 – volume: 18 start-page: 193 year: 1995 ident: BFnrn3476_CR41 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.18.030195.001205 – volume: 23 start-page: 7690 year: 2003 ident: BFnrn3476_CR16 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-20-07690.2003 – volume: 99 start-page: 4026 year: 2002 ident: BFnrn3476_CR82 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.052379899 – volume: 3 start-page: 1116 year: 1983 ident: BFnrn3476_CR112 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.03-05-01116.1983 – volume: 363 start-page: 345 year: 1993 ident: BFnrn3476_CR31 publication-title: Nature doi: 10.1038/363345a0 – volume: 29 start-page: 15621 year: 2009 ident: BFnrn3476_CR87 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4465-09.2009 – volume: 382 start-page: 539 year: 1996 ident: BFnrn3476_CR33 publication-title: Nature doi: 10.1038/382539a0 – volume: 127 start-page: 119 year: 2001 ident: BFnrn3476_CR132 publication-title: Behav. Brain Res. doi: 10.1016/S0166-4328(01)00358-8 – volume: 19 start-page: 1736 year: 1999 ident: BFnrn3476_CR37 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-05-01736.1999 – volume: 26 start-page: 703 year: 2000 ident: BFnrn3476_CR52 publication-title: Neuron doi: 10.1016/S0896-6273(00)81206-4 – volume: 108 start-page: 9739 year: 2011 ident: BFnrn3476_CR8 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1105855108 – volume: 123 start-page: 161 year: 1994 ident: BFnrn3476_CR56 publication-title: J. Exp. Psychol. Gen. doi: 10.1037/0096-3445.123.2.161 – volume: 36 start-page: 739 year: 2002 ident: BFnrn3476_CR14 publication-title: Neuron doi: 10.1016/S0896-6273(02)01029-2 – volume: 6 start-page: 482 year: 1996 ident: BFnrn3476_CR90 publication-title: Cereb. Cortex doi: 10.1093/cercor/6.3.482 – volume: 337 start-page: 753 year: 2012 ident: BFnrn3476_CR145 publication-title: Science doi: 10.1126/science.1223082 – volume: 456 start-page: 391 year: 2008 ident: BFnrn3476_CR22 publication-title: Nature doi: 10.1038/nature07382 – volume: 32 start-page: 6851 year: 2012 ident: BFnrn3476_CR70 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6295-11.2012 – volume: 20 start-page: 6594 year: 2000 ident: BFnrn3476_CR4 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-17-06594.2000 – volume: 70 start-page: 1205 year: 2011 ident: BFnrn3476_CR67 publication-title: Neuron doi: 10.1016/j.neuron.2011.04.032 – volume: 278 start-page: 1950 year: 1997 ident: BFnrn3476_CR133 publication-title: Science doi: 10.1126/science.278.5345.1950 – volume: 240 start-page: 338 year: 1988 ident: BFnrn3476_CR30 publication-title: Science doi: 10.1126/science.3353728 – volume: 215 start-page: 1532 year: 1982 ident: BFnrn3476_CR113 publication-title: Science doi: 10.1126/science.7063863 – volume: 30 start-page: 6482 year: 2010 ident: BFnrn3476_CR7 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5168-09.2010 – volume: 88 start-page: 2846 year: 2002 ident: BFnrn3476_CR12 publication-title: J. Neurophysiol. doi: 10.1152/jn.00289.2002 – volume: 401 start-page: 584 year: 1999 ident: BFnrn3476_CR54 publication-title: Nature doi: 10.1038/44134 – volume: 58 start-page: 802 year: 2008 ident: BFnrn3476_CR44 publication-title: Neuron doi: 10.1016/j.neuron.2008.04.013 – volume: 76 start-page: 2841 year: 1996 ident: BFnrn3476_CR83 publication-title: J. Neurophysiol. doi: 10.1152/jn.1996.76.5.2841 – volume: 78 start-page: 1373 year: 1997 ident: BFnrn3476_CR81 publication-title: J. Neurophysiol. doi: 10.1152/jn.1997.78.3.1373 – volume: 96 start-page: 1663 year: 1999 ident: BFnrn3476_CR61 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.4.1663 – volume: 17 start-page: 2112 year: 1997 ident: BFnrn3476_CR116 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-06-02112.1997 – volume: 91 start-page: 1403 year: 2004 ident: BFnrn3476_CR75 publication-title: J. Neurophysiol. doi: 10.1152/jn.00740.2003 – ident: BFnrn3476_CR18 – volume: 385 start-page: 157 year: 1997 ident: BFnrn3476_CR134 publication-title: Nature doi: 10.1038/385157a0 – volume: 2 start-page: 1019 year: 1999 ident: BFnrn3476_CR65 publication-title: Nature Neurosci. doi: 10.1038/14819 – volume: 8 start-page: 30 year: 2008 ident: BFnrn3476_CR128 publication-title: J. Vis. doi: 10.1167/8.7.30 – volume: 29 start-page: 13621 year: 2009 ident: BFnrn3476_CR74 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2612-09.2009 – volume: 102 start-page: 14925 year: 2005 ident: BFnrn3476_CR118 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0501684102 – volume: 109 start-page: 14675 year: 2012 ident: BFnrn3476_CR138 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1202095109 – volume: 75 start-page: 250 year: 2012 ident: BFnrn3476_CR13 publication-title: Neuron doi: 10.1016/j.neuron.2012.06.030 – volume: 282 start-page: 108 year: 1998 ident: BFnrn3476_CR45 publication-title: Science doi: 10.1126/science.282.5386.108 – volume: 19 start-page: 496 year: 2003 ident: BFnrn3476_CR53 publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00162-9 – volume: 70 start-page: 909 year: 1993 ident: BFnrn3476_CR26 publication-title: J. Neurophysiol. doi: 10.1152/jn.1993.70.3.909 – volume: 291 start-page: 1560 year: 2001 ident: BFnrn3476_CR130 publication-title: Science doi: 10.1126/science.1055465 – volume: 4 start-page: 300 year: 1994 ident: BFnrn3476_CR143 publication-title: Cereb. Cortex doi: 10.1093/cercor/4.3.300 – volume: 53 start-page: 881 year: 2007 ident: BFnrn3476_CR85 publication-title: Neuron doi: 10.1016/j.neuron.2007.02.028 – volume: 46 start-page: 333 year: 2005 ident: BFnrn3476_CR127 publication-title: Neuron doi: 10.1016/j.neuron.2005.03.002 – volume: 3 start-page: 940 year: 2000 ident: BFnrn3476_CR139 publication-title: Nature Neurosci. doi: 10.1038/78856 – volume: 338 start-page: 334 year: 1989 ident: BFnrn3476_CR125 publication-title: Nature doi: 10.1038/338334a0 – volume: 280 start-page: 120 year: 1979 ident: BFnrn3476_CR111 publication-title: Nature doi: 10.1038/280120a0 – volume: 51 start-page: 135 year: 2006 ident: BFnrn3476_CR103 publication-title: Neuron doi: 10.1016/j.neuron.2006.06.003 – volume: 7 start-page: 2239 year: 1987 ident: BFnrn3476_CR29 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.07-07-02239.1987 – volume: 33 start-page: 173 year: 1993 ident: BFnrn3476_CR110 publication-title: Vision Res. doi: 10.1016/0042-6989(93)90156-Q – volume: 84 start-page: 2048 year: 2000 ident: BFnrn3476_CR1 publication-title: J. Neurophysiol. doi: 10.1152/jn.2000.84.4.2048 – volume: 77 start-page: 24 year: 1997 ident: BFnrn3476_CR34 publication-title: J. Neurophysiol. doi: 10.1152/jn.1997.77.1.24 – volume: 61 start-page: 168 year: 2009 ident: BFnrn3476_CR107 publication-title: Neuron doi: 10.1016/j.neuron.2009.01.002 – volume: 11 start-page: 579 year: 1994 ident: BFnrn3476_CR141 publication-title: Vis. Neurosci. doi: 10.1017/S0952523800002480 – volume: 395 start-page: 376 year: 1998 ident: BFnrn3476_CR3 publication-title: Nature doi: 10.1038/26475 – volume: 60 start-page: 121 year: 1988 ident: BFnrn3476_CR124 publication-title: Biol. Cybern. doi: 10.1007/BF00202899 – volume: 21 start-page: 259 year: 1998 ident: BFnrn3476_CR94 publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(97)01216-2 – volume: 285 start-page: 257 year: 1999 ident: BFnrn3476_CR84 publication-title: Science doi: 10.1126/science.285.5425.257 – volume: 18 start-page: 555 year: 1995 ident: BFnrn3476_CR122 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.18.030195.003011 – volume: 444 start-page: 374 year: 2006 ident: BFnrn3476_CR79 publication-title: Nature doi: 10.1038/nature05279 – volume: 370 start-page: 140 year: 1994 ident: BFnrn3476_CR88 publication-title: Nature doi: 10.1038/370140a0 – volume: 21 start-page: 1676 year: 2001 ident: BFnrn3476_CR89 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-05-01676.2001 – volume: 425 start-page: 345 year: 2000 ident: BFnrn3476_CR142 publication-title: J. Comp. Neurol. doi: 10.1002/1096-9861(20000925)425:3<345::AID-CNE2>3.0.CO;2-O – volume: 6 start-page: 1160 year: 1986 ident: BFnrn3476_CR115 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.06-04-01160.1986 – volume: 17 start-page: 741 year: 2005 ident: BFnrn3476_CR10 publication-title: Neural Comput. doi: 10.1162/0899766053429435 – volume: 4 start-page: 519 year: 2001 ident: BFnrn3476_CR38 publication-title: Nature Neurosci. doi: 10.1038/87470 – volume: 54 start-page: 29 year: 1986 ident: BFnrn3476_CR123 publication-title: Biol. Cybern. doi: 10.1007/BF00337113 – volume: 71 start-page: 750 year: 2011 ident: BFnrn3476_CR97 publication-title: Neuron doi: 10.1016/j.neuron.2011.06.015 – volume: 396 start-page: 362 year: 1998 ident: BFnrn3476_CR129 publication-title: Nature doi: 10.1038/24608 – volume: 292 start-page: 510 year: 2001 ident: BFnrn3476_CR144 publication-title: Science doi: 10.1126/science.1057099 – volume: 113 start-page: 501 year: 1984 ident: BFnrn3476_CR55 publication-title: J. Exp. Psychol. Gen. doi: 10.1037/0096-3445.113.4.501 – volume: 7 start-page: 70 year: 2004 ident: BFnrn3476_CR108 publication-title: Nature Neurosci. doi: 10.1038/nn1161 – volume: 1 start-page: 254 year: 1998 ident: BFnrn3476_CR51 publication-title: Nature Neurosci. doi: 10.1038/699 – volume: 144 start-page: 47 year: 2004 ident: BFnrn3476_CR76 publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(03)14403-2 – volume: 266 start-page: 1001 year: 1999 ident: BFnrn3476_CR95 publication-title: Proc. Biol. Sci. doi: 10.1098/rspb.1999.0736 – volume: 9 start-page: 2432 year: 1989 ident: BFnrn3476_CR11 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.09-07-02432.1989 – volume: 96 start-page: 40 year: 2006 ident: BFnrn3476_CR105 publication-title: J. Neurophysiol. doi: 10.1152/jn.01207.2005 – volume: 405 start-page: 685 year: 2000 ident: BFnrn3476_CR119 publication-title: Nature doi: 10.1038/35015079 – volume: 54 start-page: 677 year: 2007 ident: BFnrn3476_CR109 publication-title: Neuron doi: 10.1016/j.neuron.2007.05.019 – volume: 20 start-page: 1191 year: 1998 ident: BFnrn3476_CR47 publication-title: Neuron doi: 10.1016/S0896-6273(00)80499-7 – volume: 57 start-page: 614 year: 2008 ident: BFnrn3476_CR68 publication-title: Neuron doi: 10.1016/j.neuron.2007.12.030 – volume: 206 start-page: 159 year: 2005 ident: BFnrn3476_CR71 publication-title: Hear. Res. doi: 10.1016/j.heares.2005.01.015 – volume: 50 start-page: 951 year: 2006 ident: BFnrn3476_CR5 publication-title: Neuron doi: 10.1016/j.neuron.2006.04.035 – volume: 109 start-page: 160 year: 1980 ident: BFnrn3476_CR27 publication-title: J. Exp. Psychol. doi: 10.1037/0096-3445.109.2.160 – volume: 24 start-page: 295 year: 2001 ident: BFnrn3476_CR39 publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(00)01814-2 – volume: 38 start-page: 649 year: 2003 ident: BFnrn3476_CR96 publication-title: Neuron doi: 10.1016/S0896-6273(03)00287-3 – volume: 439 start-page: 733 year: 2006 ident: BFnrn3476_CR135 publication-title: Nature doi: 10.1038/nature04258 – volume: 89 start-page: 1519 year: 2003 ident: BFnrn3476_CR80 publication-title: J. Neurophysiol. doi: 10.1152/jn.00519.2002 – volume: 55 start-page: 301 year: 2007 ident: BFnrn3476_CR63 publication-title: Neuron doi: 10.1016/j.neuron.2007.06.015 – volume: 14 start-page: 252 year: 2011 ident: BFnrn3476_CR78 publication-title: Nature Neurosci. doi: 10.1038/nn.2711 – volume-title: Principles of Neural Science year: 2012 ident: BFnrn3476_CR147 – volume: 11 start-page: 58 year: 2007 ident: BFnrn3476_CR73 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.11.009 – volume: 11 start-page: 761 year: 2001 ident: BFnrn3476_CR32 publication-title: Cereb. Cortex doi: 10.1093/cercor/11.8.761 – volume: 37 start-page: 853 year: 2003 ident: BFnrn3476_CR40 publication-title: Neuron doi: 10.1016/S0896-6273(03)00097-7 – volume: 96 start-page: 3314 year: 1999 ident: BFnrn3476_CR43 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.6.3314 – volume: 18 start-page: 1161 year: 1998 ident: BFnrn3476_CR91 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-03-01161.1998 – volume: 216 start-page: 303 year: 1983 ident: BFnrn3476_CR114 publication-title: J. Comp. Neurol. doi: 10.1002/cne.902160307 – volume: 28 start-page: 4823 year: 2008 ident: BFnrn3476_CR137 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4499-07.2008 – volume: 15 start-page: 1605 year: 1995 ident: BFnrn3476_CR19 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.15-02-01605.1995 – volume: 57 start-page: 442 year: 2008 ident: BFnrn3476_CR6 publication-title: Neuron doi: 10.1016/j.neuron.2007.12.011 – volume: 28 start-page: 8934 year: 2008 ident: BFnrn3476_CR9 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4030-07.2008 – volume: 60 start-page: 162 year: 2008 ident: BFnrn3476_CR102 publication-title: Neuron doi: 10.1016/j.neuron.2008.08.007 – volume: 4 start-page: e4651 year: 2009 ident: BFnrn3476_CR106 publication-title: PLoS ONE doi: 10.1371/journal.pone.0004651 – volume: 30 start-page: 3531 year: 2010 ident: BFnrn3476_CR24 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4911-09.2010 – volume: 229 start-page: 782 year: 1985 ident: BFnrn3476_CR28 publication-title: Science doi: 10.1126/science.4023713 – volume: 399 start-page: 575 year: 1999 ident: BFnrn3476_CR50 publication-title: Nature doi: 10.1038/21176 – volume: 357 start-page: 1063 year: 2002 ident: BFnrn3476_CR42 publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2002.1107 – volume: 13 start-page: 187 year: 2003 ident: BFnrn3476_CR59 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(03)00033-3 – volume: 106 start-page: 1068 year: 2011 ident: BFnrn3476_CR146 publication-title: J. Neurophysiol. doi: 10.1152/jn.00429.2011 – volume: 7 start-page: 982 year: 2004 ident: BFnrn3476_CR126 publication-title: Nature Neurosci. doi: 10.1038/nn1304 – volume: 85 start-page: 134 year: 2001 ident: BFnrn3476_CR15 publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.85.1.134 – volume: 255 start-page: 90 year: 1992 ident: BFnrn3476_CR77 publication-title: Science doi: 10.1126/science.1553535 – volume: 16 start-page: 7376 year: 1996 ident: BFnrn3476_CR2 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-22-07376.1996 – volume: 5 start-page: 631 year: 2002 ident: BFnrn3476_CR62 publication-title: Nature Neurosci. doi: 10.1038/nn876 – volume: 75 start-page: 143 year: 2012 ident: BFnrn3476_CR60 publication-title: Neuron doi: 10.1016/j.neuron.2012.04.032 – volume: 66 start-page: 796 year: 2010 ident: BFnrn3476_CR72 publication-title: Neuron doi: 10.1016/j.neuron.2010.05.005 – volume: 30 start-page: 2109 year: 2008 ident: BFnrn3476_CR66 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.70840 – volume: 324 start-page: 1207 year: 2009 ident: BFnrn3476_CR136 publication-title: Science doi: 10.1126/science.1171402 – volume: 22 start-page: 751 year: 1999 ident: BFnrn3476_CR140 publication-title: Neuron doi: 10.1016/S0896-6273(00)80734-5 – volume: 12 start-page: 85 year: 2009 ident: BFnrn3476_CR69 publication-title: Nature Neurosci. doi: 10.1038/nn.2237 – volume: 95 start-page: 11489 year: 1998 ident: BFnrn3476_CR46 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.95.19.11489 – volume: 63 start-page: 879 year: 2009 ident: BFnrn3476_CR99 publication-title: Neuron doi: 10.1016/j.neuron.2009.09.013 – volume: 33 start-page: 1773 year: 2013 ident: BFnrn3476_CR101 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3825-12.2013 – volume: 14 start-page: 2178 year: 1994 ident: BFnrn3476_CR49 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.14-04-02178.1994 – volume: 12 start-page: 1594 year: 2009 ident: BFnrn3476_CR98 publication-title: Nature Neurosci. doi: 10.1038/nn.2439 – volume: 7 start-page: 358 year: 2006 ident: BFnrn3476_CR93 publication-title: Nature Rev. Neurosci. doi: 10.1038/nrn1888 – volume: 16 start-page: 2381 year: 1996 ident: BFnrn3476_CR121 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-07-02381.1996 – volume: 7 start-page: 651 year: 2004 ident: BFnrn3476_CR20 publication-title: Nature Neurosci. doi: 10.1038/nn1255 – volume: 11 start-page: 974 year: 2008 ident: BFnrn3476_CR25 publication-title: Nature Neurosci. doi: 10.1038/nn.2147 – volume: 4 start-page: 301 year: 1923 ident: BFnrn3476_CR64 publication-title: Psychol. Forsch. doi: 10.1007/BF00410640 |
SSID | ssj0016176 |
Score | 2.6191154 |
SecondaryResourceType | review_article |
Snippet | Key Points
In contrast to the traditional idea that the processing of visual information consists of a sequence of feedforward operations, with neuronal... Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation,... Reentrant or feedback pathways between cortical areas carry rich and varied information about behavioral context, including attention, expectation, perceptual... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 350 |
SubjectTerms | Animal Genetics and Genomics Animals Attention Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Humans Neurobiology Neurons Neurosciences Nonlinear Dynamics Physiological aspects review-article Vision, Ocular - physiology Visual Cortex - cytology Visual Cortex - physiology Visual Pathways - physiology Visual perception Visual Perception - physiology |
Title | Top-down influences on visual processing |
URI | https://link.springer.com/article/10.1038/nrn3476 https://www.ncbi.nlm.nih.gov/pubmed/23595013 https://www.proquest.com/docview/1330852417 https://www.proquest.com/docview/1331090006 https://www.proquest.com/docview/1352285057 https://pubmed.ncbi.nlm.nih.gov/PMC3864796 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC58wOJlUfdh1gcRxN1LY5LupJOTzKiDCMoiCnMLSacbByQZ57G_f6uSTpyM4CmHrry6K1Vfpau-AjjTOjJRZCSTOjFMiEKzBI0giwrpZyrIuRdTcfL9Q3T7LO7G4dj-cJvbtMrWJtaGuqgU_SO_wFgK0QH6G3k5fWPUNYp2V20LjU3Y9hGJUOsGOe4CLoLuTXWRxJDZ4-OmaJYowS_KWckFEY2seKN1m7zilNYTJtd2TWtnNNqFrxZFuoNm2fdgQ5f78OXe7pN_gz9P1ZQVGGC7k7YJydytSvffZL7E86ZNdQBe-js8j26erm6Z7YnAVMi9BcuMFjpSnsrCDKFInCPckUIVPOQiybgwgfLyRMssMIGf15CJOMoi7QkV64LzH7BVVqU-AFf7uQg9kxgTEOtfgb4qTrJYKKOIkaVw4Lydm1RZwnDqW_Ga1hvXPE7tJDrgdoLThiPjo8hvmtyUvhq8hsps8j8-CfFPpQOOsINiT9-Bo54karvqD7fLk9qvbZ6-64YDp90wnUkZZKWulrUM5aCikflMBtFoTCGbAz-bFe9eKKAKZsTLDsieLnQCxNPdHyknLzVfN48jIRO6b6s1K4_en6dfn7_eIewEdTsOSrg8gq3FbKmPERQt8pNa809gezC8Ho7wOLx5-Pv4H43aDaQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnQS8IL4JDAgSXy_RUtuJk4cJDdjUsbVCqJP6ljmOLSqhpKwtiH-Ov427xAlNkfa2Z1-c5Ozz3fnufgfwypjYxrGVgTSpDYQoTJDiIRjEhRwqzXIeJlScPJ7Eo3PxeRbNduBPWwtDaZXtmVgf1EWl6Y58H30ptA5Q38j3ix8BdY2i6GrbQkO51grFQQ0x5go7Ts3vX-jCLQ9OPuF6v2bs-Gj6cRS4LgOBjni4CpQ1wsQ61CpSqNyTHA0IKXTBIy5SxYVlOsxTIxWzbJjXRgihfsUmFDoxBV2IogrYFXSBMoDdD0eTL1-7OAbaB019k0SnPeSzpmyXQMn3y8uSC4I62dCH21phQy1up2xuxW1rdXh8B247O9Y_bDbeXdgx5T24MXaR-vvwblotggJdfH_etkFZ-lXp_5wv1_jcoqlPwKkfwPm18OshDMqqNI_BN8NcRKFNrWWEO1igtkxSlQhtNWHCFB68aXmTaQdZTp0zvmd16JwnmWOiB35HuGhQOv4neUvMzUhucQ6tXPkBfgkhYGWHHA0f8n6HHuz1KFHedH-4XZ7Myfsy-7c7PXjZDdOTlMNWmmpd01AWLB5zV9GgPZyQ0-jBo2bFux9iVEONFrsHsrcXOgJCCu-PlPNvNWI4T2IhU3pvu2s2Pr3PpydX_94LuDmajs-ys5PJ6VO4xermIJT-uQeD1eXaPEMTbZU_d3Lgw8V1i95fMlRNjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKiEuqLRQUmibShS4WJu1nTg5IIRKVzwK4gDS3tLEsdWVqmRhd6n4a_y6zuTFZitx4-zJazzPeOYbgF1jAhsEVjFlIsukzAyL0AiyIFP9RPNUeCE1J19eBae38nzoD5fgqemFobLKxiaWhjorNP0j72EuhdEB-hvVs3VZxPXJ4Gh8x2iCFJ20NuM0KhG5MI9_MX2bHJ6d4F5_43zw4-b7KasnDDDtC2_KEmukCbSnEz9Bxx6mGDwoqTPhCxklQlquvTQyKuGW99MyACHEr8B4Uocmo5-haP7fKCEljY1QwzbZo7Sh6mxSmK57Ylg17BIceS-_z4UkkJM5T7joD-Yc4mKx5sKJbekIB29hrY5g3eNK5NZhyeTvYOWyPqN_Dwc3xZhlmNy7o2YAysQtcvdhNJnhdeOqMwFvvQG3r8KtTVjOi9xsgWv6qfQ9G1nLCXEwQz8ZRkkotdWEBpM5sNfwJtY1WDnNzPgTl4fmIoxrJjrgtoTjCp_jf5J9Ym5MGov30EndeIBvQthX8bHAkIfy3r4DOx1K1DTdXW62J641fRI_y6UDX9tlupKq13JTzEoaqn9FA_cSDUbCIaWLDnyodrz9IE7d0xirO6A6stASEEZ4dyUf_S6xwkUYSBXRcxupmXv1Lp8-vvx5X2AFFS7-eXZ1sQ2rvJwKQnWfO7A8vZ-ZTxibTdPPpRK48Ou1te4fEpBLKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Top-down+influences+on+visual+processing&rft.jtitle=Nature+reviews.+Neuroscience&rft.au=Gilbert%2C+Charles+D&rft.au=Li%2C+Wu&rft.date=2013-05-01&rft.issn=1471-0048&rft.eissn=1471-0048&rft.volume=14&rft.issue=5&rft.spage=350&rft_id=info:doi/10.1038%2Fnrn3476&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-003X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-003X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-003X&client=summon |