Top-down influences on visual processing

Key Points In contrast to the traditional idea that the processing of visual information consists of a sequence of feedforward operations, with neuronal functional properties taking on increasing complexity as the information progresses through a hierarchy of cortical areas, increasing evidence poin...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Neuroscience Vol. 14; no. 5; pp. 350 - 363
Main Authors Gilbert, Charles D., Li, Wu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2013
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1471-003X
1471-0048
1471-0048
1469-3178
DOI10.1038/nrn3476

Cover

Abstract Key Points In contrast to the traditional idea that the processing of visual information consists of a sequence of feedforward operations, with neuronal functional properties taking on increasing complexity as the information progresses through a hierarchy of cortical areas, increasing evidence points towards a reverse process, with higher-order cognitive influences interacting with information coming from the retina. Thus, rather than having a fixed functional role, neurons should be thought of as adaptive processors, changing their function according to the behavioural context. Vision is an active process in which higher-order cognitive influences affect the operations performed by cortical neurons. Visual pathways operate bidirectionally, with each feedforward connection being matched by feedback or re-entrant connections going from higher- to lower-order cortical areas. Top-down influences include various forms of attention, such as spatial, object oriented and feature oriented attention. Top-down influences are not limited to attention but mediate a much broader range of functional roles, including perceptual task, object expectation, scene segmentation, efference copy, working memory and the encoding and recall of learned information. The effect of top-down influences is to change the information conveyed by neurons, both by altering the tuning of their responses to stimulus attributes and by changing the structure of correlations over neuronal ensembles. All areas of the visual pathway, except for the retina, are subject to top-down influences, including early cortical stages of visual processing such as the primary visual cortex and the lateral geniculate nucleus, and all areas along the dorsal and ventral visual cortical pathways. Each area contains an association field of potential interactions, and expresses a subset of these interactions to execute different functions. The sources of top-down influences are widespread, with each area providing information reflecting the functional properties of that area. As a consequence, even a single neuron can be viewed as a microcosm of activity occurring throughout the visual pathway. We propose that the circuit mechanism of top-down control and adaptive processing involves a gating of intrinsic cortical circuits within an area mediated by long-range feedback connections to that area. By selecting a subset of inputs, a neuron can express different components of its association field, and as a result take on different functional roles. Vision is an active process. Higher-order cognitive influences, including attention, expectation and perceptual task, as well as motor signals, are fed into the sensory apparatus. This enables neurons to dynamically tune their receptive field properties to carry information that is relevant for executing the current behavioural tasks. Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation, perceptual tasks, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this Review, we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands.
AbstractList Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation, perceptual tasks, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this Review, we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands.
Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation, perceptual tasks, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this Review, we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands.Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation, perceptual tasks, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this Review, we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands.
Key Points In contrast to the traditional idea that the processing of visual information consists of a sequence of feedforward operations, with neuronal functional properties taking on increasing complexity as the information progresses through a hierarchy of cortical areas, increasing evidence points towards a reverse process, with higher-order cognitive influences interacting with information coming from the retina. Thus, rather than having a fixed functional role, neurons should be thought of as adaptive processors, changing their function according to the behavioural context. Vision is an active process in which higher-order cognitive influences affect the operations performed by cortical neurons. Visual pathways operate bidirectionally, with each feedforward connection being matched by feedback or re-entrant connections going from higher- to lower-order cortical areas. Top-down influences include various forms of attention, such as spatial, object oriented and feature oriented attention. Top-down influences are not limited to attention but mediate a much broader range of functional roles, including perceptual task, object expectation, scene segmentation, efference copy, working memory and the encoding and recall of learned information. The effect of top-down influences is to change the information conveyed by neurons, both by altering the tuning of their responses to stimulus attributes and by changing the structure of correlations over neuronal ensembles. All areas of the visual pathway, except for the retina, are subject to top-down influences, including early cortical stages of visual processing such as the primary visual cortex and the lateral geniculate nucleus, and all areas along the dorsal and ventral visual cortical pathways. Each area contains an association field of potential interactions, and expresses a subset of these interactions to execute different functions. The sources of top-down influences are widespread, with each area providing information reflecting the functional properties of that area. As a consequence, even a single neuron can be viewed as a microcosm of activity occurring throughout the visual pathway. We propose that the circuit mechanism of top-down control and adaptive processing involves a gating of intrinsic cortical circuits within an area mediated by long-range feedback connections to that area. By selecting a subset of inputs, a neuron can express different components of its association field, and as a result take on different functional roles. Vision is an active process. Higher-order cognitive influences, including attention, expectation and perceptual task, as well as motor signals, are fed into the sensory apparatus. This enables neurons to dynamically tune their receptive field properties to carry information that is relevant for executing the current behavioural tasks. Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation, perceptual tasks, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this Review, we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands.
Reentrant or feedback pathways between cortical areas carry rich and varied information about behavioral context, including attention, expectation, perceptual task, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this review we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands.
Audience Academic
Author Gilbert, Charles D.
Li, Wu
AuthorAffiliation 2 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
1 The Rockefeller University, 1230 York Avenue, New York, NY 10065
AuthorAffiliation_xml – name: 1 The Rockefeller University, 1230 York Avenue, New York, NY 10065
– name: 2 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
Author_xml – sequence: 1
  givenname: Charles D.
  surname: Gilbert
  fullname: Gilbert, Charles D.
  email: gilbert@rockefeller.edu
  organization: The Rockefeller University
– sequence: 2
  givenname: Wu
  surname: Li
  fullname: Li, Wu
  organization: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23595013$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1rHDEMhk1JaT5a-g_KQg_NZRLZsufjUgghSQuBXhLozXg8mq3DrL21ZxL67-Mh222y5FB8kJEfvcivdMj2fPDE2EcOJxywPvXRo6zKN-yAy4oXALLe297x5z47TOkOgJe8Kt-xfYGqUcDxgB3fhHXRhQe_cL4fJvKW0iL4xb1LkxkW6xhyIjm_fM_e9mZI9GETj9jt5cXN-bfi-sfV9_Oz68IqhLEwPUkqLVijjOKqbiWqStoOFcrGoOyFhbahyohe8LbNLQkFEksCaWvqEI_Y1yfd9dSuqLPkx2gGvY5uZeIfHYzTL1-8-6WX4V5jXcqqKbPA8UYght8TpVGvXLI0DMZTmJLmqISoFajqP1Dk0ADArPp5B70LU_TZiZmCWgnJq3_U0gyks6Mht2hnUX2GokEQQvBMnbxC5dPRytk82N7l_IuCT8892Zrxd4wZ-PIE2BhSitRvEQ56XhC9WZBMFjukdaMZXZjNdMMr_MailBX9kuKzf--gj-v9xqg
CitedBy_id crossref_primary_10_1109_TNNLS_2018_2861680
crossref_primary_10_1523_JNEUROSCI_1998_19_2019
crossref_primary_10_1002_acn3_51503
crossref_primary_10_1016_j_neunet_2022_03_042
crossref_primary_10_3389_fnbot_2020_00007
crossref_primary_10_1371_journal_pbio_3001534
crossref_primary_10_1016_j_neuroscience_2024_10_028
crossref_primary_10_1093_nc_niw021
crossref_primary_10_1093_cercor_bhab409
crossref_primary_10_1016_j_neuron_2017_05_016
crossref_primary_10_1371_journal_pcbi_1012159
crossref_primary_10_1016_j_neuron_2023_03_022
crossref_primary_10_1016_j_pneurobio_2023_102521
crossref_primary_10_3389_fnbeh_2023_1061980
crossref_primary_10_2139_ssrn_4821349
crossref_primary_10_1016_j_tics_2017_06_003
crossref_primary_10_3389_fneur_2019_01325
crossref_primary_10_1016_j_actpsy_2020_103118
crossref_primary_10_1167_19_4_3
crossref_primary_10_1002_advs_202001077
crossref_primary_10_7717_peerj_3988
crossref_primary_10_1098_rsos_171440
crossref_primary_10_3390_brainsci11050580
crossref_primary_10_1016_j_cognition_2024_105907
crossref_primary_10_1007_s10339_017_0819_4
crossref_primary_10_1371_journal_pbio_3001889
crossref_primary_10_1016_j_copsyc_2017_06_009
crossref_primary_10_1016_j_visres_2014_06_004
crossref_primary_10_1038_s41467_020_16609_7
crossref_primary_10_1016_j_biosystems_2016_09_009
crossref_primary_10_1016_j_neunet_2020_06_008
crossref_primary_10_1109_TCSS_2024_3420445
crossref_primary_10_3389_fncir_2017_00027
crossref_primary_10_1016_j_parkreldis_2021_10_005
crossref_primary_10_3758_s13423_024_02608_y
crossref_primary_10_1007_s11920_022_01395_4
crossref_primary_10_1038_s41598_019_45707_w
crossref_primary_10_1016_j_cognition_2019_104019
crossref_primary_10_1038_s41598_020_61447_8
crossref_primary_10_1016_j_heliyon_2023_e13354
crossref_primary_10_1016_j_cognition_2019_104132
crossref_primary_10_3389_fpsyg_2022_809455
crossref_primary_10_1016_j_neuron_2022_09_034
crossref_primary_10_3389_fnins_2020_00539
crossref_primary_10_1007_s00422_023_00966_9
crossref_primary_10_1016_j_cortex_2014_12_020
crossref_primary_10_1016_j_neuropsychologia_2018_03_028
crossref_primary_10_3389_fnhum_2016_00118
crossref_primary_10_1523_JNEUROSCI_1833_15_2015
crossref_primary_10_53765_20512201_30_3_212
crossref_primary_10_1113_JP282747
crossref_primary_10_1016_j_visres_2020_04_005
crossref_primary_10_1109_TMM_2022_3148595
crossref_primary_10_1093_schbul_sbz025
crossref_primary_10_1016_j_neuroimage_2019_06_057
crossref_primary_10_1073_pnas_2320378121
crossref_primary_10_1073_pnas_1417259112
crossref_primary_10_1016_j_coisb_2017_04_006
crossref_primary_10_3389_fpsyg_2014_01273
crossref_primary_10_1523_JNEUROSCI_0664_18_2018
crossref_primary_10_1007_s13164_021_00558_1
crossref_primary_10_3389_fnins_2019_00692
crossref_primary_10_1002_brb3_3462
crossref_primary_10_1038_s41467_023_42553_3
crossref_primary_10_1073_pnas_1803854115
crossref_primary_10_1146_annurev_vision_102016_061324
crossref_primary_10_3389_fnbeh_2017_00144
crossref_primary_10_1126_science_add9330
crossref_primary_10_1140_epjs_s11734_024_01348_3
crossref_primary_10_1038_nn_3805
crossref_primary_10_1016_j_heares_2014_05_004
crossref_primary_10_1093_pnasnexus_pgae404
crossref_primary_10_1016_j_concog_2015_02_002
crossref_primary_10_1016_j_conb_2018_05_003
crossref_primary_10_1016_j_cognition_2023_105661
crossref_primary_10_1016_j_neuroimage_2023_120139
crossref_primary_10_1146_annurev_devpsych_120621_042108
crossref_primary_10_1167_18_12_14
crossref_primary_10_1016_j_neures_2018_11_001
crossref_primary_10_1016_j_jik_2023_100381
crossref_primary_10_1109_TPAMI_2018_2843329
crossref_primary_10_1038_s41467_022_28897_2
crossref_primary_10_1016_j_plrev_2018_05_006
crossref_primary_10_1016_j_neuron_2017_04_017
crossref_primary_10_1038_s41467_022_28035_y
crossref_primary_10_1016_j_biopsych_2022_02_961
crossref_primary_10_1167_jov_24_3_3
crossref_primary_10_1177_09637214221129795
crossref_primary_10_1016_j_cub_2022_10_070
crossref_primary_10_1080_23262133_2017_1287553
crossref_primary_10_1371_journal_pcbi_1003770
crossref_primary_10_3390_e23091218
crossref_primary_10_1523_JNEUROSCI_2376_19_2020
crossref_primary_10_1016_j_tics_2013_07_004
crossref_primary_10_3389_fncir_2015_00030
crossref_primary_10_1523_ENEURO_0154_24_2024
crossref_primary_10_1523_JNEUROSCI_0156_23_2023
crossref_primary_10_1371_journal_pcbi_1009196
crossref_primary_10_1002_hbm_23687
crossref_primary_10_1080_13825585_2019_1632256
crossref_primary_10_3758_s13428_021_01540_6
crossref_primary_10_1080_13506285_2019_1617376
crossref_primary_10_3389_fncom_2017_00112
crossref_primary_10_12677_AP_2016_68114
crossref_primary_10_3390_s23115162
crossref_primary_10_1016_j_jalz_2014_04_514
crossref_primary_10_3390_sym12050815
crossref_primary_10_1175_WCAS_D_18_0094_1
crossref_primary_10_1098_rstb_2019_0029
crossref_primary_10_1016_j_cogsys_2021_10_007
crossref_primary_10_1017_S0140525X19001997
crossref_primary_10_3389_fnhum_2020_00066
crossref_primary_10_1007_s00401_016_1609_2
crossref_primary_10_1080_02698595_2021_2002675
crossref_primary_10_1523_JNEUROSCI_0852_19_2019
crossref_primary_10_1016_j_neuroimage_2024_120659
crossref_primary_10_7554_eLife_14679
crossref_primary_10_1016_j_neubiorev_2020_09_018
crossref_primary_10_1016_j_neuroimage_2024_120897
crossref_primary_10_1177_0271678X17740794
crossref_primary_10_1523_JNEUROSCI_4492_15_2016
crossref_primary_10_1016_j_cognition_2017_05_011
crossref_primary_10_1038_s41583_020_00390_z
crossref_primary_10_1073_pnas_1518931113
crossref_primary_10_1017_S0140525X15002770
crossref_primary_10_3389_fncom_2021_666131
crossref_primary_10_3389_fpsyg_2014_01223
crossref_primary_10_1007_s11097_018_9557_z
crossref_primary_10_32388_1KC9TH_2
crossref_primary_10_1371_journal_pone_0268351
crossref_primary_10_32388_1KC9TH_3
crossref_primary_10_1002_brb3_1019
crossref_primary_10_3389_fncom_2017_00100
crossref_primary_10_1038_s41583_020_0277_3
crossref_primary_10_1038_s42003_024_07434_5
crossref_primary_10_1177_0963721417709807
crossref_primary_10_1093_nc_niw008
crossref_primary_10_1007_s10943_015_0080_z
crossref_primary_10_33881_2027_1786_rip_13301
crossref_primary_10_7554_eLife_15798
crossref_primary_10_1016_j_tics_2015_11_005
crossref_primary_10_1038_srep36329
crossref_primary_10_3389_fpsyg_2023_1243405
crossref_primary_10_1080_1047840X_2016_1215212
crossref_primary_10_1162_jocn_a_01230
crossref_primary_10_1177_1545968319827569
crossref_primary_10_1016_j_ijpsycho_2018_06_001
crossref_primary_10_1038_s41467_021_24456_3
crossref_primary_10_3390_vision7040077
crossref_primary_10_1016_j_cub_2020_03_018
crossref_primary_10_1016_j_concog_2018_06_005
crossref_primary_10_1016_j_destud_2016_11_002
crossref_primary_10_1177_0963721420984403
crossref_primary_10_1016_j_celrep_2016_12_080
crossref_primary_10_1098_rstb_2022_0336
crossref_primary_10_3389_fpsyg_2019_00490
crossref_primary_10_1080_23273798_2024_2409136
crossref_primary_10_3758_s13414_017_1464_9
crossref_primary_10_7554_eLife_25784
crossref_primary_10_3389_fncir_2019_00035
crossref_primary_10_1007_s11704_020_9001_8
crossref_primary_10_1016_j_jecp_2024_105889
crossref_primary_10_1007_s00221_016_4583_y
crossref_primary_10_3389_fpsyg_2017_01156
crossref_primary_10_1016_j_pneurobio_2019_101659
crossref_primary_10_1016_j_neuroimage_2017_07_004
crossref_primary_10_1016_j_cub_2020_07_094
crossref_primary_10_1146_annurev_vision_091517_034407
crossref_primary_10_1016_j_concog_2016_09_005
crossref_primary_10_1038_ncomms13276
crossref_primary_10_46798_ijam_2018_v21i01_004
crossref_primary_10_1016_j_neucom_2024_129075
crossref_primary_10_1098_rstb_2022_0342
crossref_primary_10_1162_neco_a_01182
crossref_primary_10_1093_cercor_bhad545
crossref_primary_10_1162_opmi_a_00083
crossref_primary_10_3389_fncom_2020_571982
crossref_primary_10_1038_s41593_018_0317_8
crossref_primary_10_1073_pnas_1720995115
crossref_primary_10_1523_JNEUROSCI_1613_18_2018
crossref_primary_10_1073_pnas_2221623121
crossref_primary_10_1080_25741136_2023_2243376
crossref_primary_10_1016_j_neuron_2016_09_024
crossref_primary_10_1016_j_cub_2016_07_007
crossref_primary_10_1016_j_neuron_2018_05_011
crossref_primary_10_1007_s11682_023_00796_0
crossref_primary_10_3389_fnsys_2016_00106
crossref_primary_10_1016_j_actpsy_2015_08_006
crossref_primary_10_1109_TCDS_2020_2987352
crossref_primary_10_1523_ENEURO_0285_17_2017
crossref_primary_10_1038_s41598_021_96649_1
crossref_primary_10_1515_nf_2016_1107
crossref_primary_10_1093_cercor_bhaa165
crossref_primary_10_1016_j_neuroimage_2017_12_019
crossref_primary_10_1093_cercor_bhab378
crossref_primary_10_1093_cercor_bhz013
crossref_primary_10_1093_cercor_bhac111
crossref_primary_10_1016_j_cognition_2019_03_008
crossref_primary_10_1523_JNEUROSCI_2909_15_2016
crossref_primary_10_1038_nn_4197
crossref_primary_10_1016_j_bandc_2024_106221
crossref_primary_10_3389_fpsyg_2019_02896
crossref_primary_10_1038_srep32672
crossref_primary_10_1192_bjp_bp_115_178368
crossref_primary_10_1371_journal_pcbi_1012460
crossref_primary_10_1073_pnas_2300558120
crossref_primary_10_3724_SP_J_1041_2022_00221
crossref_primary_10_1038_s41583_020_0275_5
crossref_primary_10_1073_pnas_2103040118
crossref_primary_10_3389_fnsys_2015_00001
crossref_primary_10_1073_pnas_1510343112
crossref_primary_10_1073_pnas_2209960119
crossref_primary_10_3389_fpsyg_2017_00040
crossref_primary_10_7554_eLife_87126
crossref_primary_10_1016_j_conb_2014_08_010
crossref_primary_10_1016_j_eswa_2021_116425
crossref_primary_10_3389_fnint_2019_00032
crossref_primary_10_1063_5_0188601
crossref_primary_10_1371_journal_pone_0313331
crossref_primary_10_1038_nn_4061
crossref_primary_10_1007_s11571_016_9404_2
crossref_primary_10_1073_pnas_1312567111
crossref_primary_10_1371_journal_pone_0219472
crossref_primary_10_1080_19338341_2023_2292124
crossref_primary_10_1016_j_neuroimage_2018_09_040
crossref_primary_10_1038_s43588_022_00282_5
crossref_primary_10_1111_tops_12672
crossref_primary_10_3389_fnbeh_2022_902175
crossref_primary_10_1016_j_cub_2017_02_024
crossref_primary_10_1177_0891988719892318
crossref_primary_10_1016_j_neuropsychologia_2015_07_026
crossref_primary_10_1080_10400419_2023_2254573
crossref_primary_10_1016_j_conb_2019_09_002
crossref_primary_10_1016_j_neuroimage_2019_02_068
crossref_primary_10_1016_j_neuroimage_2020_117158
crossref_primary_10_1038_s41467_025_56023_5
crossref_primary_10_1016_j_dcn_2020_100761
crossref_primary_10_1016_j_neuroimage_2017_08_074
crossref_primary_10_3389_fnbeh_2015_00281
crossref_primary_10_1073_pnas_2115699119
crossref_primary_10_1007_s12144_023_05470_8
crossref_primary_10_3389_fncom_2014_00093
crossref_primary_10_1016_j_neuron_2019_06_028
crossref_primary_10_32388_1KC9TH
crossref_primary_10_1007_s43441_021_00316_6
crossref_primary_10_1073_pnas_1513198113
crossref_primary_10_1111_ncn3_12508
crossref_primary_10_1016_j_neuroimage_2015_11_021
crossref_primary_10_1049_ipr2_13100
crossref_primary_10_1007_s11682_015_9460_y
crossref_primary_10_1080_1047840X_2016_1216034
crossref_primary_10_1038_s44159_024_00382_1
crossref_primary_10_1162_jocn_a_00797
crossref_primary_10_1016_j_neures_2018_08_004
crossref_primary_10_1073_pnas_1512144113
crossref_primary_10_1016_j_psychres_2018_04_061
crossref_primary_10_1038_s41583_018_0094_0
crossref_primary_10_1162_jocn_a_01404
crossref_primary_10_1016_j_visres_2022_108131
crossref_primary_10_1038_s41593_019_0406_3
crossref_primary_10_1073_pnas_1719397115
crossref_primary_10_7554_eLife_68344
crossref_primary_10_1093_cercor_bhab325
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1016_j_celrep_2019_02_045
crossref_primary_10_1016_j_neuroimage_2020_117143
crossref_primary_10_3389_fncir_2020_615259
crossref_primary_10_1016_j_cognition_2018_01_008
crossref_primary_10_1016_j_eswa_2023_120392
crossref_primary_10_1109_LRA_2023_3322086
crossref_primary_10_3758_s13423_022_02212_y
crossref_primary_10_1073_pnas_1417347111
crossref_primary_10_1109_TNNLS_2014_2360060
crossref_primary_10_3389_fnsys_2020_00033
crossref_primary_10_1038_s41562_018_0305_8
crossref_primary_10_1111_ejn_15964
crossref_primary_10_3389_fpsyg_2015_01166
crossref_primary_10_1162_jocn_a_00682
crossref_primary_10_1162_jocn_a_01770
crossref_primary_10_3389_fnsys_2019_00031
crossref_primary_10_1007_s11571_022_09862_7
crossref_primary_10_1016_j_cub_2020_07_069
crossref_primary_10_1016_j_neuroimage_2015_11_016
crossref_primary_10_7554_eLife_76384
crossref_primary_10_1038_nn_4128
crossref_primary_10_1016_j_neuropsychologia_2013_11_009
crossref_primary_10_1177_0284185119864843
crossref_primary_10_1146_annurev_neuro_081623_091311
crossref_primary_10_1523_ENEURO_0390_18_2019
crossref_primary_10_1002_hbm_22626
crossref_primary_10_1007_s00426_024_01944_x
crossref_primary_10_1038_s42256_023_00753_y
crossref_primary_10_1103_PhysRevE_90_022715
crossref_primary_10_1146_annurev_neuro_110920_035434
crossref_primary_10_3389_fpsyg_2023_1175740
crossref_primary_10_1111_ejn_15739
crossref_primary_10_1016_j_neuron_2023_02_002
crossref_primary_10_1016_j_bandl_2018_04_004
crossref_primary_10_1111_infa_12188
crossref_primary_10_3389_fnagi_2016_00145
crossref_primary_10_1093_cercor_bhz053
crossref_primary_10_1016_j_neuron_2015_07_004
crossref_primary_10_1016_j_neucom_2022_03_006
crossref_primary_10_1016_j_neuroimage_2021_118615
crossref_primary_10_1016_j_dcn_2024_101360
crossref_primary_10_1016_j_tins_2015_08_009
crossref_primary_10_1126_science_ade1855
crossref_primary_10_1038_s41467_024_53668_6
crossref_primary_10_1016_j_jmp_2016_06_009
crossref_primary_10_1177_026119291604400302
crossref_primary_10_1016_j_tins_2020_07_001
crossref_primary_10_1007_s10489_022_04316_3
crossref_primary_10_1016_j_physrep_2023_03_005
crossref_primary_10_3390_neurolint14020038
crossref_primary_10_3389_fnsys_2018_00029
crossref_primary_10_1177_00222437231194319
crossref_primary_10_1007_s12671_020_01562_9
crossref_primary_10_1109_TCSII_2020_3004616
crossref_primary_10_1038_s41598_019_41376_x
crossref_primary_10_1080_02643294_2019_1607272
crossref_primary_10_1016_j_neuroimage_2020_117479
crossref_primary_10_1016_j_neuroimage_2021_117896
crossref_primary_10_1016_j_ynirp_2022_100154
crossref_primary_10_1371_journal_pbio_2003143
crossref_primary_10_1016_j_compbiomed_2023_106620
crossref_primary_10_1016_j_dcn_2025_101550
crossref_primary_10_1016_j_isci_2021_103683
crossref_primary_10_7717_peerj_7550
crossref_primary_10_1111_mila_12525
crossref_primary_10_1111_cogs_12962
crossref_primary_10_3389_fnhum_2018_00089
crossref_primary_10_1007_s10827_019_00716_6
crossref_primary_10_1016_j_neuron_2022_01_027
crossref_primary_10_1016_j_neuroimage_2017_08_033
crossref_primary_10_1016_j_psychres_2022_114909
crossref_primary_10_1109_TIP_2022_3193288
crossref_primary_10_1080_19411243_2015_1034304
crossref_primary_10_1093_cercor_bhab082
crossref_primary_10_3390_ijms24054579
crossref_primary_10_1097_WNR_0000000000001620
crossref_primary_10_1016_j_heares_2016_05_018
crossref_primary_10_1016_j_neures_2020_05_004
crossref_primary_10_1016_j_neuroimage_2019_03_065
crossref_primary_10_1111_ejn_14424
crossref_primary_10_7554_eLife_83708
crossref_primary_10_2139_ssrn_2654061
crossref_primary_10_1109_TMM_2022_3164261
crossref_primary_10_3389_frym_2023_732405
crossref_primary_10_3389_fnagi_2021_750767
crossref_primary_10_1162_NECO_a_00675
crossref_primary_10_1038_s41598_017_18999_z
crossref_primary_10_1371_journal_pone_0297148
crossref_primary_10_1126_sciadv_aay2739
crossref_primary_10_1523_ENEURO_0512_19_2019
crossref_primary_10_1523_JNEUROSCI_1092_16_2016
crossref_primary_10_1016_j_cub_2020_07_026
crossref_primary_10_1152_jn_00278_2024
crossref_primary_10_1016_j_neuron_2015_05_023
crossref_primary_10_1038_s41467_022_28552_w
crossref_primary_10_1038_s41583_020_0262_x
crossref_primary_10_1038_srep18733
crossref_primary_10_1371_journal_pcbi_1007001
crossref_primary_10_1038_nrn4025
crossref_primary_10_1038_s41467_020_17786_1
crossref_primary_10_1016_j_neuron_2019_05_026
crossref_primary_10_1016_j_celrep_2022_110932
crossref_primary_10_2183_pjab_93_015
crossref_primary_10_1371_journal_pone_0095861
crossref_primary_10_1038_s41598_020_73113_0
crossref_primary_10_5194_hess_22_4425_2018
crossref_primary_10_1080_20445911_2020_1749642
crossref_primary_10_1038_s41598_019_41516_3
crossref_primary_10_1016_j_cognition_2019_06_018
crossref_primary_10_1038_srep30413
crossref_primary_10_1038_s41593_018_0135_z
crossref_primary_10_1146_annurev_devpsych_120321_011300
crossref_primary_10_1038_s41598_025_87517_3
crossref_primary_10_1038_nn_4356
crossref_primary_10_1038_s41586_023_06007_6
crossref_primary_10_1371_journal_pone_0287474
crossref_primary_10_3389_fnins_2023_1197618
crossref_primary_10_1016_j_cognition_2021_104889
crossref_primary_10_1111_nyas_12680
crossref_primary_10_1162_jocn_a_00973
crossref_primary_10_1016_j_neuroscience_2014_01_027
crossref_primary_10_1002_wcs_1575
crossref_primary_10_1016_j_neuron_2014_03_023
crossref_primary_10_1162_jocn_a_01702
crossref_primary_10_1016_j_dcn_2019_100699
crossref_primary_10_1016_j_neuroimage_2021_118136
crossref_primary_10_1017_S0140525X15000965
crossref_primary_10_1126_science_aag2612
crossref_primary_10_1007_s11023_018_9459_4
crossref_primary_10_1093_brain_awad305
crossref_primary_10_1038_s41598_024_56713_y
crossref_primary_10_3758_s13414_018_01642_y
crossref_primary_10_1039_D0NR02184A
crossref_primary_10_1093_cercor_bhae015
crossref_primary_10_1073_pnas_1904502116
crossref_primary_10_3389_fnmol_2021_806376
crossref_primary_10_1093_cercor_bhv041
crossref_primary_10_3389_fnhum_2014_00640
crossref_primary_10_1007_s00702_020_02248_1
crossref_primary_10_1162_neco_a_01301
crossref_primary_10_1038_s41598_018_28845_5
crossref_primary_10_1371_journal_pone_0106753
crossref_primary_10_1038_s41598_023_34644_4
crossref_primary_10_1016_j_neuroscience_2015_11_015
crossref_primary_10_52547_shefa_10_1_21
crossref_primary_10_1016_j_neuron_2021_11_016
crossref_primary_10_1073_pnas_1619788114
crossref_primary_10_1109_TMM_2023_3272474
crossref_primary_10_1097_WCO_0000000000001125
crossref_primary_10_1016_j_biopsycho_2016_08_006
crossref_primary_10_1002_acn3_415
crossref_primary_10_1016_j_crbeha_2023_100139
crossref_primary_10_1093_cercor_bhab163
crossref_primary_10_1146_annurev_vision_100720_103343
crossref_primary_10_1016_j_neuron_2024_07_009
crossref_primary_10_1002_adhm_201700143
crossref_primary_10_1016_j_cognition_2021_104864
crossref_primary_10_1073_pnas_1718154115
crossref_primary_10_1093_cercor_bhy345
crossref_primary_10_1523_JNEUROSCI_1296_23_2024
crossref_primary_10_1007_s13218_014_0341_0
crossref_primary_10_1111_psyp_14123
crossref_primary_10_1002_hbm_26162
crossref_primary_10_1016_j_biosystems_2021_104452
crossref_primary_10_7554_eLife_76096
crossref_primary_10_1098_rstb_2016_0115
crossref_primary_10_3389_fnins_2023_1276706
crossref_primary_10_1523_JNEUROSCI_2948_19_2020
crossref_primary_10_1007_s00429_018_1679_0
crossref_primary_10_1016_j_cortex_2016_03_007
crossref_primary_10_1016_j_nlm_2023_107826
crossref_primary_10_1038_s41598_020_77298_2
crossref_primary_10_1007_s11633_022_1370_z
crossref_primary_10_1016_j_celrep_2024_114521
crossref_primary_10_1016_j_neuron_2018_12_009
crossref_primary_10_1007_s00429_022_02455_4
crossref_primary_10_1523_JNEUROSCI_0527_15_2015
crossref_primary_10_1016_j_cub_2016_06_009
crossref_primary_10_1007_s10670_017_9951_x
crossref_primary_10_1080_1047840X_2016_1199221
crossref_primary_10_1371_journal_pcbi_1010609
crossref_primary_10_3130_aije_90_19
crossref_primary_10_1111_ejn_15206
crossref_primary_10_1163_22134808_bja10035
crossref_primary_10_1101_lm_052159_120
crossref_primary_10_1111_ejn_15440
crossref_primary_10_1038_s41467_018_07007_1
crossref_primary_10_1016_j_neuroimage_2021_118246
crossref_primary_10_1098_rstb_2016_0104
crossref_primary_10_1098_rstb_2019_0703
crossref_primary_10_1016_j_neubiorev_2023_105508
crossref_primary_10_1038_ncomms13804
crossref_primary_10_1038_s41467_024_51817_5
crossref_primary_10_1109_TCDS_2021_3086267
crossref_primary_10_3389_fncom_2020_554097
crossref_primary_10_1016_j_cortex_2021_01_001
crossref_primary_10_1038_mp_2016_183
crossref_primary_10_1088_1674_4926_23120037
crossref_primary_10_3758_s13415_020_00818_0
crossref_primary_10_1177_0333102415583144
crossref_primary_10_3389_fpsyg_2018_02083
crossref_primary_10_1016_j_ijpsycho_2015_12_006
crossref_primary_10_1016_j_neuroimage_2017_07_063
crossref_primary_10_3389_fpsyg_2014_00932
crossref_primary_10_1016_j_tics_2013_12_002
crossref_primary_10_7554_eLife_87126_5
crossref_primary_10_1111_nyas_13333
crossref_primary_10_1167_jov_21_7_5
crossref_primary_10_3389_fncir_2024_1280604
crossref_primary_10_1016_j_neunet_2024_106437
crossref_primary_10_1111_ejn_14121
crossref_primary_10_1007_s41470_020_00075_z
crossref_primary_10_1016_j_procs_2020_09_172
crossref_primary_10_1016_j_neunet_2023_07_048
crossref_primary_10_1117_1_NPh_11_3_033403
crossref_primary_10_1093_scan_nsx048
crossref_primary_10_1016_j_neuroimage_2020_117084
crossref_primary_10_3389_fnana_2024_1364675
crossref_primary_10_1016_j_celrep_2021_108774
crossref_primary_10_1016_j_cub_2025_02_009
crossref_primary_10_1016_j_neuron_2020_09_024
crossref_primary_10_1146_annurev_vision_091517_034110
crossref_primary_10_1038_s41586_022_05014_3
crossref_primary_10_1523_JNEUROSCI_1895_20_2021
crossref_primary_10_1093_cercor_bhw176
crossref_primary_10_1111_ejn_13286
crossref_primary_10_1371_journal_pcbi_1009517
crossref_primary_10_1109_ACCESS_2021_3106698
crossref_primary_10_3389_fncir_2014_00082
crossref_primary_10_1038_s41928_020_0422_z
crossref_primary_10_1002_brb3_1917
crossref_primary_10_1523_JNEUROSCI_1575_16_2016
crossref_primary_10_1177_0956797615577619
crossref_primary_10_12688_f1000research_9386_1
crossref_primary_10_1007_s11682_019_00062_2
crossref_primary_10_7554_eLife_70469
crossref_primary_10_1016_j_neubiorev_2023_105402
crossref_primary_10_1155_ijbi_4464776
crossref_primary_10_1016_j_cobeha_2021_03_009
crossref_primary_10_1016_j_neuroimage_2022_119483
crossref_primary_10_3389_feduc_2023_1266800
crossref_primary_10_3389_fnhum_2016_00658
crossref_primary_10_1111_nyas_14320
crossref_primary_10_1080_0964704X_2024_2405116
crossref_primary_10_1111_nyas_14321
crossref_primary_10_1016_j_prdoa_2020_100036
crossref_primary_10_1038_nrneurol_2014_108
crossref_primary_10_1073_pnas_1513752113
crossref_primary_10_1007_s11229_016_1178_x
crossref_primary_10_18510_hssr_2020_84105
crossref_primary_10_1162_neco_a_01739
crossref_primary_10_1162_imag_a_00360
crossref_primary_10_1016_j_conb_2022_102628
crossref_primary_10_1016_j_brainres_2022_148191
crossref_primary_10_1086_714914
crossref_primary_10_1016_j_tics_2023_02_001
crossref_primary_10_1017_S0952523813000394
crossref_primary_10_1016_j_cub_2017_11_056
crossref_primary_10_3389_fnhum_2024_1280585
crossref_primary_10_1515_nf_2016_A107
crossref_primary_10_1016_j_cub_2013_09_010
crossref_primary_10_1016_j_ridd_2023_104619
crossref_primary_10_1146_annurev_neuro_102119_103452
crossref_primary_10_1016_j_neuron_2018_09_024
crossref_primary_10_1016_j_neuropsychologia_2024_109035
crossref_primary_10_1017_S0140525X15002617
crossref_primary_10_1038_nature23019
crossref_primary_10_1515_revneuro_2015_0018
crossref_primary_10_1038_s41467_022_31440_y
crossref_primary_10_1109_TITS_2022_3177640
crossref_primary_10_1016_j_conb_2014_12_007
crossref_primary_10_1073_pnas_2119614119
crossref_primary_10_1007_s40820_020_00419_z
crossref_primary_10_1016_j_conb_2018_04_020
crossref_primary_10_1016_j_concog_2015_04_015
crossref_primary_10_3389_fpsyg_2017_00852
crossref_primary_10_1016_j_neuron_2022_10_001
crossref_primary_10_1080_09515089_2022_2062314
crossref_primary_10_1146_annurev_neuro_100520_012117
crossref_primary_10_1038_s41537_025_00553_w
crossref_primary_10_1016_j_cogdev_2020_100951
crossref_primary_10_3389_fncom_2023_1136010
crossref_primary_10_7554_eLife_53552
crossref_primary_10_3389_fnhum_2022_862703
crossref_primary_10_1017_S0140525X15002629
crossref_primary_10_1111_ejn_16105
crossref_primary_10_3389_fnhum_2015_00109
crossref_primary_10_1016_j_concog_2017_12_003
crossref_primary_10_3389_fpsyg_2015_01676
crossref_primary_10_1016_j_neunet_2019_12_004
crossref_primary_10_1523_ENEURO_0006_20_2020
crossref_primary_10_1002_hbm_70177
crossref_primary_10_1152_jn_00058_2015
crossref_primary_10_1007_s13164_015_0294_8
crossref_primary_10_1007_s10462_020_09901_x
crossref_primary_10_1017_S0140525X15002630
crossref_primary_10_3758_s13414_018_1625_5
crossref_primary_10_1016_j_neuroimage_2022_119497
crossref_primary_10_1038_s41562_018_0455_8
crossref_primary_10_1038_s41467_024_52778_5
crossref_primary_10_1073_pnas_2216942120
crossref_primary_10_1371_journal_pcbi_1008629
crossref_primary_10_1007_s00221_024_06989_3
crossref_primary_10_1073_pnas_2213080119
crossref_primary_10_2217_fnl_2019_0012
crossref_primary_10_1016_j_cognition_2020_104516
crossref_primary_10_1016_j_concog_2022_103301
crossref_primary_10_1016_j_bandc_2014_07_008
crossref_primary_10_1038_s42003_023_04912_0
crossref_primary_10_1016_j_nicl_2017_01_004
crossref_primary_10_1038_nn_3532
crossref_primary_10_1109_ACCESS_2018_2851841
crossref_primary_10_1038_s41531_023_00532_x
crossref_primary_10_1016_j_neuron_2017_08_036
crossref_primary_10_1007_s00422_024_00998_9
crossref_primary_10_1109_TCSVT_2023_3266222
crossref_primary_10_1136_bmjment_2022_300639
crossref_primary_10_1016_j_neuron_2016_10_029
crossref_primary_10_1002_hbm_25353
crossref_primary_10_1007_s40708_017_0072_8
crossref_primary_10_1093_brain_awae187
crossref_primary_10_1016_j_pneurobio_2021_101998
crossref_primary_10_1038_s41593_020_0677_8
crossref_primary_10_1038_s41598_019_50835_4
crossref_primary_10_1038_s41598_020_62882_3
crossref_primary_10_1007_s12264_021_00789_3
crossref_primary_10_1017_S0140525X15002800
crossref_primary_10_1016_j_bbr_2023_114813
crossref_primary_10_1371_journal_pone_0219725
crossref_primary_10_1007_s11042_024_18974_7
crossref_primary_10_3389_fncom_2024_1273053
crossref_primary_10_1016_j_cogsys_2020_10_013
crossref_primary_10_1093_cercor_bhv226
crossref_primary_10_3389_fnint_2022_900715
crossref_primary_10_1016_j_procs_2024_09_271
crossref_primary_10_1155_2021_8895579
crossref_primary_10_1177_1754073917709939
crossref_primary_10_7554_eLife_15252
crossref_primary_10_1007_s11431_024_2755_x
crossref_primary_10_1016_j_neubiorev_2021_09_009
crossref_primary_10_1093_nc_niaa024
crossref_primary_10_3389_fnhum_2023_1220178
crossref_primary_10_1088_1741_2552_aad7b1
crossref_primary_10_3389_fnins_2024_1308370
crossref_primary_10_3389_fnhum_2015_00651
crossref_primary_10_7759_cureus_13718
crossref_primary_10_1016_j_nantod_2024_102332
crossref_primary_10_1016_j_concog_2019_102838
crossref_primary_10_3389_fpsyg_2014_00206
crossref_primary_10_1016_j_tics_2014_05_005
crossref_primary_10_22201_fesa_figuras_2020_1_3_117
crossref_primary_10_1016_j_cortex_2018_05_021
crossref_primary_10_1002_nbm_3672
crossref_primary_10_1162_jocn_a_01093
crossref_primary_10_3390_jmse8100799
crossref_primary_10_1016_j_neuroimage_2018_11_039
crossref_primary_10_1523_JNEUROSCI_1857_16_2016
crossref_primary_10_1002_hipo_22728
crossref_primary_10_1016_j_neuron_2014_01_025
crossref_primary_10_3389_fncir_2023_1253609
crossref_primary_10_1016_j_schres_2020_11_012
crossref_primary_10_1016_j_ridd_2021_104092
crossref_primary_10_3389_fpsyg_2017_01501
crossref_primary_10_1002_hbm_23196
crossref_primary_10_1016_j_conb_2020_11_009
crossref_primary_10_1016_j_cviu_2016_04_009
crossref_primary_10_1093_cercor_bhv250
crossref_primary_10_1002_hbm_25252
crossref_primary_10_1016_j_neuron_2017_06_006
crossref_primary_10_1177_17456916221148147
crossref_primary_10_1038_s42003_024_06673_w
crossref_primary_10_1016_j_tics_2019_12_015
crossref_primary_10_1371_journal_pbio_3001750
crossref_primary_10_1016_j_neuron_2015_03_032
crossref_primary_10_1088_1741_2552_ac72c2
crossref_primary_10_1177_0284185119867644
crossref_primary_10_1016_j_brainres_2022_148130
crossref_primary_10_3390_brainsci12101368
crossref_primary_10_1007_s11229_016_1030_3
crossref_primary_10_1016_j_neuron_2022_05_011
crossref_primary_10_1080_15248372_2019_1605996
crossref_primary_10_3389_fnins_2018_01003
crossref_primary_10_1016_j_cortex_2019_12_023
crossref_primary_10_1371_journal_pone_0226000
crossref_primary_10_1080_23273798_2015_1120878
crossref_primary_10_1016_j_bpsc_2023_08_004
crossref_primary_10_3233_VES_201527
crossref_primary_10_1152_jn_00113_2017
crossref_primary_10_1371_journal_pbio_1002611
crossref_primary_10_1016_j_neubiorev_2024_105538
crossref_primary_10_1016_j_concog_2016_05_003
crossref_primary_10_2183_pjab_98_007
crossref_primary_10_1016_j_conb_2015_12_001
crossref_primary_10_1016_j_neuron_2024_09_021
crossref_primary_10_3389_fcomm_2017_00018
crossref_primary_10_1109_TCSVT_2021_3104305
crossref_primary_10_1167_jov_24_6_1
crossref_primary_10_7554_eLife_22901
crossref_primary_10_1016_j_cortex_2015_08_019
crossref_primary_10_1109_JSEN_2024_3444274
crossref_primary_10_3389_fnins_2021_758388
crossref_primary_10_1038_s41598_021_96971_8
crossref_primary_10_1016_j_neuroimage_2019_06_003
crossref_primary_10_1177_09567976231177968
crossref_primary_10_1093_nc_niab026
crossref_primary_10_1049_cit2_12265
Cites_doi 10.1016/j.tics.2006.11.009
10.1162/089976699300016827
10.1038/35015079
10.1523/JNEUROSCI.09-07-02432.1989
10.1371/journal.pone.0004651
10.1038/nn1161
10.1016/S0166-2236(97)01216-2
10.1152/jn.00429.2011
10.1523/JNEUROSCI.15-02-01605.1995
10.1016/j.neuron.2011.06.015
10.1002/cne.902160307
10.1038/14819
10.1016/j.neuron.2006.06.003
10.1016/S0896-6273(03)00097-7
10.1038/370140a0
10.1523/JNEUROSCI.16-07-02381.1996
10.1016/j.neuron.2005.03.002
10.1038/nature07382
10.1038/338334a0
10.1098/rstb.2002.1107
10.1016/j.neuron.2007.06.015
10.1523/JNEUROSCI.4030-07.2008
10.1523/JNEUROSCI.18-03-01161.1998
10.1038/382539a0
10.1016/0042-6989(93)90156-Q
10.1038/4580
10.1523/JNEUROSCI.07-07-02239.1987
10.1002/1096-9861(20000925)425:3<345::AID-CNE2>3.0.CO;2-O
10.1093/cercor/4.3.300
10.1152/jn.2001.85.1.134
10.1016/S0042-6989(02)00403-0
10.1016/j.neuron.2010.03.013
10.1162/0899766053429435
10.1098/rspb.1999.0736
10.1038/nn876
10.1073/pnas.96.6.3314
10.1126/science.3353728
10.1523/JNEUROSCI.3825-12.2013
10.1126/science.4023713
10.1038/699
10.1007/BF00337113
10.1523/JNEUROSCI.16-22-07376.1996
10.1093/cercor/11.8.761
10.1016/S1053-8119(03)00162-9
10.1038/44134
10.1126/science.285.5425.257
10.1007/BF00202899
10.1152/jn.1997.77.1.24
10.1038/35004588
10.1016/S0896-6273(00)80499-7
10.1073/pnas.95.19.11489
10.1037/0096-3445.113.4.501
10.1016/j.neuron.2011.04.032
10.1126/science.1057099
10.1038/nn.2439
10.1017/S0952523800002480
10.1152/jn.2001.86.5.2344
10.1152/jn.00289.2002
10.1146/annurev.ne.18.030195.003011
10.1523/JNEUROSCI.4911-09.2010
10.1126/science.7063863
10.1126/science.1171402
10.1126/science.1223082
10.1016/S0896-6273(00)81206-4
10.1038/385157a0
10.1523/JNEUROSCI.5168-09.2010
10.1038/nrn1888
10.1073/pnas.052379899
10.1523/JNEUROSCI.06-04-01160.1986
10.1073/pnas.1202095109
10.1167/8.7.30
10.1038/78856
10.1152/jn.1993.70.3.909
10.1523/JNEUROSCI.03-05-01116.1983
10.1152/jn.2000.84.4.2048
10.1016/S0896-6273(03)00287-3
10.1523/JNEUROSCI.19-05-01736.1999
10.1016/j.neuron.2008.08.007
10.1038/nn.2147
10.1152/jn.1996.76.5.2841
10.1016/S0896-6273(00)80734-5
10.1016/j.neuron.2009.09.013
10.1523/JNEUROSCI.4465-09.2009
10.1016/j.neuron.2008.04.013
10.1007/BF00410640
10.1038/nature04258
10.1016/S0896-6273(00)80713-8
10.1523/JNEUROSCI.19-01-00431.1999
10.1523/JNEUROSCI.23-20-07690.2003
10.1016/S0079-6123(03)14403-2
10.1038/nn957
10.1016/j.neuron.2006.04.035
10.1038/26475
10.1093/cercor/6.3.482
10.1016/j.heares.2005.01.015
10.1038/nn1255
10.1038/87470
10.1109/TPAMI.2007.70840
10.1038/nn.2669
10.1038/nn.2711
10.1038/nn1304
10.1016/j.neuron.2012.04.032
10.1038/24608
10.1093/cercor/bhn103
10.1016/j.neuron.2007.02.028
10.1146/annurev.ne.18.030195.001205
10.1152/jn.00740.2003
10.1038/280120a0
10.1037/0096-3445.109.2.160
10.1016/S0079-6123(06)54005-1
10.1016/j.neuron.2007.12.011
10.1093/cercor/10.9.840
10.1152/jn.1998.80.6.2918
10.1152/jn.1997.78.3.1373
10.1523/JNEUROSCI.2612-09.2009
10.1016/S0896-6273(02)01029-2
10.1038/21176
10.1523/JNEUROSCI.21-05-01676.2001
10.1073/pnas.96.4.1663
10.1037/0096-3445.123.2.161
10.1016/S0959-4388(03)00033-3
10.1126/science.1055465
10.1126/science.1553535
10.1016/S0166-2236(00)01814-2
10.1038/35041567
10.1523/JNEUROSCI.17-06-02112.1997
10.1523/JNEUROSCI.6295-11.2012
10.1126/science.282.5386.108
10.1038/nature05279
10.1523/JNEUROSCI.4499-07.2008
10.1126/science.278.5345.1950
10.1152/jn.00519.2002
10.1073/pnas.0501684102
10.1016/j.neuron.2012.06.030
10.1523/JNEUROSCI.20-17-06594.2000
10.1016/j.neuron.2009.01.002
10.1523/JNEUROSCI.14-04-02178.1994
10.1152/jn.01207.2005
10.1038/363345a0
10.1016/j.neuron.2007.12.030
10.1038/nn.2237
10.1073/pnas.1105855108
10.1016/j.neuron.2010.05.005
10.1016/j.neuron.2007.05.019
10.1016/S0166-4328(01)00358-8
ContentType Journal Article
Copyright Springer Nature Limited 2013
COPYRIGHT 2013 Nature Publishing Group
Copyright Nature Publishing Group May 2013
Copyright_xml – notice: Springer Nature Limited 2013
– notice: COPYRIGHT 2013 Nature Publishing Group
– notice: Copyright Nature Publishing Group May 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2M
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1038/nrn3476
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
ProQuest Medical Database
Psychology Collection (Proquest)
Biological Science Database (Proquest)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central Basic
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic

MEDLINE

ProQuest One Psychology

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-0048
1469-3178
EndPage 363
ExternalDocumentID PMC3864796
2949563281
A329302221
23595013
10_1038_nrn3476
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY007968
– fundername: NEI NIH HHS
  grantid: EY007968
– fundername: National Eye Institute : NEI
  grantid: R01 EY007968 || EY
GroupedDBID ---
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABIVO
ABJNI
ABLJU
ABNNU
ABUWG
ACGFS
ACIWK
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
AENEX
AFBBN
AFKRA
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
IPY
ITC
L-9
M1P
M2M
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RIG
RNR
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ACSTC
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AGQPQ
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
PMFND
7QG
7QP
7QR
7TK
7TM
7XB
8FD
8FE
8FH
8FK
FR3
K9.
LK8
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c530t-afe4e6c0ca5a5158b43574cd35349a34f2c0b9e7a2f21bb001250436e04c8ed33
IEDL.DBID 7X7
ISSN 1471-003X
1471-0048
IngestDate Thu Aug 21 17:58:06 EDT 2025
Thu Sep 04 17:41:14 EDT 2025
Thu Sep 04 15:45:24 EDT 2025
Fri Jul 25 09:04:46 EDT 2025
Tue Jun 17 21:18:19 EDT 2025
Tue Jun 10 20:31:14 EDT 2025
Mon Jul 21 05:57:22 EDT 2025
Tue Jul 01 00:42:00 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Fri Feb 21 02:38:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-afe4e6c0ca5a5158b43574cd35349a34f2c0b9e7a2f21bb001250436e04c8ed33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3864796
PMID 23595013
PQID 1330852417
PQPubID 44265
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3864796
proquest_miscellaneous_1352285057
proquest_miscellaneous_1331090006
proquest_journals_1330852417
gale_infotracmisc_A329302221
gale_infotracacademiconefile_A329302221
pubmed_primary_23595013
crossref_primary_10_1038_nrn3476
crossref_citationtrail_10_1038_nrn3476
springer_journals_10_1038_nrn3476
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Neuroscience
PublicationTitleAbbrev Nat Rev Neurosci
PublicationTitleAlternate Nat Rev Neurosci
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References McManus, Li, Gilbert (CR8) 2011; 108
Rao, Ballard (CR23) 1999; 2
Reynolds, Alborzian, Stoner (CR58) 2003; 43
Riesenhuber, Poggio (CR65) 1999; 2
Kastner, Pinsk, De Weerd, Desimone, Ungerleider (CR140) 1999; 22
Bulthoff, Bulthoff, Sinha (CR51) 1998; 1
Castelo-Branco, Goebel, Neuenschwander, Singer (CR119) 2000; 405
Averbeck, Latham, Pouget (CR93) 2006; 7
Chalk (CR117) 2010; 66
von der Malsburg, Schneider (CR123) 1986; 54
Lamme, Spekreijse (CR129) 1998; 396
Zhou, Desimone (CR67) 2011; 70
Steinmetz (CR131) 2000; 404
Borenstein, Ullman (CR66) 2008; 30
Poort, Roelfsema (CR100) 2009; 19
Thomson, Kristan (CR10) 2005; 17
Spratling (CR24) 2010; 30
Duncan (CR55) 1984; 113
Sherman, Guillery (CR146) 2011; 106
Cromer, Roy, Miller (CR72) 2010; 66
Hupe (CR15) 2001; 85
McAlonan, Cavanaugh, Wurtz (CR22) 2008; 456
Chelazzi, Miller, Duncan, Desimone (CR32) 2001; 11
Spitzer, Desimone, Moran (CR30) 1988; 240
Somers, Dale, Seiffert, Tootell (CR61) 1999; 96
McAdams, Maunsell (CR36) 1999; 19
Palanca, DeAngelis (CR127) 2005; 46
Poghosyan, Ioannides (CR44) 2008; 58
Kapadia, Westheimer, Gilbert (CR1) 2000; 84
Panzeri, Schultz, Treves, Rolls (CR95) 1999; 266
Rockland, Knutson (CR142) 2000; 425
Rockland, Lund (CR114) 1983; 216
O'Connor, Fukui, Pinsk, Kastner (CR21) 2002; 5
Chen (CR25) 2008; 11
Gilbert, Wiesel (CR112) 1983; 3
Gail, Brinksmeyer, Eckhorn (CR120) 2000; 10
Ito, Gilbert (CR35) 1999; 22
Ullman (CR73) 2007; 11
Reynolds, Pasternak, Desimone (CR52) 2000; 26
Gilbert, Sigman (CR109) 2007; 54
Riehle, Grun, Diesmann, Aertsen (CR133) 1997; 278
Umeno, Goldberg (CR86) 2001; 86
Reynolds, Heeger (CR107) 2009; 61
Ts'o, Gilbert, Wiesel (CR115) 1986; 6
Bair, Cavanaugh, Movshon (CR16) 2003; 23
Oram, Foldiak, Perrett, Sengpiel (CR94) 1998; 21
Li, Piech, Gilbert (CR20) 2004; 7
Pascual-Leone, Walsh (CR144) 2001; 292
Gu (CR97) 2011; 71
Golcu, Gilbert (CR74) 2009; 29
Zhang, von der Heydt (CR7) 2010; 30
Maunsell, Cook (CR42) 2002; 357
Angelucci, Bressloff (CR17) 2006; 154
Murray, Wojciulik (CR108) 2004; 7
Colby, Duhamel, Goldberg (CR83) 1996; 76
Rockland, Lund (CR113) 1982; 215
Watanabe (CR46) 1998; 95
Saalmann, Pinsk, Wang, Li, Kastner (CR145) 2012; 337
Li, Gilbert (CR12) 2002; 88
Zhou, Friedman, von der Heydt (CR4) 2000; 20
Gandhi, Heeger, Boynton (CR43) 1999; 96
Gray, Konig, Engel, Singer (CR125) 1989; 338
Womelsdorf, Fries, Mitra, Desimone (CR135) 2006; 439
Blaser, Pylyshyn, Holcombe (CR57) 2000; 408
Kreiter, Singer (CR121) 1996; 16
Al-Aidroos, Said, Turk-Browne (CR138) 2012; 109
Yantis, Serences (CR59) 2003; 13
Armstrong, Chang, Moore (CR87) 2009; 29
Roelfsema, Engel, Konig, Singer (CR134) 1997; 385
Lamme (CR19) 1995; 15
Ninomiya, Sawamura, Inoue, Takada (CR70) 2012; 32
Sommer, Wurtz (CR79) 2006; 444
Womelsdorf, Anton-Erxleben, Treue (CR9) 2008; 28
Crist, Li, Gilbert (CR38) 2001; 4
Poort (CR60) 2012; 75
Gilbert, Wiesel (CR111) 1979; 280
Reynolds, Chelazzi, Desimone (CR37) 1999; 19
Eckhorn (CR124) 1988; 60
Saenz, Buracas, Boynton (CR62) 2002; 5
Morishima (CR69) 2009; 12
Lee, Port, Kruse, Georgopoulos (CR91) 1998; 18
Mitchell, Sundberg, Reynolds (CR99) 2009; 63
Kusunoki, Goldberg (CR80) 2003; 89
Romo, Hernandez, Zainos, Salinas (CR96) 2003; 38
Rockland, Saleem, Tanaka (CR141) 1994; 11
Ito, Westheimer, Gilbert (CR47) 1998; 20
O'Craven, Downing, Kanwisher (CR54) 1999; 401
Dong, Mihalas, Qiu, von der Heydt, Niebur (CR128) 2008; 8
Kastner, De Weerd, Desimone, Ungerleider (CR45) 1998; 282
Fries, Reynolds, Rorie, Desimone (CR130) 2001; 291
Monosov, Trageser, Thompson (CR68) 2008; 57
Williford, Maunsell (CR105) 2006; 96
Gilbert, Wiesel (CR11) 1989; 9
Giesbrecht, Woldorff, Song, Mangun (CR53) 2003; 19
Fries, Womelsdorf, Oostenveld, Desimone (CR137) 2008; 28
Rockland, Van Hoesen (CR143) 1994; 4
Batista, Buneo, Snyder, Andersen (CR84) 1999; 285
Desimone, Duncan (CR41) 1995; 18
Motter (CR49) 1994; 14
Wertheimer (CR64) 1923; 4
Serences, Boynton (CR63) 2007; 55
Roelfsema, Lamme, Spekreijse (CR3) 1998; 395
Egly, Driver, Rafal (CR56) 1994; 123
Posner, Snyder, Davidson (CR27) 1980; 109
Li, Piech, Gilbert (CR5) 2006; 50
Jack, Shulman, Snyder, McAvoy, Corbetta (CR103) 2006; 51
Zohary, Shadlen, Newsome (CR88) 1994; 370
Treue, Martinez Trujillo (CR50) 1999; 399
Moran, Desimone (CR28) 1985; 229
Herrmann, Montaser-Kouhsari, Carrasco, Heeger (CR104) 2010; 13
Reynolds, Desimone (CR40) 2003; 37
Luck, Chelazzi, Hillyard, Desimone (CR34) 1997; 77
Gawne, Kjaer, Hertz, Richmond (CR90) 1996; 6
Lee, Maunsell (CR106) 2009; 4
Cohen, Newsome (CR102) 2008; 60
Stettler, Das, Bennett, Gilbert (CR14) 2002; 36
Umeno, Goldberg (CR81) 1997; 78
Ress, Backus, Heeger (CR139) 2000; 3
CR18
Mountcastle, Motter, Steinmetz, Sestokas (CR29) 1987; 7
Bland, Oddie (CR132) 2001; 127
Field, Hayes, Hess (CR110) 1993; 33
Nakamura, Colby (CR82) 2002; 99
Gilbert, Li (CR13) 2012; 75
Cohen, Maunsell (CR98) 2009; 12
Gregoriou, Gotts, Zhou, Desimone (CR136) 2009; 324
Li, Piech, Gilbert (CR6) 2008; 57
Bair, Zohary, Newsome (CR89) 2001; 21
Singer, Gray (CR122) 1995; 18
Treue (CR39) 2001; 24
Treue, Maunsell (CR33) 1996; 382
Chelazzi, Duncan, Miller, Desimone (CR48) 1998; 80
Abbott, Dayan (CR92) 1999; 11
Zipser, Lamme, Schiller (CR2) 1996; 16
Rolfs, Jonikaitis, Deubel, Cavanagh (CR78) 2011; 14
Schlack, Albright (CR85) 2007; 53
Bosking, Zhang, Schofield, Fitzpatrick (CR116) 1997; 17
Ramalingam, McManus, Li, Gilbert (CR101) 2013; 33
Wurtz, Sommer (CR76) 2004; 144
Fritz, Elhilali, Shamma (CR71) 2005; 206
Roelfsema, Lamme, Spekreijse (CR126) 2004; 7
Motter (CR26) 1993; 70
Chelazzi, Miller, Duncan, Desimone (CR31) 1993; 363
Gilbert (CR147) 2012
Sommer, Wurtz (CR75) 2004; 91
Duhamel, Colby, Goldberg (CR77) 1992; 255
Haynes, Tregellas, Rees (CR118) 2005; 102
I Bulthoff (BFnrn3476_CR51) 1998; 1
S Yantis (BFnrn3476_CR59) 2003; 13
A Pascual-Leone (BFnrn3476_CR144) 2001; 292
AI Jack (BFnrn3476_CR103) 2006; 51
VB Mountcastle (BFnrn3476_CR29) 1987; 7
DY Ts'o (BFnrn3476_CR115) 1986; 6
PR Roelfsema (BFnrn3476_CR3) 1998; 395
LF Abbott (BFnrn3476_CR92) 1999; 11
L Chelazzi (BFnrn3476_CR48) 1998; 80
K Nakamura (BFnrn3476_CR82) 2002; 99
MA Sommer (BFnrn3476_CR75) 2004; 91
CJ McAdams (BFnrn3476_CR36) 1999; 19
L Chelazzi (BFnrn3476_CR31) 1993; 363
W Li (BFnrn3476_CR20) 2004; 7
MI Posner (BFnrn3476_CR27) 1980; 109
KS Rockland (BFnrn3476_CR142) 2000; 425
D Golcu (BFnrn3476_CR74) 2009; 29
JD Haynes (BFnrn3476_CR118) 2005; 102
BFnrn3476_CR18
BB Averbeck (BFnrn3476_CR93) 2006; 7
M Riesenhuber (BFnrn3476_CR65) 1999; 2
M Saenz (BFnrn3476_CR62) 2002; 5
CD Gilbert (BFnrn3476_CR109) 2007; 54
JN McManus (BFnrn3476_CR8) 2011; 108
M Kusunoki (BFnrn3476_CR80) 2003; 89
JH Reynolds (BFnrn3476_CR107) 2009; 61
TJ Gawne (BFnrn3476_CR90) 1996; 6
CD Gilbert (BFnrn3476_CR11) 1989; 9
BH Bland (BFnrn3476_CR132) 2001; 127
A Schlack (BFnrn3476_CR85) 2007; 53
CD Gilbert (BFnrn3476_CR147) 2012
JH Reynolds (BFnrn3476_CR37) 1999; 19
D Lee (BFnrn3476_CR91) 1998; 18
H Zhou (BFnrn3476_CR4) 2000; 20
KS Rockland (BFnrn3476_CR143) 1994; 4
KM Armstrong (BFnrn3476_CR87) 2009; 29
C von der Malsburg (BFnrn3476_CR123) 1986; 54
PN Steinmetz (BFnrn3476_CR131) 2000; 404
DD Stettler (BFnrn3476_CR14) 2002; 36
CD Gilbert (BFnrn3476_CR112) 1983; 3
J Poort (BFnrn3476_CR60) 2012; 75
RE Crist (BFnrn3476_CR38) 2001; 4
JH Reynolds (BFnrn3476_CR40) 2003; 37
VA Lamme (BFnrn3476_CR129) 1998; 396
M Chalk (BFnrn3476_CR117) 2010; 66
CM Gray (BFnrn3476_CR125) 1989; 338
M Ito (BFnrn3476_CR35) 1999; 22
N Al-Aidroos (BFnrn3476_CR138) 2012; 109
JM Hupe (BFnrn3476_CR15) 2001; 85
J Duncan (BFnrn3476_CR55) 1984; 113
J Moran (BFnrn3476_CR28) 1985; 229
JT Serences (BFnrn3476_CR63) 2007; 55
AP Batista (BFnrn3476_CR84) 1999; 285
RP Rao (BFnrn3476_CR23) 1999; 2
N Ramalingam (BFnrn3476_CR101) 2013; 33
J Fritz (BFnrn3476_CR71) 2005; 206
S Kastner (BFnrn3476_CR140) 1999; 22
M Ito (BFnrn3476_CR47) 1998; 20
S Ullman (BFnrn3476_CR73) 2007; 11
M Wertheimer (BFnrn3476_CR64) 1923; 4
A Gail (BFnrn3476_CR120) 2000; 10
M Rolfs (BFnrn3476_CR78) 2011; 14
CD Gilbert (BFnrn3476_CR13) 2012; 75
SM Sherman (BFnrn3476_CR146) 2011; 106
DC Somers (BFnrn3476_CR61) 1999; 96
JF Mitchell (BFnrn3476_CR99) 2009; 63
B Giesbrecht (BFnrn3476_CR53) 2003; 19
MW Oram (BFnrn3476_CR94) 1998; 21
T Williford (BFnrn3476_CR105) 2006; 96
KS Rockland (BFnrn3476_CR114) 1983; 216
PR Roelfsema (BFnrn3476_CR134) 1997; 385
T Womelsdorf (BFnrn3476_CR135) 2006; 439
Y Morishima (BFnrn3476_CR69) 2009; 12
P Fries (BFnrn3476_CR137) 2008; 28
K McAlonan (BFnrn3476_CR22) 2008; 456
IE Monosov (BFnrn3476_CR68) 2008; 57
CD Gilbert (BFnrn3476_CR111) 1979; 280
JA Cromer (BFnrn3476_CR72) 2010; 66
MK Kapadia (BFnrn3476_CR1) 2000; 84
K Zipser (BFnrn3476_CR2) 1996; 16
W Bair (BFnrn3476_CR16) 2003; 23
MM Umeno (BFnrn3476_CR81) 1997; 78
CL Colby (BFnrn3476_CR83) 1996; 76
W Li (BFnrn3476_CR6) 2008; 57
SO Murray (BFnrn3476_CR108) 2004; 7
S Treue (BFnrn3476_CR33) 1996; 382
MR Cohen (BFnrn3476_CR98) 2009; 12
DH O'Connor (BFnrn3476_CR21) 2002; 5
W Li (BFnrn3476_CR5) 2006; 50
KS Rockland (BFnrn3476_CR141) 1994; 11
H Spitzer (BFnrn3476_CR30) 1988; 240
Y Dong (BFnrn3476_CR128) 2008; 8
M Castelo-Branco (BFnrn3476_CR119) 2000; 405
JH Reynolds (BFnrn3476_CR52) 2000; 26
T Ninomiya (BFnrn3476_CR70) 2012; 32
S Panzeri (BFnrn3476_CR95) 1999; 266
E Blaser (BFnrn3476_CR57) 2000; 408
P Fries (BFnrn3476_CR130) 2001; 291
R Eckhorn (BFnrn3476_CR124) 1988; 60
SJ Luck (BFnrn3476_CR34) 1997; 77
KM O'Craven (BFnrn3476_CR54) 1999; 401
R Desimone (BFnrn3476_CR41) 1995; 18
SP Gandhi (BFnrn3476_CR43) 1999; 96
DJ Field (BFnrn3476_CR110) 1993; 33
W Li (BFnrn3476_CR12) 2002; 88
H Zhou (BFnrn3476_CR67) 2011; 70
V Poghosyan (BFnrn3476_CR44) 2008; 58
A Riehle (BFnrn3476_CR133) 1997; 278
L Chelazzi (BFnrn3476_CR32) 2001; 11
MA Sommer (BFnrn3476_CR79) 2006; 444
EE Thomson (BFnrn3476_CR10) 2005; 17
VA Lamme (BFnrn3476_CR19) 1995; 15
AK Kreiter (BFnrn3476_CR121) 1996; 16
R Romo (BFnrn3476_CR96) 2003; 38
J Poort (BFnrn3476_CR100) 2009; 19
J Lee (BFnrn3476_CR106) 2009; 4
NR Zhang (BFnrn3476_CR7) 2010; 30
W Bair (BFnrn3476_CR89) 2001; 21
BJ Palanca (BFnrn3476_CR127) 2005; 46
K Herrmann (BFnrn3476_CR104) 2010; 13
E Zohary (BFnrn3476_CR88) 1994; 370
S Treue (BFnrn3476_CR50) 1999; 399
KS Rockland (BFnrn3476_CR113) 1982; 215
BC Motter (BFnrn3476_CR26) 1993; 70
D Ress (BFnrn3476_CR139) 2000; 3
JH Maunsell (BFnrn3476_CR42) 2002; 357
S Treue (BFnrn3476_CR39) 2001; 24
GG Gregoriou (BFnrn3476_CR136) 2009; 324
T Womelsdorf (BFnrn3476_CR9) 2008; 28
E Borenstein (BFnrn3476_CR66) 2008; 30
JH Reynolds (BFnrn3476_CR58) 2003; 43
JR Duhamel (BFnrn3476_CR77) 1992; 255
MM Umeno (BFnrn3476_CR86) 2001; 86
YB Saalmann (BFnrn3476_CR145) 2012; 337
RH Wurtz (BFnrn3476_CR76) 2004; 144
W Singer (BFnrn3476_CR122) 1995; 18
WH Bosking (BFnrn3476_CR116) 1997; 17
MW Spratling (BFnrn3476_CR24) 2010; 30
S Kastner (BFnrn3476_CR45) 1998; 282
Y Chen (BFnrn3476_CR25) 2008; 11
PR Roelfsema (BFnrn3476_CR126) 2004; 7
Y Gu (BFnrn3476_CR97) 2011; 71
MR Cohen (BFnrn3476_CR102) 2008; 60
T Watanabe (BFnrn3476_CR46) 1998; 95
A Angelucci (BFnrn3476_CR17) 2006; 154
R Egly (BFnrn3476_CR56) 1994; 123
BC Motter (BFnrn3476_CR49) 1994; 14
References_xml – volume: 11
  start-page: 58
  year: 2007
  end-page: 64
  ident: CR73
  article-title: Object recognition and segmentation by a fragment-based hierarchy
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2006.11.009
– volume: 11
  start-page: 91
  year: 1999
  end-page: 101
  ident: CR92
  article-title: The effect of correlated variability on the accuracy of a population code
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016827
– volume: 405
  start-page: 685
  year: 2000
  end-page: 689
  ident: CR119
  article-title: Neural synchrony correlates with surface segregation rules
  publication-title: Nature
  doi: 10.1038/35015079
– volume: 9
  start-page: 2432
  year: 1989
  end-page: 2442
  ident: CR11
  article-title: Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.09-07-02432.1989
– volume: 4
  start-page: e4651
  year: 2009
  ident: CR106
  article-title: A normalization model of attentional modulation of single unit responses
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0004651
– volume: 7
  start-page: 70
  year: 2004
  end-page: 74
  ident: CR108
  article-title: Attention increases neural selectivity in the human lateral occipital complex
  publication-title: Nature Neurosci.
  doi: 10.1038/nn1161
– volume: 21
  start-page: 259
  year: 1998
  end-page: 265
  ident: CR94
  article-title: The 'Ideal Homunculus': decoding neural population signals
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(97)01216-2
– volume: 106
  start-page: 1068
  year: 2011
  end-page: 1077
  ident: CR146
  article-title: Distinct functions for direct and transthalamic corticocortical connections
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00429.2011
– volume: 15
  start-page: 1605
  year: 1995
  end-page: 1615
  ident: CR19
  article-title: The neurophysiology of figure–ground segregation in primary visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.15-02-01605.1995
– volume: 71
  start-page: 750
  year: 2011
  end-page: 761
  ident: CR97
  article-title: Perceptual learning reduces interneuronal correlations in macaque visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.06.015
– volume: 216
  start-page: 303
  year: 1983
  end-page: 318
  ident: CR114
  article-title: Intrinsic laminar lattice connections in primate visual cortex
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902160307
– volume: 2
  start-page: 1019
  year: 1999
  end-page: 1025
  ident: CR65
  article-title: Hierarchical models of object recognition in cortex
  publication-title: Nature Neurosci.
  doi: 10.1038/14819
– volume: 51
  start-page: 135
  year: 2006
  end-page: 147
  ident: CR103
  article-title: Separate modulations of human v1 associated with spatial attention and task structure
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.06.003
– volume: 37
  start-page: 853
  year: 2003
  end-page: 863
  ident: CR40
  article-title: Interacting roles of attention and visual salience in V4
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00097-7
– volume: 370
  start-page: 140
  year: 1994
  end-page: 143
  ident: CR88
  article-title: Correlated neuronal discharge rate and its implications for psychophysical performance
  publication-title: Nature
  doi: 10.1038/370140a0
– volume: 16
  start-page: 2381
  year: 1996
  end-page: 2396
  ident: CR121
  article-title: Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-07-02381.1996
– volume: 46
  start-page: 333
  year: 2005
  end-page: 346
  ident: CR127
  article-title: Does neuronal synchrony underlie visual feature grouping?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.03.002
– volume: 456
  start-page: 391
  year: 2008
  end-page: 394
  ident: CR22
  article-title: Guarding the gateway to cortex with attention in visual thalamus
  publication-title: Nature
  doi: 10.1038/nature07382
– volume: 338
  start-page: 334
  year: 1989
  end-page: 337
  ident: CR125
  article-title: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties
  publication-title: Nature
  doi: 10.1038/338334a0
– volume: 357
  start-page: 1063
  year: 2002
  end-page: 1072
  ident: CR42
  article-title: The role of attention in visual processing
  publication-title: Phil. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.2002.1107
– volume: 55
  start-page: 301
  year: 2007
  end-page: 312
  ident: CR63
  article-title: Feature-based attentional modulations in the absence of direct visual stimulation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.06.015
– volume: 28
  start-page: 8934
  year: 2008
  end-page: 8944
  ident: CR9
  article-title: Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4030-07.2008
– volume: 18
  start-page: 1161
  year: 1998
  end-page: 1170
  ident: CR91
  article-title: Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-03-01161.1998
– volume: 382
  start-page: 539
  year: 1996
  end-page: 541
  ident: CR33
  article-title: Attentional modulation of visual motion processing in cortical areas MT and MST
  publication-title: Nature
  doi: 10.1038/382539a0
– volume: 33
  start-page: 173
  year: 1993
  end-page: 193
  ident: CR110
  article-title: Contour integration by the human visual system: evidence for a local “association field”
  publication-title: Vision Res.
  doi: 10.1016/0042-6989(93)90156-Q
– volume: 2
  start-page: 79
  year: 1999
  end-page: 87
  ident: CR23
  article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects
  publication-title: Nature Neurosci.
  doi: 10.1038/4580
– volume: 7
  start-page: 2239
  year: 1987
  end-page: 2255
  ident: CR29
  article-title: Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the macaque monkey
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.07-07-02239.1987
– volume: 425
  start-page: 345
  year: 2000
  end-page: 368
  ident: CR142
  article-title: Feedback connections from area MT of the squirrel monkey to areas V1 and V2
  publication-title: J. Comp. Neurol.
  doi: 10.1002/1096-9861(20000925)425:3<345::AID-CNE2>3.0.CO;2-O
– volume: 4
  start-page: 300
  year: 1994
  end-page: 313
  ident: CR143
  article-title: Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/4.3.300
– volume: 85
  start-page: 134
  year: 2001
  end-page: 145
  ident: CR15
  article-title: Feedback connections act on the early part of the responses in monkey visual cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.85.1.134
– volume: 43
  start-page: 59
  year: 2003
  end-page: 66
  ident: CR58
  article-title: Exogenously cued attention triggers competitive selection of surfaces
  publication-title: Vision Res.
  doi: 10.1016/S0042-6989(02)00403-0
– volume: 66
  start-page: 114
  year: 2010
  end-page: 125
  ident: CR117
  article-title: Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.03.013
– volume: 17
  start-page: 741
  year: 2005
  end-page: 778
  ident: CR10
  article-title: Quantifying stimulus discriminability: a comparison of information theory and ideal observer analysis
  publication-title: Neural Comput.
  doi: 10.1162/0899766053429435
– volume: 266
  start-page: 1001
  year: 1999
  end-page: 1012
  ident: CR95
  article-title: Correlations and the encoding of information in the nervous system
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.1999.0736
– volume: 5
  start-page: 631
  year: 2002
  end-page: 632
  ident: CR62
  article-title: Global effects of feature-based attention in human visual cortex
  publication-title: Nature Neurosci.
  doi: 10.1038/nn876
– volume: 96
  start-page: 3314
  year: 1999
  end-page: 3319
  ident: CR43
  article-title: Spatial attention affects brain activity in human primary visual cortex
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.6.3314
– volume: 240
  start-page: 338
  year: 1988
  end-page: 340
  ident: CR30
  article-title: Increased attention enhances both behavioral and neuronal performance
  publication-title: Science
  doi: 10.1126/science.3353728
– volume: 33
  start-page: 1773
  year: 2013
  end-page: 1789
  ident: CR101
  article-title: Top-down modulation of lateral interactions in visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3825-12.2013
– volume: 229
  start-page: 782
  year: 1985
  end-page: 784
  ident: CR28
  article-title: Selective attention gates visual processing in the extrastriate cortex
  publication-title: Science
  doi: 10.1126/science.4023713
– volume: 1
  start-page: 254
  year: 1998
  end-page: 257
  ident: CR51
  article-title: Top-down influences on stereoscopic depth-perception
  publication-title: Nature Neurosci.
  doi: 10.1038/699
– volume: 54
  start-page: 29
  year: 1986
  end-page: 40
  ident: CR123
  article-title: A neural cocktail-party processor
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00337113
– volume: 16
  start-page: 7376
  year: 1996
  end-page: 7389
  ident: CR2
  article-title: Contextual modulation in primary visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-22-07376.1996
– volume: 11
  start-page: 761
  year: 2001
  end-page: 772
  ident: CR32
  article-title: Responses of neurons in macaque area V4 during memory-guided visual search
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/11.8.761
– volume: 19
  start-page: 496
  year: 2003
  end-page: 512
  ident: CR53
  article-title: Neural mechanisms of top-down control during spatial and feature attention
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00162-9
– volume: 401
  start-page: 584
  year: 1999
  end-page: 587
  ident: CR54
  article-title: fMRI evidence for objects as the units of attentional selection
  publication-title: Nature
  doi: 10.1038/44134
– volume: 285
  start-page: 257
  year: 1999
  end-page: 260
  ident: CR84
  article-title: Reach plans in eye-centered coordinates
  publication-title: Science
  doi: 10.1126/science.285.5425.257
– volume: 60
  start-page: 121
  year: 1988
  end-page: 130
  ident: CR124
  article-title: Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00202899
– volume: 77
  start-page: 24
  year: 1997
  end-page: 42
  ident: CR34
  article-title: Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1997.77.1.24
– volume: 404
  start-page: 187
  year: 2000
  end-page: 190
  ident: CR131
  article-title: Attention modulates synchronized neuronal firing in primate somatosensory cortex
  publication-title: Nature
  doi: 10.1038/35004588
– ident: CR18
– volume: 20
  start-page: 1191
  year: 1998
  end-page: 1197
  ident: CR47
  article-title: Attention and perceptual learning modulate contextual influences on visual perception
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80499-7
– volume: 95
  start-page: 11489
  year: 1998
  end-page: 11492
  ident: CR46
  article-title: Task-dependent influences of attention on the activation of human primary visual cortex
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.95.19.11489
– volume: 113
  start-page: 501
  year: 1984
  end-page: 517
  ident: CR55
  article-title: Selective attention and the organization of visual information
  publication-title: J. Exp. Psychol. Gen.
  doi: 10.1037/0096-3445.113.4.501
– volume: 70
  start-page: 1205
  year: 2011
  end-page: 1217
  ident: CR67
  article-title: Feature-based attention in the frontal eye field and area V4 during visual search
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.04.032
– volume: 292
  start-page: 510
  year: 2001
  end-page: 512
  ident: CR144
  article-title: Fast backprojections from the motion to the primary visual area necessary for visual awareness
  publication-title: Science
  doi: 10.1126/science.1057099
– volume: 12
  start-page: 1594
  year: 2009
  end-page: 1600
  ident: CR98
  article-title: Attention improves performance primarily by reducing interneuronal correlations
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2439
– volume: 11
  start-page: 579
  year: 1994
  end-page: 600
  ident: CR141
  article-title: Divergent feedback connections from areas V4 and TEO in the macaque
  publication-title: Vis. Neurosci.
  doi: 10.1017/S0952523800002480
– volume: 86
  start-page: 2344
  year: 2001
  end-page: 2352
  ident: CR86
  article-title: Spatial processing in the monkey frontal eye field. II. Memory responses
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.86.5.2344
– volume: 88
  start-page: 2846
  year: 2002
  end-page: 2856
  ident: CR12
  article-title: Global contour saliency and local colinear interactions
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00289.2002
– volume: 18
  start-page: 555
  year: 1995
  end-page: 586
  ident: CR122
  article-title: Visual feature integration and the temporal correlation hypothesis
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.18.030195.003011
– volume: 30
  start-page: 3531
  year: 2010
  end-page: 3543
  ident: CR24
  article-title: Predictive coding as a model of response properties in cortical area V1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4911-09.2010
– volume: 215
  start-page: 1532
  year: 1982
  end-page: 1534
  ident: CR113
  article-title: Widespread periodic intrinsic connections in the tree shrew visual cortex
  publication-title: Science
  doi: 10.1126/science.7063863
– volume: 324
  start-page: 1207
  year: 2009
  end-page: 1210
  ident: CR136
  article-title: High-frequency, long-range coupling between prefrontal and visual cortex during attention
  publication-title: Science
  doi: 10.1126/science.1171402
– volume: 337
  start-page: 753
  year: 2012
  end-page: 756
  ident: CR145
  article-title: The pulvinar regulates information transmission between cortical areas based on attention demands
  publication-title: Science
  doi: 10.1126/science.1223082
– volume: 26
  start-page: 703
  year: 2000
  end-page: 714
  ident: CR52
  article-title: Attention increases sensitivity of V4 neurons
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81206-4
– volume: 385
  start-page: 157
  year: 1997
  end-page: 161
  ident: CR134
  article-title: Visuomotor integration is associated with zero time-lag synchronization among cortical areas
  publication-title: Nature
  doi: 10.1038/385157a0
– volume: 30
  start-page: 6482
  year: 2010
  end-page: 6496
  ident: CR7
  article-title: Analysis of the context integration mechanisms underlying figure–ground organization in the visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5168-09.2010
– volume: 7
  start-page: 358
  year: 2006
  end-page: 366
  ident: CR93
  article-title: Neural correlations, population coding and computation
  publication-title: Nature Rev. Neurosci.
  doi: 10.1038/nrn1888
– volume: 99
  start-page: 4026
  year: 2002
  end-page: 4031
  ident: CR82
  article-title: Updating of the visual representation in monkey striate and extrastriate cortex during saccades
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.052379899
– volume: 6
  start-page: 1160
  year: 1986
  end-page: 1170
  ident: CR115
  article-title: Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.06-04-01160.1986
– volume: 109
  start-page: 14675
  year: 2012
  end-page: 14680
  ident: CR138
  article-title: Top-down attention switches coupling between low-level and high-level areas of human visual cortex
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1202095109
– volume: 8
  start-page: 30
  year: 2008
  ident: CR128
  article-title: Synchrony and the binding problem in macaque visual cortex
  publication-title: J. Vis.
  doi: 10.1167/8.7.30
– volume: 3
  start-page: 940
  year: 2000
  end-page: 945
  ident: CR139
  article-title: Activity in primary visual cortex predicts performance in a visual detection task
  publication-title: Nature Neurosci.
  doi: 10.1038/78856
– volume: 70
  start-page: 909
  year: 1993
  end-page: 919
  ident: CR26
  article-title: Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1993.70.3.909
– volume: 3
  start-page: 1116
  year: 1983
  end-page: 1133
  ident: CR112
  article-title: Clustered intrinsic connections in cat visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.03-05-01116.1983
– volume: 84
  start-page: 2048
  year: 2000
  end-page: 2062
  ident: CR1
  article-title: Spatial distribution of contextual interactions in primary visual cortex and in visual perception
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2000.84.4.2048
– volume: 38
  start-page: 649
  year: 2003
  end-page: 657
  ident: CR96
  article-title: Correlated neuronal discharges that increase coding efficiency during perceptual discrimination
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00287-3
– volume: 19
  start-page: 1736
  year: 1999
  end-page: 1753
  ident: CR37
  article-title: Competitive mechanisms subserve attention in macaque areas V2 and V4
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-05-01736.1999
– volume: 60
  start-page: 162
  year: 2008
  end-page: 173
  ident: CR102
  article-title: Context-dependent changes in functional circuitry in visual area MT
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.08.007
– volume: 11
  start-page: 974
  year: 2008
  end-page: 982
  ident: CR25
  article-title: Task difficulty modulates the activity of specific neuronal populations in primary visual cortex
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2147
– volume: 76
  start-page: 2841
  year: 1996
  end-page: 2852
  ident: CR83
  article-title: Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.76.5.2841
– volume: 22
  start-page: 751
  year: 1999
  end-page: 761
  ident: CR140
  article-title: Increased activity in human visual cortex during directed attention in the absence of visual stimulation
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80734-5
– volume: 63
  start-page: 879
  year: 2009
  end-page: 888
  ident: CR99
  article-title: Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.09.013
– volume: 29
  start-page: 15621
  year: 2009
  end-page: 15629
  ident: CR87
  article-title: Selection and maintenance of spatial information by frontal eye field neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4465-09.2009
– volume: 58
  start-page: 802
  year: 2008
  end-page: 813
  ident: CR44
  article-title: Attention modulates earliest responses in the primary auditory and visual cortices
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.04.013
– volume: 4
  start-page: 301
  year: 1923
  end-page: 350
  ident: CR64
  article-title: Untersuchungen zur Lehre von der Gestalt
  publication-title: Psychol. Forsch.
  doi: 10.1007/BF00410640
– volume: 439
  start-page: 733
  year: 2006
  end-page: 736
  ident: CR135
  article-title: Gamma-band synchronization in visual cortex predicts speed of change detection
  publication-title: Nature
  doi: 10.1038/nature04258
– volume: 22
  start-page: 593
  year: 1999
  end-page: 604
  ident: CR35
  article-title: Attention modulates contextual influences in the primary visual cortex of alert monkeys
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80713-8
– volume: 19
  start-page: 431
  year: 1999
  end-page: 441
  ident: CR36
  article-title: Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-01-00431.1999
– volume: 23
  start-page: 7690
  year: 2003
  end-page: 7701
  ident: CR16
  article-title: Time course and time-distance relationships for surround suppression in macaque V1 neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-20-07690.2003
– volume: 144
  start-page: 47
  year: 2004
  end-page: 60
  ident: CR76
  article-title: Identifying corollary discharges for movement in the primate brain
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(03)14403-2
– volume: 5
  start-page: 1203
  year: 2002
  end-page: 1209
  ident: CR21
  article-title: Attention modulates responses in the human lateral geniculate nucleus
  publication-title: Nature Neurosci.
  doi: 10.1038/nn957
– volume: 50
  start-page: 951
  year: 2006
  end-page: 962
  ident: CR5
  article-title: Contour saliency in primary visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.04.035
– volume: 395
  start-page: 376
  year: 1998
  end-page: 381
  ident: CR3
  article-title: Object-based attention in the primary visual cortex of the macaque monkey
  publication-title: Nature
  doi: 10.1038/26475
– volume: 6
  start-page: 482
  year: 1996
  end-page: 489
  ident: CR90
  article-title: Adjacent visual cortical complex cells share about 20% of their stimulus-related information
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/6.3.482
– volume: 206
  start-page: 159
  year: 2005
  end-page: 176
  ident: CR71
  article-title: Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2005.01.015
– volume: 7
  start-page: 651
  year: 2004
  end-page: 657
  ident: CR20
  article-title: Perceptual learning and top-down influences in primary visual cortex
  publication-title: Nature Neurosci.
  doi: 10.1038/nn1255
– volume: 4
  start-page: 519
  year: 2001
  end-page: 525
  ident: CR38
  article-title: Learning to see: experience and attention in primary visual cortex
  publication-title: Nature Neurosci.
  doi: 10.1038/87470
– volume: 30
  start-page: 2109
  year: 2008
  end-page: 2125
  ident: CR66
  article-title: Combined top-down/bottom-up segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.70840
– volume: 13
  start-page: 1554
  year: 2010
  end-page: 1559
  ident: CR104
  article-title: When size matters: attention affects performance by contrast or response gain
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2669
– volume: 14
  start-page: 252
  year: 2011
  end-page: 256
  ident: CR78
  article-title: Predictive remapping of attention across eye movements
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2711
– volume: 7
  start-page: 982
  year: 2004
  end-page: 991
  ident: CR126
  article-title: Synchrony and covariation of firing rates in the primary visual cortex during contour grouping
  publication-title: Nature Neurosci.
  doi: 10.1038/nn1304
– volume: 75
  start-page: 143
  year: 2012
  end-page: 156
  ident: CR60
  article-title: The role of attention in figure-ground segregation in areas V1 and V4 of the visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.04.032
– volume: 396
  start-page: 362
  year: 1998
  end-page: 366
  ident: CR129
  article-title: Neuronal synchrony does not represent texture segregation
  publication-title: Nature
  doi: 10.1038/24608
– volume: 19
  start-page: 543
  year: 2009
  end-page: 553
  ident: CR100
  article-title: Noise correlations have little influence on the coding of selective attention in area V1
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn103
– volume: 53
  start-page: 881
  year: 2007
  end-page: 890
  ident: CR85
  article-title: Remembering visual motion: neural correlates of associative plasticity and motion recall in cortical area MT
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.02.028
– volume: 18
  start-page: 193
  year: 1995
  end-page: 222
  ident: CR41
  article-title: Neural mechanisms of selective visual attention
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.18.030195.001205
– volume: 91
  start-page: 1403
  year: 2004
  end-page: 1423
  ident: CR75
  article-title: What the brain stem tells the frontal cortex. II. Role of the SC–MD–FEF pathway in corollary discharge
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00740.2003
– volume: 280
  start-page: 120
  year: 1979
  end-page: 125
  ident: CR111
  article-title: Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex
  publication-title: Nature
  doi: 10.1038/280120a0
– volume: 109
  start-page: 160
  year: 1980
  end-page: 174
  ident: CR27
  article-title: Attention and the detection of signals
  publication-title: J. Exp. Psychol.
  doi: 10.1037/0096-3445.109.2.160
– volume: 154
  start-page: 93
  year: 2006
  end-page: 120
  ident: CR17
  article-title: Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(06)54005-1
– volume: 57
  start-page: 442
  year: 2008
  end-page: 451
  ident: CR6
  article-title: Learning to link visual contours
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.12.011
– volume: 10
  start-page: 840
  year: 2000
  end-page: 850
  ident: CR120
  article-title: Contour decouples gamma activity across texture representation in monkey striate cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/10.9.840
– volume: 80
  start-page: 2918
  year: 1998
  end-page: 2940
  ident: CR48
  article-title: Responses of neurons in inferior temporal cortex during memory-guided visual search
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.80.6.2918
– volume: 78
  start-page: 1373
  year: 1997
  end-page: 1383
  ident: CR81
  article-title: Spatial processing in the monkey frontal eye field. I. Predictive visual responses
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1997.78.3.1373
– volume: 29
  start-page: 13621
  year: 2009
  end-page: 13629
  ident: CR74
  article-title: Perceptual learning of object shape
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2612-09.2009
– volume: 36
  start-page: 739
  year: 2002
  end-page: 750
  ident: CR14
  article-title: Lateral connectivity and contextual interactions in macaque primary visual cortex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01029-2
– volume: 399
  start-page: 575
  year: 1999
  end-page: 579
  ident: CR50
  article-title: Feature-based attention influences motion processing gain in macaque visual cortex
  publication-title: Nature
  doi: 10.1038/21176
– volume: 21
  start-page: 1676
  year: 2001
  end-page: 1697
  ident: CR89
  article-title: Correlated firing in macaque visual area MT: time scales and relationship to behavior
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-05-01676.2001
– volume: 96
  start-page: 1663
  year: 1999
  end-page: 1668
  ident: CR61
  article-title: Functional MRI reveals spatially specific attentional modulation in human primary visual cortex
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.4.1663
– volume: 123
  start-page: 161
  year: 1994
  end-page: 177
  ident: CR56
  article-title: Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects
  publication-title: J. Exp. Psychol. Gen.
  doi: 10.1037/0096-3445.123.2.161
– volume: 13
  start-page: 187
  year: 2003
  end-page: 193
  ident: CR59
  article-title: Cortical mechanisms of space-based and object-based attentional control
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(03)00033-3
– year: 2012
  ident: CR147
  publication-title: Principles of Neural Science
– volume: 291
  start-page: 1560
  year: 2001
  end-page: 1563
  ident: CR130
  article-title: Modulation of oscillatory neuronal synchronization by selective visual attention
  publication-title: Science
  doi: 10.1126/science.1055465
– volume: 255
  start-page: 90
  year: 1992
  end-page: 92
  ident: CR77
  article-title: The updating of the representation of visual space in parietal cortex by intended eye movements
  publication-title: Science
  doi: 10.1126/science.1553535
– volume: 24
  start-page: 295
  year: 2001
  end-page: 300
  ident: CR39
  article-title: Neural correlates of attention in primate visual cortex
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(00)01814-2
– volume: 408
  start-page: 196
  year: 2000
  end-page: 199
  ident: CR57
  article-title: Tracking an object through feature space
  publication-title: Nature
  doi: 10.1038/35041567
– volume: 17
  start-page: 2112
  year: 1997
  end-page: 2127
  ident: CR116
  article-title: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-06-02112.1997
– volume: 32
  start-page: 6851
  year: 2012
  end-page: 6858
  ident: CR70
  article-title: Segregated pathways carrying frontally derived top-down signals to visual areas MT and V4 in macaques
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6295-11.2012
– volume: 282
  start-page: 108
  year: 1998
  end-page: 111
  ident: CR45
  article-title: Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI
  publication-title: Science
  doi: 10.1126/science.282.5386.108
– volume: 444
  start-page: 374
  year: 2006
  end-page: 377
  ident: CR79
  article-title: Influence of the thalamus on spatial visual processing in frontal cortex
  publication-title: Nature
  doi: 10.1038/nature05279
– volume: 28
  start-page: 4823
  year: 2008
  end-page: 4835
  ident: CR137
  article-title: The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4499-07.2008
– volume: 278
  start-page: 1950
  year: 1997
  end-page: 1953
  ident: CR133
  article-title: Spike synchronization and rate modulation differentially involved in motor cortical function
  publication-title: Science
  doi: 10.1126/science.278.5345.1950
– volume: 89
  start-page: 1519
  year: 2003
  end-page: 1527
  ident: CR80
  article-title: The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00519.2002
– volume: 102
  start-page: 14925
  year: 2005
  end-page: 14930
  ident: CR118
  article-title: Attentional integration between anatomically distinct stimulus representations in early visual cortex
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0501684102
– volume: 75
  start-page: 250
  year: 2012
  end-page: 264
  ident: CR13
  article-title: Adult visual cortical plasticity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.06.030
– volume: 20
  start-page: 6594
  year: 2000
  end-page: 6611
  ident: CR4
  article-title: Coding of border ownership in monkey visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-17-06594.2000
– volume: 61
  start-page: 168
  year: 2009
  end-page: 185
  ident: CR107
  article-title: The normalization model of attention
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.01.002
– volume: 14
  start-page: 2178
  year: 1994
  end-page: 2189
  ident: CR49
  article-title: Neural correlates of attentive selection for color or luminance in extrastriate area V4
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.14-04-02178.1994
– volume: 96
  start-page: 40
  year: 2006
  end-page: 54
  ident: CR105
  article-title: Effects of spatial attention on contrast response functions in macaque area V4
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01207.2005
– volume: 363
  start-page: 345
  year: 1993
  end-page: 347
  ident: CR31
  article-title: A neural basis for visual search in inferior temporal cortex
  publication-title: Nature
  doi: 10.1038/363345a0
– volume: 57
  start-page: 614
  year: 2008
  end-page: 625
  ident: CR68
  article-title: Measurements of simultaneously recorded spiking activity and local field potentials suggest that spatial selection emerges in the frontal eye field
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.12.030
– volume: 12
  start-page: 85
  year: 2009
  end-page: 91
  ident: CR69
  article-title: Task-specific signal transmission from prefrontal cortex in visual selective attention
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2237
– volume: 108
  start-page: 9739
  year: 2011
  end-page: 9746
  ident: CR8
  article-title: Adaptive shape processing in primary visual cortex
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1105855108
– volume: 66
  start-page: 796
  year: 2010
  end-page: 807
  ident: CR72
  article-title: Representation of multiple, independent categories in the primate prefrontal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.05.005
– volume: 54
  start-page: 677
  year: 2007
  end-page: 696
  ident: CR109
  article-title: Brain states: top-down influences in sensory processing
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.05.019
– volume: 127
  start-page: 119
  year: 2001
  end-page: 136
  ident: CR132
  article-title: Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration
  publication-title: Behav. Brain Res.
  doi: 10.1016/S0166-4328(01)00358-8
– volume: 66
  start-page: 114
  year: 2010
  ident: BFnrn3476_CR117
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.03.013
– volume: 13
  start-page: 1554
  year: 2010
  ident: BFnrn3476_CR104
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2669
– volume: 5
  start-page: 1203
  year: 2002
  ident: BFnrn3476_CR21
  publication-title: Nature Neurosci.
  doi: 10.1038/nn957
– volume: 10
  start-page: 840
  year: 2000
  ident: BFnrn3476_CR120
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/10.9.840
– volume: 19
  start-page: 431
  year: 1999
  ident: BFnrn3476_CR36
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-01-00431.1999
– volume: 80
  start-page: 2918
  year: 1998
  ident: BFnrn3476_CR48
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.80.6.2918
– volume: 11
  start-page: 91
  year: 1999
  ident: BFnrn3476_CR92
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016827
– volume: 408
  start-page: 196
  year: 2000
  ident: BFnrn3476_CR57
  publication-title: Nature
  doi: 10.1038/35041567
– volume: 43
  start-page: 59
  year: 2003
  ident: BFnrn3476_CR58
  publication-title: Vision Res.
  doi: 10.1016/S0042-6989(02)00403-0
– volume: 154
  start-page: 93
  year: 2006
  ident: BFnrn3476_CR17
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(06)54005-1
– volume: 86
  start-page: 2344
  year: 2001
  ident: BFnrn3476_CR86
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.86.5.2344
– volume: 2
  start-page: 79
  year: 1999
  ident: BFnrn3476_CR23
  publication-title: Nature Neurosci.
  doi: 10.1038/4580
– volume: 19
  start-page: 543
  year: 2009
  ident: BFnrn3476_CR100
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn103
– volume: 404
  start-page: 187
  year: 2000
  ident: BFnrn3476_CR131
  publication-title: Nature
  doi: 10.1038/35004588
– volume: 22
  start-page: 593
  year: 1999
  ident: BFnrn3476_CR35
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80713-8
– volume: 18
  start-page: 193
  year: 1995
  ident: BFnrn3476_CR41
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.18.030195.001205
– volume: 23
  start-page: 7690
  year: 2003
  ident: BFnrn3476_CR16
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-20-07690.2003
– volume: 99
  start-page: 4026
  year: 2002
  ident: BFnrn3476_CR82
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.052379899
– volume: 3
  start-page: 1116
  year: 1983
  ident: BFnrn3476_CR112
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.03-05-01116.1983
– volume: 363
  start-page: 345
  year: 1993
  ident: BFnrn3476_CR31
  publication-title: Nature
  doi: 10.1038/363345a0
– volume: 29
  start-page: 15621
  year: 2009
  ident: BFnrn3476_CR87
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4465-09.2009
– volume: 382
  start-page: 539
  year: 1996
  ident: BFnrn3476_CR33
  publication-title: Nature
  doi: 10.1038/382539a0
– volume: 127
  start-page: 119
  year: 2001
  ident: BFnrn3476_CR132
  publication-title: Behav. Brain Res.
  doi: 10.1016/S0166-4328(01)00358-8
– volume: 19
  start-page: 1736
  year: 1999
  ident: BFnrn3476_CR37
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-05-01736.1999
– volume: 26
  start-page: 703
  year: 2000
  ident: BFnrn3476_CR52
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81206-4
– volume: 108
  start-page: 9739
  year: 2011
  ident: BFnrn3476_CR8
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1105855108
– volume: 123
  start-page: 161
  year: 1994
  ident: BFnrn3476_CR56
  publication-title: J. Exp. Psychol. Gen.
  doi: 10.1037/0096-3445.123.2.161
– volume: 36
  start-page: 739
  year: 2002
  ident: BFnrn3476_CR14
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01029-2
– volume: 6
  start-page: 482
  year: 1996
  ident: BFnrn3476_CR90
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/6.3.482
– volume: 337
  start-page: 753
  year: 2012
  ident: BFnrn3476_CR145
  publication-title: Science
  doi: 10.1126/science.1223082
– volume: 456
  start-page: 391
  year: 2008
  ident: BFnrn3476_CR22
  publication-title: Nature
  doi: 10.1038/nature07382
– volume: 32
  start-page: 6851
  year: 2012
  ident: BFnrn3476_CR70
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6295-11.2012
– volume: 20
  start-page: 6594
  year: 2000
  ident: BFnrn3476_CR4
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-17-06594.2000
– volume: 70
  start-page: 1205
  year: 2011
  ident: BFnrn3476_CR67
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.04.032
– volume: 278
  start-page: 1950
  year: 1997
  ident: BFnrn3476_CR133
  publication-title: Science
  doi: 10.1126/science.278.5345.1950
– volume: 240
  start-page: 338
  year: 1988
  ident: BFnrn3476_CR30
  publication-title: Science
  doi: 10.1126/science.3353728
– volume: 215
  start-page: 1532
  year: 1982
  ident: BFnrn3476_CR113
  publication-title: Science
  doi: 10.1126/science.7063863
– volume: 30
  start-page: 6482
  year: 2010
  ident: BFnrn3476_CR7
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5168-09.2010
– volume: 88
  start-page: 2846
  year: 2002
  ident: BFnrn3476_CR12
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00289.2002
– volume: 401
  start-page: 584
  year: 1999
  ident: BFnrn3476_CR54
  publication-title: Nature
  doi: 10.1038/44134
– volume: 58
  start-page: 802
  year: 2008
  ident: BFnrn3476_CR44
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.04.013
– volume: 76
  start-page: 2841
  year: 1996
  ident: BFnrn3476_CR83
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.76.5.2841
– volume: 78
  start-page: 1373
  year: 1997
  ident: BFnrn3476_CR81
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1997.78.3.1373
– volume: 96
  start-page: 1663
  year: 1999
  ident: BFnrn3476_CR61
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.4.1663
– volume: 17
  start-page: 2112
  year: 1997
  ident: BFnrn3476_CR116
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-06-02112.1997
– volume: 91
  start-page: 1403
  year: 2004
  ident: BFnrn3476_CR75
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00740.2003
– ident: BFnrn3476_CR18
– volume: 385
  start-page: 157
  year: 1997
  ident: BFnrn3476_CR134
  publication-title: Nature
  doi: 10.1038/385157a0
– volume: 2
  start-page: 1019
  year: 1999
  ident: BFnrn3476_CR65
  publication-title: Nature Neurosci.
  doi: 10.1038/14819
– volume: 8
  start-page: 30
  year: 2008
  ident: BFnrn3476_CR128
  publication-title: J. Vis.
  doi: 10.1167/8.7.30
– volume: 29
  start-page: 13621
  year: 2009
  ident: BFnrn3476_CR74
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2612-09.2009
– volume: 102
  start-page: 14925
  year: 2005
  ident: BFnrn3476_CR118
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0501684102
– volume: 109
  start-page: 14675
  year: 2012
  ident: BFnrn3476_CR138
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1202095109
– volume: 75
  start-page: 250
  year: 2012
  ident: BFnrn3476_CR13
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.06.030
– volume: 282
  start-page: 108
  year: 1998
  ident: BFnrn3476_CR45
  publication-title: Science
  doi: 10.1126/science.282.5386.108
– volume: 19
  start-page: 496
  year: 2003
  ident: BFnrn3476_CR53
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00162-9
– volume: 70
  start-page: 909
  year: 1993
  ident: BFnrn3476_CR26
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1993.70.3.909
– volume: 291
  start-page: 1560
  year: 2001
  ident: BFnrn3476_CR130
  publication-title: Science
  doi: 10.1126/science.1055465
– volume: 4
  start-page: 300
  year: 1994
  ident: BFnrn3476_CR143
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/4.3.300
– volume: 53
  start-page: 881
  year: 2007
  ident: BFnrn3476_CR85
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.02.028
– volume: 46
  start-page: 333
  year: 2005
  ident: BFnrn3476_CR127
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.03.002
– volume: 3
  start-page: 940
  year: 2000
  ident: BFnrn3476_CR139
  publication-title: Nature Neurosci.
  doi: 10.1038/78856
– volume: 338
  start-page: 334
  year: 1989
  ident: BFnrn3476_CR125
  publication-title: Nature
  doi: 10.1038/338334a0
– volume: 280
  start-page: 120
  year: 1979
  ident: BFnrn3476_CR111
  publication-title: Nature
  doi: 10.1038/280120a0
– volume: 51
  start-page: 135
  year: 2006
  ident: BFnrn3476_CR103
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.06.003
– volume: 7
  start-page: 2239
  year: 1987
  ident: BFnrn3476_CR29
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.07-07-02239.1987
– volume: 33
  start-page: 173
  year: 1993
  ident: BFnrn3476_CR110
  publication-title: Vision Res.
  doi: 10.1016/0042-6989(93)90156-Q
– volume: 84
  start-page: 2048
  year: 2000
  ident: BFnrn3476_CR1
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2000.84.4.2048
– volume: 77
  start-page: 24
  year: 1997
  ident: BFnrn3476_CR34
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1997.77.1.24
– volume: 61
  start-page: 168
  year: 2009
  ident: BFnrn3476_CR107
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.01.002
– volume: 11
  start-page: 579
  year: 1994
  ident: BFnrn3476_CR141
  publication-title: Vis. Neurosci.
  doi: 10.1017/S0952523800002480
– volume: 395
  start-page: 376
  year: 1998
  ident: BFnrn3476_CR3
  publication-title: Nature
  doi: 10.1038/26475
– volume: 60
  start-page: 121
  year: 1988
  ident: BFnrn3476_CR124
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00202899
– volume: 21
  start-page: 259
  year: 1998
  ident: BFnrn3476_CR94
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(97)01216-2
– volume: 285
  start-page: 257
  year: 1999
  ident: BFnrn3476_CR84
  publication-title: Science
  doi: 10.1126/science.285.5425.257
– volume: 18
  start-page: 555
  year: 1995
  ident: BFnrn3476_CR122
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.18.030195.003011
– volume: 444
  start-page: 374
  year: 2006
  ident: BFnrn3476_CR79
  publication-title: Nature
  doi: 10.1038/nature05279
– volume: 370
  start-page: 140
  year: 1994
  ident: BFnrn3476_CR88
  publication-title: Nature
  doi: 10.1038/370140a0
– volume: 21
  start-page: 1676
  year: 2001
  ident: BFnrn3476_CR89
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-05-01676.2001
– volume: 425
  start-page: 345
  year: 2000
  ident: BFnrn3476_CR142
  publication-title: J. Comp. Neurol.
  doi: 10.1002/1096-9861(20000925)425:3<345::AID-CNE2>3.0.CO;2-O
– volume: 6
  start-page: 1160
  year: 1986
  ident: BFnrn3476_CR115
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.06-04-01160.1986
– volume: 17
  start-page: 741
  year: 2005
  ident: BFnrn3476_CR10
  publication-title: Neural Comput.
  doi: 10.1162/0899766053429435
– volume: 4
  start-page: 519
  year: 2001
  ident: BFnrn3476_CR38
  publication-title: Nature Neurosci.
  doi: 10.1038/87470
– volume: 54
  start-page: 29
  year: 1986
  ident: BFnrn3476_CR123
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00337113
– volume: 71
  start-page: 750
  year: 2011
  ident: BFnrn3476_CR97
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.06.015
– volume: 396
  start-page: 362
  year: 1998
  ident: BFnrn3476_CR129
  publication-title: Nature
  doi: 10.1038/24608
– volume: 292
  start-page: 510
  year: 2001
  ident: BFnrn3476_CR144
  publication-title: Science
  doi: 10.1126/science.1057099
– volume: 113
  start-page: 501
  year: 1984
  ident: BFnrn3476_CR55
  publication-title: J. Exp. Psychol. Gen.
  doi: 10.1037/0096-3445.113.4.501
– volume: 7
  start-page: 70
  year: 2004
  ident: BFnrn3476_CR108
  publication-title: Nature Neurosci.
  doi: 10.1038/nn1161
– volume: 1
  start-page: 254
  year: 1998
  ident: BFnrn3476_CR51
  publication-title: Nature Neurosci.
  doi: 10.1038/699
– volume: 144
  start-page: 47
  year: 2004
  ident: BFnrn3476_CR76
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(03)14403-2
– volume: 266
  start-page: 1001
  year: 1999
  ident: BFnrn3476_CR95
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.1999.0736
– volume: 9
  start-page: 2432
  year: 1989
  ident: BFnrn3476_CR11
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.09-07-02432.1989
– volume: 96
  start-page: 40
  year: 2006
  ident: BFnrn3476_CR105
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01207.2005
– volume: 405
  start-page: 685
  year: 2000
  ident: BFnrn3476_CR119
  publication-title: Nature
  doi: 10.1038/35015079
– volume: 54
  start-page: 677
  year: 2007
  ident: BFnrn3476_CR109
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.05.019
– volume: 20
  start-page: 1191
  year: 1998
  ident: BFnrn3476_CR47
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80499-7
– volume: 57
  start-page: 614
  year: 2008
  ident: BFnrn3476_CR68
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.12.030
– volume: 206
  start-page: 159
  year: 2005
  ident: BFnrn3476_CR71
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2005.01.015
– volume: 50
  start-page: 951
  year: 2006
  ident: BFnrn3476_CR5
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.04.035
– volume: 109
  start-page: 160
  year: 1980
  ident: BFnrn3476_CR27
  publication-title: J. Exp. Psychol.
  doi: 10.1037/0096-3445.109.2.160
– volume: 24
  start-page: 295
  year: 2001
  ident: BFnrn3476_CR39
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(00)01814-2
– volume: 38
  start-page: 649
  year: 2003
  ident: BFnrn3476_CR96
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00287-3
– volume: 439
  start-page: 733
  year: 2006
  ident: BFnrn3476_CR135
  publication-title: Nature
  doi: 10.1038/nature04258
– volume: 89
  start-page: 1519
  year: 2003
  ident: BFnrn3476_CR80
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00519.2002
– volume: 55
  start-page: 301
  year: 2007
  ident: BFnrn3476_CR63
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.06.015
– volume: 14
  start-page: 252
  year: 2011
  ident: BFnrn3476_CR78
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2711
– volume-title: Principles of Neural Science
  year: 2012
  ident: BFnrn3476_CR147
– volume: 11
  start-page: 58
  year: 2007
  ident: BFnrn3476_CR73
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2006.11.009
– volume: 11
  start-page: 761
  year: 2001
  ident: BFnrn3476_CR32
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/11.8.761
– volume: 37
  start-page: 853
  year: 2003
  ident: BFnrn3476_CR40
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00097-7
– volume: 96
  start-page: 3314
  year: 1999
  ident: BFnrn3476_CR43
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.6.3314
– volume: 18
  start-page: 1161
  year: 1998
  ident: BFnrn3476_CR91
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-03-01161.1998
– volume: 216
  start-page: 303
  year: 1983
  ident: BFnrn3476_CR114
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902160307
– volume: 28
  start-page: 4823
  year: 2008
  ident: BFnrn3476_CR137
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4499-07.2008
– volume: 15
  start-page: 1605
  year: 1995
  ident: BFnrn3476_CR19
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.15-02-01605.1995
– volume: 57
  start-page: 442
  year: 2008
  ident: BFnrn3476_CR6
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.12.011
– volume: 28
  start-page: 8934
  year: 2008
  ident: BFnrn3476_CR9
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4030-07.2008
– volume: 60
  start-page: 162
  year: 2008
  ident: BFnrn3476_CR102
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.08.007
– volume: 4
  start-page: e4651
  year: 2009
  ident: BFnrn3476_CR106
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0004651
– volume: 30
  start-page: 3531
  year: 2010
  ident: BFnrn3476_CR24
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4911-09.2010
– volume: 229
  start-page: 782
  year: 1985
  ident: BFnrn3476_CR28
  publication-title: Science
  doi: 10.1126/science.4023713
– volume: 399
  start-page: 575
  year: 1999
  ident: BFnrn3476_CR50
  publication-title: Nature
  doi: 10.1038/21176
– volume: 357
  start-page: 1063
  year: 2002
  ident: BFnrn3476_CR42
  publication-title: Phil. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.2002.1107
– volume: 13
  start-page: 187
  year: 2003
  ident: BFnrn3476_CR59
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(03)00033-3
– volume: 106
  start-page: 1068
  year: 2011
  ident: BFnrn3476_CR146
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00429.2011
– volume: 7
  start-page: 982
  year: 2004
  ident: BFnrn3476_CR126
  publication-title: Nature Neurosci.
  doi: 10.1038/nn1304
– volume: 85
  start-page: 134
  year: 2001
  ident: BFnrn3476_CR15
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.85.1.134
– volume: 255
  start-page: 90
  year: 1992
  ident: BFnrn3476_CR77
  publication-title: Science
  doi: 10.1126/science.1553535
– volume: 16
  start-page: 7376
  year: 1996
  ident: BFnrn3476_CR2
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-22-07376.1996
– volume: 5
  start-page: 631
  year: 2002
  ident: BFnrn3476_CR62
  publication-title: Nature Neurosci.
  doi: 10.1038/nn876
– volume: 75
  start-page: 143
  year: 2012
  ident: BFnrn3476_CR60
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.04.032
– volume: 66
  start-page: 796
  year: 2010
  ident: BFnrn3476_CR72
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.05.005
– volume: 30
  start-page: 2109
  year: 2008
  ident: BFnrn3476_CR66
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.70840
– volume: 324
  start-page: 1207
  year: 2009
  ident: BFnrn3476_CR136
  publication-title: Science
  doi: 10.1126/science.1171402
– volume: 22
  start-page: 751
  year: 1999
  ident: BFnrn3476_CR140
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80734-5
– volume: 12
  start-page: 85
  year: 2009
  ident: BFnrn3476_CR69
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2237
– volume: 95
  start-page: 11489
  year: 1998
  ident: BFnrn3476_CR46
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.95.19.11489
– volume: 63
  start-page: 879
  year: 2009
  ident: BFnrn3476_CR99
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.09.013
– volume: 33
  start-page: 1773
  year: 2013
  ident: BFnrn3476_CR101
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3825-12.2013
– volume: 14
  start-page: 2178
  year: 1994
  ident: BFnrn3476_CR49
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.14-04-02178.1994
– volume: 12
  start-page: 1594
  year: 2009
  ident: BFnrn3476_CR98
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2439
– volume: 7
  start-page: 358
  year: 2006
  ident: BFnrn3476_CR93
  publication-title: Nature Rev. Neurosci.
  doi: 10.1038/nrn1888
– volume: 16
  start-page: 2381
  year: 1996
  ident: BFnrn3476_CR121
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-07-02381.1996
– volume: 7
  start-page: 651
  year: 2004
  ident: BFnrn3476_CR20
  publication-title: Nature Neurosci.
  doi: 10.1038/nn1255
– volume: 11
  start-page: 974
  year: 2008
  ident: BFnrn3476_CR25
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2147
– volume: 4
  start-page: 301
  year: 1923
  ident: BFnrn3476_CR64
  publication-title: Psychol. Forsch.
  doi: 10.1007/BF00410640
SSID ssj0016176
Score 2.6191154
SecondaryResourceType review_article
Snippet Key Points In contrast to the traditional idea that the processing of visual information consists of a sequence of feedforward operations, with neuronal...
Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation,...
Reentrant or feedback pathways between cortical areas carry rich and varied information about behavioral context, including attention, expectation, perceptual...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 350
SubjectTerms Animal Genetics and Genomics
Animals
Attention
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Humans
Neurobiology
Neurons
Neurosciences
Nonlinear Dynamics
Physiological aspects
review-article
Vision, Ocular - physiology
Visual Cortex - cytology
Visual Cortex - physiology
Visual Pathways - physiology
Visual perception
Visual Perception - physiology
Title Top-down influences on visual processing
URI https://link.springer.com/article/10.1038/nrn3476
https://www.ncbi.nlm.nih.gov/pubmed/23595013
https://www.proquest.com/docview/1330852417
https://www.proquest.com/docview/1331090006
https://www.proquest.com/docview/1352285057
https://pubmed.ncbi.nlm.nih.gov/PMC3864796
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC58wOJlUfdh1gcRxN1LY5LupJOTzKiDCMoiCnMLSacbByQZ57G_f6uSTpyM4CmHrry6K1Vfpau-AjjTOjJRZCSTOjFMiEKzBI0giwrpZyrIuRdTcfL9Q3T7LO7G4dj-cJvbtMrWJtaGuqgU_SO_wFgK0QH6G3k5fWPUNYp2V20LjU3Y9hGJUOsGOe4CLoLuTXWRxJDZ4-OmaJYowS_KWckFEY2seKN1m7zilNYTJtd2TWtnNNqFrxZFuoNm2fdgQ5f78OXe7pN_gz9P1ZQVGGC7k7YJydytSvffZL7E86ZNdQBe-js8j26erm6Z7YnAVMi9BcuMFjpSnsrCDKFInCPckUIVPOQiybgwgfLyRMssMIGf15CJOMoi7QkV64LzH7BVVqU-AFf7uQg9kxgTEOtfgb4qTrJYKKOIkaVw4Lydm1RZwnDqW_Ga1hvXPE7tJDrgdoLThiPjo8hvmtyUvhq8hsps8j8-CfFPpQOOsINiT9-Bo54karvqD7fLk9qvbZ6-64YDp90wnUkZZKWulrUM5aCikflMBtFoTCGbAz-bFe9eKKAKZsTLDsieLnQCxNPdHyknLzVfN48jIRO6b6s1K4_en6dfn7_eIewEdTsOSrg8gq3FbKmPERQt8pNa809gezC8Ho7wOLx5-Pv4H43aDaQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnQS8IL4JDAgSXy_RUtuJk4cJDdjUsbVCqJP6ljmOLSqhpKwtiH-Ov427xAlNkfa2Z1-c5Ozz3fnufgfwypjYxrGVgTSpDYQoTJDiIRjEhRwqzXIeJlScPJ7Eo3PxeRbNduBPWwtDaZXtmVgf1EWl6Y58H30ptA5Q38j3ix8BdY2i6GrbQkO51grFQQ0x5go7Ts3vX-jCLQ9OPuF6v2bs-Gj6cRS4LgOBjni4CpQ1wsQ61CpSqNyTHA0IKXTBIy5SxYVlOsxTIxWzbJjXRgihfsUmFDoxBV2IogrYFXSBMoDdD0eTL1-7OAbaB019k0SnPeSzpmyXQMn3y8uSC4I62dCH21phQy1up2xuxW1rdXh8B247O9Y_bDbeXdgx5T24MXaR-vvwblotggJdfH_etkFZ-lXp_5wv1_jcoqlPwKkfwPm18OshDMqqNI_BN8NcRKFNrWWEO1igtkxSlQhtNWHCFB68aXmTaQdZTp0zvmd16JwnmWOiB35HuGhQOv4neUvMzUhucQ6tXPkBfgkhYGWHHA0f8n6HHuz1KFHedH-4XZ7Myfsy-7c7PXjZDdOTlMNWmmpd01AWLB5zV9GgPZyQ0-jBo2bFux9iVEONFrsHsrcXOgJCCu-PlPNvNWI4T2IhU3pvu2s2Pr3PpydX_94LuDmajs-ys5PJ6VO4xermIJT-uQeD1eXaPEMTbZU_d3Lgw8V1i95fMlRNjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKiEuqLRQUmibShS4WJu1nTg5IIRKVzwK4gDS3tLEsdWVqmRhd6n4a_y6zuTFZitx4-zJazzPeOYbgF1jAhsEVjFlIsukzAyL0AiyIFP9RPNUeCE1J19eBae38nzoD5fgqemFobLKxiaWhjorNP0j72EuhdEB-hvVs3VZxPXJ4Gh8x2iCFJ20NuM0KhG5MI9_MX2bHJ6d4F5_43zw4-b7KasnDDDtC2_KEmukCbSnEz9Bxx6mGDwoqTPhCxklQlquvTQyKuGW99MyACHEr8B4Uocmo5-haP7fKCEljY1QwzbZo7Sh6mxSmK57Ylg17BIceS-_z4UkkJM5T7joD-Yc4mKx5sKJbekIB29hrY5g3eNK5NZhyeTvYOWyPqN_Dwc3xZhlmNy7o2YAysQtcvdhNJnhdeOqMwFvvQG3r8KtTVjOi9xsgWv6qfQ9G1nLCXEwQz8ZRkkotdWEBpM5sNfwJtY1WDnNzPgTl4fmIoxrJjrgtoTjCp_jf5J9Ym5MGov30EndeIBvQthX8bHAkIfy3r4DOx1K1DTdXW62J641fRI_y6UDX9tlupKq13JTzEoaqn9FA_cSDUbCIaWLDnyodrz9IE7d0xirO6A6stASEEZ4dyUf_S6xwkUYSBXRcxupmXv1Lp8-vvx5X2AFFS7-eXZ1sQ2rvJwKQnWfO7A8vZ-ZTxibTdPPpRK48Ou1te4fEpBLKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Top-down+influences+on+visual+processing&rft.jtitle=Nature+reviews.+Neuroscience&rft.au=Gilbert%2C+Charles+D&rft.au=Li%2C+Wu&rft.date=2013-05-01&rft.issn=1471-0048&rft.eissn=1471-0048&rft.volume=14&rft.issue=5&rft.spage=350&rft_id=info:doi/10.1038%2Fnrn3476&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-003X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-003X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-003X&client=summon